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ABSTRACT

Model merging enables the combination of multiple specialized expert models
into a single model capable of performing multiple tasks. However, the benefits
of merging an increasing amount of specialized experts generally lead to dimin-
ishing returns and reduced overall performance gains. In this work, we offer an
explanation and analysis from a task arithmetic perspective; revealing that as the
merging process (across numerous existing merging methods) continues for more
and more experts, the associated task vector space experiences rank collapse. To
mitigate this issue, we introduce Subspace Boosting, which operates on the singu-
lar value decomposed task vector space and maintains task vector ranks. Subspace
Boosting raises merging efficacy for up to 20 expert models by large margins of
more than 10% when evaluated on both vision and language benchmarks. More-
over, we propose employing Higher-Order Generalized Singular Value Decom-
position to quantify task similarity, offering a new interpretable perspective on
model merging.
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Figure 1: Overview of our contributions. (a) Popular merging methods such as Task Arithmetic
(TA) (Ilharco et al., 2023b), TIES (Yadav et al., 2023) and Consensus Merging (CSM) (Wang et al.,
2024c), suffer from rank collapse, correlating with low performance. (b) To prevent rank collapse,
we introduce Subspace Boosting, which mitigates it by boosting neglected singular values, vastly
improving performance. (c) Finally, for interpretability, we use HO-GSVD, transforming individual
models to share the same subspace, enabling direct comparison.

1 INTRODUCTION

Training models at “foundational” scale (Bommasani et al., 2021) has significantly driven progress
in the development of general-purpose models across domains, ranging from computer vision to
natural language processing (Radford et al., 2021b; 2019; Brown et al., 2020; Devlin et al., 2018;
Rombach et al., 2022). Despite their broad use in various downstream tasks, these foundation models
still require fine-tuning to effectively adapt to specialized expert domains (Roth et al., 2024; Mukhoti
et al., 2024), such as particular reasoning, language, or image generation. In addition, deploying and
storing a growing number of expert models becomes unsustainable (Yadav et al., 2024b;a).

To address these problems, recent advances in model merging (Wortsman et al., 2022b; Yadav et al.,
2024b; Dziadzio et al., 2025; Wang et al., 2024a) have shown significant promise. Model merg-
ing enables the creation of a single model from multiple experts (Rofin et al., 2022; Yadav et al.,
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2024b; 2023), while preserving the foundational generalization capability. This enables improved
generalization capabilities across numerous domains, substantially simplified model inference, and
the development of decentralized models.

Current approaches in model merging commonly revolve around simple scaled or filtered weight
interpolation of experts. The resulting merged models outperform the base model, but, as expected,
perform worse than individual task experts on their specific task. However, recent studies (Yadav
et al., 2024b; Dziadzio et al., 2025) suggest that the significance of specific merging techniques may
be overestimated, as most merging methods often yield comparable performance, especially at scale,
indicating a gap in understanding of the underlying merging process and the weight space structure.

To bridge this gap, we first investigate the merged weight space to understand why popular merging
techniques yield suboptimal performance. In particular, we investigate the task vectors, since they
contain the essential task information. Our results, visualized in Fig. 1a, reveal that the merged task
vectors suffer from rank collapse, in which a vast majority of information is captured by the most
important singular values and vectors, shown in Fig. 1b. This can be estimated by their stable rank
(Zhou et al., 2010; Shukla et al., 2024; Sanyal et al., 2020) (which evaluates the “effective” rank
of the matrix by disregarding small singular values). Our analysis also reveals that rank collapse
consistently affects existing methods, seen in Fig. 1a, and that the entire model’s task vector space
suffers from rank collapse, leading to the merged task vectors operating on a constrained subspace.

To address this, we propose Subspace Boosting, a method that directly mitigates rank collapse by
decomposing task vectors via Singular Value Decomposition (SVD), and explicitly boosting un-
derutilized dimensions (Fig. 1b). Therefore, by using these subspaces, our method significantly
enhances the model’s capability and performance, as shown in Fig. 1a. Subspace Boosting shows
strong improvements across both vision and language tasks for up to 20 vision transformer ex-
perts (Dosovitskiy et al., 2021) and 8 T5 language experts (Raffel et al., 2020) of varying sizes
when applied to recent merging techniques (Task Arithmetic (Ilharco et al., 2023b), TIES (Yadav
et al., 2023) and Consensus Merging (Wang et al., 2024c)). For both domains, the baseline method’s
performance is increased by over 10%.

Finally, we use Higher-Order Generalized Singular Value Decomposition (HO-GSVD) to introduce
an interpretable model merging variant (Fig. 1c). This approach decomposes task vectors into a
shared space containing common and unique subspaces. This allows the comparison of task simi-
larity or selection of optimal models via the Alignment Matrix, derived from the shared vector space.

Our contributions can be summarized as follows.

• We identify weight-space rank collapse as a crucial limitation in task-arithmetic based
methods, which reduces generalization of the merged model.

• We introduce Subspace Boosting, a general method that mitigates rank collapse, which
is compatible with several merging techniques, significantly improving merging efficacy
across standard model merging vision and language benchmarks.

• Finally, we propose a novel framework using Higher-Order Generalized SVD on task vec-
tors, allowing the shared subspace to be identified, interpreted, or used for expert selection.

2 RELATED WORK

Model merging (Yadav et al., 2024a; Yang et al., 2024a) has emerged as an important technique to
improve post-training capabilities, and as a general toolkit to combine knowledge across different
expert models (Wortsman et al., 2022a; Rame et al., 2023; Sanyal et al., 2024; Sung et al., 2023;
Pari et al., 2024; Nylund et al., 2023; Zaman et al., 2023; Stoica et al., 2024; Wang et al., 2024c; He
et al., 2024; Oh et al., 2024; Shen et al., 2024; Sharma et al., 2024; Tam et al., 2024b; Goddard et al.,
2024; Xiong et al., 2024; Yang et al., 2024b; Lu et al., 2024; Zheng & Wang, 2024; Nasery et al.,
2024; Rofin et al., 2022; Yadav et al., 2023; Jin et al., 2023; Deep et al., 2024; Marczak et al., 2024),
even across time (Roth et al., 2024; Dziadzio et al., 2025). Many model merging techniques leverage
the principle of linear mode connectivity, which implies that model weights across separate training
runs can be (linearly) interpolated, especially when finetuned from the same base model (Izmailov
et al., 2018; Ramé et al., 2024; Neyshabur et al., 2020; Frankle et al., 2020; Ainsworth et al., 2023;
Garipov et al., 2018; Entezari et al., 2022). Initial studies mainly focus on simple linear weight
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interpolation (Wortsman et al., 2022b; Rofin et al., 2022) or spherical linear interpolation (SLERP,
(Shoemake, 1985; Ramé et al., 2024)) without particular differentiation between individual weights.

