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ABSTRACT

The problem of spurious correlations (SCs) arises when a classifier relies on non-
predictive features that happen to be correlated with the labels in the training data.
Previous SC benchmark datasets suffer from varying issues, e.g., over-saturation
or only containing one-to-one (O2O) SCs, but no many-to-many (M2M) SCs aris-
ing between groups of spurious attributes and classes. In this paper, we present
Spawrious-{O2O, M2M}-{Easy, Medium, Hard}, an image classification bench-
mark suite containing spurious correlations between classes and backgrounds. We
employ a text-to-image model to generate photo-realistic images and an image cap-
tioning model to filter out unsuitable ones. The resulting dataset is of high quality
and contains approximately 152k images. Our experimental results demonstrate
that state-of-the-art group robustness methods struggle with Spawrious.

1 INTRODUCTION

To make models more robust to unseen test distributions, mitigating a classifier’s reliance on spurious,
non-causal features that are not essential to the true label has attracted lots of research interest
(Sagawa* et al., 2020; Arjovsky et al., 2019; Kaddour et al., 2022b; Izmailov et al., 2022). For
example, classifiers trained on ImageNet (Deng et al., 2009) have been shown to rely on backgrounds
(Xiao et al., 2020; Singla & Feizi, 2022; Neuhaus et al., 2022), which are spuriously correlated with
class labels but, by definition, not predictive of them. Recent work has focused substantially on
developing new methods for addressing the spurious correlations (SCs) problem (Kaddour et al.,
2022b), yet, studying and addressing the limitations of existing benchmarks remains underexplored.
For example, the Waterbirds (Sagawa* et al., 2020), and CelebA hair color (Liu et al., 2015)
benchmarks remain among the most used benchmarks for the SC problem; yet, GroupDRO (Sagawa*
et al., 2020) achieves 90.5% worst-group accuracy using group adjusted data with a ResNet50
pretrained on ImageNet.

Another limitation of existing benchmarks is their sole focus on overly simplistic one-to-one (O2O)
spurious correlations, where one spurious attribute correlates with one label. However, in reality, we
often face many-to-many (M2M) spurious correlations across groups of classes and backgrounds,
which we formally introduce in this work. While some benchmarks include multiple training
environments with varying correlations (Koh et al., 2021), they do not test classification performance
on reversed correlations during test time. Such M2M-SCs are not an aggregation of O2O-SCs and
cannot be expressed or decomposed in the form of the latter; they contain qualitatively different
spurious structures, as shown in Figure 2. To our knowledge, this work is the first to conceptualize
and instantiate M2M-SCs in image classification problems.

Contributions We introduce Spawrious-{O2O, M2M}-{Easy, Medium, Hard}, a suite of image
classification datasets with O2O and M2M spurious correlations and three difficulty levels each.
Recent work (Wiles et al., 2022; Lynch et al., 2022; Vendrow et al., 2023) has demonstrated a
proof-of-concept to effectively discover spurious correlation failure cases in classifiers by leveraging
off-the-shelf, large-scale, image-to-text models trained on vast amounts of data. Here, we take this
view to the extreme and generate a novel benchmark with 152, 064 images of resolution 224× 224,
specifically targeted at the probing of classifiers’ reliance on spurious correlations.

Our experimental results demonstrate that state-of-the-art methods struggle with Spawrious, most
notably on the Hard-splits with < 73% accuracy using ResNet50 pretrained on ImageNet.
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Figure 1: Spawrious Challenges: Letters on the images denote the background, and the bottom bar
in Figure 1a indicates each class’s proportion of the spurious background. In the O2O challenge, each
class associates with a background during training, while the test data contains unseen combinations
of class-background pairs. In the M2M challenge, a group of classes correlates with a group of
backgrounds during training, but this correlation is reversed in the test data.
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(c) O2O: test data
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(d) M2M: test data

Figure 2: Data distributions for our challenges: xi is a random image sampled, each si is a spurious
attribute, and each ci is a class label. The edges indicate the probability that the sample xi has a given
property, conditional on previous steps in the tree. The leaf nodes indicate the possible attribute-class
combinations in the distribution. The colors emphasize the distribution shift in the test data.

2 BENCHMARK DESIDERATA

2.1 SIX DESIDERATA

1. Photo-realism, unlike datasets containing cartoon/sketch images (Gulrajani & Lopez-Paz, 2021)
or image corruptions (Hendrycks & Dietterich, 2019), which are known to conflict with current
backbone network architectures (Geirhos et al., 2018a;b; Hermann et al., 2020), possibly confounding
the evaluation of OOD algorithms. 2. Non-binary classification problem, to minimize accidentally
correct classifications achieved by chance. 3. Inter-class homogeneity and intra-class hetero-
geneity, i.e., low variability between and high variability within classes, to minimize the margins
of the decision boundaries inside the data manifold (Murphy, 2022). This desideratum ensures that
the classification problem is non-trivial. 4. High-fidelity backgrounds including complex features
to reflect realistic conditions typically faced in the wild instead of monotone or entirely removed
backgrounds (Xiao et al., 2020). 5. Access to multiple training environments, i.e., the conditions of
the Domain Generalization problem (Gulrajani & Lopez-Paz, 2021), which allow us to learn domain
invariances, such that classifiers can perform well in novel test domains. 6. Multiple difficulty levels,
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so future work can study cost trade-offs. For example, one may budget higher computational costs
for methods succeeding on difficult datasets than those that succeed only on easy ones.

