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Abstract
The performance of a bandit algorithm is usually
measured by the cumulative rewards of the ac-
tions chosen by the algorithm. However, in many
real-world applications, the rewards in each round
should be good enough for reasons such as safety
and fairness. In this paper, we investigate the con-
textual conservative interleaving bandit problem,
which has a performance constraint that requires
the chosen actions to be not much worse than
given baseline actions in each round. This work
is the first to simultaneously consider the follow-
ing practical situations: (1) multiple actions are
chosen in a round, (2) the feature vectors asso-
ciated with given actions depend on the round,
and (3) the performance constraints in each round
that depend only on the actions chosen in that
round. We propose a meta-algorithm, Greedy on
Confidence Widths (GCW), that satisfies the per-
formance constraints with high probability. GCW
uses a standard bandit algorithm and achieves
minimax optimal regret up to logarithmic factors
if the algorithm used is also minimax optimal. We
improve the existing analyses for the C2UCB al-
gorithm and the Thompson sampling to combine
with GCW. We show that these algorithms achieve
near-optimal regret when the feasible sets of given
actions are the bases of a matroid. Our numerical
experiments on a real-world dataset demonstrate
that GCW with the standard bandit algorithms
efficiently improves performance while satisfying
the performance constraints.

1. Introduction
The stochastic multi-armed bandit (MAB) problem and its
extensions have been studied as sequential decision-making
problems under uncertainty. In the MAB problem, a learner
iterates the following process T times: The learner chooses
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an action from given actions and then obtains a reward
for the chosen action. The learner aims to maximize the
sum of rewards. The central challenge of this problem
is the exploration-exploitation trade-off due to the lack of
prior knowledge about the rewards. The MAB problem has
been generalized to many directions to model more realis-
tic situations of real-world applications. For example, the
combinatorial semi-bandit (CS) problem (Gai et al., 2012;
Kveton et al., 2014; 2015; Wang & Chen, 2018) enables
the learner to choose multiple actions at once and observe
corresponding rewards, the contextual linear bandit (CLB)
problem (Abe & Long, 1999; Auer, 2002; Abbasi-Yadkori
et al., 2011; Chu et al., 2011) introduces time-dependent
actions associated with feature vectors, and the contextual
combinatorial semi-bandit (CCS) problem (Qin et al., 2014;
Takemura & Ito, 2019; Takemura et al., 2021) generalizes
both the CS and the CLB problems.

In recent years, the conservative bandit problems (Wu et al.,
2016; Kazerouni et al., 2017; Garcelon et al., 2020; Khezeli
& Bitar, 2020; Moradipari et al., 2020; Katariya et al., 2019)
have been studied, where constraints on the learner’s perfor-
mance are introduced. Specifically, the learner additionally
observes baseline actions for given actions and has to sat-
isfy performance constraints that require that the learner’s
performance is not much worse than the performance by
the baseline actions. The performance constraints mitigate
a drawback that the standard bandit algorithms perform
poorly in early rounds.

Unfortunately, these studies are not yet suitable for many
real-world applications. In real-world applications such as
recommendations, the following properties summarized in
Table 1 should often be satisfied simultaneously: (1) the
learner chooses multiple actions at once, (2) the feasible
and the baseline actions depend on the round, and (3) the
performance constraints guarantee the performance of each
round. However, none of the existing studies addresses
all of these properties. In Section 2, we will compare this
work with the existing studies on the conservative bandit
problems in detail.

This paper investigates the contextual conservative inter-
leaving bandit (CCIB) problem, which satisfies the three
properties above. Specifically, the CCIB problem is the
CCS problem with stage-wise performance constraints. As
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Table 1. Conservative bandit problems.

Algorithm
Combinatorial

action set
Time-dependent

feasible and baseline actions
Stage-wise
constraints

Conservative UCB (Wu et al., 2016)
CLUCB (Kazerouni et al., 2017) ✓
CLUCB2 (Garcelon et al., 2020) ✓
SEGE (Khezeli & Bitar, 2020) ✓

SCLUCB & SCLTS (Moradipari et al., 2020) ✓
iUCB (Katariya et al., 2019) ✓ ✓
Algorithm 1 (This work) ✓ ✓ ✓

in previous studies on bandit algorithms, we measure the
performance of an algorithm by its regret, which is the differ-
ence between the sum of the rewards of the optimal actions
and that of the algorithm’s actions.

Our main contribution is to propose an algorithm that is
minimax optimal up to logarithmic factors. Specifically, the
proposed algorithm achieves, with probability at least 1− δ,
Õ(min(

√
dkT , d/∆)+dk+min(k

√
dT/n, dk/(n∆))) re-

gret while satisfying the constraints, where d is the dimen-
sion of the feature vectors, k is the number of actions to
be chosen in a round, T is the number of rounds, n is a
parameter that controls how conservative the algorithm is,
∆ is a sub-optimality gap, and Õ(·) ignores the logarithmic
factors in d, k, T , and 1/δ. To show the proposed algo-
rithm is almost optimal, we show matching lower bounds
by reducing the CCIB problem to the conservative MAB
problem.

The proposed algorithm is a meta-algorithm using an algo-
rithm for the CCS problem. Our algorithm interleaves the
baseline actions with the actions that the given algorithm
recommends to satisfy the performance constraints. The
regret by the proposed algorithm can be represented as the
sum of the regret due to choosing the baseline actions and
that due to choosing the given algorithm’s actions. In terms
of these high-level ideas, our algorithm and analysis are
similar to the iUCB algorithm (Katariya et al., 2019) and its
regret analysis for the conservative interleaving bandit (CIB)
problem, respectively.1 However, we cannot use the analysis
for the iUCB algorithm to bound the regret of choosing the
baseline actions due to the time-dependent actions.

The time-dependent actions make it difficult to bound the
regret suffered by the baseline actions. This regret can be
bounded by the widths of the confidence intervals of the
reward estimates for the baseline and the given algorithm’s
actions. Since the feasible sets of actions are fixed in the

1While the iUCB algorithm is not a meta-algorithm, we con-
sider the iUCB algorithm to be a combination of a meta-algorithm
and a UCB-type algorithm for ease of presentation.

CIB problem, the iUCB algorithm can choose all of the
baseline and the given algorithm’s actions over multiple
rounds. Thus, we can use a standard analysis for UCB-type
algorithms to bound the regret. However, we cannot take
this approach for the CCIB problem since a feature vector in
a round may never appear in future rounds. Therefore, it is
necessary to bound the confidence widths for the actions that
are not chosen by the proposed algorithm since the proposed
algorithm cannot choose all the actions of the baseline and
the given algorithm’s actions.

To overcome this difficulty, the proposed algorithm prefer-
entially chooses actions with large confidence widths from
the actions of the baseline and the given algorithm. This
technique allows us to bound the confidence widths for
the actions that are not chosen by the proposed algorithm
using those for the the proposed algorithm’s actions. Con-
sequently, we can use existing analyses to bound the regret
due to satisfying the performance constraints. Since the pro-
posed algorithm chooses the actions with large confidence
widths, a sophisticated analysis is needed to bound the sum
of these confidence widths. To the best of our knowledge,
our analysis is the first to bound the regret by the confidence
widths for the actions not chosen by the algorithm. We
believe that our technique is useful for sibling problems.

We consider the C2UCB algorithm (Qin et al., 2014) and the
(round-wise) Thompson sampling (Takemura & Ito, 2019)
as the algorithm that the proposed algorithm uses. We show
that these algorithms achieve near-optimal regret bounds for
the CCS problem with the feasible actions characterized by
any matroid. Moreover, we show the first gap-dependent
regret bound for the C2UCB algorithm. Specifically, the
C2UCB algorithm and the Thompson sampling achieve
Õ(min(

√
dkT , d/∆)+dk) and Õ(d3/2

√
kT +dk) regrets,

respectively. The first term of the regret bound of the Thomp-
son sampling has a gap from the optimal bound. However,
we can also see this gap in the regret bound of Thompson
sampling for the CLB problem (Agrawal & Goyal, 2013;
Abeille & Lazaric, 2017). Note that the proposed algorithm
is minimax optimal if it uses the C2UCB algorithm.
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We evaluate the proposed algorithm through numerical ex-
periments on a real-world dataset. We conduct our experi-
ments in two cases. One is the case where the feasible and
the baseline actions are fixed across the rounds. The other
is the case where the given actions depend on the round. In
the first case, we compare the proposed algorithm with the
iUCB algorithm and its variant that uses the feature vectors
to estimate the rewards and the confidence intervals. We
also compare our algorithm with the baseline actions of the
proposed algorithm and some standard bandit algorithms in
both cases. In the first case, the proposed algorithm outper-
forms other algorithms except for the variant of the iUCB
algorithm. The variant of the iUCB algorithm is compatible
with the proposed algorithm in terms of regret. However,
the variant of the iUCB algorithm is unstable in terms of
performance constraints. In the second case, the proposed
algorithm behaves similarly to the first. In other words, we
observe that our algorithm is robust to the changes in the
given actions.

2. Related Work
2.1. Conservative Bandits

The concept of the conservative bandit problems was pro-
posed by Wu et al. (2016). They studied the MAB problem
with constraints that in each round, the learner has to sat-
isfy that the cumulative reward until this round is not much
worse than the cumulative reward by the baseline. This
work was generalized to the CLB problem (Kazerouni et al.,
2017; Garcelon et al., 2020). While these studies consider
the constraints on cumulative rewards, the performance con-
straints should guarantee the performance of each round
in real-world applications. For instance, let us consider a
recommender system. If the system recommends items that
do not match the target user’s preferences at all due to ex-
ploration by the bandit algorithms, this user may never use
the system again. Furthermore, it is unfair to recommend
unfavorable items to one user due to the exploration but
favorable items to another.

Khezeli & Bitar (2020) and Moradipari et al. (2020) in-
troduced stage-wise constraints that consider the rewards
of each round to the linear bandit problem with a time-
independent convex action set. While the stage-wise con-
straints solve the performance issue in early rounds, these
studies strongly rely on the assumption that the action set
is time-independent and convex. In other words, we cannot
apply these studies to many real-world applications (e.g.,
the recommender system considered above).

Katariya et al. (2019) studied the CIB problem, which is
the CS problem with baseline actions and stage-wise per-
formance constraints. They simultaneously handled the
non-convex action set and the stage-wise constraints by in-

troducing the problem in which the learner chooses multiple
actions in a round. Moreover, the learner must often choose
multiple actions simultaneously in real-world applications.
Note that the CIB and CCIB problems denote the problems
of maximizing the sum of rewards, while the CS and CCS
problems cover some classes of non-linear functions of the
rewards.