Task Arithmetic. Ilharco et al. (2023b) provided a task arithmetic perspective on the interpolation
problem, defining finetune-to-base-weight differentials as task vectors. Building upon the work
of Ilharco et al. (2023b), methods such as Tangent Task Arithmetic ((Ortiz-Jimenez et al., 2023),
finetuning on the weight tangent space), TIES ((Yadav et al., 2023), removing low magnitude task
vector entries and magnitude-based sign assignment), DARE ((Davari & Belilovsky, 2025), random
weight masking over task vectors), Model Stock ((Jang et al., 2024), determining a suitable center of
mass across multiple task vectors) or Breadcrumbs ((Davari & Belilovsky, 2025), cutting tail-ended
task weights based on the distribution of magnitudes) have been introduced.

Adaptive Methods. An orthogonal line of research explores adaptive methods to find the optimal
merging parameters (Lee et al., 2025; Yang et al., 2024c). By contrast, we propose a training-free
method designed to improve the capabilities of existing model merging techniques. Therefore, we
consider adaptive methods (Lee et al., 2025; Yang et al., 2024c) as distantly-related.

SVD-Based. Similar to our research, several existing works employ Singular Value Decomposition
(SVD) in the context of model merging (Stoica et al., 2024; Choi et al., 2025; Marczak et al., 2025;
Gargiulo et al., 2025). For example, Gargiulo et al. (2025) propose TSV-Merge, which reduces
task interference by compressing layer-wise task matrices to their essential singular vectors and
then decorrelating them. Similarly, Marczak et al. (2025) introduced Iso-C and Iso-CTS, two model
merging methods that enhanced the performance of model merging by introducing task-specific
subspaces. While these methods leverage SVD, our work is the first to diagnose and quantify the
phenomenon of rank collapse. By mitigating rank collapse, our method substantially improves
Task-Arithmetic based methods while being over 6x more time-efficient than the above SVD-based
methods. Finally, we are the first to leverage HO-GSVD for merging, introducing a novel framework
for interpreting task similarity and enabling principled expert selection.

3 RANK COLLAPSE IN MODEL MERGING

In this section, we explore the prevalent phenomenon of rank collapse in the weight space of merged
models. We begin by introducing the following notation and background.
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Figure 2: Stable rank in merged ViT-B/16 models. (a-c) The stable rank is decomposed across
various attention and MLP sublayers of three layer blocks. (d) As more models are merged, the
stable rank decreases across a majority of layers, strongly correlating with the performance.

Background. Given a set of n expert models {M1,M2, . . . ,Mn} finetuned for different tasks
from the same pretrained model Mbase, the goal of model merging is to obtain the model Mm

that is capable of solving all associated expert tasks. Let θbase be the parameters of Mbase, and
θi be the parameters of each expert Mi, 1 ≤ i ≤ n. Following Ilharco et al. (2023a), we define
the task vectors as the weight differential ∆i = θi − θbase, 1 ≤ i ≤ n. Using this notation,
the merged parameters θm, defined as task arithmetic through linear interpolation, are expressed
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as: θm = θbase + α
∑n

i ∆i, with α representing the scalar merging coefficient. We also define
∆m = ∆1 + · · ·+∆n as the total task vector.

Rank Collapse During Merging. To determine why model merging performance degrades as
more models are merged, we investigate the subspaces spanned by the task vectors, as they isolate
the knowledge specific to each task. In particular, we investigate whether merged task vectors suffer
from rank collapse. We measure the rank collapse with the stable rank and cumulative energy rank
(in Supplementary Sec. D). The Stable rank uses SVD, and for a matrix A ∈ Rm×n, is defined as:

A = UΣV T , (1)
with the orthogonal matrix U ∈ Rm×m, also denoted as left singular vectors, Σ ∈ Rm×n the
diagonal matrix containing singular values σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0, and the right singular
vectors V ∈ Rn×n.

Using this decomposition, the stable rankMstable denotes the “effective rank” of the weight matri-
ces, similar to computing the rank of the matrix by ignoring the smaller singular values:

Mstable =

∑
i σ

2
i

maxi σ2
i

. (2)
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Figure 3: Evolution of the Singular Value Dis-
tribution. As more experts are merged, higher
absolute and relative mass is placed on fewer sin-
gular vectors; encouraging the rank collapse. This
indicates that information becomes concentrated
in fewer dominant dimensions.

A small stable rank indicates that most of the
information is concentrated in only a few di-
mensions. This implies that the weight projec-
tions operate within a limited subspace, under-
utilizing the full vector space.

In Fig. 2, we investigate the stable rank of
merged ViT-B/16 models with Task Arithmetic.
As more models are merged, we clearly observe
that the stable rank decreases for a large major-
ity of sublayers. While the problem grows in
complexity as the model contains more tasks,
the subspace actually contracts, contradicting
the expectation that a larger set of tasks would
require a higher-rank representation. This es-
tablishes a strong correlation between rank
collapse and model performance degradation.
Similarly, in Fig. 1a, once the stable rank in-
creases, the performance also drastically im-
proves across the baselines: Task Arithmetic (Ilharco et al., 2023b) (in green), TIES (Yadav et al.,
2023) (in pink) or Consensus Merging (CSM) (Wang et al., 2024b) (in blue).

