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Abstract

Numerous Natural Language Processing (NLP) tasks require precisely labeled data
to ensure effective model training and achieve optimal performance. However, data
annotation is marked by substantial costs and time requirements, especially when
requiring specialized domain expertise or annotating a large number of samples.
In this study, we investigate the feasibility of employing large language models
(LLMs) as replacements for human annotators. We assess the zero-shot perfor-
mance of various LLMs of different sizes to determine their viability as substitutes.
Furthermore, recognizing that human annotators have access to diverse modali-
ties, we introduce an image-based modality using the BLIP-2 architecture [[17] to
evaluate LLM annotation performance. Among the tested LLMs, Vicuna-13b [34]
demonstrates competitive performance across diverse tasks. To assess the poten-
tial for LLMs to replace human annotators, we train a supervised model using
labels generated by LLLMs and compare its performance with models trained using
human-generated labels. However, our findings reveal that models trained with
human labels consistently outperform those trained with LLM-generated labels. We
also highlights the challenges faced by LLMs in multilingual settings, where their
performance significantly diminishes for tasks in languages other than English.

1 Introduction

Machine Learning (ML) models are widely deployed for various applications like sentiment analysis
[24], machine translation [26], paraphrase equivalence detection [9], and many more. In the
traditional machine learning scenario used for deploying these models, ML practitioners typically
begin by training the model on a designated training dataset, and subsequently employ a test dataset
to assess the model’s performance. However, assembling a comprehensive set of labeled data is a
time-consuming process that necessitates expertise in the relevant domain.

In order to avoid labeling such huge datasets, the NLP community started to explore the use of transfer
learning to improve the few-shot performance of the models. Models like BERT [7]], RoBERTa [18]],
TS5 [22] are pretrained on a large corpus of unlabeled data and then fine-tuned on downstream tasks.
These models performed state-of-the-art on various open-source benchmarks like GLUE [30] and
SuperGLUE [31]].

In a recent study conducted by Brown et al. [3]], it was demonstrated that GPT-3, a massive language
model with 175 billion parameters, exhibits zero-shot performance on par with state-of-the-art
supervised fine-tuned models. However, the access to GPT-3 may be restricted. To overcome this
limitation, the open-source community released numerous competitive language models such as
LLama [28]], Alpaca [27], and Vicuna [34]. These works demonstrated that they were able to
achieve similar performance to that of ChatGPT on multiple benchmarks [34,[11]. Even though
these models have state-of-the-art zero-shot performance, deploying these models is expensive due to
their substantial size.
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Given the impressive zero-shot performance of LLMs, we explore their potential as annotators in
this study. Recent work by He et al. [13] and Ding et al. [8] have demonstrated use of GPT-3 as
annotator with only text based inputs. However, a critical question remains: can open-source LLMs
effectively serve as replacements for human-annotated data? Our aim is to understand whether we
can leverage these open-source models to generate labels cost-effectively, enabling the training of
smaller models. This approach can offer a dual advantage: it significantly reduces the cost associated
with label generation and eliminates the need for time-consuming and costly human annotation. By
distilling data generated by these models, we can effectively train smaller models.

In this study, we conduct benchmarking analyses of various open-source models to evaluate their
effectiveness as annotators for our proprietary datasets, as well as for publicly available datasets
such as Hateful Memes [15] and Multimodal IMDB (MM-IMDB) [2]]. Specifically, we conduct
benchmarking experiments involving the following models: Vicuna (13b, 7b) [34], LLama (13b,
7b) (28], InstructBLIP (13b, 7b) [6]]. For evaluating the multi-lingual aspect of these large language
models we test the performance on XNLI dataset [3].

Our investigation indicates that Vicuna 13b performs reasonably well on various annotation tasks
compared to the other tested models. It also exhibits the unique capability to provide reasons
for classification, a feature often absent in human-labeled data. Conversely, we observed these
models encountering challenges in multilingual settings. Considering that public datasets and
internally annotated datasets have image information we also study the impact of images on annotation
performance via a multimodal InstructBLIP architecture. Our findings indicate that the usefulness
of images varies depending on the specific task, with their effectiveness contingent on the nature of
the task at hand. To assess the effectiveness of LLMs as annotators, we substitute human-annotated
data with LLM-annotated data in supervised model training, resulting in a consistent decline in
performance.

The remaining sections of this paper are structured as follows: In Section 2] we provide an overview
of the background on LLMs and multimodal LLMs. Section [3] outlines our approach. Section[4]
presents the key findings of this study. We conclude the paper in Section 3]

2 Background

2.1 Large Language Models

Brown et al. [3] showcased the remarkable capabilities of GPT-3, a large language model with
175 billion parameters. GPT-3 achieved zero-shot performance comparable to state-of-the-art fine-
tuned models. Subsequent to this milestone, a wave of language models emerged, including PaLM
[4], Llama [28]], Falcon [21]], and numerous others. These models have consistently demonstrated
exceptional zero-shot performance, rivaling that of finely-tuned models across entire datasets.

