
README: Rapid Equation Discovery with Multimodal Encoders

Gregory Kang Ruey Lau * 1 2 Yue Ran Kang * 1 Zi-Yu Khoo 1 Apivich Hemachandra 1 Ruth Wan Theng Chew 1

Bryan Kian Hsiang Low 1

Abstract

Discovering scientific laws or interpretable sym-
bolic equations from data rapidly is important in
many setting, such as decision-making in time-
sensitive high-stake scenarios or applications in-
volving interactive or iterative experimentation
such as in scientific or machine learning work-
flows. However, existing methods, generally
known as symbolic regression (SR), typically re-
quire long computational time to achieve good
performance and have to run from scratch for
each dataset. Recent methods that use pre-training
SR foundation models for faster inference also
suffer from performance limitations and require
large training datasets. In this work, we propose
README, a framework for rapid equation dis-
covery that can generate performant, interpretable
equations from limited, noisy data in just a few
seconds, and requires significantly less training
data compared to past SR foundation model ap-
proaches. We achieve this by being the first to
(1) work with image representations of datasets to
efficiently capture their key properties, (2) com-
bine the capabilities of open-sourced pre-trained
text and image encoders to produce an informa-
tive SR embedding space, and (3) develop a novel
Grey Wolf Optimizer with Bayesian Optimiza-
tion (GWOBO) algorithm to rapidly optimize for
the best symbolic expression within seconds. We
empirically show that README outperforms
benchmarks on a wide range of realistic datasets,
including real experimental data from various do-
mains and noisy video-extracted dynamics.

*Equal contribution 1Department of Computer Science, Na-
tional University of Singapore 2CNRS@CREATE, 1 Create Way,
#08-01 Create Tower, Singapore 138602. Correspondence to:
<{greglau, lowkh}@comp.nus.edu.sg, kyueran@u.nus.edu>.

The second AI for MATH Workshop at the 42nd International
Conference on Machine Learning, Vancouver, Canada. Copyright
2025 by the author(s).

1. Introduction
In many scientific and industrial settings, obtaining inter-
pretable symbolic expressions that describe systems accu-
rately is a critical objective. For example, symbolic repre-
sentation of physical phenomena in areas such as climate
science (Grundner et al., 2024; AL NAJAR et al., 2023), ma-
terial science (Wang et al., 2022; 2019), and robotics (Zhang
& Chen, 2023; Mor, 2011) are important in building scien-
tific understanding, and interpretable symbolic expressions
describing industrial processes and systems can help in high-
stakes decision-making scenarios (Rudin, 2019) and applica-
tions in aerospace engineering (Brunton et al., 2021), electri-
cal systems (And̄elić et al., 2024) and healthcare (Wahlquist
et al., 2024; Fitzsimmons & Moscato, 2018), where verifia-
bility and human oversight are often required.

Symbolic regression (SR) methods aim to achieve auto-
mated discovery of the symbolic expressions that best ap-
proximate a given dataset, which is a challenging problem
given the large search space of possible expressions (Vir-
golin & Pissis, 2022). However, while existing methods
such as genetic programming-based algorithms (Makke &
Chawla, 2024) can generate good approximations, they are
typically computationally intensive and slow to converge
(Biggio et al., 2021), and suffer from high sensitivity to
the choice of hyperparameters and the right basis functions
(Petersen et al., 2020). To address these issues, some works
have proposed pre-training transformer-based SR models on
large corpora of data, so as to amortize computational cost
and enable faster inference (Valipour et al., 2021; Kamienny
et al., 2022). These include approaches using CLIP-based
(Radford et al., 2021a) multi-modal architectures trained on
symbolic expressions and numerical data that could be used
for candidate generation together with genetic programming-
based SR methods (Meidani et al., 2023; Liu et al., 2023;
Shojaee et al., 2024). However, these works require large
datasets and computational time to train the models from
scratch.

Importantly, most of the past works have not emphasized
low-latency requirement settings where the time constraint
for accurate symbolic expression is in seconds, not minutes
or hours. While there are a few methods for fast SR (Mc-
Conaghy, 2011), their performance tend to degrade for more

1

realistic, noisy data. As a result, SR remains challenging for
use in interactive, real-time or iterative scenarios, potentially
limiting its utility in applications such as adaptive scientific
experimentation and close to real-time decision making in
high-stakes environment.

In this work, we have identified three insights to achieve per-
formant rapid equation discovery. First, rather than working
with raw numerical data, image representations of numer-
ical data can aid SR. Humans use plots to quickly extract
key trends and identify candidate equations. A similar ap-
proach might be adapted for multi-modal large language
models. Images, even complex human-uninterpretable plots,
can efficiently summarize mathematical trends with many
variables while remaining readable to well-trained models,
enabling better candidate equations generation.

Second, existing pre-trained image and text en-
coders/models can be leveraged to efficiently build
foundation models for SR, given plots and symbolic
equations. Building on rapidly improving open-sourced
image and text encoders rather than separately training
SR-specific models from scratch, can produce better models
with less data and computational resources. These encoders
may have been pre-trained to extract relevant features that
are transferable to the SR task (e.g., shape features in the
plots for the image encoder or relationships among math
operations for the text encoder), and hence only require
fine-tuning with a small amount of data to become effective.

Third, to rapidly optimize for the symbolic expression that
best approximates a dataset with the desired properties
(e.g., complexity), we consider whether query-efficient ap-
proaches such as Bayesian Optimization (BO) could be used
to significantly speed up the search process, when combined
with SR foundation model approaches. BO methods (Gar-
nett, 2022) allow for optimization while reducing calls to
expensive fit procedures, which is a natural combination
with population-based algorithms such as Grey Wolf Opti-
mizer (GWO) (Mirjalili et al., 2014) to enable rapid equation
discovery.

Combining insights from these analysis, we propose
README (Rapid Equation Discovery with Multimodal
Encoders), a framework for SR that uses (1) an informative,
compressed image representation of numerical data (Sec-
tion 3.1); (2) an efficiently-trained transformer-based model
built on top of pre-trained image and text encoders (∼ 60×
less training data compared to past works) (Section 3.2);
and (3) a novel combination of BO and GWO for a rapid,
effective optimization process (Section 3.3), to (4) achieve
state-of-the-art and robust SR results for challenging set-
tings with realistic, noisy settings and tight time constraints
(≤ 10s) (Section 4).

2. Problem formulation
SR inference phase. Consider a target system that is gov-
erned by an underlying equation y = f(x), where y ∈ R,
x ∈ Rn, and f(x) is a function that can be symbolically
expressed as a composition of math operators. Given an
inference dataset D consisting of a set of noisy m observa-
tions {(xi, ỹi)}mi=1 where ỹi = yi + ϵi, the SR task is to
obtain a symbolic expression for the underlying function
f(x) that is the most accurate while prioritizing parsimo-
nious expressions. Specifically, our accuracy goal is to find
a symbolic expression G∗ ∈ G, where G is the space of all
valid symbolic expressions consisting of symbolic represen-
tations of input variables and math operators for the task
under consideration, that represents a function g(x) with
the maximum R2 value 1 over a test dataset Dt generated
from the same underlying phenomenon as D.

In practice, during the inference phase we aim to achieve the
best SR expression subjected to two additional desiderata.
First, we prefer equations that are more parsimonious (i.e., a
symbolic representation G that is less complex as evaluated
by the number of nodes in its expression tree, details in
Section 4.3.1) as they tend to be more interpretable, though
there is typically a trade-off between the achievable accuracy
and parsimony of the symbolic representation G. Hence, we
will evaluate methods on the parsimony of their proposed
expressions, and examine accuracy-parsimony Pareto plots
to analyze how well the methods balance this trade-off. Sec-
ond, the SR methods should also have low inference runtime,
as many practical scenarios may have strict time budgets.
Hence, we evaluate these methods based on fixed, short time
budgets (e.g., 10− 30s) in our experiments (Section 4).

Training phase for foundation models. We consider the
realistic setting where we can generate or have access to syn-
thetic training datasets independently generated from any
inference training or test data, i.e., a set {Di, Fi}i where Fi

are ground truth symbolic representations of the dataset Di,
which we can use to train SR foundation models. Given the
cost of high-quality data generation, an additional desider-
ata is for SR methods involving the training of foundation
models to be as data-efficient as possible. Hence, we also
evaluate the amount of training data needed for foundation-
based SR methods to achieve good inference data (Table 1).

3. Method Overview
README framework consists of three key components:

1. Data processing. [Section 3.1] For both inference and

1Note that G∗ is not unique if only the accuracy desiderata
is considered (e.g., superfluous terms could be added to any ex-
pression to represent the same function g(x)), but the parsimony
desiderata will mitigate this.

2

training, we have a data processing step P that converts
each datasets Di from raw numerical data to a single
image I , i.e., P(Di) → Ii. As explained later, the
image representation has several key benefits over raw
numerical data.

2. README model architecture. [Section 3.2] The
processed data will then pass through the README
model, which consists of a pair of pre-trained image I
and text T encoders as well as a text decoder W that
has been fine-tuned by a set of labeled training data
{Di, Fi}i during the training phase. The README
training process combines the feature extraction capa-
bilities of the image encoder with the mathematical
knowledge embedded in a pre-trained math text en-
coder, to obtain an informative embedding space S that
the image encoder maps datasets to (i.e., I(Di) → si,
where si ∈ S), for inference as described below.

3. Inference optimization. [Section 3.3] For a given
dataset D during inference, we will use the trained
README model to generate an initial candidate set,
followed by our README optimization process to
search for the best point s∗ ∈ S that can be decoded
to obtain the best symbolic expression W(s∗) → G∗.
The base optimizer in the process is the Grey Wolf
Optimizer (GWO), though for ultra-rapid scenarios
(≤ 10s) we employ our novel Grey Wolf Optimizer
with Bayesian Optimization (GWOBO) method.

3.1. Data processing: Working with images

Unlike existing SR methods, README works by first con-
verting raw numerical data to images. This is inspired by
humans’ capabilities to more rapidly infer patterns and guess
candidate symbolic expression skeletons (i.e., expression
forms without specific numerical constants) for data by visu-
alizing it, rather than just going through raw numerical data.
For example, the oscillatory curves of a 1D sinusoidal func-
tion are immediately recognizable when visualized. For hu-
mans, visualizing and interpreting the plots quickly become
very challenging for higher dimensional datasets though.

However, the growing capabilities of Multi-modal Large
Language Models (MLLMs) suggests that their image en-
coders may have powerful feature extraction capabilities de-
veloped from large-scale training on diverse image datasets
that may also be useful in capturing relevant patterns from
data plots. If so, it may still be viable to use images to sum-
marize relevant information from high-dimensional data,
and use them for SR. Such images may even not appear
human-interpretable, but could possibly be effectively used
by fine-tuned image encoders and customized decoders.
Hence, in README, for both model training and infer-
ence, we map every dataset Di to a corresponding image
plot Ii through a standardized data processing step.