While the CIB problem assumes that the feasible and the
baseline actions do not depend on the round, the feasible
and the baseline actions often depend on the round in real-
world applications. In a news article recommendation, for
example, news articles would change over the rounds as
old news articles are deleted or the latest news articles are
added (Li et al., 2010; Wang et al., 2017). The given actions
correspond to the news articles in this example. Note that
the feasible and the baseline actions could depend on the
round, even if the given actions are fixed over the rounds.

2.2. Contextual Combinatorial Semi-Bandits

Qin et al. (2014) proposed the CCS problem and the C2UCB
algorithm. Takemura & Ito (2019) and Takemura et al.
(2021) improved the regret bound by the C2UCB algo-
rithm. In particular, Takemura et al. (2021) showed that
the C2UCB algorithm is minimax optimal up to logarithmic
factors when the partition matroid characterizes the feasi-
ble actions. Our analysis of the C2UCB algorithm is an
extension of the analysis by Takemura et al. (2021).

Takemura & Ito (2019) proposed Thompson sampling al-
gorithms for the CCS problem was proposed and showed
that this algorithm achieves Õ(max(

√
d,
√
k)d
√
kT ) regret.

Unlike the C2UCB algorithm, the Thompson sampling al-
gorithms in the CCS problem with the feasible actions char-
acterized by matroids have not been studied. In addition, a
gap-dependent bound of the Thompson sampling algorithms
for the CCS problem is not known.

3. Problem Setting
3.1. Contextual Conservative Interleaving Bandits

We formally define the CCIB problem. This problem con-
sists of T rounds, and a learner chooses a set of k actions
from a given family of action sets in each round. Each ac-
tion, called arm, is associated with a d-dimensional feature
vector. Let N denote the number of given arms, and each
arm is indexed by an integer in [N ] := {1, 2, . . . , N}. Note
that the learner knows the above parameters in advance.

The learner progresses through each round as follows. At the
beginning of the t-th round, a learner observes the feature
vectors {xt(i)}i∈[N ] ⊆ Rd of the arms. In addition, the
learner observes a family St ⊆ 2[N ] of feasible sets of arms
and a feasible set Bt ∈ St called baseline arms. Then, the
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learner chooses a feasible set It ∈ St. We assume that each
feasible set of arms is of size k, i.e., ∀I ∈ St, |I| = k.
At the end of the round, the learner obtains the rewards
{rt(i)}i∈It , where for all i ∈ It, rt(i) = θ⊤xt(i) + ηt(i)
for some unknown parameter θ ∈ Rd and a random noise
ηt(i) ∈ R. We will introduce the assumption on ηt(i) in
Section 3.2.

We evaluate the performance of the learner by the regret
R(T ), which is defined as

R(T ) =
∑
t∈[T ]

∑
i∈I∗

t

µt(i)−
∑
i∈It

µt(i)

 ,

where µt(i) = θ⊤xt(i) for all i ∈ [N ] and t ∈ [T ], and
I∗t ∈ argmaxI∈St

∑
i∈I µt(i) for all t ∈ [T ]. The learner

aims to minimize the regret, which is equivalent to maxi-
mizing

∑
t∈[T ]

∑
i∈It

µt(i).

Compared to the standard bandit problems, the CCIB prob-
lem additionally introduces stage-wise performance con-
straints as in the CIB problem (Katariya et al., 2019). These
constraints require that chosen arms’ performance in each
round should not be much worse than the baseline arms’
performance of the round. More precisely, with high proba-
bility, there exists a bijection ρt: It → Bt such that∑

i∈It

1(µt(i) < µt(ρt(i))) ≤ m (1)

for all t ∈ [T ], where m is a non-negative parameter that
represents how It should be conservative.2 Our constraint
allows aggressive explorations when m is large. Note that
choosing Bt satisfies this constraint.

Several existing studies (Wu et al., 2016; Kazerouni et al.,
2017; Garcelon et al., 2020; Moradipari et al., 2020) define
a performance constraint using the sum of obtained rewards.
An adaptation of this constraint to our problem is that∑

i∈It

µt(i) ≥ (1− α)
∑
i∈Bt

µt(i) (2)

for a fixed α ∈ [0, 1] for all t ∈ [T ], with high probability.
In general, this constraint is not directly comparable to our
constraint. We show this fact in Appendix B.1. However, we
show that constraint (1) implies constraint (2) under a rea-
sonable assumption, which will be discussed in Section 3.2.

3.2. Assumptions

We introduce several assumptions on the CCIB problem and
define a few parameters of the problem.

2We assume that the parameters k and m are time-independent
for simplicity. However, our algorithm and analysis can be easily
extended to the time-dependent parameters.

First, we discuss the assumptions of the feature vectors,
the unknown parameter, the rewards, and their noises. Re-
call that µt(i) = θ⊤xt(i) and rt(i) = µt(i) + ηt(i). We
assume the following standard assumptions in the CCS prob-
lem (Qin et al., 2014; Takemura & Ito, 2019; Takemura et al.,
2021) and the conservative bandit problems (Wu et al., 2016;
Kazerouni et al., 2017; Garcelon et al., 2020):

Assumption 3.1. The feature vectors {xt(i)}i∈[N ] are de-
termined by oblivious adversary.

Assumption 3.2. The learner knows ∥θ∥2 ≤ M and
∥xt(i)∥2 ≤ L for all i ∈ [N ] and t ∈ [T ].

Assumption 3.3. The mean reward µt(i) satisfies µt(i) ∈
[0, 1] for all i ∈ [N ] and t ∈ [T ].

Assumption 3.4. The noise sequence {ηt(i)}i∈It,t∈[T ] is
conditionally R-sub-Gaussian, i.e,

E
[
exp(ληt(i)) | {xs(j)}j∈Is,s∈[t], {ηs(j)}j∈Is,s∈[t−1]

]
≤ exp(λ2R2/2)

for all λ ∈ R, i ∈ It and t ∈ [T ].

Note that Assumption 3.4 implies that the mean of ηt(i) is
zero for all i ∈ It and t ∈ [T ].

Next, we define the requirements for the algorithm used by
the proposed meta-algorithm.

Assumption 3.5. The algorithm used by the proposed meta-
algorithm works for the CCS problem (i.e., the CCIB prob-
lem without the performance constraints). The algorithm
has an internal model for the estimation of rewards. In a
round t, the algorithm runs as follows:

1. It estimates the rewards of given arms based on ob-
served feature vectors.

2. It chooses arms by solving argmaxI∈St
r′t(i), where

{r′t(i)}i∈[N ] is estimation of the rewards.

3. It plays the chosen arms and updates the internal model
using the feature vectors, the chosen arms, and the
observed rewards.

Furthermore, the algorithm can retry the second step with
another set S ′t of feasible actions as long as it is before
executing the third step.

Note that the standard bandit algorithms such as the UCB-
type algorithms, the Thompson sampling, and the (ε-)greedy
algorithm satisfy Assumption 3.5.

Next, we discuss the family of feasible sets of arms, i.e., St.
As in the CIB problem (Katariya et al., 2019), we focus on
exchangeable set:
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Definition 3.6 (Exchangeable set). Given a set E, a family
S ⊆ 2E is exchangeable if for any two sets I1, I2 ∈ S , there
exists a bijection ρ : I1 → I2 such that

∀J ⊆ I1, (I1 \ J) ∪ {ρ(i) | i ∈ J} ∈ S. (3)

Assumption 3.7. The family of feasible sets of arms, St, is
exchangeable for all t ∈ [T ].
Assumption 3.8. For any t ∈ [T ] and I1, I2 ∈ St, the
learner knows a bijiection ρ : I1 → I2 that satisfies (3).

The set E in Definition 3.6 corresponds to [N ] in our prob-
lem. Note that if St is the bases of a uniform matroid or a
partition matroid, it is known how to construct the bijection
that satisfies (3) (Katariya et al., 2019).

We discuss how large the class of exchangeable sets is.
Katariya et al. (2019) pointed out that the set of the bases
of a strongly base-orderable matroid is exchangeable, but
the converse remains an open question. This paper solves
this question in the affirmative, i.e., we show that every
exchangeable set is the set of the bases of some strongly
base-orderable matroid. We defer our proof to Appendix C.
It is known that the strongly base-orderable matroid includes
the uniform matroid, the partition matroid, and the transver-
sal matroid.

Next, we discuss the lower bound of the parameter m. In-
tuitively, small m makes the CCIB problem difficult. In
fact, when m = 0, no algorithm can achieve sub-linear re-
gret while satisfying our performance constraint. We defer
our proof to Appendix E.1. To obtain sub-linear regret, we
assume the following:
Assumption 3.9. The parameter m satisfies m ≥ 1.

Finally, we introduce a reasonable assumption for a reduc-
tion from the constraint (2) to constraint (1). We defer our
proof to Appendix B.2.
Assumption 3.10. Let rℓ = mint∈[T ] mini∈Bt

µt(i). Then,
the parameters k, m, α and rℓ satisfy αrℓ ≥ m/(k −m).

Note that we do not need Assumption 3.10 to satisfy con-
straint (1). Since we have a reduction, we will focus on
constraint (1) in the rest of this paper.

4. Proposed Algorithm
In this section, we propose an algorithm for the CCIB prob-
lem. Our algorithm, described in Algorithm 1, is the first to
deal with time-dependent feature vectors and stage-wise per-
formance constraints, as discussed in Section 1. Since our
algorithm is a meta-algorithm, it requires a base algorithm
A for the CCS problem as input.

At the beginning of the t-th round, our algorithm observes
the feature vectors {xt(i)}i∈[N ], feasible sets St, and base-
line arms Bt (line 3). Then, our algorithm receives the arms

Algorithm 1 Greedy on confidence widths
Input: λ > 0, δ ∈ (0, 1), n ∈ N, and an algorithm A.

1: V0 ← λI and b0 ← 0.
2: for t = 1, 2, . . . , T do
3: Observe {xt(i)}i∈[N ], St, and Bt.
4: Ît ∈ argmaxI∈St

∑
i∈I r

′
t(i), where {r′t(i)}i∈[N ] is

the estimation of rewards by A.
5: Define r̄t(i) for all i ∈ [N ] according to (4).
6: Īt ∈ argmaxI∈St

∑
i∈I r̄t(i).

7: Let ρ̄t : Īt → Ît be the bijection that satisfies (3).
8: Ī0t ← Īt and J0

t ← ∅.
9: for ℓ = 1, 2, . . . , n do

10: iℓt ∈ argmaxi∈Īℓ−1
t

max(ct(i), ct(ρ̄t(i))).

11: Īℓt ← Īℓ−1
t \ {iℓt}.

12: jℓt ← argmaxj∈{iℓt,ρ̄t(iℓt)} ct(j).
13: Jℓ

t ← Jℓ−1
t ∪ {jℓt}.

14: end for
15: Choose It ∈ St such that |It \ Īt| ≤ n, Jn

t ⊆ It ⊆
Ît ∪ Īt, and i ∈ It if and only if ρ̄t(i) /∈ It for all
i ∈ Īt \ Ît.