Ouyang et al. [20] showed that while these language models can achieve impressive zero-shot
performance on targeted benchmarks, they often encounter difficulties in accurately comprehending
and adhering to human instructions when prompted. To address this challenge, they introduced
a reinforcement learning framework with fine-tuning guided by human feedback, resulting in the
development of the InstructGPT model. However, recent research by Zhou et al. [[36]] has demonstrated
that conventional fine-tuning of models using chat instruct datasets can yield performance comparable
to models fine-tuned with the reinforcement learning and human feedback-based approach.

With the release of LLama weights there has been various fine tuned versions of LLama models like
Alpaca and Vicuna. It has been shown that by Zheng et al. [34] these models perform comparable
to that ChatGPT and many larger models. In this work, we delve into the assessment of models
zero-shot performance across various annotation tasks.

2.2 Multimodal Large Language Models

Human perception is inherently reliant on the integration of sensory inputs from various modalities,
such as text, sound, and vision. In the field of multimodal learning, there have been various studies
involving pretrained models trained on multiple types of data [19} 23| [16]. These models have
demonstrated their effectiveness in various tasks, including visual question answering [35] and
reasoning that combines both visual and textual information [25]].
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Figure 1: Ilustration of the proposed multimodal classification architecture. In this example, the aim
is to find the genre of the movie. Leveraging textual descriptions and instructions, LLM generates
answers that serve as labels. Additionally, we incorporate multimodality through the integration of
images following InstructBLIP.

While large-scale pre-training and fine-tuning have been successful in creating general-purpose
language models, building versatile vision-language models is challenging due to the diverse input
distributions and tasks that arise from incorporating visual input. Recently introduced BLIP-2 model
[[L'7] has showcased impressive performance across a diverse range of tasks involving both images
and language. The incorporation of the Query Transformer (Q-Former) component within this model
has resulted in substantial enhancements in capturing interactions between text and image.

InstructBLIP delivers a comprehensive study on fine-tuning vision-language models, building upon
pretrained BLIP-2 models. Through training on 13 various datasets, InstructBLIP achieves state-of-
the-art performance on various vision-language tasks, surpassing the performance of BLIP-2 and
larger Flamingo [1]] models. Both BLIP-2 and InstructBLIP relies on a frozen LLM such as Vicuna
and focuses on mapping visual information to LLM embeddings.

3 Approach

In this section, we outline our methodology for investigating the research question of whether large
language models (LLMs) can effectively function as annotators. We provide a visual representation
of the annotation process in Figure[I]for both unimodal and multimodal scenarios.

3.1 Network

In this study, we perform benchmarking on various language models to evaluate their applicability
for annotation purposes. Specifically, we assess several open-source LLMs, such as LLama (13b, 7b),
Vicuna (13b, 7b), and OpenLLama 13b, for their ability to encode text-based information.

To incorporate the image modality for further comparison and leverage the additional modalities in
the open-source and internally annotated datasets, we adopt InstructBLIP, which utilizes a Vicuna
model. InstructBLIP adopts BLIP-2 architecture for its effective utilization of image features through
Vision Transformer (ViT) [[LO] and Q-Former. The output of the Q-Former is subsequently mapped to
the LLM’s embedding space and can be leveraged by the LLM for multimodal tasks.

For image encoder, we employ the ViT-G/14 [33]], which uses 14 x 14 image patches, resulting in a
feature dimension of (HW /142 x N), where H and W represent the height of the image, and N is the
dimension of the image features. The Q-Former, pretrained in representation and generative learning
stages, enables the extraction of a consistent number of output features from the image encoder,
regardless of the input image’s resolution. Q-Former module, takes input from both image and text
embeddings and extracts the most relevant information from the image based on the accompanying
text embedding. The output of the Q-Former is then mapped to LLM space which can be utilized by
the LLM.



3.2 Inference & Network Details

During inference, we employed a generation configuration with specific settings. With a maximum
token limit of 1024, we utilized the do_samplegEI option, which allows the model to generate
responses independently. We intentionally refrained from employing beam search to promote
diversity in the generated outputs. To balance creativity and coherence in responses, we set the
temperature parameter to 0.8, controlling the randomness of the generation process. Furthermore, we
applied a top-p (nucleus) sampling technique with a threshold of 0.9, ensuring that the model focuses
on the most probable tokens in each step of generation.

The Vicuna version utilized in InstructBLIP is an older iteration, specifically v1.1, in contrast to the
latest release, Vicuna-v1.5. In Vicuna-v1.5, there has been a transition to the Llama2 as the base
model, which is anticipated to significantly boost overall performance. Moreover, Vicuna-v1.5 has
expanded the context length versions to 16K through linear RoPE scaling, effectively enabling the
model to handle longer sequences.