To demonstrate this, we propose starting with the most basic
plotting approach: in a single graph, we generate and over-
lay line plots for each dimension of the data. Figure 1 shows
an example plot. While the plots may not seem directly
interpretable by humans and may also not uniquely repre-
sent a single symbolic expression (i.e., several expressions
may correspond to the same plot), the general shape and
features of the aggregated line plots, including information
such as the axis magnitudes, provide sufficient details to sig-
nificantly reduce the candidate search space and inform the
optimization process for SR. This is similar to how humans
can guess the expression skeleton but not necessarily the
exact expression with its constants. In the README frame-
work, the image is used only to narrow the search space for
a more efficient optimization process to perform SR, as we
will elaborate in section Section 3.2 and Section 3.3.

Furthermore, this approach also helps to standardize the
input format (i.e. 1 image) across datasets that can consist
of a wide range of dimensions and number of datapoints,
unlike for numerical data where variations there will be
variations in format and size. Such variation pose major
challenges to other works (Meidani et al., 2023), leading
to the lack of generalization of SR foundation models to
datasets with larger sizes or dimensionality compared to the
training dataset.

3.2. README model architecture and training process

A key innovation in our README model architecture com-
ponent lies in our combination of the feature recognition
capabilities of pre-trained image encoders with the mathe-
matical knowledge contained in text encoders to generate
an informative embedding space for SR. Note that the naive
approach of directly using MLLMs for SR do not perform
well (see Appendix F), hence past works (Kamienny et al.,
2022; Meidani et al., 2023), have largely resorted to training
transformers from scratch. Our approach allow us to obtain
significantly better performance in SR with less training
data. The README model architecture is adapted from
the basic CLIP MLLM architecture (Radford et al., 2021b):

1. Image encoder. The image encoder I : I → SI maps
each image plot Ii = P(Di) ∈ I to its embedding
vector representation si ∈ S. Any general-purpose pre-
trained encoder can be used, such as open-sourced ViT
models (Dosovitskiy et al., 2021) which are trained on
diverse image data. These models have powerful im-
age feature recognition capabilities (e.g., earlier model
layers), and although their original embedding space
SI would not have the right structure for our SR tasks
(see Section 4.2), they could be efficiently fine-tuned
on our type of images from the data generation step.

2. Text encoder. The text encoder T : G → ST maps

3

Figure 1. An overview of the README architecture

symbolic equations to its continuous embedding space
ST . Crucially, we propose to use a text encoder pre-
trained on math such as MathBERT (Shen et al., 2021)
as it would contain inductive biases regarding symbolic
expressions and have a relevant, well-structured em-
bedding space ST for SR that can guide the training of
SI for SR.

3. Aligned embedding space. The embedding spaces SI
and ST are then aligned through joint contrastive learn-
ing, similar to the approach in CLIP (Radford et al.,
2021a). We are primarily aiming for SI to inherit the
relevant SR structure from ST and the training data,
while preserving the image encoder’s feature extraction
capabilities. In Section 4.2, we provide illustrations
that this happens in ours experiments. Additional train-
ing and architecture details are in Appendix A.

4. Text decoder. The final component is a text decoder
W : SI → G that maps points in the aligned embed-
ding space S to symbolic expressions. To improve de-
coding performance for symbolic regression, we adopt
an expression decoder (Kamienny et al., 2022), which
overlays a multi-layer Transformer atop the numeric
encoder to translate encodings into symbolic expres-
sions. Similar to prior work (Meidani et al., 2023;
Radford et al., 2021a), we first train the decoder with
both encoders frozen, and then fine-tune all compo-
nents jointly.

Leveraging the inductive biases of pretrained encoders en-
ables us to reduce data requirements while improving per-
formance in symbolic regression. Our model, README,
trained on only ∼1 million synthetic numeric-symbolic
pairs, outperforms SNIP (Meidani et al., 2023) which is a re-
cent multi-modal pretraining approach trained on 60 million
examples. This demonstrates the strong data efficiency and
generalization capabilities of our modular encoder choice.

Model Pretraining Data Mean R2
Test

README ∼1 million pairs 0.984± 0.004
SNIP ∼60 million pairs 0.883± 0.091

Table 1. Comparison between README and SNIP models pre-
trained on different volumes of synthetic data. Mean R2 Test Score
shown is for real-world Physics-Informed dataset. Similar results
for other datasets are provided in Appendix B.4.1, with further
discussion on evaluation and metrics in Section 4.3.

3.3. Inference optimization

In README, inference consists of two processes, as illus-
trated in Figure 2.

Inference decoding process. We first convert the numeri-
cal dataset D into a plot image (Section 3.1), before map-
ping it through the image encoder to its embedding space
representation s̃ = I(P(D)). In some cases, direct decod-
ing using our text decoder W(s̃) would already achieve
a sufficiently good symbolic expression G̃ for the dataset.
However, README is designed to have the decoder just
find the right symbolic expression skeleton, before doing
‘constants optimization’ via BFGS (Fletcher, 1987) simi-
lar to past works (Kamienny et al., 2022) where numerical
constants in the expression may possibly be refined based
on some metric (e.g., R2) evaluated over D. The decoding
process is summarized in Algorithm 1.

Inference optimization process. The optimization process
involves searching in the image embedding space SI for the
best point s∗ that would be decoded to the best symbolic
expression G∗. For most settings, we do this by first gen-
erating a candidate population within a region around s∗,
and using the Grey Wolf Optimizer (GWO) (Mirjalili et al.,
2014) to find s∗. Given the advantages from README’s
data processing and model, applying a vanilla GWO opti-
mizer would typically already give SOTA performance (see
Section 4 for details). However, under very tight time con-
straints, e.g., ≤ 10s where none except one of our baseline

4

Figure 2. README Inference Optimization process

Algorithm 1 README inference decode algorithm

1: Input: Image encoder I, Inference dataset D
2: Output: Symbolic expression G̃, Associated MSE loss

on inference dataset L̄
3: I = P(D) //Process dataset to image plot
4: s̃ = I(I) //Pass image through image encoder
5: G = W(s̃) //Decode to symbolic expression
6: Run BFGS(G,D) (Fletcher, 1987) to optimize for MSE

loss L evaluated over D to obtain G̃ and final loss L̃
7: Return G̃ and L̃

methods manage to finish running, we need a faster opti-
mization process. The bottleneck for GWO lies in the eval-
uation of entire population’s fitness score, which requires
running the decoding process to get a symbolic expression
and compute its R2.

Hence, we propose a hybrid GWO algorithm (GWOBO),
that employs Bayesian Optimization (BO) as a supporting
subroutine for GWO to (1) train and provide a Gaussian
Process (GP) surrogate model to model the fitness value
(R2) given any s, and (2) pick the top three wolfs (α, β, γ)
that will influence the exploration of the rest of the popu-
lation. Specifically, we iteratively run GWO and BO: after
each iteration of GWO, we train the GP with past decoded
points and run BO with an Upper Confidence Bound (UCB)
acquisition function (see Appendix D for details) to pick the
top three wolfs for the next GWO iteration. The top three
wolfs will have their fitness score evaluated by the decoding
process, while the rest of the population will have its fitness
score estimated using the GP trained from the BO process.
The algorithm is outlined in Algorithm 2. In high-resource
settings, the decoder can also be parallelized across multiple
GPUs, which allows a larger candidate pool to be explored
and improves performance.

4. Experimental results
4.1. Experimental setup

Datasets. We evaluate README on three datasets with
varying characteristics: the Strogatz dataset consisting
of synthetic data of 2-state dynamic models (Strogatz,
2024; La Cava et al., 2016), the CP3-Bench astrophysical

Algorithm 2 README inference optimization process

1: Input: Image encoder I, Inference dataset D, Target
loss L̄, Max iterations T

2: Output: Best-fit symbolic expression and loss r∗ =
(G∗, L∗)

3: Initialize GP
4: for t = 1, 2, . . . , T do
5: Optimize via GWO to select top three wolfs’ embed-

ding (sαt , s
β
t , s

γ
t) based on UCB criterion

6: Perform GP regression with
{{(sai , R2(sai))}a∈[α,β,γ]}t−1

i=0

7: Decode sat with Algorithm 1 lines 5-6 to obtain rat =
(G̃t, L̃t), a ∈ [α, β, γ]

8: Obtain corresponding R2 score R2(sat) for the ex-
pression G̃t

9: Find r∗ ∈ {ri}ti=1 with the lowest L̃∗.
10: Exit if L∗ < L̄
11: end for
12: Return r∗

dataset (Thing & Koksbang, 2024) of synthetic data based
on cosmological equations with added noise and varying
precision, and problems from physics-informed experimen-
tal design (Hemachandra et al., 2025) (PIED) consisting of
collated real-world, noisy experimental data. These datasets
cumulatively provide 61 real-world regression problems
on which README is benchmarked (see Appendix B for
details).

Models. We primarily used ViT-Base as the image
encoder and MathBERT as the text encoder for our
experiments, but also observed strong results with en-
coders from other model families. This highlights the
flexibility and performance of our modular framework
(see Appendix A.2). Numeric data is converted into visual
plots and processed using the Vision Transformer model
google/vit-base-patch16-224-in21k (Doso-
vitskiy et al., 2021), which is pre-trained on large-scale
image datasets for strong pattern recognition. Symbolic
equations are encoded using tbs17/MathBERT (Shen
et al., 2021), a model trained on mathematical texts to better
capture the structure and semantics of symbolic expressions.
This combination allows the model to benefit from both

5

Figure 3. Image encoder attention rollout before
(left) and after (right) training. Red indicates higher
attention.

periodic
periodic_exp

exp
periodic_polynomial

polynomial
exp_polynomial

invperiodic
periodic_exp

exp
periodic_polynomial

polynomial
exp_polynomial

inv

(a) Text (MathBERT) (b) ViT (pre-train) (c) ViT (trained)

Figure 4. t-SNE plots of text and image embeddings.

ViT’s visual representation capabilities and MathBERT’s
inductive biases for symbolic reasoning.

Benchmarks. README is benchmarked against 9 algo-
rithms, including Operon (Burlacu et al., 2020), Interaction-
Transformation Evolutionary Algorithm (ITEA) (Aldeia &
de França, 2022), Genetic Programming Gene-pool Opti-
mal Mixing Evolutionary Algorithm for Genetic Program-
ming (GPGOMEA) (Virgolin & Bosman, 2022), and Fast
Function Extraction (FFX) (McConaghy, 2011) from SR-
Bench (La Cava et al., 2016), and Meidani et al.’s Symbolic-
Numeric Integrated Pretraining (SNIP). The selected algo-
rithms are efficient and effective, and represent a diverse
range of SR approaches.

Evaluation. We evaluate algorithms over three metrics, as
described in Section 2. First, we evaluate the accuracy
of the generated expression G̃ and its associated function
g(x) by computing its R2 over test data points. Secondly,
expression complexity or parsimony is evaluated as the
number of nodes in its associated expression tree. A smaller
expression complexity, or a more parsimonious expression,
is better. Lastly, wall-clock time is used a measure of the
speed of the SR algorithm. This is measured as the time
taken to train the algorithm. A smaller wall-clock time is
better. All experiments are repeated for five random seeds.