2.2 SPURIOUS CORRELATIONS (ONE-TO-ONE)

Here, we provide some intuition and discuss the conditions for a (one-to-one) spurious correlation
(SC). We define a correlated, non-causal feature as a feature that frequently occurs with a class but
does not cause the appearance of the class (nor vice versa). We abuse the term “correlated” as it is
commonly used by previous work, but we consider non-linear relationships between two random
variables too. Further, we call correlated features spurious if the classifier perceives them as a feature
of the correlated class.

Next, we want to define a challenge that allows us to evaluate a classifier’s harmful reliance on
spurious features. Spurious features are not always harmful; even humans use context information to
make decisions (Geirhos et al., 2020). However, a spurious feature becomes harmful if it alone is
sufficient to trigger the prediction of a particular class without the class object being present in the
image (Neuhaus et al., 2022).

To evaluate a classifier w.r.t. such harmful predictions, we evaluate its performance when the spurious
correlations are reverted. The simplest setting is when a positive/negative correlation exists between
one background variable and one label in the training/test environment.

O2O-SC Challenge
Let p(X, S, C) be a distribution over images X ∈ RD, spurious attributes S ∈ S =
{s1, . . . , sK}, and labels C ∈ C = {c1, . . . , cP }. Given p̂data ̸= ptest, and K = P it holds
that for i ∈ [K],

corrp̂data
(1(S = si),1(C = ci)) > 0, corrptest

(1(S = si),1(C = ci)) < 0. (1)

where the indicator function 1(X = x) is non-zero when the variable X equals the value x.

Figure 1a illustrates the one-to-one (O2O) SC, in which pair-wise SCs between spurious features S
and labels C exist within training environments, which then differ in the test environment.

2.3 MANY-TO-MANY SPURIOUS CORRELATIONS

Figure 2 shows an example of how to construct M2M-SCs, which contain richer spurious structures,
following an hierarchy of the class groups correlating with spurious attribute groups. As we will see
later in Section 3.2, the data-generating processes we instantiate for each challenge differ qualitatively.

M2M-SC Challenge
Consider p(X, S, C) defined in the O2O-SC Challenge. We further assume the existence of
partitions S = S1∪̇S2 and C = C1∪̇C2. Given p̂data, ptest, it holds that for j ∈ {1, 2}

corrp̂data
(1(S ∈ Sj),1(C ∈ Cj)) = 1, corrptest

(1(S ∈ Sj),1(C ∈ Cj)) = −1. (2)

3 THE SPAWRIOUS CHALLENGE

3.1 DATASET CONSTRUCTION

We instantiate the desiderata introduced in Section 2 by presenting Spawrious, a synthetic image
classification dataset containing images of four dog breeds (classes) in six background locations
(spurious attributes). Figure 3 summarizes the dataset construction pipeline, which we now discuss
in more detail. The main idea is to leverage recently proposed text-to-image models (Rombach
et al., 2022) for photo-realistic image generation and image-to-text models (NLP Connect, 2022) for
filtering out low-quality images. We address potential ethical concerns that may arise from using a
generative model to construct this dataset in Appendix B.
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Figure 3: Spawrious Pipeline: We leverage text-to-image models for generation (Steps 1-3) and
image-to-text models for cleaning of bad images (Steps 4-6). Details in Section 3.1 and Appendix F.

A prompt template allows us to define high-level factors of variation. We then sample prompts by
filling in randomly sampled values for these high-level factors. The text-to-image model generates
images given a sampled prompt; we use Stable Diffusion v1.4 (Rombach et al., 2022). We pass the
raw, generated images to an image-to-text (I2T) model to extract a concise description; here, we
use the ViT-GPT2 image captioning model (NLP Connect, 2022). We perform a form of substring
matching by checking whether important keywords are present in the caption, e.g., “dog”. This step
avoids including images without class objects, which we sometimes observed due to the T2T model
ignoring parts of the input prompt. We keep only “clean” images whose captions include important
keywords. More details on this pipeline and possible failures are discussed in Appendix F, as well as
a measure of the accuracy of the prompt-image alignment in Appendix G.

3.2 SATISFYING BENCHMARK DESIDERATA

To ensure photorealism, we generate images using Stable Diffusion v1.4 (Rombach et al., 2022),
trained on a large-scale real-world image dataset (Schuhmann et al., 2022), while carefully filtering
out images without detectable class objects. We construct a 4-way classification problem to reduce
the probability of accidentally correct classifications compared to a binary classification problem
(e.g., CelebA hair color prediction or Waterbirds). Next, we chose dog breeds to reduce inter-class
variance, inspired by the difference in classification difficulty between Imagenette (easily classified
objects) (Howard, 2019a), and ImageWoof (Howard, 2019b) (dog breeds), two datasets based on
subsets of ImageNet (Deng et al., 2009). We increase intra-class variance by adding animal poses to
the prompt template.