Fig. 3 further illustrates rank collapse by visualizing the singular value distributions for the mod-
els. The ordering is clear: as more models are merged, the largest singular values increase more
drastically compared to the smallest singular values. For example, the largest singular value for
20 merged models (σ ≈ 0.20) is 4× larger than for 4 merged models (σ ≈ 0.05). For more rank
collapse results across a number of merged models and merging methods, please see Supplementary
Sec. D.

4 MODEL MERGING FROM A DECOMPOSED SUBSPACE PERSPECTIVE

Building on our prior analysis of rank collapse as well as previous works linking rank collapse (Dzi-
adzio et al., 2025; Milbich et al., 2020) to reduced generalization, we propose two solutions. Firstly,
we introduce Subspace Boosting (Sec. 4.1) to directly mitigate rank collapse in task vectors. Fur-
thermore, we leverage HO-GSVD (Sec. 4.2) to create an interpretable framework for model merging
and expert selection.

4.1 Subspace Boosting FOR MODEL MERGING

To directly mitigate the rank collapse issue identified in Sec. 3, we introduce Subspace Boosting, a
general method that operates on merged task vectors, ensuring compatibility with modern merging

4
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techniques that rely on task vectors (Yadav et al., 2023; Ilharco et al., 2023a; Wang et al., 2024b)
(see pseudocode provided in Alg. 1).

We posit that preventing rank collapse is essential for effective merging. As more experts are
merged, this collapse forces the models to encode an increasing amount of information into progres-
sively constrained task vector subspaces, harming generalization. By addressing this key limitation,
Subspace Boosting improves the merging process efficacy and final model performance.

Subspace Boosting is applied to the merged task vector from any Task-Arithmetic based method
such as TA, TIES, or Consensus merging. Each weight matrix in the merged task vector (denoted
by “param” in Alg. 1) is independently decomposed through the following steps. (i) Initially, the
weight matrix is decomposed via SVD. (ii) Afterwards, the hyperparameter β (denoted by “beta” in
Alg. 1) is used to determine a cutoff point for the cumulative sum of singular values. All singular
values smaller than the one at the cutoff index are “boosted” by clamping them to the cutoff value,
visualized in Fig. 1b. (iii) Finally, the new weight matrix is reconstructed using the original singular
vectors, but with the new, boosted singular values.

Algorithm 1: Pytorch style pseudocode for
Subspace Boosting

def subspace_boosting(param, beta):
"""
param: weight matrix
beta: boosting threshold
"""
U, S, Vh = svd(param)
t_sum = S.sum()
c_sum = torch.cumsum(S, dim=0)
n_sum = c_sum / t_sum
k = (n_sum >= beta).nonzero()
idx = k[0].item()
S_new = torch.clamp(S, min=S[idx])
new_param = U @ diag(S_new) @ Vh

return new_param

As observed, Subspace Boosting requires only
one hyperparameter, namely the boosting
threshold β, which determines the cutoff after
which the smaller singular values are boosted.
Across our experiments, our findings indicate
that β is highly robust, with minimal tuning re-
quired. Also, Subspace Boosting provides su-
perior performance at 6x faster wall clock time
over state-of-the-art methods (Gargiulo et al.,
2025) (results in Supplementary Sec. C).

In addition, Fig. 1a demonstrates that Sub-
space Boosting effectively mitigates the rank
collapse issue in task vectors by utilizing the
full subspace (of dimensionality 768 for ViT-
B/16 models), compared to other existing Task
Arithmetic-based methods.

4.2 BREAKING DOWN TASK VECTORS WITH HIGHER ORDER GENERALIZED SVD

HO-GSVD

Task1
Task2
Task3

Subspace Boosting

A1, A2, A3

Distinct space
U1,U2,U3

Distinct S-values
∑1,∑2,∑3

Shared
space V

Input
A1,A2,A3

Figure 4: Higher-Order General-
ized SVD (HO-GSVD). Unlike normal
Singular Value Decomposition (SVD)
which decomposes matrices into indi-
vidual Ai = UiΣiVi, HO-GSVD allows
for decompositions into shared right
singular subspaces V .

While Subspace Boosting substantially enhances perfor-
mance, the underlying relationships between task vectors
remain a black box. To create a more interpretable merg-
ing framework, we now focus on decomposing task vec-
tors into their common and unique subspaces.

However, standard SVD is ill-suited for this purpose, as
it decomposes each task vector into a unique, expert-
specific basis, preventing direct comparison. We there-
fore leverage Higher Order Generalized SVD (HO-
GSVD), a technique that projects multiple matrices into
a single, shared subspace. This enables a straightfor-
ward comparison of multiple expert weights. As pro-
posed in Ponnapalli et al. (2011); Kempf et al. (2023);
Loan (1976); Golub & Van Loan (2013), given a set of N
matrices A1, . . . , AN , HO-GSVD decomposes each ma-
trix Ai as:

Ai = UiΣiV
T , i = 1, . . . , N, (3)

resulting in distinct Ui ∈ Rmi×n, Σi ∈ Rn×n and a shared subspace V ∈ Rn×n, identical for all
factorizations. In our case, the matrices Ai correspond to the weight matrices originating from the
independent task vectors 1 ≤ i ≤ n, for a certain layer. By establishing a shared subspace V , this
decomposition enables the direct comparison of different models and identification of common or
unique subspaces for different tasks. The complete details are provided in Supplementary Sec. F.
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Table 1: Subspace Boosting significantly improves model merging efficacy. Accuracy perfor-
mance results (in %) for merging vision classification benchmarks with 8, 14 and 20 tasks (Wang
et al., 2024b) when Subspace Boosting is applied to Task Arithmetic (TA) (Ilharco et al., 2023a;a),
TIES-Merging (Yadav et al., 2023), Consensus Merging (Wang et al., 2024b), or LiNeS (Wang et al.,
2025). Best performing result in each group is indicated in bold, while the second best is underlined.