4.2. Image encoder and embedding space structure

Attention visualization. We first analyze how the image
encoder processes the input image plots, by visualizing the
attention via attention rollout in Figure 3. Attention rollout
involves recursively multiplying attention weights across
all layers (Abnar & Zuidema, 2020), where we selected the
minimum attention weight over all heads at each layer. We
observed that the trained image encoder correctly focuses
on important areas of the image plot, such as the graph, axes
and legend, compared to the pre-trained ViT which misses
portions of the graph and focuses on irrelevant blank spaces.

Families of equations. The t-SNE visualization of Math-
BERT’s embeddings in Figure 4a shows a well-structured
embedding space, where different families of equations are

separately clustered. Combinations of different families also
result in embeddings being close to the original family clus-
ter, where the ‘periodic_polynomial’ and ‘exp_polynomial’
clusters are close to the ‘polynomial’ cluster.

Transferring pre-trained math structure. The well-
structured embedding space of MathBERT also transfers to
the image encoder after training. While initial pre-trained
ViT’s embeddings do not have meaningful structures (Fig-
ure 4b), a clearer separation between equation families
emerges after training (Figure 4c). For example, the image
embeddings of ‘inv’ equations become distinctly clustered,
and ‘periodic’ and ‘periodic_exp’ equations are grouped
together. Interestingly, ‘periodic_polynomial’ embeddings
seem to be interpolated between ‘periodic’ and ‘polynomial’
embeddings, indicating the image encoder has recognized
relationships between equation families.

4.3. Performance evaluation

We compare README against the baseline algorithms on
the task of regressing 61 regression problems. For each
problem, 75% of the data is designated as the inference
set while the remaining 25% is designated as the test set.
Each trial involves 200 randomly selected inference data
points provided to the methods for them to generate sym-
bolic expressions based on the data, with these expressions
evaluated on randomly selected test set. Five trials are con-
ducted for each problem. We consider two experimental
settings. First, the rapid setting, where algorithms have to
be trained within a 30-second cut-off. Second, the ultra
rapid setting, where algorithms have to be trained within a
10-second cut-off.

4.3.1. RESULTS FOR RAPID SETTING

To evaluate both both accuracy and parsimony of the sym-
bolic equations produced by each method, we plot Pareto
plots for each dataset where the y-axis represents accuracy
measured by mean R2

Test (larger is better) and the x-axis
represents parsimony measured by mean equation length
(smaller is better). The x-axis is plotted in descending order
so that along both axes, points furthest from the origin are

6

Algorithm Strogatz CP3-Bench Physics Informed
Mean R2

Test (↑ better) Equation Length (↓ better) Mean R2
Test Equation Length Mean R2

Test Equation Length

README 0.880± 0.018 20.99± 1.19 0.933± 0.018 23.34± 0.11 0.984± 0.004 23.76± 2.35
FFXRegressor 0.822± 0.063 198.43± 37.82 0.930± 0.006 172.45± 15.37 0.930± 0.007 198.41± 15.47
GPGOMEARegressor (*) 0.849± 0.054 29.27± 3.46 0.910± 0.004 29.51± 0.83 0.930± 0.003 29.85± 0.38
AFPRegressor 0.742± 0.043 38.00± 6.08 0.887± 0.003 39.63± 3.76 0.912± 0.007 42.67± 2.84
SNIP 0.780± 0.046 22.39± 1.98 0.909± 0.011 25.07± 1.10 0.895± 0.045 28.04± 1.44
DSRRegressor (*) 0.693± 0.067 19.16± 3.49 0.803± 0.005 17.07± 1.61 0.891± 0.041 30.00± 0.00
EPLEXRegressor (*) 0.591± 0.076 45.09± 3.69 0.886± 0.021 51.96± 1.45 0.869± 0.026 47.40± 3.53
EHCRegressor 0.644± 0.042 19.13± 1.57 0.862± 0.006 21.31± 1.14 0.818± 0.033 25.53± 1.75
OperonRegressor 0.849± 0.053 60.46± 2.25 0.882± 0.013 77.19± 1.12 0.806± 0.082 80.98± 1.36
ITEARegressor 0.736± 0.052 12.83± 0.27 0.918± 0.002 16.08± 0.56 0.777± 0.017 11.67± 0.40

Table 2. Comparison of symbolic regression algorithms across three datasets: Strogatz, CP3-Bench, and Physics Informed. Best performers
are bolded. Algorithms marked with an asterisk (*) did not complete within the 30-second time budget (see Appendix B.4.2).

the best.

We indicate Pareto frontiers in different colors. Points within
the same frontier are non-dominated with respect to each
other, meaning no method in the frontier outperforms an-
other on both accuracy and parsimony. A higher Pareto
frontier contains at least one model that Pareto-dominates a
model on a lower frontier.

As shown in Figure 5, README and ITEA are consistently
in the top Pareto frontier. However, ITEA is in the top fron-
tier because it has a strong bias for small expression size –
its accuracy values tend to be among the lowest compared to
the rest of the methods, especially for the Physics Informed
dataset. In contrast, README identifies parsimonious and
accurate equations rapidly (within 30 seconds) and consis-
tently lies on the first Pareto frontier. It achieves the highest
mean R2

Test among all algorithms, demonstrating strong
overall accuracy.

Table 2 shows the detailed results on accuracy and parsi-
mony for all methods across the three datasets. Among
the methods, GPGOMEA, DSR, and EPLEX Regressor ex-
ceeded the 30-second limit — GPGOMEA for the Strogatz
dataset, and DSR and EPLEX across all three, sometimes
taking up to 4 times the time budget to produce a result.
However, despite taking longer time, these method still
underperform README that is run within the 30-second
time budget. Running configurations and detailed results
for all algorithms are provided in Appendix B.3.1 and Ap-
pendix B.4.2, respectively.

4.3.2. EVALUATION RESULTS FOR ULTRA RAPID
SETTING

Next, we analyze the ultra-rapid setting that requires meth-
ods to complete inference within 10 seconds. This setting is
motivated by applications requiring low-latency predictions
of physical movement, such as physics checking in synthetic
video generation or real-time decision support, where infer-
ence must be done within a matter of seconds. We evaluate
methods on the Physics Informed dataset, which is from

real-world experiments and hence serves as a test of method
robustness in practical, noisy environment.

To achieve ultra-rapid inference, we use our GWOBO op-
timization process when running README as described
in Section 3.3, which speeds up the inference process while
still achieving good results. Among the baselines, only
README with GWOBO and FFXRegressor are able to
consistently return symbolic expressions under the ultra-
rapid setting time limit of 10 seconds. In this setting,
README continues to outperform FFXRegressor in both
parsimony and accuracy. README achieved an R2

Test of
0.958 with average equation length of approximately 18
terms, while FFXRegressor only achieved R2

Test of 0.930
with significantly higher (i.e., worse) average Equation
Length of approximately 219 terms.

In addition, we tested the methods’ sensitivity to noise by
introducing additional Gaussian noise to data observations ỹ
and evaluating its performance. Figure 6 shows how the ac-
curacy performance (R2

Test) of both methods changes over
increasing noise level (i.e., the Gaussian noise standard devi-
ation is varied from 0.1 to 0.5 times the root mean square of
the observation values). Note that README demonstrates
greater robustness to noise with less performance degrada-
tion as noise is increased, e.g., README ’s accuracy only
decreased from 0.958 to 0.857 when noise of 0.1 noise level
is added, but FFXRegressor’s accuracy had a much larger
drop from 0.930 to 0.350.

4.4. Demonstration of Equation Prediction for Noisy
Real Experimental Data

To demonstrate the practicality of our framework for an
ultra-rapid setting, we analyze two real-world videos where
object motion must obey physical laws. We adopt a 10-
second runtime constraint to reflect real-time applications
such as physics validation in synthetic video generation
and decision-making systems that require relatively low
latency and physically accurate predictions. In these scenar-
ios, fast feedback is essential, and we benchmark symbolic

7

Parsimony (Mean Equation Length, is better)

A
cc

u
ra

cy
 (

M
ea

n
 R

2
 T

es
t,

is

 b
et

te
r)

(a) CP3 dataset.

Parsimony (Mean Equation Length, is better)

A
cc

u
ra

cy
 (

M
ea

n
 R

2
 T

es
t,

is

 b
et

te
r)

(b) Strogatz dataset.

Parsimony (Mean Equation Length, is better)

A
cc

u
ra

cy
 (

M
ea

n
 R

2
 T

es
t,

is

 b
et

te
r)

(c) PIED dataset.

Figure 5. Pareto plots for all algorithms.

Figure 6. Mean R2
Test vs. target noise for FFXRegressor (orange)

and README (blue) in the ultra-rapid setting (<10 seconds).

regression (SR) algorithms based on their ability to generate
interpretable equations within this strict time limit.

We developed two pipelines to extract object coordinates
over time and apply symbolic regression to model their
trajectories. For the pendulum video, we used Tracker soft-
ware with basic computer vision techniques such as template
matching to estimate and track the pendulum bob across
311 frames. For the ping pong video, we used a YOLOv8n
model to detect the ball in each frame, extracted the center
of its bounding box, and obtained 85 position points.

Table 3 summarizes the performance of each symbolic
regression algorithm under the 10-second constraint on
the Pendulum Swinging and Ping Pong Ball Bouncing
datasets. Among all evaluated methods, README con-
sistently achieves the best R2 scores while maintaining
compact Equation Lengths, making it the most effective
approach under strict time constraints.

To assess performance beyond the 10-second limit, we con-
ducted an additional evaluation with a 5-minute time budget
using Grey Wolf Optimization across five random seeds.
README achieved average R2 scores above 0.99 on the
pendulum dataset and above 0.96 on the ping pong dataset.
The slightly lower score for the ping pong video is due to

Algorithm Pendulum Swinging Ping Pong Bouncing
R2 Equation Length R2 Equation Length

README 0.686± 0.263 15.80± 1.79 0.862± 0.204 24.90± 6.92
GPGOMEARegressor 0.018± 0.018 31.00± 0.00 — —
FFXRegressor 0.012± 0.016 81.10± 59.31 0.000± 0.000 103.00± 0.00
ITEARegressor 0.000± 0.000 9.75± 1.77 0.235± 0.000 10.00± 0.87
OperonRegressor — — 0.004± 0.008 79.60± 5.13

Table 3. Performance of symbolic regression algorithms on two
real-world videos under a 10-second time constraint. A dash (—)
indicates no result was returned within the limit.

missing frames around the bounce point, resulting in an
incomplete trajectory. For both experiments, we trained on
the first 75% of the time-sequenced data and tested on the
final 25%, demonstrating README’s strong extrapolation
capability on real-world data and showcasing its potential
for applications in motion prediction.

5. Conclusion
We introduced README, a framework for rapid equation
discovery that uses (1) an informative, compressed image
representation of numerical data; (2) an efficiently-trained
transformer-based model built on top of pre-trained image
and text encoders (∼ 60× less training data compared to
past works); and (3) a novel combination of BO and GWO
for a rapid, effective optimization process to achieve state-
of-the-art and robust SR results for challenging settings
with realistic, noisy settings and tight time constraints (<10
seconds).