We add “[location] [time of day]” variables to the prompt template to ensure diverse backgrounds,
and select six combinations after careful experimentation with dozens of possible combinations,
abandoning over-simplistic ones. Our final prompt template takes the form “one [fur] [animal]
[pose] [location], [time of day]. highly detailed, with cinematic lighting, 4k resolution, beautiful
composition, hyperrealistic, trending, cinematic, masterpiece, close up”, and there are 72 possible
combinations. The variables [location]/[animal] correspond to spurious backgrounds/labels for a
specific background-class combination. The other variables take the following values: “fur: black,
brown, white, [empty]; pose: sitting, running, [empty]; time of day: pale sunrise, sunset, rainy day,
foggy day, bright sunny day, bright sunny day”.

To construct multiple training environments, we randomly sample from a set of background-class
combinations, which we further group by their difficulty level into easy, medium, and hard. We
construct two datasets for each SC type with 3, 168 images per background-class combination, thus
2 SC types × 4 environments × 6 difficulties × 3, 168 = 152, 064 images in total.

O2O-SC Challenge We select combinations such that each class is observed with two backgrounds,
spurious bsp and generic bge. For all images with class label ci in the training data, µ% of them have
the spurious background bsp

i and (100− µ)% of them have the generic background bge. Importantly,
each spurious background is observed with only one class (p̂data(b

sp
i | cj) = 1 if i = j and 0 for

i ̸= j), while the generic background is observed for all classes with equal proportion. We train
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Class Train Env 1 Train Env 2 Test Train Env 1 Train Env 2 Test Train Env 1 Train Env 2 Test
O2O-Easy O2O-Medium O2O-Hard

Bulldog 97% De 3% B 87% De 13% B 100% Di 97% M 3% De 87% M 13% De 100% J 97% J 3% B 87% J 13% B 100% M
Dachshund 97% J 3% B 87% J 13% B 100% S 97% B 3% De 87% B 13% De 100% Di 97% M 3% B 87% M 13% B 100% S
Labrador 97% Di 3% B 87% Di 13% B 100% De 97% Di 3% De 87% Di 13% De 100% B 97% S 3% B 87% S 13% B 100% De

Corgi 97% S 3% B 87% S 13% B 100% J 97% J 3% De 87% J 13% De 100% S 97% De 3% B 87% De 13% B 100% J

M2M-Easy M2M-Medium M2M-Hard
Bulldog 100% Di 100% J 50% S 50% B 100% De 100% M 50% Di 50% J 100% B 100% S 50% De 50% M

Dachshund 100% J 100% Di 50% S 50% B 100% M 100% De 50% Di 50% J 100% B 100% S 50% De 50% M
Labrador 100% S 100% B 50% Di 50% J 100% Di 100% J 50% De 50% M 100% M 100% De 50% B 50% S

Corgi 100% B 100% S 50% Di 50% J 100% J 100% Di 50% De 50% M 100% M 100% De 50% B 50% S

Table 1: Proportions of Spurious Backgrounds By Class and Environment. Backgrounds include:
Beach (B), Desert (De), Dirt (Di), Jungle (J), Mountain (M), Snow (S).

on two separate environments (with distinct data) that differ in their µ values. Thus, the change in
this proportion should serve as a signal to a robustness-motivated optimization algorithm (e.g. IRM
(Arjovsky et al., 2019), GroupDRO (Sagawa* et al., 2020) etc.) that the correlation is spurious.

M2M-SC Challenge First, we construct disjoint background and class groups S1,S2, C1, C2, each
with two elements. Then, we select background-class combinations for the training data such that
for each class c ∈ Ci, we pick a combination (s, b) for each s ∈ Si. Second, we introduce two
environments as shown in Figure 1b.

4 EXPERIMENTS

We fine-tune a ResNet50 (He et al., 2016) model pre-trained on ImageNet, following previous work
on domain generalization (Dou et al., 2019; Li et al., 2019; Gulrajani & Lopez-Paz, 2021). Given the
size of our dataset, in preliminary experiments, we also tried training a ResNet50 from scratch, which
consistently led to worse results. See Appendix C for analysis on the effect of ImageNet pretraining.

Methods The field of worst-group-accuracy optimization is thriving with a plethora of proposed
methods, making it impractical to compare all available methods. We choose the following six
popular methods and their DomainBed implementation (Gulrajani & Lopez-Paz, 2021). ERM
(Vapnik, 1991) refers to the canonical, average-accuracy-optimization procedure, where we treat all
groups identically and ignore group labels, not targeting to improve the worst group performance.
CORAL (Sun & Saenko, 2016) penalizes differences in the first and second moment of the feature
distributions of each group. IRM (Arjovsky et al., 2019) is a causality-inspired (Kaddour et al.,
2022b) invariance-learning method, which penalizes feature distributions that have different optimal
linear classifiers for each group. CausIRL (Chevalley et al., 2022) is another causally-motivated
algorithm for learning invariances, whose penalty considers only one distance between mixtures
of latent features coming from different domains. GroupDRO (Sagawa* et al., 2020) uses Group-
Distributional Robust Optimization to explicitly minimize the worst group loss instead of the average
loss. MMD-AAE (Li et al., 2018) penalizes distances between feature distributions of groups via the
maximum mean discrepancy (MMD) and learning an adversarial auto-encoder (AAE). JTT (Zheran
Liu et al., 2021) runs ERM for a certain number of epochs, stops, then runs classifications on all
the training samples; then the misclassifications are up-weighted in the loss, and training continues.
W2D (Huang et al., 2022) upweights datapoints in the loss that have either high feature loss or sample
loss . VREx (Krueger et al., 2020) penalizes variance between the environment-specific training
losses. Fish (Shi et al., 2021) rewards large inner products between environment-specific training
gradients. Mixup (Xu et al., 2019) linearly interpolates between two images’ pixel values, and has
been implemented with random shuffle (randomly mix images across environments and labels) and
LISA (Yao et al., 2022) (alternate between mixing across environments for the same label, or across
labels for the same environment).