Method LiNeS ViT-B/32 ViT-B/16 ViT-L/14

8 tasks 14 tasks 20 tasks 8 tasks 14 tasks 20 tasks 8 tasks 14 tasks 20 tasks

Zero-Shot – 48.3 57.3 56.1 55.5 61.4 59.8 64.8 68.3 65.3
Finetuned – 90.5 89.5 90.4 92.6 91.6 92.3 94.0 93.3 94.0

Task Arithmetic
✗ 69.7 65.0 60.3 74.6 70.4 65.7 84.0 79.2 74.0
✓ 74.2 69.1 63.4 77.6 72.7 67.7 86.5 82.2 77.1

+ Subspace Boosting (ours) ✗ 83.1 75.8 66.4 87.7 82.0 71.6 91.4 86.2 80.6
✓ 85.6 80.8 77.2 88.8 84.7 80.0 92.6 89.3 87.2

TIES-Merging
✗ 73.6 67.6 63.1 79.1 73.0 68.1 85.6 79.3 75.6
✓ 77.2 72.1 67.2 79.9 75.2 71.2 88.0 82.5 79.6

+ Subspace Boosting (ours) ✗ 81.8 74.4 69.8 87.0 80.5 75.9 91.1 83.6 82.0
✓ 83.8 79.1 75.9 87.4 83.3 79.7 91.9 86.1 85.9

Consensus Merging
✗ 74.5 70.1 65.3 78.9 73.9 70.2 85.2 81.9 78.7
✓ 77.1 73.6 68.6 79.5 75.8 72.0 87.3 84.0 81.0

+ Subspace Boosting (ours) ✗ 82.7 77.1 73.2 87.0 81.9 77.6 91.5 86.4 84.9
✓ 84.4 80.3 77.2 87.6 84.2 80.0 92.2 88.8 87.9

Matrix Decomposition Comparison via Alignment Matrices To evaluate the significance of di-
mension Vk (of the shared space) for one matrix relative to another, we take the ratio of their corre-
sponding generalized singular values σi,k /σj ,k. A ratio close to one indicates a common subspace,
while a ratio deviating highly from one suggests that the dimension is more unique or important
to one of the matrices. This allows us to express each matrix as a sum of common and unique
components:

Ai =
∑

k∈I>1

σi,kui,kv
T
k︸ ︷︷ ︸

common

+
∑
k∈I1

σi,kui,kv
T
k︸ ︷︷ ︸

unique

, (4)

where I>1 and I1 denote the common and unique subspaces, respectively.

To quantify the degree of interference between two matrices, we introduce the Alignment Matrix
A ∈ RN×N . We define matrices as well-aligned if they rely on different subspaces (low inter-
ference) and poorly aligned if they share important subspaces (high interference). The alignment
between matrices Ai and Aj is calculated as the average log ratio of their generalized singular values
across all L weight matrices from the respective layers:

(A)ij =
1

L

L∑
l=1

(
1

Ml

Ml∑
p=1

∣∣∣∣∣log
(
σ
(l)
i,p + ϵ

σ
(l)
j,p + ϵ

)∣∣∣∣∣
)

(5)

where σ
(l)
i,p is the p-th generalized singular value of model i for l-th weight matrix, and Ml is the

number of generalized singular values for that matrix, with ϵ = 1e−12 for stability. Unlike other
methods such as direct weight comparisons, this approach offers a novel way to compare task vec-
tors within a shared, decomposed subspace. This allows us to optimize subspace overlap to select
diverse, low interference experts.

Finally, we also introduce Higher-Order Subspace Boosting by replacing SVD with HO-GSVD in
Subspace Boosting. This is the first interpretable model merging method, achieving strong perfor-
mance. For further details, please refer to Supplementary Sec. F.
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5 EXPERIMENTS

Baselines and Datasets. As described in Sec. 4.1, we apply Subspace Boosting to the task vectors
obtained from several state-of-the-art model merging techniques (Ilharco et al., 2023a; Yadav et al.,
2023; Wang et al., 2024b). The foundational method, Task Arithmetic (Ilharco et al., 2023a), defines
task vectors and merges them via simple averaging. Building on this, TIES-Merging (Yadav et al.,
2023) reduces interference by pruning low-magnitude weights from each vector before performing a
sign-aware averaging. Consensus Merging (Wang et al., 2024b) further refines this by only keeping
weights that are important for at least two of the tasks being merged. We also evaluate compatibilty
with LiNeS (Wang et al., 2025), an orthogonal post-processing technique that scales updates based
on layer depth.

Datasets. We follow the previous state-of-the-art methods (Wang et al., 2024b; 2025) and evaluate
our model merging techniques on image classification tasks, considering the same grouping of 8,
14, and 20 tasks. For language tasks, we follow Tam et al. (2024a) and evaluate on 8 QA tasks,
presented by Zhou et al. (2023) and 7 NLP tasks, provided by Yadav et al. (2023).

Implementation Details. Following previous works (Ilharco et al., 2023a; Wang et al., 2024b;
2025; Yadav et al., 2023), we employ the CLIP model (Radford et al., 2021a) with ViT-B/32, ViT-
B/16 and ViT-L/14 as vision encoders. We use the pretrained and finetuned checkpoints provided
by Wang et al. (2024b) and utilize the official code provided by the original authors for all model
merging techniques, including the official hyperparameters. Subspace Boosting requires only one
hyperparameter β that determines the number of dimensions to be boosted. We tune β on the
validation set by performing a simple search over the set {0, 0.01, 0.02}. The updated task vector
components of the Transformer architecture (Dosovitskiy et al., 2021) are the linear layers and the
attention layers. For the language domain, we utilize T5 transformers (Raffel et al., 2020), provided
by Tam et al. (2024a) and apply our method to the same layers.

5.1 Subspace Boosting ENHANCES PERFORMANCE ACROSS VISION AND LANGUAGE TASKS

Table 2: Language Results. Perfor-
mance comparison (in terms of accu-
racy in %) on two language task col-
lections. Our Subspace Boosting vari-
ant with TA and LiNeS achieves the best
performance on both benchmarks.

