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Abstract

Although LLMs excel at data-rich coding tasks e.g., writing general Python scripts,
they often struggle at writing low-resource languages for High-Performance Com-
puting (HPC). Recently, test-time program search driven by LLMs has emerged
as a promising approach to enhance LLMs’ capabilities. However, there is a lack
of systematic studies investigating test-time search for low-resource HPC coding
tasks. In this work, we conduct the first such study to our knowledge, providing
empirical data about how different test-time search methods perform when moving
from a high-resource to a low-resource language for HPC. Under a simple test-time
search framework, we evaluate different choices of proposers and verifiers. Our
experiments on the ParEval benchmark (i) show on average a 23-26% boost in
pass@1 using test-time search with a small search budget, and (ii) reveal gaps in
LLMs as proposers, verifiers, and feedback providers.

1 Introduction

Although LLMs have shown impressive performance for coding tasks in data-rich programming
languages, e.g., Python or JavaScript [9, [35} 132} 144, [16, [17]], using LL.Ms to write code for High-
Performance Computing (HPC) remains elusive [28, 30, 14, [15 42} [17} 41} 27]]. This is because
HPC involves the use of niche programming models and domain-specific libraries on specialized and
ever-changing systems—creating a long tail of data-scarce and low-resource tasks that LLMs struggle
with [} 126]. If solved, this would extend the productivity benefits of LLMs beyond simple coding
tasks to the realistic codebases and systems that serve as workhorses for many critical applications.

Recently, scaling test-time compute has emerged as a promising paradigm for enhancing LLM
capabilities across diverse tasks [45) 123 [1, [37]. In this line, a key approach is program search:
combining the LLM’s creativity in proposing programs with rigorous verification and selection
[37, 13, 131]]. However, these successes are largely confined to data-rich coding tasks, while for
low-resource HPC code generation, the use of search is still in its infancy [34} 43} 38]]. Prior HPC
studies, to our knowledge, have focused on a single programming language and search method [43],
without systematically examining how different test-time search methods perform when moving from
a high-resource to a low-resource language. Such a study would provide valuable insights into the
dos and don’ts of applying test-time search for low-resource coding for HPC.

In this paper, we take a simple testbed where a proposer generates candidate solutions, while a
verifier scores them to pick the best one. We evaluate different choices of proposer and verifier
on two representative parallel programming frameworks: OpenMP, a mature and widely adopted
shared-memory API well-represented in LLM training data, and Kokkos, a modern C++ abstraction
layer for performance portability that remains relatively low-resource and niche in code corpora.

Contributions. (/) For parallel code generation using LLMs, we present the first study (to our
knowledge) comparing test-time search methods on high-resource and low-resource programming
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languages side-by-side. (2) Within a simple test-time search framework, we evaluate distinct pro-
posers, verifiers, and feedback sources; and show what the implications are when moving from
OpenMP to Kokkos. (3) Our experiments on the ParEval benchmark show, on-average, a 23-26%
improvement in pass@1 with test-time search, with a search budget of 10 candidates. (4) For low-
resource settings, we identify key gaps in using LLMs as proposers, verifiers, and feedback providers.
Notably, we see LLMs struggle with writing syntactically correct low-resource code, which seems to
burden the search budget and prevents efficient search at an algorithmic level. (5) Finally, we find
that high-quality feedback can mitigate LLM’s shortcomings when generating low-resource code.

2 Test-Time Search for Parallel Code Generation

As a testbed for this study, we take a simple yet broadly
applicable test-time search framework: Propose-
Verify-Select. In this framework, given a problem =z,
N candidate solutions are proposed via an LLM-based ~ 1: define PROPOSEVERIFYSELECT(x)

Algorithm 1 Propose—Verify—Select. Given
problem z, the procedure returns a code .

proposer followed by verification and selection of the 20 Y1,---, YN < PROPOSER(z)
best candidate [37]]. This is described in Algorithm[T} 3t Zbest <~ arg ,pax VERIFIER (7, ;)
Also, see Appendix [B]and [C]for more details. 4. returny;, 7

2.1 Proposers

A proposer proposes N potential code solutions y1, . .., yn for the given problem . In this work,
we test three proposers implemented using Llama-3.3-70B-Instruc (1) Independent and
Identically Distributed (IID) Sampling, (2) Self-Refinement, and (3) Diversity Prompting.