Hyper-parameter tuning We follow the hyper-parameter tuning process used in DomainBed
(Gulrajani & Lopez-Paz, 2021) with a minor modification. We keep the dropout rate (0.1) and the
batch size fixed (128 for ResNets and 64 for ViTs) because we found them to have only a very
marginal impact on the performance. We tune the learning rate and weight decay on ERM with a
random search of 20 random trials. For all other methods, we further tune their method-specific
hyper-parameters with a search of 10 random trials. We perform model selection based on the training
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Method One-To-One SC Many-To-Many SC Average
Easy Medium Hard Easy Medium Hard

ERM (Vapnik, 1991) 77.49%±0.05 76.60%±0.02 71.32%±0.09 83.80%±0.01 53.05%±0.03 58.70%±0.04 70.16%
GroupDRO (Sagawa* et al., 2020) 80.58%±0.74 75.96%±2.18 76.99%±2.60 79.96%±2.79 61.01%±4.64 60.86%±1.71 72.56%

IRM (Arjovsky et al., 2019) 75.45%±2.57 76.39%±2.22 74.90%±1.27 76.15%±2.83 67.82%±4.39 60.93%±1.09 71.94%
CORAL (Sun & Saenko, 2016) 89.66%±1.23 81.05%±1.20 79.65%±1.82 81.26%±1.61 65.18%±4.85 67.97%±0.91 77.46%

CausIRL (Chevalley et al., 2022) 89.32%±1.20 78.64%±0.62 80.40%±1.32 85.76%±1.02 63.15%±2.98 68.93%±0.28 77.20%
MMD-AAE (Li et al., 2018) 78.81%±0.02 75.33%±0.03 72.66%±0.01 80.55%±0.02 59.43%±0.04 54.39%±0.05 70.20%

Fish (Shi et al., 2021) 77.51%±1.58 77.72%±2.82 74.73%±2.40 81.60%±3.44 63.03%±1.96 58.94%±2.56 72.26%
VREx (Krueger et al., 2020) 84.69%±1.69 77.56%±0.62 75.41%±2.67 81.22%±1.25 54.28%±5.42 59.21%±5.08 72.06%
W2D (Huang et al., 2022) 81.94%±1.03 76.74%±0.70 76.84%±1.32 80.80%±2.24 62.82%±2.23 61.89%±2.71 73.50%

JTT (Zheran Liu et al., 2021) 90.24%±3.09 87.28%±0.91 87.41%±0.99 79.23%±1.83 60.56%±5.55 57.58%±3.86 77.05%
Mixup (Xu et al., 2019) // random shuffle 88.48%±0.74 82.75%±3.12 75.75%±1.16 89.61%±0.66 77.23%±0.97 71.21%±2.33 80.84%

Mixup // LISA (Yao et al., 2022) 88.64%±0.51 80.83%±1.33 72.54%±1.07 87.24%±2.51 71.78%±0.31 72.97%±4.23 79.00%

Table 2: Results for Spawrious-{O2O,M2M}-{Easy, Medium, Hard} using ImageNet-pretrained
ResNet-50: JTT (Zheran Liu et al., 2021) performs the best across the O2O challenges, while Mixup
methods (Xu et al., 2019) perform best across M2M challenges and overall attain the highest average.

domain validation accuracy of a subset of the training data. We reuse the hyper-parameters found
for Spawrious-{O2O}-{Easy} and Spawrious-{M2M}-{Hard} on Spawrious-{O2O}-{Medium,
Hard} and Spawrious-{M2M}-{Easy, Medium}, respectively. We also initially explored the ViT
(Dosovitskiy et al., 2020) architecture, with results shown in Appendix D. Due to its poor performance,
we chose to focus on ResNet50 results.

Evaluation We evaluate the classifiers on a test environment where the SCs present during training
change, as described in Table 1. For O2O, multiple ways exist to choose a test data combination; we
evaluate one of them as selected using a random search process. In M2M, because there are only two
class groups and two background groups, we only need to swap them as seen in Figure 1b.