This work represents a first step toward quick and reliable
symbolic regression that can be used as a module within
real-world tasks. Potential applications include computer
vision and robotics, where real-time, interpretable physics
validation and decision-making are essential. This approach
also holds promise for domains such as video analytics and
synthetic video generation, where low-latency fast symbolic
regression is crucial. Potential future work can expand on
the type of equations that can be extracted from datasets,
such as differential equations.

8

Acknowledgments
This research/project is supported by the National Research
Foundation, Singapore under its AI Singapore Programme
(AISG Award No: AISG2-PhD/2023-01-039J) and is part
of the programme DesCartes which is supported by the
National Research Foundation, Prime Minister’s Office, Sin-
gapore under its Campus for Research Excellence and Tech-
nological Enterprise (CREATE) programme.

References
Learning symbolic forward models for robotic motion plan-

ning and control (full article), volume ECAL 2011: The
11th European Conference on Artificial Life of Artifi-
cial Life Conference Proceedings, 08 2011. doi: 10.
7551/978-0-262-29714-1-ch086. URL https://doi.
org/10.7551/978-0-262-29714-1-ch086.

Abnar, S. and Zuidema, W. Quantifying attention flow in
transformers. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics, pp.
4190–4197, 2020.

AL NAJAR, M., ALMAR, R., BERGSMA, E., DELVIT,
J.-M., and Wilson, D. Improving a shoreline forecasting
model with symbolic regression. In ICLR 2023 Work-
shop on Tackling Climate Change with Machine Learn-
ing, 2023. URL https://www.climatechange.
ai/papers/iclr2023/21.

Aldeia, G. S. I. and de França, F. O. Interaction-
transformation evolutionary algorithm with coefficients
optimization. In Proceedings of the Genetic and Evolu-
tionary Computation Conference Companion, GECCO
’22, pp. 2274–2281, New York, NY, USA, 2022. Associa-
tion for Computing Machinery. ISBN 9781450392686.
doi: 10.1145/3520304.3533987. URL https://doi.
org/10.1145/3520304.3533987.

And̄elić, N., Lorencin, I., Mrzljak, V., and Car, Z. On
the application of symbolic regression in the energy
sector: Estimation of combined cycle power plant
electrical power output using genetic programming
algorithm. Engineering Applications of Artificial
Intelligence, 133:108213, 2024. ISSN 0952-1976.
doi: https://doi.org/10.1016/j.engappai.2024.108213.
URL https://www.sciencedirect.com/
science/article/pii/S0952197624003713.

Biggio, L., Bendinelli, T., Neitz, A., Lucchi, A., and
Parascandolo, G. Neural symbolic regression that
scales. In Meila, M. and Zhang, T. (eds.), Pro-
ceedings of the 38th International Conference on Ma-
chine Learning, volume 139 of Proceedings of Machine
Learning Research, pp. 936–945. PMLR, 18–24 Jul
2021. URL https://proceedings.mlr.press/
v139/biggio21a.html.

Brown, D. Tracker video analysis and modeling
tool. https://opensourcephysics.github.
io/tracker-website/, 2024. Accessed: 2025-05-
23.

Brunton, S. L., Proctor, J. L., and Kutz, J. N. Dis-
covering governing equations from data by sparse

9

https://doi.org/10.7551/978-0-262-29714-1-ch086
https://doi.org/10.7551/978-0-262-29714-1-ch086
https://www.climatechange.ai/papers/iclr2023/21
https://www.climatechange.ai/papers/iclr2023/21
https://doi.org/10.1145/3520304.3533987
https://doi.org/10.1145/3520304.3533987
https://www.sciencedirect.com/science/article/pii/S0952197624003713
https://www.sciencedirect.com/science/article/pii/S0952197624003713
https://proceedings.mlr.press/v139/biggio21a.html
https://proceedings.mlr.press/v139/biggio21a.html
https://opensourcephysics.github.io/tracker-website/
https://opensourcephysics.github.io/tracker-website/

identification of nonlinear dynamical systems. Pro-
ceedings of the National Academy of Sciences,
113(15):3932–3937, 2016. doi: 10.1073/pnas.
1517384113. URL https://www.pnas.org/doi/
abs/10.1073/pnas.1517384113.

Brunton, S. L., Nathan Kutz, J., Manohar, K., Aravkin,
A. Y., Morgansen, K., Klemisch, J., Goebel, N., But-
trick, J., Poskin, J., Blom-Schieber, A. W., Hogan, T., and
McDonald, D. Data-driven aerospace engineering: Re-
framing the industry with machine learning. AIAA Jour-
nal, pp. 1–26, July 2021. doi: 10.2514/1.j060131. URL
http://dx.doi.org/10.2514/1.J060131.

Burlacu, B., Kronberger, G., and Kommenda, M. Operon
c++: An efficient genetic programming framework
for symbolic regression. In Proceedings of the 2020
Genetic and Evolutionary Computation Conference
Companion, GECCO ’20, pp. 1562–1570, New York,
NY, USA, 2020. Association for Computing Machin-
ery. ISBN 9781450371278. doi: 10.1145/3377929.
3398099. URL https://doi.org/10.1145/
3377929.3398099.

Champion, K., Lusch, B., Kutz, J. N., and Brunton, S. L.
Data-driven discovery of coordinates and governing equa-
tions. Proceedings of the National Academy of Sci-
ences, 116(45):22445–22451, 2019. doi: 10.1073/pnas.
1906995116. URL https://www.pnas.org/doi/
abs/10.1073/pnas.1906995116.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby,
N. An image is worth 16x16 words: Transformers for
image recognition at scale. In International Conference
on Learning Representations, 2021. URL https://
openreview.net/forum?id=YicbFdNTTy.

Fitzsimmons, J. and Moscato, P. Symbolic regression mod-
eling of drug responses. In 2018 First International Con-
ference on Artificial Intelligence for Industries (AI4I), pp.
52–59, 2018. doi: 10.1109/AI4I.2018.8665684.

Fletcher, R. Practical methods of optimization; (2nd ed.).
Wiley-Interscience, USA, 1987. ISBN 0471915475.

Garnett, R. Bayesian Optimization. Cambridge Univ. Press,
2022.

Goldberg, D. E. Genetic Algorithms in Search, Optimiza-
tion and Machine Learning. Addison-Wesley Longman
Publishing Co., Inc., USA, 1st edition, 1989. ISBN
0201157675.

Grundner, A., Beucler, T., Gentine, P., and Eyring, V. Data-
driven equation discovery of a cloud cover parameteri-
zation, February 2024. URL http://dx.doi.org/
10.1029/2023MS003763.

Guimerà, R., Reichardt, I., Aguilar-Mogas, A., Mas-
succi, F. A., Miranda, M., Pallarès, J., and Sales-
Pardo, M. A bayesian machine scientist to aid in
the solution of challenging scientific problems. Sci-
ence Advances, 6(5):eaav6971, 2020. doi: 10.1126/
sciadv.aav6971. URL https://www.science.
org/doi/abs/10.1126/sciadv.aav6971.

Hemachandra, A., Lau, G. K. R., Ng, S.-K., and Low, B.
K. H. PIED: Physics-informed experimental design for
inverse problems. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https:
//openreview.net/forum?id=w7P92BEsb2.

Johnson, W. B. and Lindenstrauss, J. Extensions of lipschitz
mappings into a hilbert space. Contemporary Mathemat-
ics, 26:189–206, 1984.

Kamienny, P.-A., d’Ascoli, S., Lample, G., and Charton, F.
End-to-end symbolic regression with transformers, April
2022.

Koza, J. Genetically breeding populations of computer
programs to solve problems in artificial intelligence. In
[1990] Proceedings of the 2nd International IEEE Con-
ference on Tools for Artificial Intelligence, pp. 819–827,
1990. doi: 10.1109/TAI.1990.130444.

Koza, J. R. Hierarchical genetic algorithms operat-
ing on populations of computer programs. In In-
ternational Joint Conference on Artificial Intelligence,
1989. URL https://api.semanticscholar.
org/CorpusID:17882725.

Koza, J. R. Genetic programming as a means for program-
ming computers by natural selection. Statistics and Com-
puting, 4(2):87–112, Jun 1994. ISSN 1573-1375. doi:
10.1007/BF00175355. URL https://doi.org/10.
1007/BF00175355.

La Cava, W., Spector, L., Danai, K., and Lackner, M.
Evolving differential equations with developmental lin-
ear genetic programming and epigenetic hill climbing.
In Proceedings of the Companion Publication of the
2014 Annual Conference on Genetic and Evolution-
ary Computation, GECCO Comp ’14, pp. 141–142,
New York, NY, USA, 2014. Association for Comput-
ing Machinery. ISBN 9781450328814. doi: 10.1145/
2598394.2598491. URL https://doi.org/10.
1145/2598394.2598491.

10

https://www.pnas.org/doi/abs/10.1073/pnas.1517384113
https://www.pnas.org/doi/abs/10.1073/pnas.1517384113
http://dx.doi.org/10.2514/1.J060131
https://doi.org/10.1145/3377929.3398099
https://doi.org/10.1145/3377929.3398099
https://www.pnas.org/doi/abs/10.1073/pnas.1906995116
https://www.pnas.org/doi/abs/10.1073/pnas.1906995116
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
http://dx.doi.org/10.1029/2023MS003763
http://dx.doi.org/10.1029/2023MS003763
https://www.science.org/doi/abs/10.1126/sciadv.aav6971
https://www.science.org/doi/abs/10.1126/sciadv.aav6971
https://openreview.net/forum?id=w7P92BEsb2
https://openreview.net/forum?id=w7P92BEsb2
https://api.semanticscholar.org/CorpusID:17882725
https://api.semanticscholar.org/CorpusID:17882725
https://doi.org/10.1007/BF00175355
https://doi.org/10.1007/BF00175355
https://doi.org/10.1145/2598394.2598491
https://doi.org/10.1145/2598394.2598491

La Cava, W., Danai, K., and Spector, L. Infer-
ence of compact nonlinear dynamic models by epige-
netic local search. Engineering Applications of Ar-
tificial Intelligence, 55:292–306, 2016. ISSN 0952-
1976. doi: https://doi.org/10.1016/j.engappai.2016.07.
004. URL https://www.sciencedirect.com/
science/article/pii/S0952197616301294.

La Cava, W., Helmuth, T., Spector, L., and Moore, J. H.
A probabilistic and multi-objective analysis of lexicase
selection and ϵ-lexicase selection. Evol. Comput., 27(3):
377–402, September 2019. ISSN 1063-6560. doi: 10.
1162/evco_a_00224. URL https://doi.org/10.
1162/evco_a_00224.

Liu, Y., Zhang, Z., and Schaeffer, H. Prose: Predicting op-
erators and symbolic expressions using multimodal trans-
formers, 2023. URL https://arxiv.org/abs/
2309.16816.

Makke, N. and Chawla, S. Interpretable scientific dis-
covery with symbolic regression: a review. Artificial
Intelligence Review, 57(1):2, Jan 2024. ISSN 1573-
7462. doi: 10.1007/s10462-023-10622-0. URL https:
//doi.org/10.1007/s10462-023-10622-0.