IID (Nucleus) Sampling. One of the simplest and widely adopted proposer for test-time search is
IID Sampling, which generates N code samples in parallel from the LLM: {y1,...,yn} ~ p(y|z).
For this, we employ Nucleus Sampling with temperature = 0.6 and top_p = 0.95.

Sequential Refinement. Different from IID Sampling, Sequential Refinement offers a way to
iteratively improve the previous candidates. That is, given problem z, an LLM first proposes an initial
solution y;. In each n-th refinement iteration, we sample a refinement-feedback z,, for the current
solution y,,, and then use that feedback to refine y,, to obtain a new proposed solution y,, 1. We can
summarize this process as follows:

Yy~ pinitial(yl |-73) = Zn pfeedback(zn|yna JJ) = Yn+1 ™ Drefine (yn+1 |Zn7 Yns 33)

In implementing this, we test two sources of refinement feedback of varying quality: (1) LLM
Feedback: We prompt an LLM to write feedback for the code directly. (2) Tool Feedback: In this
case, an external build tool first provides the ground-truth build outcome, which is then fed to the
LLM to write feedback. The latter approach is expected to produce higher-quality feedback since it is
informed by the ground-truth build outcome [36].

Diversity Prompting. In Nucleus Sampling, the candidates are often surface-level variations of
the same high-level algorithm, thus harming algorithm-level exploration. With diversity prompting,
we seek to alleviate this by prompting the LLM to first write N distinct algorithm-level strategies
z1,...,2N to solve x, and then write the surface-level implementations ¥y, ..., yy for those N
strategies, respectively.

2.2 Verifiers

A verifier or a scorer takes a parallel code as input and assigns it a scalar score or a reward. To
test where LLM-as-a-verifier falls in the spectrum between the best-possible and an uninformative
verifier, we evaluate the following three verifiers: (1) LLM Verifier. For this, we prompt an LLM to
assign the given code a score between 0 and 10. (2) Oracle Verifier. As a gold-standard verifier, the
Oracle Verifier builds and executes the proposed code and then assigns it a score based on the build
success and the execution outcome. (3) Random Verifier. Finally, as an example of an uninformative
verifier, this verifier assigns a random score to each code candidate.
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Figure 1: Comparison of Proposers for Serial-to-Parallel Translation Task. We report build@1
and pass@1 with respect to sampling budget N. The focus of this plot is to compare the proposers;
therefore, we employ the Oracle verifier to select the best candidate. Moving from OpenMP to
Kokkos, we find (/) build@1 drops, showing LLMs struggle with low-resource syntax, and (2)
as a result, algorithm-level exploration—where Self-Refinement and Diversity Prompting shine in
OpenMP—fails to benefit Kokkos.
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Figure 2: Comparison of Verifiers for Serial-to-Parallel Translation Task. We report buildo1
and pass@1 with respect to sampling budget N. We use Nucleus Sampling as the proposer. We
note that LLM Verifier performs similarly to the naive and uninformed Random Verifier baseline.