We find that JTT performs the best on the O2O challenges while being one of the worst methods
on the M2M challenges. Within the M2M challenge, we find Mixup to perform the best, for both
random shuffle and LISA, and overall Mixup attains the best average. This result contributes to the
debate whether, for a fixed architecture, most robustness methods perform about the same (Gulrajani
& Lopez-Paz, 2021) or not (Wiles et al., 2021). The performances of most methods get consistently
worse as the challenge becomes harder. Most often, the data splits of our newly formalized M2M-SC
are significantly more challenging than the O2O splits, most notably M2M-{Hard, Medium}. We
conjecture that there is a strong need for new methods targeting such. {ERM, GroupDRO} and
{CORAL, CausIRL} perform about the same, despite much different robustness regularization. All
methods consistently achieve 98-99% in-distribution test performance (not shown in Table 3 to save
space) despite differences in OOD performance. ERM performs worst on average for the ResNet50
set of results.

5 RELATED WORK

We summarized related benchmarks in Appendix A. Further, we outline some works closest to ours
here.

Out-of-distribution Generalization approaches involve training a model simultaneously on multi-
ple related but different domains, exploiting additional environment index labels in the training data
(Ben-David et al., 2010; Blanchard et al., 2011; Muandet et al., 2013; Arjovsky et al., 2019), which
our benchmark provides too. In order to design effective training losses, approaches may optimize the
loss on the worst performing environment (Sagawa* et al., 2020), or enforce an invariance constraint,
such as on the features (Sun & Saenko, 2016; Arjovsky et al., 2019; Chevalley et al., 2022) or on the
gradients (Rame et al., 2022a). We discuss the methods we applied to our benchmark in Section 4.

Spurious Correlations have a long history in mathematical statistics (Pearson, 1897; Simon, 1954)
and recently entered the machine learning discourse ?Sagawa et al. (2020); Izmailov et al. (2022).
They have been detected in common image classification settings via the usage of saliency maps
(Moayeri et al., 2022a; Singla & Feizi, 2022). We use saliency maps to validate that an ERM model
trained on Spawrious learned dependence on the spurious background feature in Appendix E.
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Causal Inference The theory of causation provides another perspective on the sources and possible
mitigations of spurious correlations (Peters et al., 2016; 2017; Kaddour et al., 2022b). Namely,
we can formalize environment-specific data as samples from different interventional distributions,
which keep the influence of variables not affected by the corresponding interventions invariant. This
perspective has motivated several invariance-learning methods that make causal assumptions on the
data-generating process (Arjovsky et al., 2019; Kaddour et al., 2022b). The field of treatment effect
estimation also deals with mitigating spurious correlations from observational data (Chernozhukov
et al., 2018; Künzel et al., 2019; Kaddour et al., 2021; Nie & Wager, 2021).

Test-time domain adaptation with labels involves either fine-tuning a model Rosenfeld et al.
(2022); Izmailov et al. (2022); ? or in-context learning Dong et al. (2022) to leverage a small amount
of labeled test-domain examples.

Miscellaneous Nagarajan et al. (2020) analyze geometric and statistical skews. Geometric skews
occur when there is an imbalance between groups of types of data points and lead to misclassification
when the balance changes. This understanding has motivated the removal of data points from the
training data to balance between groups of data points (Arjovsky et al., 2022). Further, Ye et al.
(2022) provide a two-dimensional decomposition of OOD difficulty into correlation and diversity
shifts between the training and test set. The challenges in our work span both of these dimensions,
because the test environment contains unseen background-foreground combinations, a diversity shift,
and the background is spuriously correlated with the foreground in the training data, a correlation
shift.

6 CONCLUSION

We present Spawrious, an image classification benchmark with two types of spurious correlations, one-
to-one (O2O) and many-to-many (M2M). We carefully design six dataset desiderata and instantiate
them by leveraging recent advances in text-to-image and image captioning models. Next, we conduct
experiments, and our findings indicate that even state-of-the-art group robustness techniques are
insufficient in handling Spawrious, particularly in scenarios with Hard-splits where accuracy is
below 73%. Our analysis of model errors revealed a dependence on irrelevant backgrounds, thus
underscoring the difficulty of our dataset and highlighting the need for further investigations in this
area.

The main limitations of our work have to do with how flexible the dataset can be. Spurious correlations
can include non-background spurious attributes which currently are not covered. For example,
Neuhaus et al. (2022) find that in the ImageNet (Deng et al., 2009) dataset, the class “Hard Disc” is
spuriously correlated with “label”; however, “label” is not a background feature but rather part of the
classification object. Spurious correlations also exist in other data modalities, e.g., text classification,
leveraging the text generation capabilities of large language models (Brown et al., 2020). Other
limitations of our work include evaluating more generalization techniques on Spawrious, including
different robustness penalties (Liu et al., 2021; Blumberg et al., 2019; Krueger et al., 2021; Cha et al.,
2021; Mahajan et al., 2021; Izmailov et al., 2022; Rame et al., 2022a), environment inference (Creager
et al., 2021; Li et al., 2022; Sohoni et al., 2022; Huang et al., 2022), meta-learning (Zhang et al., 2020;
Collins et al., 2020; Kaddour et al., 2020; Wang et al., 2021; Jiang et al., 2023), unsupervised domain
adaptation (Ganin & Lempitsky, 2015; Long et al., 2016; Xu et al., 2021), dropout (LaBonte et al.,
2022), flat minima (Cha et al., 2021; Kaddour et al., 2022a), weight averaging (Rame et al., 2022b;
Wortsman et al., 2022; Kaddour, 2022), (counterfactual) data augmentation (Kaddour et al., 2022b;
Gowal et al., 2021; Yao et al., 2022; Yin et al., 2023), fine-tuning of only specific layers (Kirichenko
et al., 2023; ?), diversity (Teney et al., 2022; Rame et al., 2022b), etc. Lastly, there is a possibility
of bias creeping into the dataset via the generative model. Chuang et al. (2023) and others (Teo
& Cheung, 2021; Zhao et al., 2018) have studied debiasing techniques for vision-language models,
such as Stable Diffusion v1, and have moderate success in removing unexpected sources of spurious
correlations.
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A EXISTING BENCHMARKS