For our multimodal experiments, we resize all images to a resolution of 224 x 244, while Q-Former
extracts a token size of 32 x 768. Following this, image features are mapped to the language feature
space using a linear layer, enabling the LLM to comprehend the context effectively.

To categorize the model’s outputs into different classes, we employed a regex-based matching
following Dai et al. [6].

3.3 Supervised Model

To assess the substitutability of LLMs for human annotators, we train a well-established multimodal
classifier known as MultiModal BiTransformers (MMBT) [14]]. MMBT utilizes a BERT architecture
for embedding multimodal data. In this framework, image embeddings, derived from a Residual
Neural Network (ResNet) [[12]], are mapped into the text token space. The transformer, enriched with
positional and modal-type embeddings, is designed to classify image-text pairs into distinct classes.
By incorporating a supervised model, our objective is to facilitate a meaningful comparison with
LLMs and underscore the distinctions that emerge when substituting human-annotated training data
with LLM-generated annotations.

4 Experiments

4.1 Datasets

We employ multiple datasets specifically curated for multimodal classification tasks. These datasets
are chosen to encompass a diverse range of domains and challenges, allowing us to thoroughly
evaluate the performance of LLMs as annotators across different contexts.

MM-IMDB. The MM-IMDB dataset is designed for movie genre classification, relying on movie
plots, poster images, and various metadata. This dataset poses a multi-label classification challenge,
featuring 23 genre labels. For our annotation performance evaluation of Large Language Models
(LLMs), we specifically focused on the top two genres from this dataset: drama and comedy. For our
inference experiments, we utilize the development set, which comprises 1,946 image-text pairs.

Hateful Memes. The Hateful Memes dataset is primarily aimed at identifying hateful content within
memes. This task involves binary classification, determining whether the content is hateful or not.
Despite its binary nature, detecting hateful content can be challenging as most of the samples include
sarcasm. To assess the performance of LLMs, we conducted experiments using the “test_unseen” set,
which consists of 2,000 image-text pairs.

Internally Annotated Datasets (IAD). Our internally annotated datasets consists of two binary
classification tasks, namely IAD-1 and IAD-2.

XNLI. The XNLI dataset is designed to evaluate the cross-lingual generalization capability of natural
language understanding models. XNLI is an extension of the MultiNLI (MNLI) [32] dataset, which
consists of sentence pairs labeled for three categories: entailment, contradiction, and neutral. We
measure the annotation performance on three different languages French, Dutch and English.
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4.2 Zero-shot experiments
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Figure 2: Performance of different LLMs as annotators on different tasks.

In Figure 2] we present our results for each task. We include the performance of the supervised
model to provide a reference point for interpreting the results generated by the LLMs. For internally
annotated datasets, we consistently present results relative to a supervised baseline to adhere to
regulations. As show in fig. 2al Vicuna-7b-v1.5 exhibits a surprising outcome, surpassing the
supervised model by approximately 2%. However, it can only annotate about 60% of the samples
during inference. We would also like to highlight that these LLMs especially Vicuna exhibit
the capability to generate reasons for classifications, a characteristic typically absent in human
annotations.

Our findings reveal a noteworthy disparity in performance between LLama models and Vicuna
models, with the latter essentially representing a fine-tuned iteration of the former. Our investigation
suggests that the substantial improvement observed in Vicuna models compared to LLama models
can be predominantly attributed to the fine-tuning process on the instruct dataset, as detailed in Zheng
et al. [34]]. Specifically, the refinement through fine-tuning empowers LLama models to align more
closely with the provided instructions within the prompts, resulting in significantly improved accuracy
and, consequently, more adept zero-shot annotation performance.

Intuitively, the inclusion of the image modality should yield a positive improvement in annotation
tasks. However, when examining Figure[Za]and Figure[2D] it’s evident that InstructBLIP encounters
challenges in outperforming its unimodal counterparts, such as Vicuna-7b and Vicuna-13b. Never-
theless, it’s important to note that InstructBLIP has a significantly higher answer rate compared to
other methods. Thus, it’s not straightforward to conclude that the addition of the image modality
consistently enhances annotation performance. This observation may be attributed to the way the
image modality is integrated, as InstructBLIP relies on mapping the image modality to the LLM’s
embedding space, rather than incorporating pre-training with the image modality.



4.3 Comparing human-annotated and LL.M-generated labels for supervised model training

In this section, we train the MMBT classifier as described in Section@ using both human labels
and LLM labels, and subsequently compare their performances. The LLM labels utilized for these
evaluations are derived from the InstructBLIP-7b and InstructBLIP-Flan-t5-xx1 for Hateful Memes
and MM-IMDB, respectively due to their good performance and high answer percentage identified in
in Section[4.2] We convert the output of this model into labels for classification and employ them to
train the MMBT classifier.