3 Related Work

A number of works have started to utilize LLMs for HPC tasks [8| 10, [7]]. Several works [40),
20, 24} 25] have attempted to enhance LLMs’ capabilities for HPC in ways that are orthogonal to
our current work, e.g., by incorporating novel tokenization, representation, and retrieval. Several
works [29} 42, 114, [15 [18} [19} 12]] have focused on code generation for HPC, however, these do
not investigate test-time computation. Some works develop datasets for task-specific training [22]]
while others propose benchmarks [4} 28| [11, 33] for evaluating parallel code. However, these
works also do not focus on test-time search methods. Although test-time computing and tool-use
(45023011, 137,314150L 1121 149L 151114711481 139, 1321}, 146 has started being leveraged for HPC 34,143} 38]],
these works do not compare high and low resource languages for HPC, unlike our work. OMPGPT
[6]] leverages chain-of-thought as a test-time compute method, but their study is limited to OpenMP.

4 Experiments

In experiments, we seek to address the following questions: (1) What is the effect of the choice of the
proposer? (2) What is the effect of the choice of the verifier? (3) What is the effect of the feedback
source in sequential refinement? (4) Importantly, how do the answers to these questions change when
we shift from a high-resource to a low-resource programming language?

Metrics and Benchmark. We report build@1 and pass@1 computed on a parallel programming
evaluation benchmark called ParEval [28]. We evaluate on the task of translating a serial code to a
parallelized implementation in OpenMP and Kokkos.
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Figure 3: Comparison of Feedback Source in Sequential Refinement. We report build@1 and
pass@1 with respect to sampling budget V. We compare distinct sources of refinement-feedback for
sequential refinement. We find that while high-quality build-tool feedback has negligible benefits for
OpenMP, such feedback has noticeable benefits for the low-resource language Kokkos.

High-Resource versus Low-Resource Language. In this work, we take OpenMP as an instance of a
relatively high-resource parallel programming language and Kokkos as an instance of an emerging
and low-resource parallel programming language.

4.1 Results

Test-Time Search Improves pass@1 On-Average. In Figure|l| we observe a general upward trend
in pass@1 of the generated code as the search budget increases from N = 1 to NV = 10. OpenMP’s
pass@1 is 0.7 without test-time search and improves by nearly 26%, reaching 0.88 at N = 10 using
test-time search, with Sequential Refinement performing the best. In Kokkos, we see worse pass@1
than OpenMP, as Kokkos is a low-resource language. Yet, we see an upward scaling trend as the
search budget is increased, with Nucleus Sampling performing the best. It must be noted, however,
that the above results hold on average over the 54 problems in ParEval, while the picture may vary
on a per-problem basis (see Figures[d]and 5] for plots by problem-type).

Syntactic Correctness and Its Effect on Test-Time Search. A key observation in Figure|I|is that
while build@l is near-perfect (= 0.97) for high-resource OpenMP, it is much lower (~ 0.8) for
low-resource Kokkos. This suggests that LLMs inherently struggle with writing syntactically correct
code for low-resource language. For test-time search, this creates a major hurdle: it prevents us
Jrom conducting efficient program search at the level of algorithms and puts additional burden on
the search budget to look for syntactic correctness. This effect can be noticed from the fact that
Self-Refinement and Diversity Prompting are among the best-performers for OpenMP, while they are
the worst-performers for Kokkos. When refinement-feedback or diversity prompt asks the LLM to
write an algorithmic variation or improvement, the LLM is capable of implementing it in OpenMP
with correct syntax, but not for Kokkos. As such, for Kokkos, syntactic noise produced by Nucleus
Sampling is more effective for producing performance gains.

LLM Shows Gaps in Identifying Good Solutions and Providing Good Feedback. In Figure 2]
we find that LLM verifier’s ability to distinguish good and bad solutions is lacking, as it performs
similarly to the random verifier. In Figure 3| we compare whether and how Sequential Refinement
benefits from the quality of the refinement-feedback. For high-resource OpenMP, we find that build-
tool feedback has negligible benefits over LLM-only feedback since the LLM is already fluent at
writing OpenMP syntax. On the contrary, for low-resource Kokkos, the build-tool feedback provides
noticeable benefits, making it outperform Nucleus Sampling under identical search budget.