McConaghy, T. FFX: Fast, Scalable, Deterministic Sym-
bolic Regression Technology, pp. 235–260. Springer New
York, New York, NY, 2011. ISBN 978-1-4614-1770-5.
doi: 10.1007/978-1-4614-1770-5_13. URL https://
doi.org/10.1007/978-1-4614-1770-5_13.

Meidani, K., Shojaee, P., Reddy, C. K., and Farimani, A. B.
SNIP: Bridging Mathematical Symbolic and Numeric
Realms with Unified Pre-training. In The Twelfth Interna-
tional Conference on Learning Representations, October
2023.

Mirjalili, S., Mirjalili, S. M., and Lewis, A. Grey wolf
optimizer. Advances in engineering software, 69:46–61,
2014.

Oord, A. v. d., Li, Y., and Vinyals, O. Representation
learning with contrastive predictive coding. In Advances
in Neural Information Processing Systems, pp. 10203–
10214, 2018.

Petersen, B. K., Larma, M. L., Mundhenk, T. N., Santi-
ago, C. P., Kim, S. K., and Kim, J. T. Deep symbolic
regression: Recovering mathematical expressions from
data via risk-seeking policy gradients. In International
Conference on Learning Representations, October 2020.

Petersen, B. K., Larma, M. L., Mundhenk, T. N., Santiago,
C. P., Kim, S. K., and Kim, J. T. Deep symbolic regres-
sion: Recovering mathematical expressions from data via

risk-seeking policy gradients. In International Confer-
ence on Learning Representations, 2021. URL https:
//openreview.net/forum?id=m5Qsh0kBQG.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark,
J., Krueger, G., and Sutskever, I. Learning transferable
visual models from natural language supervision. arXiv
preprint arXiv:2103.00020, 2021a.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark,
J., Krueger, G., and Sutskever, I. Learning Transferable
Visual Models From Natural Language Supervision. In
Proceedings of the 38th International Conference on Ma-
chine Learning, pp. 8748–8763. PMLR, July 2021b.

Rudin, C. Stop explaining black box machine learning
models for high stakes decisions and use interpretable
models instead. Nature Machine Intelligence, 1(5):206–
215, May 2019. ISSN 2522-5839. doi: 10.1038/
s42256-019-0048-x. URL https://doi.org/10.
1038/s42256-019-0048-x.

Schmidt, M. D. and Lipson, H. Age-fitness pareto opti-
mization. In Proceedings of the 12th Annual Confer-
ence on Genetic and Evolutionary Computation, GECCO
’10, pp. 543–544, New York, NY, USA, 2010. Associa-
tion for Computing Machinery. ISBN 9781450300728.
doi: 10.1145/1830483.1830584. URL https://doi.
org/10.1145/1830483.1830584.

Shen, J. T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X.,
Graff, B., and Lee, D. Mathbert: A pre-trained language
model for general nlp tasks in mathematics education.
arXiv preprint arXiv:2106.07340, 2021.

Shojaee, P., Meidani, K., Gupta, S., Farimani, A. B., and
Reddy, C. K. LLM-SR: Scientific Equation Discovery via
Programming with Large Language Models, June 2024.

Smits, G. F. and Kotanchek, M. Pareto-Front Exploitation in
Symbolic Regression, pp. 283–299. Springer US, Boston,
MA, 2005.

Strogatz, S. H. NONLINEAR DYNAMICS AND CHAOS,
THIRD EDITION: With applications to physics, biology,
chemistry,... And engineering, third edition, student’s so-
lution. 2024.

Thing, M. E. and Koksbang, S. M. cp3-bench: A tool for
benchmarking symbolic regression algorithms tested with
cosmology, 2024. URL https://arxiv.org/abs/
2406.15531.

Valipour, M., You, B., Panju, M., and Ghodsi, A. Symbol-
icGPT: A Generative Transformer Model for Symbolic
Regression. https://arxiv.org/abs/2106.14131v1, June
2021.

11

https://www.sciencedirect.com/science/article/pii/S0952197616301294
https://www.sciencedirect.com/science/article/pii/S0952197616301294
https://doi.org/10.1162/evco_a_00224
https://doi.org/10.1162/evco_a_00224
https://arxiv.org/abs/2309.16816
https://arxiv.org/abs/2309.16816
https://doi.org/10.1007/s10462-023-10622-0
https://doi.org/10.1007/s10462-023-10622-0
https://doi.org/10.1007/978-1-4614-1770-5_13
https://doi.org/10.1007/978-1-4614-1770-5_13
https://openreview.net/forum?id=m5Qsh0kBQG
https://openreview.net/forum?id=m5Qsh0kBQG
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1145/1830483.1830584
https://doi.org/10.1145/1830483.1830584
https://arxiv.org/abs/2406.15531
https://arxiv.org/abs/2406.15531

Virgolin, M. and Bosman, P. A. N. Coefficient mu-
tation in the gene-pool optimal mixing evolutionary
algorithm for symbolic regression. In Proceedings
of the Genetic and Evolutionary Computation Confer-
ence Companion, GECCO ’22, pp. 2289–2297, New
York, NY, USA, 2022. Association for Computing
Machinery. ISBN 9781450392686. doi: 10.1145/
3520304.3534036. URL https://doi.org/10.
1145/3520304.3534036.

Virgolin, M. and Pissis, S. P. Symbolic regression is NP-
hard. Transactions on Machine Learning Research, 2022.
ISSN 2835-8856. URL https://openreview.
net/forum?id=LTiaPxqe2e.

Wahlquist, Y., Sundell, J., and Soltesz, K. Learning pharma-
cometric covariate model structures with symbolic regres-
sion networks. Journal of Pharmacokinetics and Phar-
macodynamics, 51(2):155–167, Apr 2024. ISSN 1573-
8744. doi: 10.1007/s10928-023-09887-3. URL https:
//doi.org/10.1007/s10928-023-09887-3.

Wang, C., Zhang, Y., Wen, C., Yang, M., Lookman, T., Su,
Y., and Zhang, T.-Y. Symbolic regression in materials sci-
ence via dimension-synchronous-computation. Journal of
Materials Science & Technology, 122:77–83, 2022. ISSN
1005-0302. doi: https://doi.org/10.1016/j.jmst.2021.12.
052. URL https://www.sciencedirect.com/
science/article/pii/S1005030222002055.

Wang, Y., Wagner, N., and Rondinelli, J. M. Symbolic
regression in materials science. MRS Communications, 9
(3):793–805, Sep 2019. ISSN 2159-6867. doi: 10.1557/
mrc.2019.85. URL https://doi.org/10.1557/
mrc.2019.85.

Zhang, Z. and Chen, Z. Modeling and control of robotic
manipulators based on symbolic regression. IEEE Trans-
actions on Neural Networks and Learning Systems, 34(5):
2440–2450, 2023. doi: 10.1109/TNNLS.2021.3106648.

12

https://doi.org/10.1145/3520304.3534036
https://doi.org/10.1145/3520304.3534036
https://openreview.net/forum?id=LTiaPxqe2e
https://openreview.net/forum?id=LTiaPxqe2e
https://doi.org/10.1007/s10928-023-09887-3
https://doi.org/10.1007/s10928-023-09887-3
https://www.sciencedirect.com/science/article/pii/S1005030222002055
https://www.sciencedirect.com/science/article/pii/S1005030222002055
https://doi.org/10.1557/mrc.2019.85
https://doi.org/10.1557/mrc.2019.85

A. Additional training and architecture details
A.1. Model Training Details

A.1.1. TRAINING DATA

To train our model, we generated synthetic pairs of numeric and symbolic data using the publicly available codebase
in (Kamienny et al., 2022), following the data generation settings used by SNIP (Meidani et al., 2023). This includes
operator downsampling and restricting expressions to at most 10 input dimensions. The only difference is that we generated
a total of ~1 million (image, equation) pairs for training, whereas SNIP used ~60 million pairs to pretrain their numeric and
symbolic encoders.

Numeric Data Visualization For each equation, input data x with dimensionality n ≤ 10 was generated, comprising
200 data points represented as 200× n matrices. Each input dimension was paired with targets y, represented as a 200× 1
vector. Each input dimension was plotted individually against the target y using Matplotlib, assigning different colors for
clarity. Each graph includes the dimensionality information in its title. Figure 7 shows a sample graph from our dataset,
illustrating how patterns are captured across different dimensions.

Figure 7. Sample visualization of numeric data with multiple dimensions plotted against the target. Patterns across dimensions are
captured effectively.

Equation Representation Expression trees were converted into their equivalent infix notation, providing readable
symbolic equations. Each visual plot and corresponding symbolic equation formed a training pair.

13

A.1.2. IMAGE ENCODER

We employed a pre-trained Vision Transformer model google/vit-base-patch16-224-in21k (Dosovitskiy et al.,
2021). This model, trained extensively on diverse image data, excels in pattern recognition.

This approach offers two primary advantages:

1. Pattern Recognition: The model swiftly identifies patterns within numeric data visualizations, leveraging robust
feature extraction capabilities from its pre-training.

2. Regularization Effect: By plotting each input dimension against the target in the same visualization, the model
is naturally regularized, treating all dimensions uniformly. This method helps prevent overfitting to any specific
dimension.

We also experimented with the larger google/vit-huge-patch14-224-in21k model and observed improved re-
sults, as expected due to the increased model capacity. However, for the purpose of balancing performance and computational
efficiency in our experiments, we chose to use the smaller base Vision Transformer for performance evaluation.

A.1.3. TEXT ENCODER

The symbolic equations were encoded using tbs17/MathBERT (Shen et al., 2021), a model specifically pre-trained on
mathematical text, enabling effective interpretation and encoding of symbolic equations. Equations were provided directly
in infix notation, aligning well with MathBERT’s pre-training on mathematical textbooks and notations. Utilizing plain text
inputs avoids constraints typical of tree-based representations, offering greater flexibility and leveraging the inductive biases
inherent to MathBERT.

A.1.4. ALIGNED EMBEDDING SPACE

The README model aligns numeric and symbolic representations in a shared latent space. Inspired by the joint training
approach used in CLIP (Radford et al., 2021a), README optimizes a symmetric cross-entropy loss over similarity
scores. A contrastive loss based on the InfoNCE objective (Oord et al., 2018) effectively aligns embeddings of matching
numeric-symbolic pairs while pushing apart non-matching pairs.

The loss function is defined as:

L = −
∑

(v,s)∈B

[
logNCE(ZS , ZV) + logNCE(ZV , ZS)

]
(1)

where B represents a batch of (symbolic, numeric) data pairs, and NCE(ZS , ZV) and NCE(ZV , ZS) are the symbolic-to-
numeric and numeric-to-symbolic contrastive losses, respectively. The symbolic-to-numeric contrastive loss is computed
as:

NCE(ZS , ZV) =
exp

(
ZS · Z+

V /τ
)∑

Z∈{Z+
V ,Z−

V } exp (ZS · Z/τ)

where τ is a temperature parameter, Z+
V represents positive numeric embeddings that correspond to the symbolic embedding

ZS , and Z−
V are negative embeddings from other batch data. This symmetric contrastive loss encourages alignment of

numeric and symbolic pairs while separating unrelated pairs.