We summarize the differences between Spawrious and related benchmarks in Table 3. DomainBed
(Gulrajani & Lopez-Paz, 2021) is a benchmark suite consisting of seven previously published datasets
focused on domain generalization (DG), not on spurious correlations (excluding CMNIST, which we
discuss separately). After careful hyper-parameter tuning, the authors find that ERM, not specifically
designed for DG settings, as well as DG-specific methods, perform all about the same on average.
They conjecture that these datasets may comprise an ill-posed challenge. For example, they raise the
question of whether DG from a photo-realistic training environment to a cartoon test environment
is even possible. In contrast, we follow the same rigorous hyper-parameter tuning procedure by
(Gulrajani & Lopez-Paz, 2021) and observe stark differences among methods on Spawrious in
Section 4, with ERM being the worst and 10.68% points worse than the best method on average.

Dataset DG O2O-SC M2M-SC Synthetic Dataset Size
CelebA-Hair Color Liu et al. (2015) ✗ ✓ ✗ ✗ 162770

Waterbirds Sagawa* et al. (2020) ✗ ✓ ✗ ✓ 4795
CMNIST Arjovsky et al. (2019) ✓ ✓ ✗ ✓ 60000

DomainBed∗ Gulrajani & Lopez-Paz (2021) ✓ ✗ ✗ ✗ -
WILDS Koh et al. (2021) ✓ ✗ ✗ ✗ -
NICO Zhang et al. (2023) ✓ ✗ ✗ ✗ 25000

MetaShift Liang & Zou (2022) ✓ ✗ ✗ ✗ 12868
Spawrious ✓ ✓ ✓ ✓ 152000

Table 3: Differences between Spawrious and
other benchmarks, according to whether they
pose a Domain Generalization (DG), One-To-One-
and/or Many-To-Many Spurious Correlations chal-
lenge.

Like DomainBed, OoD-Bench (Ye et al., 2022)
combines previously published datasets with
the added contribution of characterizing them
as a combination of diversity shift and style
shift, allowing the evaluation of algorithms on
a more comprehensive range of shifts. Meth-
ods that handle both shifts, like (Huang et al.,
2022), will consistently beat ERM. By testing on
unseen backgrounds-foreground combinations
while having correlated backgrounds, we can
address the two types of shifts they describe,
while most datasets only address one type of
shift. WILDS (Koh et al., 2021), NICO (Zhang
et al., 2023), FOCUS (Kattakinda & Feizi, 2022), MetaShift (Liang & Zou, 2022) collect in-the-wild
data and group data points with environment labels. However, these benchmarks do not induce
explicit spurious correlations between environments and labels. For example, WILDS-FMOW (Koh
et al., 2021; Christie et al., 2017) possesses a label shift between non-African and African regions;
yet, the test images pose a domain generalization (DG) challenge (test images were taken several
years later than training images) instead of reverting the spurious correlations observed in the training
data. Waterbirds (Sagawa* et al., 2020), and CelebA hair color (Liu et al., 2015; Izmailov et al., 2022)
are binary classification datasets including spurious correlations but without unseen test domains
(DG). Further, Idrissi et al. (2022) illustrates that a simple class-balancing strategy alleviates most
of their difficulty, while Spawrious is class-balanced from the beginning. ColorMNIST (Arjovsky
et al., 2019) includes spurious correlations and poses a DG problem. However, it is based on MNIST
and, therefore, over-simplistic, i.e., it does not reflect real-world spurious correlations involving
complex background features, such as the ones found in ImageNet (Singla & Feizi, 2022; Neuhaus
et al., 2022). Hard ImageNet (Moayeri et al., 2022b) is a benchmark created by collecting images
in ImageNet that contain spurious features, however, they do not satisfy our desiderata of multiple
training environments and multiple difficulty levels Section 2. Like us, Li et al. (2023) create two
synthetic datasets, UrbanCars and ImageNet-W, to test for spurious feature reliance, but these datasets
do not satisfy our desiderata of photorealism and high-fidelity backgrounds Section 2. PUG (Bordes
et al., 2023) synthetically generate a dataset of unfamiliar object-location images, but they do not
create a benchmark that introducese explicit spurious correlations between environment and labels.
None of the above benchmarks include explicit training and test environments for M2M-SCs.