5 Discussion

In this work, we shed light on how LLM-based test-time search methods perform as we move from a
high-resource to a low-resource programming language. Our results suggest that for low-resource
languages, LLMs struggle at writing syntactically correct code preventing efficient search at the level
of algorithms and adding an additional burden of syntactical correctness. We also reveal gaps in
using LLMs as a verifier. Results also suggest that high-quality syntax-related feedback may mitigate
syntactic correctness issues in low-resource languages. For limitations of this work, see Appendix [A]
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A Limitations

There are multiple avenues to expand the current study: (i) including more test-time compute
approaches, e.g., tree search, evolutionary algorithms, etc. (ii) including more base LLMs, (iii)
including more instances of high and low-resource languages, and (iv) testing additional sources of
refinement-feedback.

B Details of the Experimental Setup

Sampling Parameters. In all the responses generated from the LLMs, we use a temperature of
0.6 and a top_p of 0.95. This follows the setup originally provided by the ParEval benchmark[28]].

Definitions of build@1 and pass@1. We employ the standard definitions and implementations of
these metrics as in the ParEval benchmark [28]. Following ParEval, for all reported metrics, we
execute the test-time search procedure 20 times and report an average over those.

Compute Resource Usage. Each inference run was performed on a single node with a total CPU
RAM and VRAM equal to 512GB. We used the Llama-3.3-70B-Instruct model. We used
VLL to accelerate the inference speed. The computation time needed depends on the search
procedure, however, a single experiment over all 54 Serial-to-Parallel ParEval translation problems
takes less than 8 hours. Each code’s build success and correctness was evaluated on CPU using 1, 4,
and 16 threads.

C Prompts

In this section, we provide the prompts used for each proposer.

Listing 1: Prompt for Nucleus Sampling Proposer.

{PROBLEM PROMPT}

Complete the code. The code MUST start with the line ‘{SIGNATURE}‘. Do
NOT write any other code or explanations. Enclose your response
inside a markdown code block i.e., ‘‘‘cpp and ‘‘°¢.

Listing 2: Prompt for Initial Code Generation for the Sequential Refinement Proposer.

{PROBLEM PROMPT}

Complete the code. The code MUST start with the line ‘{SIGNATURE}‘. Do
NOT write any other code or explanations. Enclose your response
inside a markdown code block i.e., ‘‘‘cpp and ‘‘°¢.

Listing 3: Prompt for Obtaining LLM Feedback for the Sequential Refinement Proposer.

{PROBLEM WITH CANDIDATE SOLUTION PROMPT}

Write in plain text how to improve the above completion to resolve
build errors, runtime errors, algorithmic or logical errors, and
other computational inefficiencies (if any). Be precise. Each item

in the list should clearly indicate the code snippet or limne to
be edited, what it must be edited to, and why.

*https://github.com/vllm-project/vllm



https://github.com/vllm-project/vllm

Listing 4: Prompt for Refining a Previous Code using Feedback for the Sequential Refinement
Proposer.

{PROBLEM WITH CANDIDATE SOLUTION PROMPT}
Complete the code again making use of this feedback:

{FEEDBACK}

The code MUST start with the line ‘{SIGNATURE}‘. Do NOT write any
other code or explanations. Enclose your response inside a
markdown code block i.e., ‘“‘cpp and ‘‘°¢.

Listing 5: Prompt for Diversity Prompting Proposer.

{PROBLEM PROMPT}

Write {N} distinct possible completions of this code. First, write in
plain text your thought process about these {N} possible
completions. Each completion MUST be fundamentally and
algorithmically distinct from others. Then write the code for
these {N} completions. Enclose each code completion you write in a