16: Play It ∈ St and observe the rewards {rt(i)}i∈It .
17: Feed Ît∩ It and the corresponding rewards toA, and

update A as if it has chosen Ît ∩ It.
18: Vt ← Vt−1 +

∑
i∈It

xt(i)xt(i)
⊤.

19: bt ← bt−1 +
∑

i∈It
rt(i)xt(i).

20: end for

Ît that the base algorithm A recommends (line 4). In the
following and our analysis, we call Ît recommended choice.

Then, the proposed algorithm starts to interleave the recom-
mended arms with the baseline arms. At the first step of our
interleaving, the proposed algorithm obtains safe arms Īt
such that there exists a bijection ρt : Īt → Bt that satisfies
µt(i) ≥ µt(ρt(i)) for all i ∈ Īt with high probability. To
obtain the safe arms, we define the following rewards and
solve the maximization problem (lines 5 and 6):

r̄t(i) =


r̂t(i) if i ∈ Bt

řt(i) if i ∈ Ît \Bt

−∞ otherwise
, (4)

where r̂t(i) = θ̂⊤t xt(i) + ct(i), řt(i) = θ̂⊤t xt(i) − ct(i),

θ̂t = V −1
t−1bt−1, ct(i) = βt(δ)

√
xt(i)⊤V

−1
t−1xt(i), and

βt(δ) = Õ(
√

min(log(N), d) + M
√
λ) for all i ∈ [N ].

The formal definition of βt(δ) is described in Appendix D.1.
Note that Īt ⊆ Ît ∪ Bt because Bt is a feasible solution
with a finite objective value. Note also that since St is the
bases of a matroid, this optimization problem can be solved
efficiently by the greedy algorithm (Korte & Vygen, 2018).

Then, the proposed algorithm chooses the arms from Ît ∪ Īt
for the exploration. Our algorithm needs a positive integer
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n, which controls the maximum number of arms for the
exploration. The algorithm preferentially chooses n arms
with large confidence widths as Jn

t (lines 8–14). Then, the
algorithm chooses the playing arms It that includes Jn

t (line
15). Note that one can choose any set of arms that satisfies
all conditions in line 17 of Algorithm 1. For example, the set
(Īt\{j ∈ Jn

t ∩(Ît\ Īt) | ρ̄−1
t (j)})∪(Jn

t ∩(Ît\ Īt)) satisfies
the conditions. If |Jn

t ∩(Ît \ Īt)| < n and Ît \(Jn
t ∪ Īt) ̸= ∅,

we can further exchange the arms in Ît \ (Jn
t ∪ Īt) for the

corresponding baseline arms.

At the end of the t-th round, the proposed algorithm and
the base algorithm A update their reward estimation by the
observed rewards (lines 17–19). This update of A can be
seen as a retry of choosing arms by A. In fact, it holds
that Ît ∩ It ∈ argmaxI∈S′

t

∑
i∈[N ] r

′
t(i) for some S ′t (see

our proof of Lemma 5.2 for details). Therefore, the base
algorithm A runs on an instance of the CCS problem. In
other words, we can use existing regret bounds of A to
bound the regret by Ît ∩ It.

To bound the regret by the proposed algorithm, the central
part of our analysis (and the analysis by Katariya et al.
(2019)) is to bound the regret by {It\Ît}t∈[T ], i.e., bounding
the penalty by satisfying our performance constraint. We
call the set It\Ît conservative choice. Note that It\Ît ⊆ Bt.
The regret by the conservative choices can be bounded by
the confidence widths for the conservative choices and those
for the recommended choices.

For the CIB problem (i.e., {xi(i)}i∈[N ], St, and Bt are fixed
over the round)3, Katariya et al. (2019) showed that the con-
fidence widths by the iUCB algorithm for the conservative
choices can be bounded by those for the recommended
choices. Since St fixed, the iUCB algorithm chooses the
conservative and the recommended arms using multiple
rounds and it is possible to use a standard analysis for UCB-
type algorithms to bound the regret. However, we cannot
use this approach for the CCIB problem because of the con-
textual setting. First, we cannot bound the confidence width
for the conservative choices by that for the recommended
choices since the baseline arms may change. Second, our
algorithm may not be able to choose the recommended
choices in other rounds because these feature vectors may
not appear in other rounds.

To solve these problems, our algorithm chooses Jn
t . As

discussed in Section 1, choosing Jn
t enables us to bound

the confidence widths for the arms that are not chosen by
our algorithm using those for the playing arms It. Then,
we can utilize the existing analyses for the standard bandit
algorithms. We formally show this fact in the next section.

3Though Katariya et al. (2019) dose not consider the case that
the feature vectors associated with the arms, the iUCB algorithm
can be applied to the problem with time-independent feature vec-
tors by ignoring the feature vectors.

5. Regret Analysis
In this section, we introduce and prove our regret bound of
the proposed algorithm. Let S∗t = argmaxI∈St

∑
i∈I µt(i).

Throughout our analysis, we fix I∗t ∈ S∗t arbitrarily
for all t ∈ [T ] and assume that ∀t ∈ [T ],St ̸= S∗t
for ease of presentation. Note that we have no regret
when St = S∗t . Then, we define the following sub-
optimality gaps:4 ∆t(i, j) = µt(j) − µt(i) and ∆ =
mint∈[T ],I∈St\S∗

t ,i∈I,i∗∈I∗
t :∆t(i,i∗)>0 ∆t(i, i

∗).

Using our gap ∆, we introduce our regret bound:

Theorem 5.1. Let κ = min(log(N), d), ν = log(kT ) and
ι = min(log(NkT/δ), d log(kT/δ)). If λ = (R/M)2κ
and n ≤ m, with probability at least 1 − δ, Algorithm 1
satisfies performance constraint (1) for all t ∈ [T ] and
achieves the following regret bound:

R(T ) = RA(T ) +O
(
min

(√
dkTνι, dνι/∆

)
+ dkν

+min
(
k
√
dTνι/n, dkνι/(n∆)

))
,

where RA(T ) is the regret bound of the base algorithm A
for the CCS problem.

Our regret bound consists of the regret bound of the base
algorithm A and the penalty for satisfying the performance
constraints. We will show in Section 6 that the penalty term
is minimax optimal up to logarithmic factors. Furthermore,
the penalty term matches the regret bound of the iUCB algo-
rithm by Katariya et al. (2019) when we apply the proposed
algorithm to the CIB problem.

In the remainder of this section, we prove Theorem 5.1
and the regret bounds for the two algorithms used as the
base algorithm A. We defer all missing proofs to Ap-
pendix D. Recall that Ît is the recommended choice (line
4 of Algorithm 1), and It \ Ît is the conservative choice.
Let ρ̂∗t : Ît → I∗t be the bijection satisfying (3). Let
ρ∗t : It → I∗t denote ρ∗t (i) = ρ̂∗t (i) if i ∈ Ît and
ρ∗t (i) = ρ̂∗t (ρ̄t(i)) otherwise. Let Rt(i) = µt(ρ

∗
t (i))−µt(i)

for i ∈ It \ Ît.

Our analysis decomposes the regret as follows and bounds
them separately:

R(T ) =
∑
t∈[T ]

 ∑
i∈It∩Ît

Rt(i) +
∑

i∈It\Ît

Rt(i)

 . (5)

The former is the regret of the recommended choices, and
the latter is the regret of the conservative choices. We have
the following lemma for the regret by the recommended
choices:

4If the feature vectors are fixed over the rounds, we can define
alternative sub-optimality gaps ∆e,min and ∆∗

e∗,min by Katariya
et al. (2019). In this case, we have ∆ = min(∆e,min,∆

∗
e∗,min).

6
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Lemma 5.2. We have
∑

t∈[T ]

∑
i∈It∩Ît

Rt(i) ≤ RA(T ).

As a common tool for our analysis, we bound the estimation
errors of the rewards as in previous work (Qin et al., 2014;
Takemura & Ito, 2019; Takemura et al., 2021). Let ∥x∥A
denote

√
x⊤Ax for all x ∈ Rd and A ∈ Rd×d such that A

is positive definite. Then, we have the following:

Lemma 5.3. Suppose that δ ∈ (0, 1). We have, with proba-
bility at least 1− δ, for all t ∈ [T ] and i ∈ [N ],

|µt(i)− θ̂⊤t xt(i)| ≤ βt(δ)∥xt(i)∥V −1
t−1

. (6)

In our proof of Theorem 5.1, we assume that (6) holds.

5.1. Regret by Conservative Choices

Similar to the analysis by Katariya et al. (2019), we can
bound the regret of an arm in the conservative choices by
the sum of the confidence widths for that arm and the corre-
sponding arm in the recommended choices:

Lemma 5.4. For any t ∈ [T ] and any i ∈ It \ Ît, we have
µt(ρ

∗
t (i))− µt(i) ≤ 2(ct(i) + ct(ρ̄t(i))).

Since the confidence widths of Jn
t is larger than those of

(Īt ∪ Ît) \ Jn
t , we can bound the regret by the sum of the

confidence widths of Jn
t . However, to bound such large

confidence widths, we need two additional theoretical tools.

First, we show that the number of times the confidence
widths for Jn

t are greater than the sub-optimality gap can be
bounded. Recall that jℓt is defined in line 15 of Algorithm 1
for all ℓ ∈ [n].

Lemma 5.5. Let γℓ =
√
ℓ∆/(4βT (δ)) for all ℓ ∈ [n].

Then, for any ℓ ∈ [n], we have
∑

t∈[T ] 1(ct(j
ℓ
t ) ≥ ∆/4) ≤

2d log(1 + L2kT/(dλ))/min(γ2
ℓ , 1).

Second, we show that the conservative choice suffers no
regret if their confidence widths are smaller than the sub-
optimality gap. Recall that ρ̂∗t : Ît → I∗t and ρ̄t(i) : Īt → Ît
are the bijections satisfying (3).

Lemma 5.6. For any i ∈ Īt, if ct(i)+ ct(ρ̄t(i)) < ∆/2, we
have µt(i) = µt(ρ̄t(i)) = µt(ρ̂

∗
t (ρ̄t(i))).