B ETHICAL CONCERNS

B.1 BIASES

We first acknowledged that generative models can inherit biases from their training data, including
those related to dog breed representation and dog breed characteristics. We utilized various measures
to mitigate these biases:

• Dog Breed Representation: By design, we ensured that the breeds in our dataset are balanced,
avoiding underrepresentation or overrepresentation of any particular breed.
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• Dog Breed Characteristics: We examined the characteristics associated with each breed and
verified that our model does not exaggerate or stereotype them.

Further, we employed quality control measures, as described in Section 4.1, to guarantee that images
are realistic and high-quality, regardless of breed. We manually reviewed the generated images to
ensure they were free from harmful associations and stereotypes.

B.2 COPYRIGHT CONSIDERATIONS

We purposefully decided to use StableDiffusion, which offers a permissive license that allows for
commercial and non-commercial usage. See more info in (Rombach & Esser, 2022).

Further, we are aware of possible copyright and fair use offenses, which are still debated. To our
knowledge, under US law, fair uses of in-copyright works do not infringe copyrights Samuelson
(2023). Courts consider four factors when assessing fair use defenses: (1) the purpose of the
challenged use, (2) the nature of the copyrighted works, (3) the amount and substantiality of the
taking, and (4) the effect of the challenged use on the market for or value of the copyrighted work,
which we address as follows:

1. Purpose and character: Academic research is nonprofit and educational.
2. Nature of the work: Academic research often involves factual or informational works.
3. Amount and substantiality: We use generated images, which are likely to include only small

portions if any of copyrighted works (Carlini et al., 2023; Somepalli et al., 2023).
4. Effect on the market: Academic research is unlikely to harm the market for the original

work.

C EFFECT OF IMAGENET PRE-TRAINING

Method One-To-One SC Many-To-Many SC Average
Easy Medium Hard Easy Medium Hard

ERM 45.75%±1.26 46.86%±1.10 41.85%±0.56 57.67%±2.55 30.03%±0.28 30.05%±1.34 42.04%
GroupDRO 46.50%±0.91 46.52%±0.95 39.80%±1.66 60.82%±0.58 31.72%±0.35 31.62%±1.72 42.83%
MMD-AAE 44.09%±1.80 46.87%±1.46 39.67%±0.84 61.24%±0.93 32.10%±0.47 30.77%±1.58 42.46%

ERM 77.49%±0.05 76.60%±0.02 71.32%±0.09 83.80%±0.01 53.05%±0.03 58.70%±0.04 70.16%
GroupDRO 80.58%±0.74 75.96%±2.18 76.99%±2.60 79.96%±2.79 61.01%±4.64 60.86%±1.71 72.56%
MMD-AAE 78.81%±0.02 75.33%±0.03 72.66%±0.01 80.55%±0.02 59.43%±0.04 54.39%±0.05 70.20%

Table 4: Impact of ImageNet pretraining: ResNet-50 without ImageNet pretraining (top) vs
ResNet-50 with ImageNet pretraining (bottom) results

We have included ImageNet pretraining for all of our main body results in Table 3, as has been done
for results comparisons on Waterbirds (Sagawa* et al., 2020) and CelebA (Liu et al., 2015) and
has become standard practice for image classification (Krizhevsky et al., 2012). However, we also
measure the performance of a ResNet50 trained just on the Spawrious challenges and report our
results in Table 4. We find that pretraining makes a consistently positive impact on the performance
of the classifiers, with a 28.12% point difference between the ERM performances.

D EFFECT OF MODEL ARCHITECTURE

We experiment with the ViT-B/16 (Dosovitskiy et al., 2020), following (Izmailov et al., 2022; Mehta
et al., 2022). Based on Table 5, we make the following observations: The ViT backbone architecture
worsens the performance for both MMD-AAE and ERM, underperforming the ResNet50. The best
results for ERM were obtained with ResNet50, which performs 29.72% points better than the best
ViT. In the debate on whether ViTs (Dosovitskiy et al., 2020) are generally more robust to SCs
(Ghosal et al., 2022) than CNNs or not (Izmailov et al., 2022; Mehta et al., 2022), our results side
with the latter. We observe that a ViT-B/16 pretrained on ImageNet22k had worse test accuracies
than the ResNet architecture.
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Method One-To-One SC Many-To-Many SC Average
Easy Medium Hard Easy Medium Hard

ERM 36.28%±1.17 32.78%±2.55 30.2%±0.83 55.56%±0.75 32.78%±2.55 30.20%±0.83 40.44%
GroupDRO 41.14%±1.62 51.43%±0.53 40.21%±1.76 53.79%±1.35 30.79%±1.75 25.45%±1.15 40.47%
MMD-AAE 40.64%±3.11 53.36%±0.95 38.54%±1.92 58.42%±1.77 24.75%±0.59 28.91%±2.68 40.77%

ERM 77.49%±0.05 76.60%±0.02 71.32%±0.09 83.80%±0.01 53.05%±0.03 58.70%±0.04 70.16%
GroupDRO 80.58%±0.74 75.96%±2.18 76.99%±2.60 79.96%±2.79 61.01%±4.64 60.86%±1.71 72.56%
MMD-AAE 78.81%±0.02 75.33%±0.03 72.66%±0.01 80.55%±0.02 59.43%±0.04 54.39%±0.05 70.20%

Table 5: Impact of Vit-B instead of ResNet-50: Vit-B pretrained on ImageNet (top) vs ResNet-50
pretrained on ImageNet (bottom) results

Misclassification: “Labrador”
O2O-Hard: Train Data: Corr(Dachshund, Mountains) > 0

Misclassification: “Dachshund” 

True Class of Shown Test Images: “Bulldog”

M2M-Hard: Train Data: Corr(Labrador, Snow) > 0

Figure 4: ERM misclassifications due to spurious correlations. The shown test images correspond
to the class “Bulldog” with spurious backgrounds “Mountains” in the O2O-Hard (left) and “Snow”
in the M2M-Hard (right) challenge.