C++ markdown block i.e., ‘‘‘cpp and ‘¢‘. The contents of each
code block MUST start with the line ‘{SIGNATURE}‘.
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D Additional Experimental Results
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Figure 4: Comparison of Proposers by Problem-Type for Serial-to-Parallel Translation Task.
We report build@1 and pass@1 with respect to varying sampling budgets. Since the focus of this
plot is to compare the proposers, we employ the Oracle verifier to select the best candidate.
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Figure 5: Comparison of Proposers by Problem-Type for Serial-to-Parallel Translation Task.
We report build@1 and pass@1 with respect to varying sampling budgets. Since the focus of this
plot is to compare the proposers, we employ the Oracle verifier to select the best candidate.
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E Qualitative Examples of LLM-Generated Responses

// CANDIDATE 1

double smallestArea(Kokkos::View<const Point*> &points) {
double minArea = std::numeric_limits<double>::max();
Kokkos::parallel_reduce (Kokkos::RangePolicy<>(0, points.size()),
[&] (int i, double& 1lmin) {
for (int j = i + 1; j < points.size(); ++j) {
for (int k = j + 1; k < points.size(); ++k) {
double area = triangleArea(points(i), points(j), points(k));
lmin = std::min(lmin, area);
¥
}
},
Kokkos::Min<double >(minArea));
return minArea;

}

// CANDIDATE 2

double smallestArea(Kokkos::View<const Point*> &points) {
double minArea = std::numeric_limits<double>::max();
Kokkos::parallel_reduce (Kokkos::RangePolicy<>(0, points.size()),
[&] (int i, double& 1lmin) {
for (int j = i + 1; j < points.size(); ++j) {
for (int k = j + 1; k < points.size(); ++k) {
double area = triangleArea(points (i), points(j), points(k));
1lmin = std::min(lmin, area);
}
}
},
Kokkos::Min<double>(minArea));
return minArea;

}

// CANDIDATE 3

double smallestArea(Kokkos::View<const Point*> &points) {
double minArea = std::numeric_limits<double>::max();
Kokkos::parallel_reduce (Kokkos::RangePolicy<>(0, points.size()),
[&] (int i, double& 1lmin) {
for (int j = i + 1; j < points.size(); ++j) {
for (int k = j + 1; k < points.size(); ++k) {
double area = triangleArea(points(i), points(j), points(k));
1lmin = std::min(lmin, area);
¥
}
},
Kokkos::Min<double>(minArea));
return minArea;

}

Figure 6: Generated Code Candidates using IID (Nucleus) Sampling in Kokkos for a ParEval Problem
(12_geometry_smallest_triangle).
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// ITERATION 1

double smallestArea(Kokkos::View<const Point*> &points) {
double minArea = std::numeric_limits<double>::max();
Kokkos::parallel_reduce (Kokkos::RangePolicy<>(0, points.size()),
[&] (const int i, double& 1min) {
for (int j = i + 1; j < points.size(); ++j) {
for (int k = j + 1; k < points.size(); ++k) {
double area = triangleArea(points(i), points(j), points(k));
if (area < 1lmin) {
lmin = area;
}
}
¥
},
Kokkos ::Min<double>(minArea));
return minArea;

}

// ITERATION 2

double smallestArea(Kokkos::View<const Point*> &points) {
return Kokkos::parallel_reduce (Kokkos::RangePolicy<>(0, points.size()),
[&] (const int i, double& 1lmin) {
const Point& pi = points(i);
for (int j = i + 1; j < points.size(); ++j) {
const Point& pj = points(j);
for (int k = j + 1; k < points.size(); ++k) {
const Point& pk = points(k);
double area = triangleArea(pi, pj, pk);
if (area < 1lmin) {
lmin = area;
}
}
}
},
Kokkos : :Min<double>());

// ITERATION 3

double smallestArea(Kokkos::View<const Point#*> &points) {
return Kokkos::parallel_reduce (Kokkos::RangePolicy<>(0, points.size()),
[&] (const int i, double& 1min) {

1lmin = std::numeric_limits<double>::max();

const Point& pi = points(i);

for (int j = i + 1; j < points.size(); ++j) {
const Point& pj = points(j);

for (int k = j + 1; k < points.size(); ++k) {
const Point& pk = points(k);
double area = triangleArea(pi, pj, pk);
if (area < 1lmin) {

lmin = area;