We are ready to bound the regret due to the conservative
choices. The regret can be rewritten as∑

t∈[T ]

∑
i∈It\Ît

Rt(i) =
∑
t∈[T ]

∑
i∈It\(Ît∪Jn

t )

Rt(i) (7)

+
∑
t∈[T ]

∑
i∈Jn

t \Ît

Rt(i). (8)

First, we bound the regret due to the right-hand side of (7).
Let Ī ′t = It \ (Ît∪Jn

t ). Since βT (δ) ≥ βt(δ) for all t ∈ [T ]

and ct(i) + ct(ρ̄t(i)) ≤ 2ct(j
n
t ) for all It \ Jn

t and t ∈ [T ],
by Lemma 5.4 and Lemma 5.6, we obtain∑

t∈[T ]

∑
i∈Ī′

t

Rt(i) ≤
∑
t∈Φ

∑
i∈Ī′

t

Rt(i) +
∑
t∈Ψ

∑
i∈Ī′

t

Rt(i)

≤ 2kβT (δ)
∑
t∈Φ

∥xt(j
n
t )∥V −1

t
+ k|Ψ|,

where Φ = {t ∈ [T ] | ct(jnt ) ≥ ∆
4 , ∥xt(j

n
t )∥2Ṽ −1

t−1,n

≤ 1
n},

Ψ = {t ∈ [T ] | ∥xt(j
n
t )∥2Ṽ −1

t−1,n

> 1
n}, and Ṽt,ℓ = λI +∑

s∈[t]

∑
j∈Jℓ

t
xs(j)xs(j)

⊤ for all ℓ ∈ [n] and t ∈ [T ]. We
consider the rounds in Φ. Let ξ = log(1 + L2kT/(dλ)).
Then, we have∑
t∈Φ

∥xt(j
n
t )∥V −1

t−1
≤ 1

n

∑
t∈Φ

∑
j∈Jn

t

min

(
1√
n
, ∥xt(j)∥Ṽ −1

t−1,n

)

≤ 1

n

√√√√n|Φ|
∑
t∈Φ

∑
j∈Jn

t

min

(
1

n
, ∥xt(j)∥2Ṽ −1

t−1,n

)

≤ min

(√
2dTξ

n
,

2d√
nmin(γn, 1)

ξ

)
,

where the first inequality is derived from the facts that Vt ⪰
Ṽt,n and ct(j

n
t ) ≤ ct(j

ℓ
t ) for all ℓ ∈ [n] and t ∈ [T ], the

second inequality holds by the Cauchy-Schwarz inequality,
and the last inequality is obtained by Lemma A.3 (Lemma
5 by Takemura et al. (2021)) and Lemma 5.5.

For the rounds in Ψ, by a similar discussion above, we have
k|Ψ| ≤ k

n

∑
t∈[T ]

∑
j∈Jn

t
1(∥xt(j)∥2Ṽ −1

t−1,n

> 1
n ) ≤ 2dkξ,

where the last inequality follows from Lemma A.3.

Next, we bound the regret due to (8). Using Lemma 5.4, we
have Rt(j) ≤ 2βt(δ)∥xt(j)∥V −1

t−1
for all j ∈ Jn

t and t ∈
[T ]. Thus, by a similar analysis for the C2UCB algorithm,
we have the following bound (see Appendix D.7 for details):∑

t∈[T ]

∑
i∈Jn

t \Ît Rt(i) = Õ(min(
√
dnTνι, dνι

∆ ) + dnν).

Finally, combining the above discussions, we obtain the
desired result.

5.2. Performance Guarantee

The rest of our proof of Theorem 5.1 is to show that the set
{It}t∈[T ] of the playing arms satisfies our performance con-
straint (1) with high probability. To show this performance
guarantee, we bound the number of arms to be chosen for
the exploration. To prove the desired result, we use the
following lemma:

Lemma 5.7. Let E be the ground set of a matroid, A be
the set of the bases of the matroid, and A ∈ A be a basis.
Let r : E → R be a reward function and A∗ be a basis
such that A∗ ∈ argmaxI∈A

∑
i∈I r(i). Then, there exists

7
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a bijection ρ : A∗ → A such that r(i) ≥ r(ρ(i)) for all
i ∈ A∗. In addition, we have ρ(i) = i for all i ∈ A∗ ∩A.

We fix t ∈ [T ] arbitrarily. Let ρ′t : Īt → Bt be a bijection
by Lemma 5.7 with {r̄t(i)}i∈[N ]. Then, since (6) holds,
for any i ∈ Īt, we have µt(i) ≥ r̄t(i) ≥ r̄t(ρ

′
t(i)) ≥

µt(ρ
′
t(i)). Hence, it is sufficient to compare It with Īt. By

the construction of It, we always have |It \ Īt| ≤ n. This
fact and n ≤ m imply that It satisfies the constraint.

5.3. Near-Optimal Regret Bounds for the CCS Problem

In this subsection, we briefly introduce our analysis for the
C2UCB algorithm and the Thompson sampling. A full proof
is provided in Appendix G and Appendix H. Note that we
consider the CCS problem and the definition of regret is the
same as the regret of the CCIB problem.

The key component of our proof is the bijection ρ∗t : It →
I∗t by Lemma 5.7 with the reward estimates. These es-
timates {r′t(i)}i∈[N ] correspond to the upper confidence
bounds and the rewards calculated by the sampled pa-
rameter in the C2UCB algorithm and the Thompson sam-
pling, respectively. Recall that Rt(i) = µt(ρ

∗(i)) −
µt(i). Then, we can decompose the regret as follows:
R(T ) =

∑
t∈[T ]

(∑
i∈It\Jt

Rt(i) +
∑

i∈Jt
Rt(i)

)
, where

Jt = {i ∈ It | ∥xt(i)∥V −1
t−1
≥ 1/

√
k}. The former term can

be bounded by a variant of the existing analyses because we
have r′t(i) ≥ r′t(ρ

∗
t (i)) for all i ∈ It. The latter term can be

bounded by the fact that
∑

t∈[T ] |Jt| = Õ(dk).

6. Lower Bounds
In this section, we show the following theorem:

Theorem 6.1. Suppose that there exist an algorithm and
some m ≤ k/(4e+ 2) such that the algorithm satisfies the
constraint (1) in expectation for any environment. Then,

for any sub-optimality gap ∆ ∈
[√

d−1
4mT ,

√
d−1
4m

]
, there is

some environment such that E [RT ] >
(d−1)k

(32e+16)m∆ .

We defer the omitted proofs in this section to Appendix E.2.
Since substituting ∆ = Θ(

√
d/(mT )) leads to a gap-

independent bound, we focus on the gap-dependent bound.

To prove Theorem 6.1, we consider instances of the CCIB
problem constructed by these of the conservative MAB
(CMAB) problem. More precisely, we consider k rounds
of the CMAB problem as a round of the CCIB problem.
Using the standard basis {ei}i∈[d] as the feature vectors
{xt(i)}i∈[d], the CCIB problem reduces to the d-armed
CMAB problem. To represent k rounds of the CMAB prob-
lem as a round of the CCIB problem, it is sufficient to
prepare dk arms as xt(i+ dj) = ei for i ∈ [d] and j ∈ [k].

We show that an algorithm for the CCIB problem can be
applied to the CMAB problem. The algorithm knows the
baseline arms of all rounds in advance because the baseline
arm of the CMAB problem is fixed over the rounds. The
algorithm can choose arbitrary k arms in a round. Then,
one can play the chosen arms in any order in the CMAB
problem. Finally, the algorithm observes k rewards and
proceeds to the next round.

The remainder of our proof of Theorem 6.1 is to obtain a
lower bound of the CMAB problem. Using a variant of
the technique by Wu et al. (2016) for the lower bound, we
obtain the following bound:

Theorem 6.2. Let RCMAB
T ′ denote the regret of the N -armed

CMAB problem with T ′ rounds. Let ibase be the baseline
arm and it be the arm chosen in round t by an algorithm. As-
sume that some algorithm and some positive integer k satisfy
that E

[∑
t′∈[kt] 1

(
r̄(ibase) > r̄(it′)

)]
≤ αkt for all posi-

tive integer t such that kt ≤ T ′ for any environment. Then,

for any sub-optimality gap ∆ ∈
[√

N−1
4αT ′ ,

√
N−1
4αk

]
, there is

some environment such that E
[
RCMAB

T ′

]
> N−1

(32e+16)α∆ .

Substituting T ′ = kT and α = m/k in Theorem 6.2, we
finish the proof of Theorem 6.1.

We discuss our lower bounds. In contrast to our high-
probability upper bound, our lower bounds assume that
the algorithm satisfies the performance constraints in expec-
tation. However, these lower bounds cover the proposed
algorithm. In fact, the proposed algorithm satisfies the
performance constraints in expectation if n = m/2 and
δ = min(n/k, 1/T ). Note that the expected regret, in this
case, has the same regret bound in Theorem 5.1 up to loga-
rithmic factors. Therefore, our lower bounds imply that the
proposed algorithm is almost optimal.

7. Numerical Experiments
In this section, we experimentally evaluate the performance
of the proposed algorithm compared to some existing al-
gorithms using the Book-Crossing dataset (Ziegler et al.,
2005). We describe the details of the experimental setup in
Appendix F. We conducted our experiments in two settings.
First, we considered the case where the feature vectors, the
feasible sets of given arms, and the baseline arms are fixed
over the rounds. Second, we considered the case where
these three components change two times.

Our experiments used the proposed algorithm combined
with the C2UCB algorithm (Qin et al., 2014) (GCW +
C2UCB) and that combined with the Thompson sam-
pling (Takemura & Ito, 2019) (GCW + TS). We compared
the proposed algorithm with the weighted regularized matrix
factorization (Hu et al., 2008) as the baseline, the ε-greedy

8



Contextual Conservative Interleaving Bandits

0 200 400 600 800 1000

Round

12

14

16

18

20

22

24

P
er

-s
te

p 
re

gr
et

Baseline
Epsilon-greedy
C2UCB
TS
iUCB
Lin-iUCB
GCW + C2UCB
GCW + TS

0 200 400 600 800 1000

Round

6

8

10

12

14

16

P
er

-s
te

p 
re

gr
et

Baseline
Epsilon-greedy
C2UCB
TS
GCW + C2UCB
GCW + TS

0 10 20 30 40 50

Round

0

2

4

6

8

10

S
m

al
le

st
 m

 in
 c

on
st

ra
in

t (
1) Epsilon-greedy

C2UCB
TS
iUCB
Lin-iUCB
GCW + C2UCB
GCW + TS

0 200 400 600 800 1000

Round

0

2

4

6

8

S
m

al
le

st
 m

 in
 c

on
st

ra
in

t (
1) Epsilon-greedy

C2UCB
TS
GCW + C2UCB
GCW + TS

Figure 1. Average of the per-step regret (i.e., R(t)/t) (top) and average of the smallest m satisfying our performance constraint (1)
(bottom). The error bar represents the standard error. Left: the case where {xt(i)}i∈[N ], St, and Bt are fixed. Right: the case where
{xt(i)}i∈[N ] and Bt change two times.

algorithm, the C2UCB algorithm, and the Thompson sam-
pling in both settings. We additionally compared the iUCB
algorithm (Katariya et al., 2019) and its variant (Lin-iUCB
algorithm) when they can be applied (i.e., in the first case).
The Lin-iUCB used the same reward estimates and confi-
dence widths as those by the proposed algorithm.