E MISCLASSIFICATIONS ANALYSIS

In Section 4, we learned that ERM performs particularly poorly on both hard challenges. Now, we
want to investigate why by examining some of the misclassifications. For example, we observe in
Figure 4 that on the test set, the class “Bulldog” is misclassified as the classes whose most common
training set background is the same as “Bulldog”’s test backgrounds.

Note that for all classes and in all data groups, both training and test environments, the number of data
points per class is always balanced; rendering methods like Subsampling large classes (Idrissi et al.,
2022), which achieve state-of-the-art performance on other SC benchmarks, inapplicable. Hence,
we conjecture that despite balanced classes, the model heavily relies on the spurious features of the

“Mountains” and “Snow” backgrounds.

bulldog corgi dach labrador
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labrador
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(a) O2O-Hard
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0.4

0.6
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(b) M2M-Hard

Figure 5: Confusion matrices for ERM models. X-axis: predictions; Y -axis: true labels.

We further corroborate that claim by examining the model’s confusion matrix in Figure 5. For
example, Figure 5a shows the highest non-diagonal value for actual “Dachshund” images being
wrongly classified as “Labrador”. We conjecture the reason being that in O2O-Hard, the background
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of “Dachshund” in the test set is “Snow”, which is the most common background of the training
images of “Labrador”, as shown in Table 1. We examine the features learned by the ERM model
using saliency maps in Appendix E.

Saliency maps (Simonyan et al., 2013; Zhou et al., 2015; Selvaraju et al., 2019; Omeiza et al., 2019)
are a method for investigating the input features that most positively affect a model’s particular
classification. We applied the Smooth Grad-CAM++ saliency map method (Omeiza et al., 2019;
Fernandez, 2020) to the misclassified images from an ERM model in the test domains of the O2O-
Hard and M2M-Hard challenges. The saliency maps we obtained in Figure 6 and Figure 7 suggest
that the ERM model was sensitive to (spurious) background features, although seemingly more in the
O2O challenge than the M2M challenge.

Figure 6: O2O-Hard saliency maps: all images were misclassifications of Bulldog as Dachshund

Figure 7: M2M-Hard saliency maps: all images were misclassifications of Bulldog as Labrador

Next, we compare qualitatively the difference in saliency maps between the Mixup and ERM
optimization methods, which can be seen in Figure 8. While the exact saliency patter differs between
the two methods, they ultimately seem to be attending to the same image features.

Figure 8: Saliency comparisons between Mixup and ERM

F FAILURE ANALYSIS OF THE GENERATION PIPELINE

We conduct a failure analysis in two ways: manual and automatic. In our manual visual examination,
we inspected large samples of the generated images via human annotators (the authors). Our
automated failure analysis pipeline is described in Section 4.2. For example, to test the quality of
a prompt, we only accept it under two conditions: at least 95 images out of 100 look realistic and
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fit the prompt. Second, all remaining images must only be unfit because of the absence of a dog in
the image. Identifying a dog in an image is a relatively easy task for the image captioning model.
We confirmed by evaluating on the unfit images and assessing that they all get flagged by the image
captioning model (the caption does not contain the word dog).

G CLEANLINESS ANALYSIS OF THE DATASET

Figure 9: Volunteers decided on prompt-image alignment for 224x224 images: We asked 10
volunteers to scan images such as the three shown above and return a score for the number of correctly
aligned images

We have checked the accuracy of prompt-image alignment of images such as those in Figure 9 from
a random sample of our dataset using human annotators (10 volunteers). We collected a random
sample of 480 images from our dataset, appended with the intended caption for the image, and then
partitioned this dataset into 10 folders. We asked 10 volunteers to scan the images and return a score
for the number of correctly aligned images. Our scores were: 48, 46, 46, 46, 47, 47, 46, 46, 47, 48;
resulting in an average of 46.7/48 = 97.2%.

H DISCUSSION OF M2M VS O2O

In order to understand how the M2M challenge leads to poor generalisation performance, consider
the following situation, where the classifier achieves low loss in training by simulating a decision
tree within the network, as depicted in Figure 2b of the submission. The model first represents the
background, and then decides which group of dogs the image could be representing conditioned on
the background. Within this setting, the spurious feature dependence arises at the beginning of the
decision tree. In the test data, this decision tree fails to work because the background group is wholly
unpredictive of the class groups. As seen in Figure 2d, the blue background group (s3, s4) is a feature
used by the model to decide between classes (c3, c4), when in fact the model should be deciding
between (c1, c2).

A APPENDIX

You may include other additional sections here.
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