}

}

}

},
Kokkos::Min<double>(std::numeric_limits<double>::max()));

Figure 7: Generated Code Candidates using Self-Refinement in Kokkos for a ParEval Problem
(12_geometry_smallest_triangle).
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// CODE

double smallestArea(Kokkos::View<const Point*> &points) {
double minArea = std::numeric_limits<double>::max();
Kokkos::parallel_reduce (Kokkos::RangePolicy<>(0, points.size()),
[&] (const int i, double& 1lmin) {
for (int j = i + 1; j < points.size(); ++j) {
for (int k = j + 1; k < points.size(); ++k) {
double area = triangleArea(points(i), points(j), points(k));
if (area < 1lmin) {
lmin = area;
}
}
}
},
Kokkos ::Min<double>(minArea));
return minArea;

}

# LLM GENERATED FEEDBACK
Here’s a list of potential improvements to the code:

1. **xInitialization of minArea**: The line ‘double minArea = std::numeric_limits<double
>::max () ;¢ initializes ‘minArea‘ to the maximum possible double value. However, this
value is not being used correctly in the ‘Kokkos::parallel_reduce‘ function. To fix
this, the ‘minArea‘ variable should be initialized within the lambda function, and
the ‘Kokkos::Min‘ reducer should be used to update the ‘minArea‘ variable.

- Code snippet to edit: ‘double minArea = std::numeric_limits<double>::max();‘ and ¢
Kokkos ::Min<double>(minArea) ¢.
- Edit to: Remove ‘double minArea = std::numeric_limits<double>::max();‘ and use ¢

Kokkos ::Min<double>() ¢ instead of ‘Kokkos::Min<double>(minArea) ‘.
- Why: The ‘Kokkos::Min‘ reducer will automatically initialize the minimum value to
the maximum possible double value and update it accordingly.

2. **Redundant copy of points#**: In the lambda function, ‘points(i)‘, ‘points(j)‘¢, and ¢
points (k) ¢ are used to access the points. However, these points are being accessed
by value, which may involve a copy of the point objects.

- Code snippet to edit: ‘double area = triangleArea(points (i), points(j), points(k))

<

- Edit to: ‘double area = triangleArea(const Point& points(i), const Point& points(j),
const Point& points(k));¢ or use ‘const Point& pi = points(i); const Point& pj =
points(j); const Point& pk = points(k);‘ and then pass ‘pi‘, ‘pj¢, and ‘pk‘ to ¢

triangleArea ‘.
- Why: This avoids unnecessary copies of the point objects and improves performance.

3. **Potential division by zero**: Although not present in this specific code, if the ¢
triangleArea ‘ function is used elsewhere with points that are collinear (i.e., have
zero area), it may cause division by zero errors or NaN (Not a Number) values.

- Code snippet to edit: None in this specific code, but consider adding checks in the
‘triangleArea‘ function.

- Edit to: Add checks to handle the case where the points are collinear.

- Why: This prevents potential division by zero errors or NaN values.

4. x*xError handling*#*: The code does not handle potential errors that may occur during
execution, such as out-of-bounds access or invalid input.
- Code snippet to edit: None in this specific code, but consider adding error handling
mechanisms.
- Edit to: Add try-catch blocks or other error handling mechanisms to handle potential
errors.
- Why: This improves the robustness of the code and prevents crashes or unexpected
behavior.
5. *xParallelization**: The code uses ‘Kokkos::parallel_reduce‘ to parallelize the
computation, but it may not be optimal for large inputs due to the nested loops.
- Code snippet to edit: The lambda function within ‘Kokkos::parallel_reduce ‘.
- Edit to: Consider using a more efficient parallelization strategy, such as
parallelizing the outer loop only or using a different parallelization library.
- Why: This can improve the performance and scalability of the code for large inputs.