Figure 1(left) shows the experimental results in the first
case. The proposed algorithms outperformed the standard
bandit algorithms and the iUCB algorithm. Specifically, the
proposed algorithms suffered small regrets in early rounds
and outperformed the baseline because of our interleaving
technique. The standard bandit algorithms needed large
m to satisfy the constraints in early rounds, while these
algorithms improved faster than the conservative algorithms
by the exploration without the performance constraints. The
regret by the Lin-iUCB algorithm was smaller than that by
GCW + TS and is compatible with the regret by GCW +
C2UCB. However, the Lin-iUCB algorithm was unstable in
terms of performance constraints.

Figure 1 (right) shows that the proposed algorithms out-
performed the existing ones and the baseline in the second
case. In addition, GCW + C2UCB outperformed GCW +
TS as in the first case. Compared to the results of the first
case, all algorithms improved more slowly due to the chang-
ing environment. We can see from the numerical results
on performance constraints that the quality of recommen-
dations by the bandit algorithms deteriorates temporarily
when the environment changes. However, the degradation
of the proposed algorithms are smaller than that of other
algorithms. This fact suggests that our algorithms are robust
to the changes in the given actions.

8. Conclusion
We investigated the CCIB problem, which is the CCS prob-
lem with stage-wise performance constraints. We proposed
the first meta-algorithm for this problem, which preferen-
tially chooses arms with large confidence widths in the base-
line arms and those chosen by a given algorithm for the CCS
problem. We showed that the proposed algorithm achieves
Õ(min(

√
dkT , d/∆)+dk+min(k

√
dT/n, dk/(n∆))) re-

gret while satisfying the constraints. We also showed a gap-
dependent and a gap-independent lower bounds through a
reduction to the conservative MAB problem. These lower
bounds imply that the proposed algorithm achieves minimax
optimal up to logarithmic factors. Our numerical experi-
ments demonstrated that the proposed algorithm improves
more efficiently than the iUCB algorithm and outperforms
existing algorithms.

There are several open questions about the CCIB problem
and its extensions. First, an efficient algorithm for the
learner to obtain a bijection that satisfies (3) has not been
obtained. Second, it is open whether a similar regret bound
can be obtained for the CCIB problem with feasible arms
characterized by any matroid. Note that we cannot use the
exchange property (3) in this case. Finally, this paper does
not consider the problem where the reward of the learner
is a non-linear function with respect to the rewards of arms
chosen by the learner.
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Kaufmann, E., Cappé, O., and Garivier, A. On the com-
plexity of best-arm identification in multi-armed bandit
models. The Journal of Machine Learning Research, 17
(1):1–42, 2016.

Kazerouni, A., Ghavamzadeh, M., Abbasi-Yadkori, Y., and
Van Roy, B. Conservative contextual linear bandits. In
Advances in Neural Information Processing Systems, vol-
ume 30, pp. 3910–3919, 2017.

Khezeli, K. and Bitar, E. Safe linear stochastic bandits. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 34, pp. 10202–10209, 2020.

Korte, B. and Vygen, J. Combinatorial Optimization: The-
ory and Algorithms. Springer, 6th edition edition, 2018.

Kveton, B., Wen, Z., Ashkan, A., Eydgahi, H., and Eriksson,
B. Matroid bandits: Fast combinatorial optimization with
learning. In Proceedings of the Thirtieth Conference on
Uncertainty in Artificial Intelligence, pp. 420–429, 2014.

Kveton, B., Wen, Z., Ashkan, A., and Szepesvári, C. Tight
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A. Known Results
Our proofs use the following known results:
Theorem A.1 (Theorem 13.9 by Korte & Vygen (2018)). Let E be a finite set and B ∈ 2E . B is the set of bases of some
matroid (E,F) if and only if the following holds:

(B1) B ̸= ∅;

(B2) For any B1, B2 ∈ B and x ∈ B1 \B2, there exists a y ∈ B2 \B1 with (B1 \ {x}) ∪ {y} ∈ B.

Theorem A.2 (Theorem 2 by Abbasi-Yadkori et al. (2011)). Let {Ft}∞t=0 be a filtration, {Xt}∞t=1 be an Rd-valued stochastic
process such that Xt is Ft−1-measurable, {ηt}∞t=1 be a real-valued stochastic process such that ηt is Ft-measurable. Let
V = λI be a positive definite matrix, Vt = V +

∑
s∈[t] XsX

⊤
s , Yt =

∑
s∈[t] θ

∗⊤Xs + ηs and θ̂t = V −1
t−1Yt. Assume for all

t that ηt is conditionally R-sub-Gaussian for some R > 0 and ∥θ∗∥2 ≤ S. Then, for any δ > 0, with probability at least
1− δ, for any t ≥ 1,

∥θ̂t − θ∗∥Vt−1 ≤ R

√
2 log

(
det(Vt−1)1/2 det(λI)−1/2

δ

)
+
√
λS.

Furthermore, if ∥Xt∥2 ≤ L for all t ≥ 1, then with probability at least 1− δ, for all t ≥ 1,

∥θ̂t − θ∗∥Vt−1
≤ R

√
d log

(
1 + (t− 1)L2/λ

δ

)
+
√
λS.

Lemma A.3 (Lemma 5 by Takemura et al. (2021)). Let {{xt(i)}i∈[k]}t∈[T ] be any sequence such that xt(i) ∈ Rd and
∥xt(i)∥2 ≤ L for all i ∈ [k] and t ∈ [T ]. Let Vt = λI +

∑
s∈[t]

∑
i∈[k] xs(i)xs(i)

⊤ with λ > 0. Then, we have∑
t∈[T ]

∑
i∈[k]

min

(
1

k
, ∥xt(i)∥2V −1

t−1

)
≤ 2d log(1 + L2kT/(dλ)).

Lemma A.4 (Lemma 6 by Takemura et al. (2021)). Let {{xt(i)}i∈[k]}t∈[T ] be any sequence such that xt(i) ∈ Rd and
∥xt(i)∥2 ≤ L for all i ∈ [k] and t ∈ [T ]. Let Vt = λI +

∑
s∈[t]

∑
i∈[k] xs(i)xs(i)

⊤ with λ > 0. Then, we have∑
t∈[T ]

∑
i∈[k]

1

(
∥xt(i)∥V −1

t−1
> 1/

√
k
)
≤ 2dk log(1 + L2kT/(dλ)).

B. Discussions of Performance Constraints
B.1. Comparison of Constraint (1) with Constraint (2)

We discuss the fact that the two types of constraints are incomparable. More precisely, we show that each constraint does
not include the other constraint.

First, we show that constraint (1) does not include constraint (2).
Lemma B.1. Assume that m ≥ 1. Then, there exists a set of rewards such that the rewards satisfy the constraint (1) while
they do not satisfy the constraint (2) for any α ∈ [0, 1).

Proof. Suppose that µt(i) = 0 for i ∈ It. Suppose also that µt(i) = 1 for some i ∈ Bt and µt(i) = 0 otherwise.
Then, for any bijection ρt : It → Bt, the constraint (1) is satisfied with m = 1. However, since

∑
i∈It

µt(i) = 0 and∑
i∈Bt

µt(i) = 1, the constraint (2) is not satisfied for any α ∈ [0, 1).

Next, we show the inverse direction.
Lemma B.2. Assume that α ∈ (0, 1]. Then, there exists a set of rewards such that the rewards satisfy the constraint (2)
while they do not satisfy the constraint (1) for any m < k.

Proof. We fix α ∈ (0, 1] arbitrarily. Suppose that µt(i) = 1 − α for i ∈ It and µt(b) = 1 for b ∈ Bt. These rewards
satisfy the constraint (2) with α. Since any reward of arm b ∈ Bt is strictly larger than any reward of arm i ∈ It, we have∑

i∈It
1(µt(i) ≥ µt(ρt(i))) = 0 for any bijection ρt : It → Bt.

12
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B.2. Reduction from Constraint (2) to Constraint (1)

We introduce a reduction from constraint (2) to constraint (1). Note that while Assumption 3.10 requires rℓ > 0 due to
Assumption 3.9, most of existing studies of conservative bandit problems also require this condition (Wu et al., 2016;
Kazerouni et al., 2017; Garcelon et al., 2020; Khezeli & Bitar, 2020; Moradipari et al., 2020).

Lemma B.3. Under Assumption 3.10, satisfying constraint (1) implies satisfying constraint (2).

Proof. Suppose that the sequence {It}t∈[T ] satisfies the constraints (1). Recall that ρt : It → Bt is a bijection. Let
I ′t = {i ∈ It | µt(i) ≥ µt(ρt(i))} Note that since {It}t∈[T ] satisfies the constraints (1), |I ′t| ≥ k − m. Rewriting the
performance constraints (2), we have∑

i∈I′
t

(µt(i)− (1− α)µt(ρt(i))) ≥
∑

i∈It\I′
t

((1− α)µt(ρt(i))− µt(i)).

Recall that rℓ = mint∈[T ] mini∈Bt
µt(i). From the definition of I ′t and rℓ, and the fact that µt(i) ∈ [0, 1] for all i ∈ [N ],

we have ∑
i∈I′

t

(µt(i)− (1− α)µt(ρt(i))) ≥ α
∑
i∈I′

t

µt(ρ(i)) ≥ α(k −m)rℓ and

∑
i∈It\I′

t

((1− α)µt(ρt(i))− µt(i)) ≤ m.

Thus, a sufficient condition of the constraints (2) is (k −m)αrℓ ≥ m, which is Assumption 3.10.

C. Properties of Matroid
C.1. Strongly Base-Orderable Matroid

First, we introduce the definition of strongly base-orderable matroid and exchangeable set.

Definition C.1. A matroid is strongly base-orderable if for any two bases B1 and B2, there is a bijection f : B1 → B2 with
the property that (B1 \X) ∪ f(X) is a base for any X ⊆ B1.

Then, we show an equivalence between exchangeable set and strongly base-orderable matroid.

Lemma C.2. A set S is exchangeable if and only if the set S is the bases of a strongly base-orderable matroid.

Proof. If the set S is the bases of a strongly base-orderable matroid, we have S is exchangeable by Definition C.1. Suppose
that S is exchangeable. We fix B1, B2 ∈ S arbitrarily. Let ρ : B1 → B2 be the bijection defined in (3). Since S is
exchangeable, we have (B1 \ {i}) ∪ {ρ(i)} ∈ S for any i ∈ B1 \B2. Thus, from Theorem A.1, there exists a matroid such
that S is the set of the bases. By Definition 3.6 and Definition C.1, we have the desired result.

C.2. Bijection between Two Bases

Proof of Lemma 5.7. Let (E,F) be the matroid and k be the rank of the matroid. Let a∗1, . . . , a
∗
k be a sequence such that

{a∗i }i∈[k] = A∗ and r(a∗i ) ≤ r(a∗j ) for i ≤ j.