A.1.5. TEXT DECODER

For decoding symbolic equations, we also adopted the decoder architecture detailed in (Kamienny et al., 2022), consisting
of 16 transformer decoder layers. This architecture effectively leverages attention mechanisms to autoregressively generate
equations from the aligned embedding representations, benefiting from its deep, layered structure which facilitates complex
symbolic regression tasks.

Following prior work (Meidani et al., 2023), training is conducted in two stages. First, the decoder is trained with the image
and text encoders frozen, allowing it to learn how to decode from the latent space. Next, the encoders and decoder are

14

fine-tuned together, so the representations become better suited for decoding symbolic equations. The decoder is supervised
using cross-entropy loss over the target symbolic sequence, encouraging accurate reconstruction of symbolic expressions
from the shared representation.

A.2. Ablation Studies

For the ultra-rapid setting, where the models are expected output an expression within 10 seconds, we introduce a key
contribution: a novel hybrid algorithm that combines the Grey Wolf Optimizer with Bayesian Optimization (GWOBO) to
efficiently identify high-quality symbolic expressions under tight runtime constraints.

As shown in Section 4.3.2, our model is also more robust to noise compared to FFXRegressor across varying noise levels.
Note that in the section we showed GWOBO results with a candidate set size of 70.

We show that increasing the number of wolf candidates leads to substantial gains in performance while maintaining the same
setup described in Section 4.3.2. Specifically, we continue to select the top 3 candidates based on Upper Confidence Bound
(UCB) scores, computed using a Gaussian Process with an RBF kernel as detailed in D. Only these top 3 are decoded using
Algorithm 1, while the remaining candidates are evaluated using surrogate scores from the GP.

These combined real and surrogate scores are then used to update the population via GWO. As shown in Table 4, GWOBO
consistently outperforms pure GWO across all candidate configurations.

Candidates GWO GWOBO
R2 Equation Length R2 Equation Length

10 0.865 ± 0.058 18.34 ± 1.35 0.880 ± 0.037 16.54 ± 2.36
30 0.903 ± 0.046 19.27 ± 0.76 0.934 ± 0.044 17.05 ± 1.43
50 0.924 ± 0.037 18.24 ± 1.43 0.937 ± 0.026 17.26 ± 1.33
70 0.946 ± 0.029 17.29 ± 1.50 0.958 ± 0.027 16.67 ± 1.57

Table 4. Comparison of GWO and GWOBO at different candidate counts under ultra rapid setting (10 seconds). Each entry reports mean
± standard deviation. Best values are bolded.

We also conducted an ablation study to compare different encoder architectures, using encoders trained on a smaller set
of 512,000 pairs for quick evaluation. As shown in Table 5, ViT-base with MathBERT outperforms CLIP with T5. This
is likely due to MathBERT’s strong inductive bias for mathematical structure based on its pretraining (Shen et al., 2021).
While ViT is not specifically trained on math-related content (Dosovitskiy et al., 2021), it performed better than CLIP in this
setting. We also evaluated ViT-huge and observed marginal gains, but selected ViT-base to ensure efficiency during timed
experiments.

Algorithm Mean R2 Test Score Mean Equation Length

vit-huge-with-mathbert 0.767± 0.016 14.69± 1.60
vit-base-with-mathbert 0.765± 0.012 18.56± 0.82
clip-with-t5 0.738± 0.018 15.13± 0.75

Table 5. Comparison of ViT-based and multimodal models on symbolic regression. Best R2 and smallest Equation Length are bolded.
Higher is better for R2, lower is better for Equation Length.

B. Additional Experimental Details
B.1. Dataset Details

To comprehensively evaluate our symbolic regression framework, we curated a diverse set of 61 problems drawn from
publicly available data sources in multiple scientific domains. These datasets were selected to balance a range of characteris-
tics, including equation complexity, noise levels, and real-world relevance. They span both simulated and experimentally
grounded physical systems, allowing us to assess model performance in controlled and practical scenarios.

15

B.1.1. STROGATZ DATASET

This dataset comprises 14 canonical equations modeling nonlinear dynamical systems, originally drawn from the textbook
Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering by Steven H. Stro-
gatz (Strogatz, 2024; La Cava et al., 2016). These systems describe a range of physical and biological processes such as
population dynamics, chemical oscillators, and mechanical systems, and are commonly used in the literature to benchmark
symbolic regression algorithms due to their compact closed-form representations and interpretable dynamics.

B.1.2. CP3-BENCH

This dataset consists of 28 equations derived from a diverse collection of real-world and simulated problems across physics,
engineering, and environmental science. These problems were introduced as part of the CP3-Bench benchmark (Thing
& Koksbang, 2024), which was designed to evaluate the capability of scientific equation learning models in recovering
compact symbolic expressions from noisy data. The dataset includes systems such as gas solubility estimation, diffusion, and
biochemical rate equations, and reflects varying levels of complexity and noise, making it a rigorous testbed for symbolic
regression.

B.1.3. PHYSICS INFORMED DATASET

To evaluate the effectiveness of our model on physics-informed problems, we curated a dataset comprising 19 equations.
These equations span simulated, experimentally validated, and real-world scenarios, as detailed below:

• Groundwater Flow (11 equations):
These equations model steady-state unconfined groundwater flow and are sourced from the paper “Investigating Steady
Unconfined Groundwater Flow using Physics Informed Neural Networks” by Mohammad Afzal Shadab, Dingcheng
Luo, Yiran Shen, Eric Hiatt, and Marc Andre Hesse.
GitHub: https://github.com/dc-luo/seepagePINN/tree/main

• Chromatography (4 equations):
These equations originate from the experimental validation study “Can a Computer ‘Learn’ Nonlinear Chromatog-
raphy?: Experimental Validation of Physics-Based Deep Neural Networks for the Simulation of Chromatographic
Processes” by Sai Gokul Subraveti, Zukui Li, Vinay Prasad, and Arvind Rajendran. The equations simulate nonlinear
solute transport in chromatographic columns.

• Fluid Dynamics (2 equations):
We include the nikuradse_1 and nikuradse_2 equations, which describe the friction factor for turbulent flow in rough
pipes based on experimental studies by Johann Nikuradse. These expressions capture the nonlinear relationship between
the Darcy friction factor, Reynolds number, and relative roughness in turbulent pipe flow.

• Pendulum Motion (2 equations):
These equations are derived from video recordings of a swinging pendulum captured using the Tracker software. The
motion was tracked using a fixed camera setup, and position-time data was extracted to recover the underlying physical
relationship governing the pendulum’s oscillatory dynamics.

B.2. Experiment Settings

All experiments in section 4.3 were conducted on 2× AMD EPYC 7763 64-Core CPUs and 1× NVIDIA L40 GPUs (CUDA
12.1, Driver 545.23.06), and running Ubuntu 22.04.3 LTS. All software was implemented in Python 3.11.2 using PyTorch
2.0.0, Transformers 4.44.2, and BoTorch 0.11.3.

For each problem described in each dataset (see Appendix B.1.1), we applied a 75%–25% train-test split. To ensure
consistent computational constraints across problems, if a problem contained more than 200 training points, the training
set was randomly subsampled to retain only 200 points. In experiments involving noise, Gaussian noise with the specified
standard deviation was added to the target values of the training set. All experiments were repeated across five random seeds:
23654, 15795, 860, 5390, and 16850. These seeds controlled both the train-test split and the noise sampling, ensuring that
our model was evaluated on different subsets of the data in each problem and that its performance was robust to variation in
data sampling.

16

https://github.com/dc-luo/seepagePINN/tree/main

For our experiments under the rapid and ultra-rapid settings, we initialized both GWO and GWOBO with 71 wolf candidates:
70 perturbations around the base latent encoding plus the original encoding.

B.3. Evaluation Details

B.3.1. OTHER BASELINES CONFIGURATIONS

The baselines used were McConaghy’s FFX Regressor (McConaghy, 2011), de Franca and Aldeia’s ITEA (Aldeia &
de França, 2022), Virgolin et al.’s GP-GOMEA (Virgolin & Bosman, 2022), La Cava et al.’s EPLEX (La Cava et al., 2019),
Schmidt and Lipson’s AFP regressor (Schmidt & Lipson, 2010), La Cava et al.’s EHC regressor (La Cava et al., 2014),
Burlacu et al.’s Operon (Burlacu et al., 2020), and Meidani et al.’s SNIP (Meidani et al., 2023). The baselines were run
using their default settings in SRBench. Hyperparameter tuning was skipped. This section clarifies these configurations.

McConaghy’s FFX Regressor (McConaghy, 2011) has no tunable parameters. de Franca and Aldeia’s ITEA (Aldeia &
de França, 2022) has a default population size of 1000 and 5000 generations. The minimum and maximum exponents of the
interactions are −1 and +1. The minimum and maximum number of terms in an expression is 2. The number of non-zero
exponents in each term of the initial population is 1. The transformation functions supported are the identity function, the
hyperbolic tangent function, the sine function, the cosine function, the logarithmic function, the exponential function, and
the square root function. Virgolin et al.’s GP-GOMEA (Virgolin & Bosman, 2022) sets a budget of 500000 evaluations over a
single run (as opposed to interleaved multiple runs). It uses the default functions for addition, subtraction, multiplication and
division. The initialized maximum tree height is 4. La Cava et al.’s EPLEX (La Cava et al., 2019) uses a selection mechanism
called epsilon_lexicase. It uses 500 generations, with 500 individuals in the genetic programming population. The
genetic programming algorithm also forces survival of the best individual in the population. The maximum number of nodes
at the initialization of the genetic program is 20, and increases to 64 for the rest of the program. Schmidt and Lipson’s
AFP regressor (Schmidt & Lipson, 2010) uses the parametric hill climber algorithm. It uses 250 generations, with 1000
individuals in the genetic programming population. The genetic programming algorithm also forces survival of the best
individual in the population. The maximum number of nodes at the initialization of the genetic program is 20, and increases
to 64 for the rest of the program. La Cava et al.’s EHC regressor (La Cava et al., 2014) uses an epigenetic hill climbing
algorithm. It uses 100 generations, with 1000 individuals in the genetic programming population. The genetic programming
algorithm also forces the survival of the best individual in the population. The maximum number of nodes at the initialization
of the genetic program is 20, and increases to 64 for the rest of the program. Burlacu et al.’s Operon (Burlacu et al., 2020)
uses five local iterations with 10000 generations. It sets a maximum evaluation budget of 5× 105. The population size is
500. The default allowed symbols are addition, subtraction, multiplication, and division. These baselines were run from
the SRBench github, maintained by Cava Lab, at https://github.com/cavalab/srbench. The number of trials
and number of jobs are set to 1. The code is run locally as opposed to on LPC. The time limit is set depending on the time
budget of the experiment. The skip_tuning hyperparameter is used to skip tuning. Meidani et al.’s SNIP (Meidani et al.,
2023) uses the grey wolf optimizer with a population of 50. It uses a beam search size of 2 with a stopping criterion of
R2 = 0.9998. The maximum iteration budget is changed from 80 to a time budget depending on the experiment.