As shown in table[T|there is a significant reduction in performance when transitioning from human
labels to LLM-generated labels. This decline can be attributed to the inherent noise present in the
labels generated by LLMs, leading to a degradation in performance. These findings underscore the
continued necessity for human-labelled data in training machine learning models, indicating that the
label annotation process cannot be entirely automated with the advent of LLMs.

Dataset Model trained with human labels Model trained with LLM labels
Hateful Memes 0.64 0.60
MM-IMDb 0.84 0.75

Table 1: Comparison of models trained with human Labels and LLM Labels on different datasets.

4.4 Multi-lingual performance

In this section, we delve into the multi-lingual capabilities of the Vicuna-13b v1.5 model, recognized
as the top performer for annotation tasks, as highlighted in section f.2] As shown in table [2]
the model’s performance significantly diminishes when handling languages other than English.
This observation can primarily be attributed to the fact that the model’s pre-training dataset is
predominantly composed of English data, encompassing approximately 90% of the entire pre-training
dataset Touvron et al. [29]]. We believe that fine-tuning the model on these language-specific datasets
may aid in improving its performance, but we defer such an analysis to future work.

Task Language Accuracy % of pretraining data Touvron et al. [29]

French 0.41 0.16%
XNLI Dutch 0.42 0.17%
English 0.53 89.7%

Table 2: Vicuna-13b v1.5 language wise performance

5 Conclusion

In this study, we conducted a benchmark of various large language models, specifically focusing on
their performance across diverse annotation tasks. Our primary goal was to explore the feasibility
of utilizing annotations generated by LLMs for training smaller models, thereby reducing reliance
on human label collection. The need for human annotations is often associated with significant
costs, time constraints, and the necessity for domain expertise. Among the tested language models,
Vicuna-13b gives good performance across a spectrum of downstream tasks. Recognizing that
human annotators leverage different modalities, such as images, we incorporated these modalities
into the annotation process through the BLIP-2 architecture. However, we observed that the utility
of images varied depending on the specific task at hand. To assess the viability of LLM-generated
labels, we substituted them for human labels and trained a supervised model and observed consistent
decrease in performance. This underscores the current challenges and limitations in fully replacing
human-generated labels with those generated by LLMs. We anticipate that our insights will empower
machine learning practitioners to make informed decisions regarding the incorporation of LLMs
as annotators. Furthermore, we hope that this work will stimulate further research to enhance the
annotation performance of LLMs, ultimately bringing them closer to the quality of human-generated
labels.
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A Prompts used for different datasets

Dataset Prompt
Hateful Memes Is the text above hateful?
MM-IMDB Identify the genre of this movie? Options: drama, comedy or both. Provide short answers.

Table 3: Prompts for Hateful Memes and MM-IMDB datasets.

B Case studies

When two beautiful women fall for the unluckiest guy in the world his life takes on delicious complications. Identify the genre of

H Dlnqu Tgxt i this movie? Options: drama, comedy or both? Provide short answers.
: escription+ !

! Instruction H

i Ground Truth i It's a comedy movie.

The genre of this film is likely a romantic comedy. The plot description suggests a lighthearted and humorous tone, with
elements of romance and relationships between the three main characters.
Vicuna-13b-v1.5

This film could be classified as a romantic comedy. The genre typically combines elements of both romance and comedy,
Vicuna-7b-v1.5 and the description you provided suggests that the film will likely focus on the relationship between the two women and the
unlucky guy, with a mix of humor and drama.

InstructBLIP-13b Both

InstructBLIP-7b Comedy

InstructBLIP-Flan-T5- Comedy
11b

Figure 3: This example shows that all models except InstructBLIP 13b responds correctly. We also
observe that Vicuna models are able to provide justifications for classification as well.

10



Input Image

Chris Hunter is a sly newsreel reporter. While in Shanghai doing reports on the Chinese-Japanese war, he meets pilot Aima

H DZ‘S;: 1;2:+ Harding. At first she doesn't trust him, but by a trick he manages to get her hired as his assistant. During an adventurous
| Instru’r):tion 1 expedition through the jungles of South America he manages to change her view of him. Identify the genre of this movie?
H Options: drama, comedy or both? Provide short answers.

E Ground Truth i It's both comedy and drama.

This movie is a combination of both drama and adventure. It has elements of a romantic comedy, but the main focus is on the

adventurous expedition through the jungles of South America.
Vicuna-13b-v1.5

The genre of this movie is drama and adventure.
Vicuna-7b-v1.5

InstructBLIP-13b Drama

InstructBLIP-7b Drama

InstructBLIP-Flan-T5- Comedy
11b

Figure 4: This example shows Vicuna-13b is only able to answer the question correctly with proper
reasons while the other fails to provide correct label.
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