We construct the bijection by induction. We fix ℓ ∈ [k] arbitrarily. Suppose that we have already defined ρ(a∗i ) for all i < ℓ.
Let A∗

ℓ = {a∗i }i=ℓ,...,k and Aℓ = A \ {ρ(a∗i )}i∈[ℓ−1]. If we have a∗ℓ ∈ Aℓ, we define ρ(a∗ℓ ) = a∗ℓ . Thus, we consider the
other case, i.e., a∗ℓ /∈ Aℓ. From the augmentation property of matroid, there exists a ∈ Aℓ \A∗

ℓ+1 such that A∗
ℓ+1 ∪{a} ∈ F .

Since A∗ ∈ argmaxI∈A
∑

i∈I r(i), A
∗
ℓ can be regarded as the output until the k − ℓ+ 1-th step of the greedy algorithm.

Therefore, we have r(a∗ℓ ) ≥ r(a) and can define ρ(a∗ℓ ) = a.

Note that the construction in our proof of the following lemma is essentially the same to the proof of Lemma 1 of Kveton
et al. (2014).

13
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D. Missing Proofs in Section 5
D.1. High-Probability Event

For δ ∈ (0, 1), we define

βt(δ) = min
(
R
√
2 log (N(πkt)2/(3δ)), R

√
d log ((1 + L2kt/λ)/δ)

)
+M

√
λ

for all t ∈ [T ].

Proof of Lemma 5.3. We consider two cases: when log(N) < d and when log(N) ≥ d.

First, we consider when log(N) < d. We fix t ∈ [T ] and i ∈ [N ] arbitrarily. From the definition of θ̂t, we have

(θ̂t − θ)⊤xt(i) =

V −1
t−1

∑
s∈[t−1]

∑
i∈Is

(θ⊤xs(i) + ηs(i))xs(i)− θ

⊤

xt(i)

=
∑

s∈[t−1]

∑
i∈Is

xt(i)
⊤V −1

t−1xs(i)ηs(i)− λxt(i)
⊤V −1

t−1θ.

For the latter term, we have λxt(i)
⊤V −1

t−1θ ≤ λ∥θ∥V −1
t−1
∥xt(i)∥V −1

t−1
≤
√
λM∥xt(i)∥V −1

t−1
. We then bound the former term.

Let α = R
√

2 log(2/δ′) for δ′ > 0. Using (a variant of) Azuma’s inequality, we obtain

P

∣∣∣∣∣∣
∑

s∈[t−1]

∑
i∈Is

xt(i)
⊤V −1

t−1xs(i)ηs(i)

∣∣∣∣∣∣ > α∥xt(i)∥V −1
t−1


≤ 2 exp

 α2∥xt(i)∥2V −1
t−1

2R2
∑

s∈[t−1]

∑
i∈Is

(xt(i)⊤V
−1
t−1xs(i))2


= 2 exp

 α2∥xt(i)∥2V −1
t−1

2R2xt(i)⊤V
−1
t−1(

∑
s∈[t−1]

∑
i∈Is

xs(i)xs(i)⊤)V
−1
t−1xt(i)


≤ 2 exp(−α2/(2R2)) ≤ δ′.

Hence, we obtain

|(θ̂t − θ)⊤xt(i)| ≤
(
R
√
2 log(N(πkt)2/(3δ)) +M

√
λ
)
∥xt(i)∥V −1

t−1
(9)

with probability at least 1− 6δ/(N(πkt)2). Taking union bound over the arms in all rounds, we have (9) with probability at
least 1− δ.

Next, we consider when log(N) ≥ d. By the Cauchy-Schwarz inequality, we have

|µt(i)− θ̂⊤t xt(i)| ≤ ∥θ − θ̂t∥Vt−1∥xt(i)∥V −1
t−1

for all t ∈ [T ] and i ∈ [N ]. Then, using Theorem A.2, we have ∥θ − θ̂t∥Vt−1
≤ R

√
d log

(
1+L2kt/λ

δ

)
+M

√
λ for all

t ∈ [T ] with probability at least 1− δ, which completes the proof.

D.2. Analysis for the Recommended Choices

Proof of Lemma 5.2. We fix t ∈ [T ] arbitrarily. Let Ĩt = It ∩ Ît and Ĩ∗t = {ρ∗t (i) | i ∈ Ĩt}.

Let ([N ],Ft) be the matroid whose bases are St. Let Et = Ĩt ∪ Ĩ∗t and kt = |Ĩt|. Then, we can construct a matroid (Et,F ′
t)

such that F ′
t ⊆ Ft and the size of bases of (Et,F ′

t) is kt. Let S ′t be the bases of (Et,F ′
t). Then, we have∑

i∈Ĩt

(µt(ρ
∗
t (i))− µt(i)) ≤ max

I∈S′
t

∑
i∈I

µt(i)−
∑
i∈Ĩt

µt(i). (10)
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Recall that {r′t(i)}i∈[N ] is the estimation of the rewards by the algorithm A. Since Ît ∈ argmaxI∈St

∑
i∈I r

′
t(i), we

have Ĩt ∈ argmaxI∈S′
t

∑
i∈I r

′
t(i). Thus, (10) is the regret of the CCS problem in which the feasible set is S ′t. Since the

algorithm A uses only {rt(i)}i∈Ĩt
as feedback in the proposed algorithm, we can bound (10) by the regret upper bound of

the algorithm A.

D.3. Property of the Bijection Satisfying (3)

Lemma D.1. For any t ∈ [T ] and I, I ′ ∈ St such that I ∈ argmaxJ∈St

∑
i∈J r(i) for some r : [N ] → R, we have

r(i) ≥ r(ρ(i)) for any i ∈ I , where ρ : I → I ′ is the bijection satisfying (3).

Proof of Lemma D.1. We fix t ∈ [T ] and i ∈ It arbitrarily. Let ([N ],F) be the matroid that corresponds to the constraint St.
Let I(i) be the set of arms just before the greedy algorithm chooses i. By the definition of ρ, we have (I \{i})∪{ρ(i)} ∈ St.
From the property of matroid, we have I(i) ∪ {i} ∈ F and I(i) ∪ {ρ(i)} ∈ F , which finishes the proof.

D.4. Properties of Confidence Intervals

To prove Lemma 5.6, we need the following lemma:

Lemma D.2. For any i ∈ Ît, if ct(i) < ∆/2, we have µt(i) = µt(ρ̂
∗
t (i)).

Proof. Recall that ct(i) = βt(δ)∥xt(i)∥V −1
t−1

. From Lemma D.1, we have r̂t(i) ≥ r̂t(ρ̂
∗
t (i)) for all i ∈ Ît. Since (6) holds

for all t ∈ [T ] and i ∈ [N ], we have

µt(ρ̂
∗
t (i)) ≤ r̂t(ρ̂

∗
t (i)) ≤ r̂t(i) ≤ µt(i) + 2ct(i)

for all i ∈ Ît. From the assumption of this lemma, we have µt(ρ̂
∗
t (i))− µt(i) ≤ 2ct(i) < ∆. Thus, from the definition of

∆, we obtain µt(i) = µt(ρ̂
∗
t (i)).

We are ready to prove Lemma 5.6.

Proof of Lemma 5.6. We fix i ∈ Īt arbitrarily. For all j ∈ Ît, using Lemma D.2, we have µt(j) = µt(ρ̂
∗
t (j)). Thus, we

have µt(i) = µt(ρ̄t(i)) or µt(i)− µt(ρ̄t(i)) ≥ ∆. If µt(i)− µt(ρ̄t(i)) ≥ ∆, we have

r̄t(ρ̄t(i))− r̄t(i) = řt(ρ̄t(i))− r̂t(i)

≥ (µt(ρ̄t(i))− 2ct(ρ̄t(i)))− (µt(i) + 2ct(i))

≥ ∆− 2(ct(i) + ct(ρ̄t(i)))

> 0,

which contradicts the property of ρ̄t obtained by Lemma D.1.

D.5. Number of Rounds in Which Conservative Choices Suffer the Regret

Proof of Lemma 5.5. We fix ℓ ∈ [n] arbitrarily. To bound the number of rounds such that ct(jℓt ) ≥ ∆/4, we consider a
sufficient condition of rounds such that ct(jℓt ) < ∆/4. Since βT (δ) ≥ βt(δ) for all t ∈ [T ], a sufficient condition of
ct(j

ℓ
t ) < ∆/4 is that

∥xt(j
ℓ
t )∥V −1

t−1
< ∆/(4βT (δ)) = γℓ/

√
ℓ. (11)

Recall that Jℓ
t is defined in line 16 of Algorithm 1. Let Ṽt denote λI +

∑
s∈[t]

∑
j∈Jℓ

s
xs(j)xs(j)

⊤. By the definition of Vt

and Ṽt, we have Vt ⪰ Ṽt for all t ∈ [T ] ∪ {0}. Thus, we obtain

∥xt(i)∥V −1
t−1
≤ ∥xt(i)∥Ṽ −1

t−1
(12)
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for all t ∈ [T ] and i ∈ [N ]. Combining (11) and (12), we obtain that a sufficient condition of rounds with ct(j
ℓ
t ) < ∆/4 is

that ∥xt(j
ℓ
t )∥Ṽ −1

t−1
< γℓ/

√
ℓ. This implies that a necessary condition of rounds with ct(j

ℓ
t ) ≥ ∆/4 is that ∥xt(j

ℓ
t )∥Ṽ −1

t−1
≥ γ̃ℓ,

where γ̃ℓ = min(γℓ, 1)/
√
ℓ. Let T ′ be the number of rounds such that ct(jℓt ) ≥ ∆/4. Then, we obtain

γ̃2
ℓ ℓT

′ ≤ γ̃2
ℓ

∑
t∈[T ]

∑
j∈Jℓ

t

1
(
∥xt(j)∥Ṽ −1

t−1
≥ γ̃ℓ

)
≤
∑
t∈[T ]

∑
j∈Jℓ

t

min
(
γ̃2
ℓ , ∥xt(j)∥2Ṽ −1

t−1

)
≤
∑
t∈[T ]

∑
j∈Jℓ

t

min

(
1

ℓ
, ∥xt(j)∥2Ṽ −1

t−1

)
.

Applying Lemma A.3 to the last term, we finish the proof.