Method 8 Tasks 7 Tasks
Zero-shot 33.1 44.9
Fine-tuned 80.7 85.9

Task Arithmetic (TA) 63.8 71.9
TIES Merging 63.0 71.6
Consensus Merging 68.6 73.5
TA + LiNeS 67.6 76.4

Subspace Boosting (ours) 75.3 83.0

Figure 1a illustrates the impact of Subspace Boosting on
the stable rank scores of task vectors obtained from TA,
TIES and Consensus Merging. Notably, Subspace Boost-
ing successfully utilizes the available weight space by in-
creasing the matrix rank. This enables the models to bet-
ter populate the corresponding subspaces and mitigates
rank collapse as more and more experts are incorporated.
Additional results are provided in Supplementary Sec D.

Vision Results. As shown in Table 1, Subspace Boosting
significantly improves performance of standard merging
techniques across 8, 14 and 20 vision tasks. By enabling
the methods to leverage a higher effective subspace, our
approach yields substantial gains for all methods; for ex-
ample it boosts the accuracy of simple Task Arithmetic
from 65.0% to 75.8% when merging 14 tasks. Notably,
this elevates all baselines to comparable performance.

To demonstrate its generality, we show that Subspace
Boosting also enhances orthogonal techniques such as LiNeS. When merging 14 ViT-B/32 experts,
LiNeS alone improves Task Arithmetic’s performance from 65.0% to 69.1%, whereas applying Sub-
space Boosting provides a further, substantial improvement to 80.8%, highlighting its complemen-
tarity. Overall, the performance gains remain substantial across methods (as illustrated in Fig. 1a),
model sizes, and expert model counts.

Language Results. We also evaluate Subspace Boosting with TA and LiNeS using popular language
benchmarks. For 8 QA tasks (Zhou et al., 2023), Subspace Boosting shows the same significant
improvements as in the vision domain, improving TA by around 12% when applied with LiNeS. For
7 NLP tasks, provided by Yadav et al. (2023), the improvements are of similar magnitude.
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Table 3: Subspace Boosting Ablations. We analyze the impact of the boosting threshold β, the layer
type, and layer-specific β. The results are reported for 8 ViT-B/16 models merged via TA (Ilharco
et al., 2023a). (a) Subspace Boosting is highly robust to the choice of β, (b) performs best when
applied to all layers, and (c) requires no tuning when modifying both weight types.

(a) Boosting thresh-
old. Subspace Boosting
demonstrates robustness to
variations of the β value.

β Accuracy (%)
0.00 87.7
0.01 87.4
0.02 87.2

(b) Layers. We observe that both
the fully connected (FC) and the
attention (Attn) layers contribute
to the performance gain.

Layer Accuracy (%)
FC 86.5
Attn 83.9
Both 87.7

(c) Boosting threshold across
layers. In this setting, the attention
(Attn) and fully connected (FC)
share the same optimal β.

FC Attn Accuracy (%)
0.00 0.00 87.7
0.00 0.01 87.6
0.01 0.01 87.4
0.02 0.01 87.4

Table 4: Comparison to State-of-the-Art. Our best-performing Subspace Boosting variant with
LiNeS achieves results comparable to other state-of-the-art methods, but at a fraction of the compu-
tational overhead and complexity.

Method ViT-B/32 ViT-B/16 ViT-L/14

8 tasks 14 tasks 20 tasks 8 tasks 14 tasks 20 tasks 8 tasks 14 tasks 20 tasks

Finetuned 90.5 89.5 90.4 92.6 91.6 92.3 94.0 93.3 94.0

TSV-M† (Gargiulo et al., 2025) 83.8 79.5 76.7 87.2 83.7 80.3 91.2 88.3 87.3
Iso-C† (Marczak et al., 2025) 83.8 79.1 74.7 88.6 83.3 79.0 92.4 88.2 87.0
Iso-CTS† (Marczak et al., 2025) 83.8 80.2 77.3 89.1 85.0 81.6 93.0 89.6 89.3
TA + Subspace Boosting (ours) 85.6 81.7 77.6 88.9 85.1 81.1 92.7 89.4 88.0

5.2 ABLATIONS

To better understand the behavior of Subspace Boosting, we conduct ablation studies reporting the
results in Tab. 3. The reported results use 8 ViT-B/16 models merged with TA (Ilharco et al., 2023a).

Our analysis investigates three key aspects. Firstly, we investigate the robustness to the boosting
parameter β. As shown in Table 3a, our method is robust to variations of β, since performance
only fluctuates between 87.2% and 87.7% when β ∈ [0.00, 0.01, 0.02]. Secondly, we examine the
contributions of different layer types, seen in Table 3b. We observe that both the attention and
fully connected (FC) layers contribute to improving performance, with the best accuracy of 87.7%
achieved when applying Subspace Boosting to the full model. Finally, we analyze whether attention
layers require a different value for β than FC layers. As reported in Table 3c, for Subspace Boosting,
the attention and FC layers share the same optimal β value. This reveals that Subspace Boosting can
be applied across both weight types without additional tuning.

State-of-the-Art Comparison. We compare our method against recent state-of-the-art tech-
niques (Gargiulo et al., 2025; Marczak et al., 2025) in Table 4. We equivalently tune the merging
coefficient α over 30 interpolation points. The results demonstrate that simple TA enhanced with
LiNeS and Subspace Boosting surpasses both TSV-M and Iso-C and matches or surpasses Iso-CTS.
This is particularly evident for ViT-B/32 models, outperforming Iso-CTS by almost 2% for 8 mod-
els. However, unlike the other methods, Subspace Boosting is both compatible with all other TA
based methods as well as over 6x more computationally efficient (details in Supplementary Sec. C).

5.3 INTERPRETABLE Subspace Boosting VIA HO-GSVD

Comparison of Generalized Singular Values. A key limitation of modern model merging is its
lack of interpretability. To address this, we leverage HO-GSVD to enable a transparent investigation
of the merging process and to compare contributions of individual experts. Fig. 5a illustrates this
by visualizing the distribution of generalized singular values for an exemplary weight matrix of a
ViT-B/16 attention block projection layer. We compare the generalized singular value distribution
of 4 task vectors (Cars, DTD, Eurosat, GTSRB), against the averaged task vector over 8 tasks.