Figure 8: An Example of LLM-Generated Feedback in Kokkos during a Self-Refinement Iteration
for a ParEval Problem (12_geometry_smallest_triangle).
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// CANDIDATE 1

double smallestArea(Kokkos::View<const Point#*> &points) {
// Brute Force Approach

double minArea = std::numeric_limits<double>::max();
Kokkos::parallel_for (Kokkos::RangePolicy<>(0, points.size()), KOKKOS_LAMBDA(const int i
) {

for (int j = i 1; j < points.size(); ++j) {
for (int k = + 1; k < points.size(); ++k) {
double area = triangleArea(points (i), points(j), points(k));
if (area < minArea) {
minArea = area;

}

+
J

¥
}
s
return minArea;

}

// CANDIDATE 2

double smallestArea(Kokkos::View<const Point#*> &points) {
// Divide and Conquer Approach

int numPoints = points.size();
Kokkos::View<double*> minAreas( , numPoints);
Kokkos::parallel_for (Kokkos::RangePolicy<>(0, numPoints), KOKKOS_LAMBDA(const int i) {
double minArea = std::numeric_limits<double>::max();
for (int j = i + 1; j < numPoints; ++j) {
for (int k = j + 1; k < numPoints; ++k) {

double area = triangleArea(points(i), points(j), points(k));
if (area < minArea) {
minArea = area;
¥
}
}
minAreas (i) = minArea;
1
double smallest = minAreas(0);
for (int i = 1; i < numPoints; ++i) {
if (minAreas (i) < smallest) {
smallest = minAreas(i);
¥
¥

return smallest;

// CANDIDATE 3

double smallestArea(Kokkos::View<const Point*> &points) {
// Random Sampling Approach
int numSamples = 1000;
Kokkos::View<double*> areas( , numSamples);
Kokkos ::Random_XorShift64_Pool <> randPool (12345);
Kokkos::parallel_for (Kokkos::RangePolicy<>(0, numSamples), KOKKOS_LAMBDA (const int i) {
int idx1 = randPool.get_state().rand() 7% points.size();
int idx2 = randPool.get_state().rand() % points.size();
int idx3 = randPool.get_state().rand() % points.size();
double area = triangleArea(points(idxl), points(idx2), points(idx3));
areas (i) = area;
b
double smallest = areas(0);
for (int i = 1; i < numSamples; ++i) {
if (areas (i) < smallest) {
smallest = areas(i);
}
¥

return smallest;

Figure 9: Generated Code Candidates using Diversity Prompting in Kokkos for a ParEval Problem
(12_geometry_smallest_triangle). We can see that each candidate implements a distinct algo-
rithmic strategy (i.e., brute force, divide-and-conquer, and random sampling) due the the diversity
prompt.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Yes, claims match the scope of our experimental results.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: A separate section on limitations is included.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: There are no theoretical results in this work.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the LLM prompts in the appendix and other sampling parameters
in the main paper.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer:

Justification: We intend to release our source code around the time of camera ready sub-
missions. The benchmark that we have used in this work i.e., ParEval, is already publicly
available.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: The paper does not require a training phase since the focus is on test-time
compute on top of the base large-language model. As such, a split of training and test set is
not required. The benchmark ParEval that we have evaluated on is treated as a test-set in its
entirety.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: As this is a test-time compute approach, there is no randomness due to the
training runs themselves.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We have provided the details in Appendix
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Yes, the paper conforms to the Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper seeks to advance the state of the art in HPC code generation. The
ultimate societal impact is determined not by our current work but by the downstream HPC
application that uses it.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We do not release any new models or data.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, the benchmark that we have used in this paper to perform evaluations has
been cited and credited.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: There are no new assets contributed by this work.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: There is no crowdsourcing or human experiment conducted in this work.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: There were no human subjects involved.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: Although LLM is an integral part of our methodology, its use in this work is
standard as per the prior works.
Guidelines:
* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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