D.6. Regret of an Arm in Conservative Choices

Proof of Lemma 5.4. We fix i ∈ It \ Ît arbitrarily. Recall that ρ̄t : Īt → Ît be the bijection defined in (3). Let i′ = ρ̄t(i).
Since (6) holds, we have µt(i) ≥ r̂t(i) − 2ct(i). Moreover, since i ∈ Bt and i′ ∈ Ît \ Bt, we have r̂t(i) ≥ řt(i

′) using
Lemma D.1. Thus, we obtain

µt(i) ≥ r̂t(i)− 2ct(i) ≥ řt(i
′)− 2ct(i). (13)

Recall that ρ̂∗t : Ît → I∗t is the bijection defined in (3). From Lemma D.1, we have r̂t(i
′) ≥ r̂t(ρ̂

∗
t (i

′)). Thus, we have

µt(ρ̂
∗
t (i

′)) ≤ r̂t(ρ̂
∗
t (i

′)) ≤ r̂t(i
′) = řt(i

′) + 2ct(i
′), (14)

where the first inequality is derived from (6).

Recall that ρ∗t = ρ̂∗t ◦ ρ̄t for i ∈ It \ Ît. Thus, we have ρ̂∗t (i
′) = ρ∗t (i). Combining (13) and (14), we finish the proof.

D.7. Regret Bound for (8)

We can bound the regret as follows:∑
t∈[T ]

∑
j∈Jn

t

Rt(j) =
∑
t∈[T ]

∑
j∈J̃n

t

Rt(j) +
∑
t∈[T ]

∑
j∈J̄n

t

Rt(j)

where

J̃n
t = {j ∈ Jn

t | ∥xt(j)∥2Ṽ −1
t−1,n

≤ 1/n} and J̄n
t = {j ∈ Jn

t | ∥xt(j)∥2Ṽ −1
t−1,n

> 1/n}

for all t ∈ [T ].

Recall that Ṽt,n = λI +
∑

s∈[t]

∑
j∈Jn

t
xs(j)xs(j)

⊤. Using Lemma 5.4 and the fact that Vt ⪰ Ṽt,n for all t ∈ [T ], we have∑
t∈[T ]

∑
j∈J̃n

t

Rt(j) ≤
∑
t∈[T ]

∑
j∈J̃n

t

2βt(δ)∥xt(j)∥Ṽ −1
t−1,n

and

∑
t∈[T ]

∑
j∈J̃n

t

Rt(j) ≤
∑
t∈[T ]

∑
j∈J̃n

t

Rt(j)
2/∆ ≤ 2

∑
t∈[T ]

∑
j∈J̃n

t

4βt(δ)
2

∆
∥xt(j)∥2Ṽ −1

t−1,n

.

Thus, we finish the proof by following the same line of our proof of Theorem G.1.

E. Lower Bounds of Regret
E.1. Lower Bound when m = 0

Lemma E.1. If m = 0, for any algorithm, there is an instance of the CCIB problem such that the algorithm does not
achieve sub-linear regret while satisfying the performance constraint (1).
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Proof of Lemma E.1. We consider two instances of the CCIB problem and show that no algorithm can obtain sub-linear
regret while satisfying the constraint for the two instances simultaneously. Let N = 2, d = 2, k = 1 and m = 0. Let
xt(1) = (1, 0)⊤ and xt(2) = (0, 1)⊤ for all t ∈ [T ], i.e., two-armed bandit problem with the stage-wise performance
constraints. Suppose that rt(1) = 0.5 and Bt = {1} for all t ∈ [T ]. We consider two types of rewards for this setting: One
is rt(2) = 0 and the other is rt(2) = 1. In the former case, the baseline is optimal. Thus, to satisfy the constraints, an
algorithm must choose the baseline (i.e., the first arm) in all rounds. In the latter case, however, such algorithm does not
choose the second arm and then leads to a linear regret.

E.2. Lower Bound when m > 0

First, we show a gap-independent bound.

Theorem E.2. Consider stochastic conservative MAB problem with N arms and sub-Gaussian noises. Let RCMAB
T denote

the regret of T rounds. Let ibase be the baseline arm and it be the arm that are chosen. Suppose that there exist an algorithm
and some α ∈

(
0, 1

4e+2

]
such that the algorithm satisfies E

[∑
t∈[T ] 1

(
r̄(ibase) > r̄(it)

)]
≤ αT for any environment,

where r̄(i) is the mean reward of arm i. Then, there is some environment such that E
[
RCMAB

T

]
>
√

(N−1)T
(8e+4)2α .

Proof of Theorem E.2. Our proof largely follows the proof of Theorem 9 of Wu et al. (2016).

We prove this theorem by contradiction. Thus, we assume that E[RCMAB
T ] ≤

√
(N−1)T
(8e+4)2α for any environment.

We define two types of environments, i.e. the reward distributions of arms and the baseline arm. One is defined as follows:

µi =

{
N (∆, 1) if i = 1
N (0, 1) otherwise

,

where we abuse ∆ that is defined later. The other type of environments is defined as

µ
(j)
i =

 N (∆, 1) if i = 1
N (2∆, 1) if i = j
N (0, 1) otherwise

for j ∈ [N ] \ {1}. Note that these environments have the same sub-optimality gap. Suppose that the baseline arm is the first
arm for all environments.

Let Pµ(·) and Eµ[·] denote the probability and the expectation under reward distributions µ, respectively. Let Ti denote the

number of times arm i was chosen in the problem. Let Ai = {Ti ≤ 2αT} and ∆ =
√

N−1
4αT . First, we show Pµ(Ai) ≥ 1

2

for all i ∈ [N ] \ {1}:

Pµ(Ai) = 1− Pµ(Ti > 2αT ) ≥ 1− Eµ[Ti]

2αT
≥ 1

2
,

where the first inequality is derived from Markov’s inequality, the second inequality follows from the assumption of the
algorithm. Next, we show Pµ(i)(Ai) ≤ 1

4e for all i ∈ [N ] \ {1}:

Pµ(i)(Ai) = Pµ(i)(T − Ti ≥ T − 2αT )

≤
Eµ(i) [T − Ti]

T − 2αT

≤
Eµ(i) [RCMAB

T ]/∆

T − 2αT

≤ 1

(4e+ 2)− (8e+ 4)α

≤ 1

4e
,
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where the first inequality is derived from Markov’s inequality and the other inequalities holds due to the definition of the
regret and the assumptions. Then, using Lemma 1 of Kaufmann et al. (2016), we have

Eµ[Ti]KL(µi, µ
(i)
i ) ≥ d(Pµ(Ai), Pµ(i)(Ai)) ≥

1

2
log

(
1

4(1/(4e))

)
=

1

2
,

where d(x, y) = x log
(

x
y

)
+ (1− x) log

(
1−x
1−y

)
and KL(P,Q) is the KL-divergence of P and Q. By the definition of µ

and µ(i), we have KL(µi, µ
(i)
i ) = 2∆2. Therefore, we obtain Eµ[Ti] >

1
4∆2 for all i ∈ [N ] \ {1}.

Using this fact, we have Eµ[R
CMAB
T ] = ∆

∑
i∈[N ]\{1} Eµ[Ti] >

N−1
4∆ = ∆αT , which contradicts the assumption of the

algorithm.

Next, we show a gap-dependent bound.

Proof of Theorem 6.1. We prove this theorem by the same line of our proof of Theorem E.2. Thus, we only discuss the
difference from that proof.

We assume E
[
RCMAB

T

]
≤ N−1

(32e+16)α∆ for any environment. Let s be the largest number such that ∆ ≤
√

N−1
4αks . Note that

E
[
RCMAB

ks

]
≤ N−1

(32e+16)α∆ . Let be Ai = {ksi ≤ 2αks}, where ksi is the number of times arm i was chosen until ks-th
round. We consider the same environments as in Theorem E.2. Then, one can obtain Pµ(Ai) ≥ 1/2. Furthermore, since

∆ ≥
√

N−1
4αk(s+1) , we have

Pµ(i)(Ai) = Pµ(i)(ks− ksi ≥ ks− 2αks)

≤
Eµ(i) [ks− ksi]

ks− 2αks

≤
Eµ(i)

[
RCMAB

ks

]
/∆

ks− 2αks

≤ N − 1

(32e+ 8)α∆2(ks− 2αks)

≤ s+ 1

(8e+ 4)(s− 2αs)

≤ 2s

(8e+ 4)(s− 2αs)

=
1

(4e+ 2)− (8e+ 4)α

≤ 1

4e
,

where the first inequality is derived from Markov’s inequality and the other inequalities holds due to the definition of the
regret and the assumptions. Therefore, we obtain Eµ [ksi] > 1/(4∆2). Finally, we obtain

Eµ

[
RCMAB

ks

]
>

N − 1

4∆
= ∆

N − 1

4∆2
≥ ∆αks,

which contradicts the assumption of the algorithm.

F. Experiments
F.1. Environments

In each setting, we set d = 20, T = 1000, k = 30, and n = 10. Moreover, any set of k arms can be chosen in each round,
i.e., St = {I ⊆ [N ] | |I| = k} for all t ∈ [T ].
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Table 2. Algorithms in Numerical Experiments

Algorithm Parameters

ε-greedy ε = 0.05 and λ = 1.
C2UCB λ = 1 and δ = 0.05.
Thompson sampling λ = 1 and δ = 0.05.
iUCB α = n/k = 1/3.
Lin-iUCB λ = 1, δ = 0.05, and α = n/k = 1/3.
Proposed λ = 1, δ = 0.05 and n = 10.

Algorithm 2 C2UCB
Input: λ > 0 and {αt}t∈[T ] s.t. αt > 0 for all t ∈ [T ].

1: V0 ← λI and b0 ← 0.
2: for t = 1, 2, . . . , T do
3: Observe {xt(i)}i∈[N ] and St.
4: θ̂t ← V −1

t−1bt−1.
5: for i ∈ [N ] do
6: r̂t(i)← θ̂⊤t xt(i) + αt

√
xt(i)⊤V

−1
t−1xt(i).

7: end for
8: Play a set of arms It ∈ argmaxI∈St

∑
i∈I r̂t(i) and observe rewards {rt(i)}i∈It .

9: Vt ← Vt−1 +
∑

i∈It
xt(i)xt(i)

⊤ and bt ← bt−1 +
∑

i∈It
rt(i)xt(i).

10: end for

We use the Book-Crossing dataset (Ziegler et al., 2005), which consists of ratings expressed on a scale from 0 to 10 for
books. We extracted users that rated at least 100 items and items that are rated by at least 3 users in the extracted users,
which obtains 37, 157 ratings about 7, 068 items by 490 users.

We consider the cold start problem as in Garcelon et al. (2020). An algorithm aims to learn the preference of a new user. We
obtained the item vectors from the ratings by the weighted regularized matrix factorization (Hu et al., 2008) and used the
item vectors as the feature vectors. The baseline is the recommendation by the matrix factorization. A user is randomly
selected at the beginning of a simulation. The mean rewards are the selected user’s ratings that are normalized in [0, 1]. The
noises of the rewards follow N (0, 0.12). We ran 100 simulations.