Since HO-GSVD operates on a shared decomposition space, we can directly compare generalized
singular values across tasks. The plot reveals a large proportion of shared generalized singular vec-
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Figure 5: (a) Distribution of Generalized Singular Values across different task vectors and a
merged reference of eight task vectors. (b) Model Alignment via HO-GSVD, showcasing how
HO-GSVD can be used to contrast expert alignments across a shared decomposition space.

tors among the tasks, implying that the top dimensions experience high interference. Furthermore,
this visualization clearly illustrates rank collapse without needing additional metrics. For the merged
model, a significant number of singular values (in the 0-200 index range) are near zero. In contrast,
the generalized singular values for the independent task vectors remain well above this floor (Thresh-
old 1), indicating that the merged task vector occupies a lower-rank subspace. Finally, we observe
that the merged task vector is significantly below the others, implying that the used merging coeffi-
cient 1/N for the average is suboptimal, pointing to a new promising direction for future research:
using HO-GSVD to automatically choose the optimal merging coefficient.

Selecting Optimal Experts For Better Performance. Another benefit of HO-GSVD is comparing
the relative significance of a certain subspace for matrix Ai compared to matrix Aj , as described in
Sec. 4.2. This can be used to select the optimal set of models for merging, which is a combinatorial
complex problem (e.g. selecting 6 out of 20 leads to nearly 40,000 possible permutations).

Table 5: HO-GSVD facilitates ex-
pert selection. Choosing experts
from a larger pool via HO-GSVD im-
proves/maintains transfer to candidate
tasks (Pool) while maintain transfer to
external (Ext).

Method Accuracy
Pool Ext

Random 72.9 47.6
HO-GSVD (ours) 75.7 47.6

HO-GSVD enables us to utilize the previously defined
Alignment Matrix, where the higher the value for a pair
of models (Ai, Aj), the easier it is to merge both models
with reduced interference. An example of an Alignment
matrix is presented in Fig. 5b. Higher scores correspond
to models that are more well aligned (easier to merge).

To demonstrate the effectivenss of the Alignment Ma-
trix for 20 ViT models (more results in Supplementary
Sec. G) for expert selection, we design an experiment to
construct a merged model of 8 experts. Three of these ex-
perts are pre-selected to cover in-distribution (Pool) tasks.
The remaining five are chosen from 14 candidates either
via a random baseline (averaged over 10 draws) or our
proposed method, which selects models that minimize interference with the pre-selected Pool tasks.

The final merged models are evaluated on the Pool tasks as well as a separate set of 3 out-of-
distribution (OOD) tasks. As shown in Table 5, our proposed method improves in-distribution per-
formance, boosting accuracy from 72.9% to 75.7% while maintaining performance on OOD tasks.
This result demonstrates the efficacy of applying HO-GSVD for model selection.

6 CONCLUSION

In this work, we identified rank collapse as a fundamental limitation of task-arithmetic model merg-
ing methods Ilharco et al. (2023b); Yadav et al. (2023); Wang et al. (2024c). Consequently, we
proposed Subspace Boosting to mitigate this limitation, thereby achieving significant performance
improvements that exceed 10% in a wide range of settings across vision and language domains.
Additionally, we provide a novel framework using HO-GSVD to address the black-box nature of
modern model merging techniques. Moreover, we demonstrated that by comparing shared task sub-
spaces via the Alignment Matrix, we can effectively evaluate the behavior of model merging and
offer a strong approach to select a subset of models that achieve higher performance when merged.
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A LIMITATIONS

Current Task Arithmetic-based methods, including Subspace Boosting and Higher-Order Subspace
Boosting, require tuning the best merging coefficient. This requires access to a reasonable validation
dataset as well as compute resources in order to tune this hyperparameter. In future work, we
consider automating this and removing the necessity for tuning. Another limitation is that as the
number of merged models grows, the performance continues to decrease. Therefore, finding optimal
methods to prevent this degradation could be another interesting direction for future work.

B ADDITIONAL IMPLEMENTATION DETAILS

Hyperparameters. The results presented with Subspace Boosting are obtained with β optimized
over the small set {0.00, 0.01, 0.02}. Given the robustness, for Higher-Order Subspace Boosting,
we simply kept β = 0.0. In regards to merging coefficients, we utilized the same range as pro-
vided by (Wang et al., 2024c) for all our results λ ∈ {0.1, 0.2, ..., 1.0}. For additional baseline
methods, such as TSV-M (Gargiulo et al., 2025) and Iso-C, Iso-CTS (Marczak et al., 2025), we
extend the range to λ ∈ {0.1, 0.2, ..., 3.0}, as utilized by the original authors, and a range of 30 of
λ ∈ {0.1, ..., 0.5} for Subspace Boosting. We benchmark TSV-M, Iso-C, and Iso-CTS using the
previously provided checkpoints, which are slightly inferior to the checkpoints used by (Gargiulo
et al., 2025) and Iso-CTS (Marczak et al., 2025). For Consensus Merging (Wang et al., 2024b), all
results are evaluated using Task Arithmetic as the baseline method.

Models and Datasets. To ensure direct replicability and comparability, we extend the repository
provided by Wang et al. (2024c), and use the same baseline checkpoints, finetuned checkpoints and
datasets as the authors. For the 8-, 14- and 20-task benchmarks, we use the same datasets as the
original authors. For the language domain, we use the repository provided by Tam et al. (2024a) and
the respective models and datasets.

C COMPUTATIONAL RESOURCES

For all of our experiments, we leverage a compute cluster equipped with 2 NVIDIA GeForce RTX
2080 Ti with 12 GB VRAM and 6 NVIDIA Quadro RTX 6000 GPUs with 24 GB VRAM; alongside
2 Intel Xeon Silver 416 CPU @ 2.10 Ghz CPUs and 256 GB of RAM.
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The running time for our Subspace Boosting compared to the state-of-the-art results and the task-
arithmetic baselines is reported in Tab. 6. Subspace Boosting introduces additional computational
overhead, however, we notice that the computational overhead for SVD and boosting is very neg-
ligible and in line with other, simpler methods. We notice that the computational overhead of our
method is in line with the other, simpler methods such as TIES and over 6x more efficient in terms
of clock-time than TSV-M and Iso-CTS (which extends TSV-M).