B.3.2. README CONFIGURATIONS

In the rapid setting, each algorithm was allocated a runtime of 30 seconds to improve the R2 training fit. For README, we
used the Grey Wolf Optimizer (GWO) to explore the neighborhood around a base latent encoding. A total of 70 additional
candidates were generated by adding scaled Gaussian noise to the base encoding, resulting in 71 latent vectors (1 original +
70 perturbed). In each iteration, all 71 candidates were decoded into symbolic expressions and evaluated on the test set (see
Algorithm 1). Their scores were then used to perform a population update using the GWO algorithm. This full decoding
strategy was feasible due to the relatively generous runtime budget.

In the ultra rapid setting, each algorithm was given a strict time limit of 10 seconds to maximize the R2 training fit. We
enabled README to operate effectively within this constraint by introducing a novel GWOBO algorithm, detailed in
Appendix D. GWOBO combines Grey Wolf Optimization with Bayesian optimization by scoring candidate embeddings
using a Gaussian Process with an Upper Confidence Bound (UCB) acquisition function. Only the top 3 candidates are
selected for decoding, significantly reducing computational cost compared to decoding all candidates with pure GWO. As
shown in Appendix A.2, GWOBO achieves higher accuracy than the standard GWO within the tight time budget.

17

B.4. Detailed Evaluation of Accuracy, Parsimony, and Runtime

B.4.1. EXTENDED RESULTS FOR TABLE 1

Table 1 compares README and SNIP on the Physics-Informed dataset. Here, we provide similar comparisons on the
Strogatz and CP3-Bench datasets. Despite using 60 times less pretraining data, README consistently outperforms SNIP
across all three datasets, highlighting the effectiveness of our README framework.

Model Pretraining Data Mean R2
Test

README ∼1 million pairs 0.880± 0.018
SNIP ∼60 million pairs 0.791± 0.069

Table 6. Comparison on the Strogatz dataset.

Model Pretraining Data Mean R2
Test

README ∼1 million pairs 0.933± 0.018
SNIP ∼60 million pairs 0.923± 0.017

Table 7. Comparison on the CP3-Bench dataset.

B.4.2. EXTENDED RESULTS FOR TABLE 2 AND FIGURE 5

We provide a detailed explanation of the evaluation metrics used—Mean R2
Test for accuracy, Mean Equation Length for

parsimony, and Mean Time for runtime—for all algorithms referenced in Table 2.

To compute the R2
Test score, we follow the standard SRBench setup: each dataset is first split into 75% training and 25%

testing. From the training split, we randomly subsample 200 points for training, and the fitted equation is evaluated on
the held-out 25% to compute R2

Test. The R2 score measures the proportion of variance in the dependent variable that is
predictable from the independent variables, with a score of 1.0 indicating perfect fit and lower values reflecting greater error.

Parsimony is measured by Equation Length, defined as the number of nodes in the expression tree. Each constant,
variable, and operator (e.g., "3.5", "x_2", and "mul") counts as a single node. Shorter equations are considered more
parsimonious and are generally easier to interpret and more robust to noise.

Time refers to the duration each algorithm takes to produce a final equation, excluding all data preprocessing and splitting
steps. It reflects the computational efficiency of the symbolic regression process itself.

The term "Mean" in all metrics indicates that values are averaged across all problems and five random seeds for each dataset.
The random seed affects both the subsampling of 200 training points and the train-test split. The error bars shown represent
the standard deviation across these five seeds.

As shown in Figure 5, README consistently lies on the first Pareto frontier across all three datasets, achieving the highest
accuracy while remaining reasonably parsimonious. ITEA is also Pareto-optimal as it achieves lower accuracy but with
smaller equation length, making it non-dominated in the accuracy-parsimony space. Tables 8, 9, and 10 report the detailed
results for these metrics.

18

Algorithm Mean R2 Test Score Mean Equation Length Mean Time (s)

README 0.880± 0.018 20.99± 1.19 24.95± 1.77
OperonRegressor 0.849± 0.053 60.46± 2.25 10.56± 0.11
GPGOMEARegressor 0.849± 0.054 29.27± 3.46 39.63± 2.66
FFXRegressor 0.822± 0.063 198.43± 37.82 6.65± 9.41
SNIP 0.791± 0.069 22.97± 1.08 26.42± 0.44
AFPRegressor 0.742± 0.043 38.00± 6.08 20.02± 0.77
ITEARegressor 0.736± 0.052 12.83± 0.27 15.67± 0.34
DSRRegressor 0.693± 0.067 19.16± 3.49 138.12± 3.58
EHCRegressor 0.644± 0.042 19.13± 1.57 12.44± 0.30
EPLEXRegressor 0.591± 0.076 45.09± 3.69 60.74± 1.18

Table 8. Performance comparison on the Strogatz Dataset. Bolded entries indicate the best R2 score and the most parsimonious model.

Algorithm Mean R2 Test Score Mean Equation Length Mean Time (s)

README 0.933± 0.018 23.34± 0.11 23.04± 1.07
FFXRegressor 0.930± 0.006 172.45± 15.37 2.78± 0.16
ITEARegressor 0.918± 0.002 16.08± 0.56 16.14± 0.29
GPGOMEARegressor 0.910± 0.004 29.51± 0.83 17.35± 5.20
AFPRegressor 0.887± 0.003 39.63± 3.76 25.13± 0.63
EPLEXRegressor 0.885± 0.021 51.96± 1.45 68.70± 3.07
SNIP 0.883± 0.091 27.25± 0.92 29.19± 0.26
OperonRegressor 0.882± 0.013 77.19± 1.12 11.15± 0.06
EHCRegressor 0.862± 0.006 21.31± 1.14 13.73± 0.30
DSRRegressor 0.803± 0.005 17.07± 1.61 136.84± 0.59

Table 9. Performance comparison on the CP3-Bench Dataset. Bolded entries indicate the best R2 score and the most parsimonious model.

Algorithm Mean R2 Test Score Mean Equation Length Mean Time (s)

README 0.984± 0.004 23.76± 2.35 28.91± 0.12
GPGOMEARegressor 0.930± 0.003 29.85± 0.38 21.26± 3.54
SNIP 0.923± 0.017 24.52± 0.45 28.08± 0.24
FFXRegressor 0.930± 0.007 198.41± 15.47 3.09± 0.07
AFPRegressor 0.912± 0.007 42.67± 2.84 26.06± 1.48
DSRRegressor 0.891± 0.041 30.00± 0.00 135.32± 1.61
EPLEXRegressor 0.869± 0.026 47.40± 3.53 74.29± 0.32
EHCRegressor 0.818± 0.033 25.53± 1.75 13.94± 0.23
OperonRegressor 0.806± 0.082 80.98± 1.36 14.47± 0.15
ITEARegressor 0.777± 0.017 11.67± 0.40 16.77± 0.46

Table 10. Performance comparison on the Physics Informed Dataset. Bolded entries indicate the best R2 score and the most parsimonious
model.

B.5. Latent Space Analysis

For Section 4.2, the equations are classified into the following family types.

• periodic: contains sin and/or cos, and is periodic. E.g. sin(x1) + cos(x2), cos(x1) cos(x2).

• exp: contains exp only. E.g. exp(x1) + exp(x2).

19

• polynomial: contains +,×, and/or the power function. E.g. x2
1 + x2.

• inv: contains the inverse function. E.g. x−1
1 .

• periodic_exp: contains sin, cos and/or exp. E.g. sin(x1) + exp(x2).

• periodic_polynomial: contains sin, cos,+,×, and/or power. E.g. sin(x2
1)× x2.

• exp_polynomial: contains exp,+,×, and/or power. E.g. exp(x1 + x2) + x2
2.

Examples provided are for a 2-dimensional input, where x = [x1, x2]
⊤.

In Figure 4, the t-SNE plots were generated with 512 equations and the t-SNE perplexity parameter was set as 30. We noted
that ‘periodic_polynomial’ embeddings seem to be interpolated between ‘periodic’ and ‘polynomial’ embeddings for trained
image embeddings, while this characteristic was not obvious for text embeddings from MathBERT. Thus, we hypothesize
that some relationships between equation families may be more learnable when visualized in plots, as they may appear
different symbolically but can be more easily captured by the image encoder through visual patterns.

B.6. Video Analytics Pipeline

We implemented two pipelines to extract the position of objects from video frames: one based on template matching and
the other using YOLOv8 for object detection. While these methods are applicable to any video source, we demonstrate
their effectiveness using two specific examples. Template matching using the Tracker Software is showcased on a video
of a pendulum swinging, and bounding box identification with YOLOv8 is demonstrated on a video of a ping pong ball
dropping. If the object of interest is not supported by YOLOv8’s predefined classes, template matching offers a flexible
alternative for tracking custom objects.

B.6.1. TRACKER SOFTWARE

To extract motion data from real-world footage, we utilized the Tracker software (Brown, 2024), which is based on template
matching. In our experiment, we used a publicly available video of a simple pendulum in motion to demonstrate the
effectiveness of this pipeline.2 Template matching works by selecting a region of interest and then scanning each subsequent
frame to find the region that most closely resembles the original template. By identifying the best match in each frame, the
software tracks the object’s position over time.

Using this method, we tracked the pendulum bob across frames and extracted a total of 311 data points representing its x
and y coordinates over time. The resulting (x, y, time) coordinates were exported to a CSV file and used as input to our
README model for symbolic regression.

B.6.2. YOLOV8

For automated tracking in a separate experiment, we used the pre-trained YOLOv8n model (?) to detect and track the
trajectory of a falling ping pong ball from a publicly available YouTube video.3 The video was trimmed to a 10-second
segment from 348 to 358 seconds (5 minutes and 48 seconds to 5 minutes and 58 seconds). YOLOv8 identified the object of
interest, classified as a sports ball, and recorded the center coordinates of its bounding box in each frame. In total, 85
data points were extracted.

We used the yolov8n.pt model with the detection class set to sports ball over the specified time window. The
resulting (x, y, time) coordinates were exported to a CSV file and used as input to our README model for symbolic
regression.

C. Related works
Regression-based models Regression-based approaches, as their name suggests, use regression on a fixed basis to find
an accurate representation of the input and output data of a system. Regression-based approaches tend to focus on using
regularization to find a parsimonious basis (Brunton et al., 2016; Champion et al., 2019). However, they predefine the

2Video source: https://www.youtube.com/watch?v=02w9lSii_Hs
3Video source: https://www.youtube.com/watch?v=pZlYl0l2lFs

20

https://www.youtube.com/watch?v=02w9lSii_Hs
https://www.youtube.com/watch?v=pZlYl0l2lFs

structure of the equation they aim to find, reducing the SR problem into one solving a system of linear equations (Makke
& Chawla, 2024). This makes regression-based approaches very fast, but limits the generalizability of regression-based
approaches. For example, McConaghy’s Fast Function Extraction (McConaghy, 2011) uses regularization to prune the
search space of functions, and is a fast and deterministic algorithm for solving symbolic regression algorithms.

Genetic programming-based models These include seminal works by Koza (Koza, 1989; 1990; 1994), which represent
each approximation of an unknown equation as a genetic program with a tree-like data structure, with traits (or nodes in the
tree) representing functions or operations and variables representing real numbers. The fitness of each genetic program is its
prediction error. Fitter genetic programs undergo a set of transition rules comprising selection, crossover, and mutation to
find the optimal equation form iteratively. Genetic programming algorithms perform well in SR tasks as the transition rules
allow for large variations in the population to adequately explore the search space.