F.2. Algorithms

We compare the proposed algorithm with the algorithms whose parameters are described in Table 2 and the baseline. The
ε-greedy algorithm has two ways to estimate the rewards of given arms: One is to use random values, and the other is to use
the ridge regression where λ is the parameter of the regularization. The algorithm chooses the former way with probability ε
and the latter way otherwise. Then, it plays a feasible set of arms that maximizes the sum of the estimated rewards. We set
α of the iUCB algorithms5 such that the iUCB and the proposed algorithms have the same condition for exploration, i.e.,
α = n/k. Note that α for the iUCB algorithm and α in (2) are different parameters.

G. C2UCB Algorithm for Matroid Constraint
We consider the CCS problem defined in Takemura et al. (2021). Note that this problem assumes that |µt(i)| ≤ B for some
parameter B but does not assume that µt(i) ∈ [0, 1]. The CCS problem coincides with the CCIB problem without the
performance constraints except the above assumption.

We show that the C2UCB algorithm (Algorithm 2) is minimax optimal up to logarithmic factors for the CCS problem with
any matroid constraint. We emphasize that our theorem is a generalization of Theorem 3 by Takemura et al. (2021) and that
our proof is much simpler than that of the theorem by Takemura et al. (2021). While the CCS problem assumes that the

5Strictly speaking, we implemented the iUCB2 algorithm, which does not need to know the rewards of the baseline arms in advance.
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number k of arms chosen in a round is fixed over the rounds, the C2UCB algorithm works and achieves the same regret
bound if the number of arms chosen in a round is bounded by k from above.

Let ρ∗t : It → I∗t be the bijection defined by Lemma 5.7 with {r̂t(i)}i∈[N ]. Then, we define our sub-optimality gap as
follows:

∆t(i, j) = µt(j)− µt(i) and ∆ = min
t∈[T ]

min
i∈It:∆t(i,ρ∗

t (i))>0
∆t(i, ρ

∗
t (i)).

Using this sub-optimality gap, we have the following regret bound:
Theorem G.1 (A generalization of Theorem 3 by Takemura et al. (2021)). Let κ = min(log(N), d), ν = log(kT ) and
ι = min(log(NkT/δ), d log(kT/δ)). Assume that St is a set of bases of a matroid for all t ∈ [T ]. Then, if αt = βt(δ) and
λ = (R/M)2κ, the C2UCB algorithm has the following regret bound with probability 1− δ

R(T ) = O

(
min

(
R
√
dkTνι,

R2dνι

∆

)
+Bdkν

)
.

Proof. Let Jt = {i ∈ It | ∥xt(i)∥V −1
t−1

> 1/
√
k} and J∗

t = {ρ∗t (i) | i ∈ Jt}. Using these notations, the regret is rewritten
as

R(T ) =
∑
t∈[T ]

 ∑
i∈I∗

t \J∗
t

µt(i)−
∑

i∈It\Jt

µt(i)

+
∑
t∈[T ]

∑
i∈J∗

t

µt(i)−
∑
i∈Jt

µt(i)

 .

We bound these terms separately.

First, we consider the former term. By the definition of the bijection ρ∗t , we have r̂t(i) ≥ r̂t(ρ
∗
t (i)) for all i ∈ It. Using

Lemma 5.3, we have r̂t(i) ≥ µt(ρ
∗
t (i)) and r̂t(i) ≤ µt(i)+2ct(i) for all i ∈ It, where ct(i) = βt(δ)∥xt(i)∥V −1

t−1
. Therefore,

we obtain ∑
t∈[T ]

 ∑
i∈I∗

t \J∗
t

µt(i)−
∑

i∈It\Jt

µt(i)

 ≤ ∑
t∈[T ]

∑
i∈It\Jt

2ct(i) and

∑
t∈[T ]

 ∑
i∈I∗

t \J∗
t

µt(i)−
∑

i∈It\Jt

µt(i)

 ≤ ∑
t∈[T ]

 ∑
i∈It\Jt

(µt(ρ
∗
t (i))− µt(i))

2

 /∆

≤
∑
t∈[T ]

∑
i∈It\Jt

4ct(i)
2/∆

Since βT (δ) ≥ βt(δ) for all t ∈ [T ], using Lemma A.3, we have∑
t∈[T ]

∑
i∈It\Jt

ct(i) ≤ βT (δ)
∑
t∈[T ]

∑
i∈It\Jt

∥xt(i)∥V −1
t−1
≤ βT (δ)

√
kT

∑
t∈[T ]

∑
i∈It\Jt

∥xt(i)∥2V −1
t−1

= O(R
√
dkT ι) and∑

t∈[T ]

∑
i∈It\Jt

ct(i)
2/∆ = O(R2dι/∆).

Next, we bound the latter term. From Lemma A.4, we have∑
t∈[T ]

|Jt| = Õ(dk).

Since |µt(i)| ≤ B, we have

∑
t∈[T ]

∑
i∈J∗

t

µt(i)−
∑
i∈Jt

µt(i)

 ≤ 2B
∑
t∈[T ]

|Jt| = O(Bdkν).

20



Contextual Conservative Interleaving Bandits

Algorithm 3 Thompson sampling
Input: λ > 0 and {vt}t∈[T ] for all t ∈ [T ].

1: V0 ← λI and b0 ← 0.
2: for t = 1, 2, . . . , T do
3: Observe {xt(i)}i∈[N ] and St.
4: θ̂t ← V −1

t−1bt−1.

5: Sample θ̃t from N
(
θ̂t, v

2
t V

−1
t−1

)
6: for i ∈ [N ] do
7: r̃t(i)← θ̃⊤t xt(i).
8: end for
9: Play a set of arms It ∈ argmaxI∈St

∑
i∈I r̃t(i) and observe rewards {rt(i)}i∈It .

10: Vt ← Vt−1 +
∑

i∈It
xt(i)xt(i)

⊤ and bt ← bt−1 +
∑

i∈It
rt(i)xt(i).

11: end for

H. Thompson Sampling for Matroid Constraint
We show that the Thompson sampling Algorithm 3 for the CCS problem achieves a near-optimal regret bound. Note that,
similar to the C2UCB algorithm, in the CCS problem where the number of arms chosen in t-th round depends on t, the
Thompson sampling achieves the same regret bound if the number of arms chosen in a round is bounded by k from above.
Theorem H.1. Let κ = min(log(N), d), ν = log(kT ) and ι′ = min(log(NkT 2/δ), d log(kT 2/δ)) log(dT/δ). Assume
that St is a set of bases of a matroid for all t ∈ [T ]. Then, if vt = βt(δ/(4T )) and λ = L/(dM), the Thompson sampling
has the following regret bound with probability 1− δ

R(T ) = O
(
(R
√
dκ+

√
ML)

√
dkTνι′ +Bdkν

)
.

Proof. Let ρ∗t : It → I∗t be the bijection defined by Lemma 5.7 with {r̃t(i)}i∈[N ]. Let Jt = {i ∈ It | ∥xt(i)∥V −1
t−1

> 1/
√
k}

and J∗
t = {ρ∗t (i) | i ∈ Jt}. Using these notations, the regret is rewritten as

R(T ) =
∑
t∈[T ]

 ∑
i∈I∗

t \J∗
t

µt(i)−
∑

i∈It\Jt

µt(i)

 (15)

+
∑
t∈[T ]

∑
i∈J∗

t

µt(i)−
∑
i∈Jt

µt(i)

 .

We bound these terms separately.

First, we bound the latter term. By the same discussion in the proof of Theorem G.1, we have

∑
t∈[T ]

∑
i∈J∗

t

µt(i)−
∑
i∈Jt

µt(i)

 ≤ 2B
∑
t∈[T ]

|Jt| = O(Bdkν).

Next, we consider the former term. If µt(i) ≥ µt(ρ
∗
t (i)), the term µt(ρ

∗
t (i))− µt(i) does not contribute to the regret. Thus,

we can assume

∀i ∈ It \ Jt, µt(i) ≤ µt(ρ
∗
t (i)) (16)

without loss of generality.

We follow a similar line of proof for the Thompson sampling for the contextual linear bandit problem by Abeille & Lazaric
(2017). As in Abeille & Lazaric (2017), we define the following events for all t ∈ [T ]:

Êt = {∀s ≤ t, ∥θ̂s − θ∥Vs−1
≤ βs(δ

′)} and

Ẽt = {∀s ≤ t, ∥θ̃s − θ̂s∥Vs−1
≤ γs(δ

′)},
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where δ′ = δ/(4T ) and γt(δ) =
√

2d log(2d/δ)βt(δ). From a similar argument of Lemma 1 by Abeille & Lazaric (2017),
we have P (ÊT ∩ ẼT ) ≥ 1− δ/2. In the remaining of this proof, we consider the case under the event ÊT ∩ ẼT .

Then, we can decompose the right-hand side of (15) as follows:

∑
t∈[T ]

 ∑
i∈I∗

t \J∗
t

µt(i)−
∑

i∈It\Jt

µt(i)

 =
∑
t∈[T ]

 ∑
i∈It\Jt

θ⊤xt(ρ
∗
t (i))− θ̃⊤t xt(i)

 (17)

+
∑
t∈[T ]

 ∑
i∈It\Jt

θ̃⊤t xt(i)− θ⊤xt(i)

 . (18)

We can bound (18) as

∑
t∈[T ]

 ∑
i∈It\Jt

θ̃⊤t xt(i)− θ⊤xt(i)

 ≤ ∑
t∈[T ]

∑
i∈It\Jt

(γt(δ
′) + βt(δ

′))∥xt(i)∥V −1
t−1

= O
(
(R
√
κ+M

√
λ)d
√
kTνι′

)
.

To bound (17), we introduce convex functions Jt,i(u) = maxj∈Ct,i
u⊤xt(j) for some Ct,i ⊆ [N ] such that Jt,i(θ̃t) =

θ̃⊤t xt(i) and Jt,i(θ) = θ⊤xt(ρ
∗
t (i)). If we construct such convex functions, by the same line of the proof by Abeille &

Lazaric (2017), we can complete the proof. In fact, we have

∑
t∈[T ]

 ∑
i∈It\Jt

θ⊤xt(ρ
∗
t (i))− θ̃⊤t xt(i)

 = O

(
(R
√
κ+M

√
λ)d
√
kTνι′ +

L√
λ

√
kT log(1/δ)

)

with probability at least 1− δ/2.

We now construct Jt,i(u). By the construction of ρ∗t , we have θ̃⊤t xt(i) ≥ θ̃⊤t xt(ρ
∗
t (i)). On the other hand, we have

θ⊤xt(i) ≤ θ⊤xt(ρ
∗
t (i)) by (16). Therefore, if we define Ct,i = {i, ρ∗t (i)}, we have Jt,i(θ̃t) = θ̃⊤t xt(i) and Jt,i(θ) =

θ⊤xt(ρ
∗
t (i)).
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