Table 6: Comparison of execution time (in seconds) of Subspace Boosting against other methods for
20 tasks. Subspace Boosting is 6× faster than TSV-M.

Method ViT-B/32 ViT-B/16 ViT-L/14
Task Arithmetic 0.2s 0.28s 1s
Consensus Merging 1.8s 2.4s 20.2s
TIES 6.3s 4.3s 25.6s
Subspace Boosting (ours) 9.7s 10.5s 40.1s
TSV-M 62s 63s 210s

D ADDITIONAL RANK COLLAPSE RESULTS

We also employ the cumulative energy rank to measure the rank collapse. The cumulative energy
rankMcer measures how much of the matrix information is captured by the top singular values, or
more precisely how many singular values are required to cover k% of the energy E :=

∑n
i σ

2
i .

We visualize rank collapse using both metrics, namely the stable rank and the cumulative energy
rank. In Figure 6, the stable rank is plotted across different layers and components. Rank collapse
is evident across the majority of the layers and components. For the projection layer of the MLP
component, rank collapse is especially evident across all visualized layers.

Figure 7 shows the stable rank and the normalized value over an increasing number of merged mod-
els (4, 8, 14, 20) via Task Arithmetic (Ilharco et al., 2023a). To calculate the normalized values, each
component’s values are divided by the largest value for the respective component. This keeps the
range (0-1) identical across all layers for easier comparison. As more models are merged, the stable
rank clearly decreases in all layers and for almost all components. Although it would be expected
for a merged model to maintain maximal rank as it must account for multiple tasks simultaneously,
due to the rank collapse, naively merged models often rely on increasingly smaller subspaces for the
classification of increasing number of tasks. This hinders the model’s generalization capability as
the task becomes more complex and higher in number.

We also employ the cumulative energy as a metric for the intrinsic dimension of the model across
layers to provide another perspective on rank collapse. In Figure 8, the number of components
necessary to sum up to 50% of the energy (cumulative energy rank) is visualized. We observe a
similar trend to the previous results, and observe that for a vast majority of layers and components
the cumulative energy rank decreases as we merge more models.

Moreover, we observe a direct correlation between the performance of various model merging meth-
ods and their respective cumulative energy rank (see Figure 9 for 14 merged models). For detailed
performance reports, please refer to Table 1. It is noticeable that Task Arithmetic merging ranks are
often small or negligible, and while TIES does maintain a higher cumulative energy rank, Consen-
sus TA merging consistently achieves a higher rank - which is tied with increasing overall merging
performance.

E ADDITIONAL ABLATION RESULTS

We perform various ablation experiments for the boosting threshold β across different settings. In
Table 7, we report the effect of the threshold for Task Arithmetic + Subspace Boosting. For the
simple case of 0.0, the performance is consistently the best. Therefore, we advise the practitioner to
set the threshold to 0.0 by default.
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Figure 6: Stable rank visualized across multiple layers and different components. It is noticeable
that the baseline methods TA, TIES and CSM exhibit small stable rank values, however by applying
Subspace Boosting the stable rank score increases considerably. We report the layer and the compo-
nent on top of each subplot.
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Figure 7: Absolute and normalized stable rank across a different number of merged models via Task
Arithmetic. It is noticeable that merging more models decreases the rank of task vectors, limiting
the expression space of the model.

Table 7: Boosting threshold (β) ablation for Task Arithmetic + Subspace Boosting

Threshold ViT-B/32 ViT-B/16 ViT-L/14

8 Tasks 14 Tasks 20 Tasks 8 Tasks 14 Tasks 20 Tasks 8 Tasks 14 Tasks 20 Tasks

β = 0.00 83.1 75.8 63.7 87.7 82.0 71.3 91.4 86.2 80.6
β = 0.01 82.6 75.3 63.2 87.4 81.7 70.9 90.8 85.8 80.1
β = 0.02 82.0 75.2 66.4 87.2 80.3 71.6 86.2 83.8 79.3

Table 8 shows the performance for different boosting thresholds β for Task Arithmetic + Subspace
Boosting + LiNeS, depending on the layer type. For both the fully-connected layers as well as the
attention weight layer, we observe that the best performance is often achieved when setting both
thresholds to 0.00. This shows that β is quite robust to tuning and in all of our other results, we rely
on one shared β for both layer types.
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Figure 8: Absolute and normalized cumulative energy rank for 50% of the energy when Task Arith-
metic is employed. It is noticeable that the cumulative energy rank decreases with the increase of
the number of merged tasks in a majority layers, especially earlier ones, leading to rank collapse.
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Figure 9: Cumulative energy rank for 30% of the energy for different merging methods when 14
tasks are merged.
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Table 8: Ablation of optimal β depending on layer.

FC Layers Attn Layer 8 Tasks 14 Tasks 20 Tasks
0.00 0.00 87.7 82.0 71.3
0.00 0.01 87.6 82.0 71.2
0.01 0.00 87.6 81.9 71.2
0.01 0.01 87.4 80.9 71.0
0.02 0.00 87.4 80.9 71.8
0.02 0.01 87.4 80.6 71.5

Algorithm 2: HO-GSVD with Subspace Boosting
Input: ∆m = {∆m1 , . . . ,∆mN

} – the individual task vectors for each model.
Output: ∆boost = {∆boost1 , . . . ,∆boostK} – the updated merged task vectors for each

component in the model.
1 ∆boost ← ∅; ◁ initialize the task vector for merging.
2 Sπ ← 0; ◁ initialize Sπ to zero for all pairwise entries.
3 foreach ∆ck,i ∈ ∆mi

do
4 foreach ∆ck,j ∈ ∆mj

do
5 Sπ(i, j)← calculateS(∆ck,i

T∆ck,i ,∆ck,j
T∆ck,j ); ◁ calculate Sπ for each pair of

components k.
6 (Λ, Vshared)← eig(Sπ) ◁ compute the eigendecomposition of Sπ .
7 foreach i ∈ N do
8 (Ui,Σi)← calculate sing matrices(Sπ,∆ck,i) ◁ calculate left singular vector matrix

and the singular value matrix.
9 Uortho ← calculate ortho U(U1, ..., UN ) ◁ calculate the orthonormal matrix for all Us via

Generalized Procrustes.
10 Vortho ← calculate ortho V(Vshared) ◁ calculate orthonormal matrix for V via Procrustes.
11 Σsum ← sum(Σ1, ...,ΣN) ◁ sum up the singular values into one shared matrix.
12 Σboosted ← subspace boosting(Σsum) ◁ boost the singular values with subspace boosting.
13 ∆boostk ← Uortho · Σboosted · V T

ortho; ◁ recompute the task vector using new boosted singular
values.