Recent SR algorithms that use genetic programming to tackle common issues such as coefficient optimization include for
example, de Franca and Aldeia’s Interaction-Transformation Evolutionary Algorithm (ITEA) (Aldeia & de França, 2022)
which uses a search space which contains only mathematical expressions described as an affine combination of nonlinear
transformations of different interactions between the original variables. ITEA then uses a mutation-based evolutionary
algorithm to search for the optimal coefficients to express a linear relationship between the nonlinear transformations
and the target variable. Likewise, Virgolin et al.’s GP-GOMEA (Virgolin & Bosman, 2022) searches for optimal values
of coefficients by estimating interdependencies between model components and using this information to cross-over
interdependent components en block, to preserve their concerted action improving mutation in genetic programming, and La
Cava et al’s EPLEXRegressor (La Cava et al., 2019) uses lexicase selection as a parent selection method that considers
training cases individually, rather than in aggregate, to select elite parents for mutation.

Genetic programs may greedily mimic nuances of the unknown equation (Smits & Kotanchek, 2005), limiting generalisability.
David Goldberg (Goldberg, 1989) therefore proposed to use Pareto optimization to balance the objectives of fit and parsimony
in SR. At each iteration, the fittest genetic programmes lie on the non-dominated Pareto-frontier. Other works that use the
Pareto frontier to evolve a population include Schmidt and Lipson’s age-fitness Pareto (AFP) optimization regressor (Schmidt
& Lipson, 2010).

Lastly, some genetic algorithms explicitly minimize a target. For example, Burlacu et al.’s Operon (Burlacu et al., 2020), a
genetic programming symbolic regression algorithm written in C++, minimizes speed, while La Cava et al.’s epigenetic
hill climbing symbolic regression algorithm (EHC) (La Cava et al., 2014) minimize complexity of the equation and
computational cost.

However, the transition rules of genetic programming algorithms mean that they are by design highly sensitive to hyperpa-
rameters and do not scale well to high-dimensional data (Petersen et al., 2021). This motivates the study of other types of
symbolic regression algorithms.

Foundation model-based models. Deep learning algorithms are a recent advancement in the field of symbolic regression.
An early example of a deep learning approach to symbolic regression is Petersen’s Deep Symbolic Regression (Petersen
et al., 2021) which uses a recurrent neural network to emit a distribution over tractable mathematical expressions and employ
a novel risk-seeking policy gradient to train the network to generate better-fitting expressions. Deep learning approaches
have evolved following the progress in the field. Likewise, a few works (Guimerà et al., 2020) have also looked into adopting
a Bayesian approach to symbolic regression, where a prior can be established based on a pool of past expressions which
incorporates some domain knowledge, as well as naturally encode some balance between model complexity represented by
the prior and data fit. Radford et al. (Radford et al., 2021a), in 2021, proposed multimodal architectures trained on symbolic
expressions and numerical data to speed up genetic programming-based symbolic regression methods, while Kamienny et
al. (Kamienny et al., 2022) introduced the use of transformers for symbolic regression to directly predict symbolic equations
and Biggio et al. (Biggio et al., 2021) popularized the use of pre-trained transformers for symbolic regression. As the
proposed architectures have grown bigger, the amount of data required to train these models has also grown. Pre-trained
transformers start with a robust understanding of general symbolic patterns and syntax, and can be fine tuned to specific
tasks such as for SR with less task-specific data. Since the model has already learned generic features of mathematical
equations, the optimization process during fine-tuning focuses on symbolic regression-specific nuances. This significantly
reduces training time and computational costs, and the pre-trained transformers converge faster during evaluation as they
were trained on richer datasets. Meidani et al.’s SNIP (Meidani et al., 2023) proposed pre-training numeric and symbolic
encoders jointly to produce a structured latent space that could be used for cross-domain tasks such as symbolic regression.
In our work, we build on all these foundational works by (1) introducing an informative, compressed image representation

21

of numerical data that can be efficiently used in our framework for symbolic regression, (2) using pre-trained image and
text encoders along with customized components to significantly reduce the training data and resources needed, (3) a novel
method GWOBO that enables symbolic regression at the ultra-rapid setting (< 10s) that have not been explored before in
past works, and (4) achieving significantly performance improvements over past methods.

D. GWOBO: Grey Wolf Optimizer with Bayesian Optimization
For our novel GWOBO algorithm, we begin by generating an initial population of latent encodings by perturbing a base
encoding with scaled Gaussian noise, similar to the initialization used in the standard Grey Wolf Optimizer (GWO). Each
candidate in this set is decoded using Algorithm 1 to obtain its symbolic expression and corresponding score.

To select the next embeddings to perform decoding on, we attempt to construct a Gaussian process (GP) surrogate to
predict the score for an embedding. For each latent embedding in the original 512-dimensional space that we have already
decoded, we compute its difference from the base encoding, then perform some Johnson-Lindenstrauss transformation
(Johnson & Lindenstrauss, 1984) to project the difference down to a smaller 20-dimensional space. Given the transformed
lower-dimensional vectors and their corresponding actual scores, we fit a GP with radial basis function (RBF) kernel with
automatic relevance determination (ARD) and appropriate input and output normalization. The GP surrogate can then be
used to compute the upper confidence bound (UCB) score for each latent embedding, which can be seen as an optimistic
estimate of the actual score.

To reduce the high cost of decoding, in subsequent iterations only the top 3 candidates as ranked by UCB scores are
decoded using Algorithm 1. Their actual scores are then used to update the GP model, while the remaining candidates are
assigned surrogate scores predicted by the GP. These updated scores are then used by the GWO algorithm to perform a
population update, guiding the search toward more promising regions. This allows reduction in the running time since the
UCB scores can be computed much more rapidly compared to the true score while being reasonably accurate.

This loop continues until either the runtime exceeds the 10-second time budget or a sufficiently good score (R2 train
> 0.9998) is achieved. This hybrid approach, combining population-based candidate generation and optimization with
GP-based surrogate modeling, enables strong performance while ensuring the entire inference process completes within the
ultra-rapid 10-second runtime constraint.

We also conducted an ablation study on the number of initial candidates used to fit the GP, which is detailed in Appendix A.2.

E. Limitations and Broader Impacts
We introduced README, a framework for symbolic regression that leverages image representations of numerical and
pre-trained multimodel foundation models for efficient learning. Compared to other foundation-model-based approaches,
README requires significantly less training data and time, and can benefit from capability advancement of open-sourced
text and image encoders. While a foundation model approach may allow for faster inference time and better performance,
and is also capable of making full use of modern hardware such as GPUs, there are settings where this approach is less
suitable, e.g., in Internet of Things (IoT) deployment settings where the hardware is constrained to lightweight devices/CPUs.
As most works on symbolic regression do not consider very high-dimensional datasets, we have similarly only considered up
to 10-dimensional problems. We leave it to future works to examine the performance of README in higher-dimensional
problems.

As README allows users to rapidly identify equations to describe data, it has the potential to support applications such as
interactive/iterative scenarios such as adaptive scientific experimental and close to real-time decision making. README
might also be used as components in AI/machine learning systems where interpretability in terms of symbolic equations
would be useful. While we expect that the majority of such applications will lead to societal benefits, there may be malicious
actors who might come up with applications that are to the detriment of society – general regulations and efforts to prevent
such abuse of AI/machine learning tools are needed.

F. Directly using multi-modal large language models for symbolic regression
To demonstrate that our approach is effective and necessary for symbolic regression, we used GPT-4o out of the box for a
naive comparison. On the physics-informed dataset with real-world measurements, our README model achieved a Mean

22

R2 Test score of 0.958 under the ultra rapid 10 second setting with 71 candidates as detailed in A.2, while GPT-4o achieved
only 0.015. This highlights that GPT-4o, used out of the box, is unable to perform symbolic regression meaningfully.

For GPT-4o, we followed the same 5-seed train-test splits described in Appendix B.2. We provided 200 subsampled
data points and explicitly informed GPT-4o of the number of input dimensions, instructing it to return a valid NumPy
expression that fits the data. Notably, GPT-4o was given an advantage by being explicitly told to produce equations with
the correct number of input dimensions, a constraint that was not enforced for README. Table 12 shows the prompt and
example outputs from GPT-4o on the Physics Informed Dataset (seed 23654), illustrating that although the expressions are
syntactically valid, they fail to fit the data well.

Algorithm Mean R2 Test Score Mean Equation Length

README (71 initial candidates) 0.958± 0.027 16.67± 1.57
GPT-4o 0.015± 0.023 10.46± 0.67

Table 11. Comparison between README and GPT-4o on Physics Informed dataset for ultra-rapid setting (10 seconds). Bold indicates
the better score per metric.

Prompt GPT-4o Discovered Equations for seed 23654

You are given training data with
input dimension =
{num_dim}.
The X array contains input
points, and the Y array contains
the corresponding target values.
X = {X_to_fit}
Y = {Y_to_fit}
Provide a single NumPy
compatible expression f(x)
that takes an (n, {num_dim})
array x and returns an (n,) array
of predictions.
Reply with only the expression
itself (e.g.,
np.sin(x[:,0]) +
0.5*x[:,1]), without any
explanation or quotes.

0.05 * np.sin(2 * np.pi * x[:, 0]) + 0.1
0.5 * np.sin(x[:, 0]) + 0.1
0.5 * np.cos(x[:, 0]) + 0.5
0.5 * np.cos(x[:, 0]) + 0.5
0.5 * np.tanh(x[:, 0]) + 0.3 * np.tanh(x[:, 1]) + 0.5
0.5 * np.cos(x[:, 0]) + 0.1
0.05 + 0.03 * np.tanh(2 * x[:, 0])
np.where(x[:, 1] > 0, 0.001, np.exp(x[:, 0]) / (1 + np.exp(x[:,
0])))
1.75 - 0.1 * np.tanh(x[:, 0])
-0.1 * np.tanh(x[:, 0]) - 0.05
0.5 * np.sin(x[:, 0]) - 0.5 * x[:, 0] - 0.5
np.where(x[:, 1] > 0, 0.00005, np.exp(-x[:, 0]**2))
0.05 + 0.02 * np.sin(2 * np.pi * x[:, 0])
0.05 * np.sin(2 * np.pi * x[:, 0]) + 0.1 * np.cos(np.pi * x[:, 0])
+ 0.1
np.where(x[:, 1] > 0, 0.001, np.exp(-x[:, 0]**2))
np.where(x[:, 1] > 0, 0.5 * (x[:, 0] + 1.5)**2, np.exp(-x[:,
0]**2))
0.05 * np.sin(2 * np.pi * x[:, 0]) + 0.1 * np.cos(np.pi * x[:, 0])
+ 0.1
-100 * x[:, 0] + 700
0.5 * np.cos(x[:, 0]) + 0.5
np.exp(-x[:,0]**2)

Table 12. Prompt and discovered expressions for 19 symbolic regression problems in the Physics Informed dataset.

23