14 ∆boost ← ∆boost ∪∆boostk ; ◁ add the updated component.
15 return ∆boost ◁ return merged task vector.

F HO-GSVD: ADDITIONAL INFORMATION & DETAILS

F.1 HO-GSVD DETAILS AND HIGHER-ORDER SUBSPACE BOOSTING

Given a set of N matrices A1, . . . , AN , HO-GSVD decomposes each matrix Ai = UiΣiV
T , i =

1, . . . , N resulting in distinct Ui ∈ Rmi×n, Σi ∈ Rn×n and a shared subspace V ∈ Rn×n, identical
for all factorizations. To obtain V , we solve the eigensystem SπV = V Λ of the arithmetic mean Sπ

of all pairwise quotients Di,πD
−1
j,π:

Sπ =
1

N(N − 1)

N∑
i=1

N∑
j=i+1

(Di,πD
−1
j,π +Dj,πD

−1
i,π), (6)

with Di,π defined as:
Di,π = AT

i Ai + πATA, π ≥ 0, (7)

where A = [AT
1 , . . . , A

T
N ]T . Following Kempf et al. (2023), we add the previous regularization

term ATA and scale it by π to extend HO-GSVD’s applicability to rank-deficient matrices. This
phenomenon frequently occurs for task vectors, as particularly visualized for merged task vectors
in Fig. 1a. We set π to 10−2 by default. As previously described, HO-GSVD introduces a shared
subspace identical across all inputs. This enables the direct comparison of different models and the
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identification of common or unique subspaces for different tasks. HO-GSVD allows us to perform
merging in a more interpretable manner by operating compositions over shared subspaces.

However, unlike standard SVD, the left and right singular matrices are generally not orthonormal
(Ponnapalli et al., 2011; Kempf et al., 2023). In order to perform subspace boosting with this method,
we must first orthonormalize the respective matrices. This is achieved by solving the Generalized
Orthogonal Procrustes problem (Golub & Van Loan, 2013; Schönemann, 1966). Afterwards, the
weight matrices can be reconstructed using these newly orthonormal matrices while preserving a
shared subspace across all models. Please refer to Algorithm 2 for more details.

F.2 HIGHER-ORDER SUBSPACE BOOSTING MERGING PERFORMANCE

Similarly to its standard SVD counterpart Subspace Boosting, HO-GSVD can also be used for highly
performant model merging, using Algorithm 2, which we refer to as Higher-Order Subspace Boost-
ing. Table 9 showcases the performance of Higher-Order Subspace Boosting + LiNeS against other
performant methods. We observe that the method consistently achieves strong performance. For
ViT-B/32, for 8 tasks, it is the second best method, whereas for 14 tasks, it achieves the same perfor-
mance as our best-performing Task Arithmetic variant. This showcases that Higher-Order Subspace
Boosting is a strong model merging method and a potentially suitable plug-in variant for standard
Subspace Boosting, but with the additional benefit of operating over shared composition spaces
for improved interpretability. Similar results can be seen for ViT-B/16, establishing Higher-Order
Subspace Boosting as a strong, but also interpretable model merging method.

Table 9: Higher-Order Subspace Boosting (Higher-Order SB) Performance compared against Sub-
space Boosting variants utilizing Task Arithmetic (TA), TIES, and Consensus Merging (CSM).

Method ViT-B/32 ViT-B/16

8 Tasks 14 Tasks 20 Tasks 8 Tasks 14 Tasks 20 Tasks

TA + SB + LiNeS 85.6 80.8 77.2 88.8 84.7 80.0
TIES + SB + LiNeS 83.8 79.1 75.9 87.4 83.3 79.7
CSM + SB + LiNeS 84.4 80.3 77.2 87.6 84.2 80.0
Higher-Order SB + LiNeS 84.5 79.8 75.6 88.5 84.7 79.1

G ADDITIONAL EXPERIMENTS LEVERAGING HO-GSVD

Leveraging HO-GSVD, we can revisit again in more detail the Alignment Matrices introduced in
the main paper. Figure 10 shows the resulting Alignment Matrix for the attention block’s pro-
jection layer across different layers. Subfigure 10d shows the mean Alignment Matrix across all
layers and components. While for layer 0, the values are consistently low and showing high overlap
between models, for the deeper layers, the alignment scores start becoming more defined. This con-
firms that shallow layers learn general features that are shared across multiple models (Wang et al.,
2024a), hence the high overlap of important dimensions, whereas the later layers showcase more
task-specific information and separation into subspaces.

Table 10: Model selection comparison for 8 experts evaluated on all 20 tasks.

Method Accuracy Normalized Accuracy
Random selection 67.5 72.5

HO-GSVD selection 69.7 75.2

We perform an additional experiment by merging 8 models out of 20 chosen either randomly or via
our optimal selection approach. Random selection is performed 20 times, and we report the average.
The results are shown in Table 10. The performance of the merged model is evaluated across all 20
tasks (including those not involved in the merging process). When merging via optimal model selec-
tion, the method accurately chooses a subset of models that performs better than average. Based on
both experiments, one can observe that optimal model selection outperforms average random model
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selection by several percent, highlighting the effectiveness of using HO-GSVD to select optimal
models for merging.
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(d) Mean Alignment Matrix for all components and
layers.

Figure 10: Alignment matrices for attn out proj for different layers as well as the mean Alignment
Matrix for all components.
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