
Oversquashing in Hypergraph Neural Networks

Naganand Yadati
National University of Singapore∗

y.naganand@gmail.com

Abstract
Message Passing Neural Networks (MPNNs) are a type of Graph Neural Net-
works (GNNs) that utilise the graph structure to facilitate the exchange of mes-
sages along the edges. On the one hand, the inductive bias gives rise to a
phenomenon termed "over-squashing," where a vertex’s hidden feature becomes
insensitive to information present in distant vertices. On the other hand, there has
been a recent wave of innovations involving the adaptation of MPNNs and GNNs
to hypergraphs, which relax the notion of an edge to a hyperedge containing
a subset of vertices. In recent times, MPNNs and GNNs have found applica-
tion in web datasets, spanning both graph and hypergraph scenarios. However,
there exists a research gap regarding the investigation of over-squashing within
hypergraph neural networks. Our paper contributes to bridging this precise re-
search gap by investigating several methods each belonging to one of two distinct
classes of hypergraph neural networks. To begin with, we introduce three novel
tests termed HyperEdgeSingle, HyperEdgePath, and HyperEdgeRing designed
specifically for assessing the phenomenon of over-squashing within hypergraph
neural networks. Through theoretical and experimental analyses, we reveal a
counter-intuitive and significant finding: advanced state-of-the-art hypergraph
neural networks are more susceptible to over-squashing than their predecessors.
Validation of the findings is reinforced through experiments conducted on real-
world datasets.

1 Introduction
In the ever-expanding universe of relational data analysis, the synergy between graph theory and
machine learning has paved the way for advanced techniques. Graph Neural Networks (GNNs) [1], a
type of Message Passing Neural Networks (MPNNs), have become the cornerstone for understanding
intricate relationships within relational datasets.

Hypergraphs, a natural extension of graphs, capture richer interactions beyond the binary edges
of graphs among data entities, providing a nuanced perspective. Hypergraphs naturally suit the
intricate nature of web data, allowing us to represent group relationships and higher-order interactions
seamlessly. For example, hyperedges in hypergraphs can naturally model all the references of a
document in web citation graphs, all the documents co-authored by an author in web academic graphs,
and all products purchased together by a customer in user-item interaction networks collected from
online platforms or websites (e.g., Walmart).

There has been a recent wave of innovations involving the adaptation of MPNNs and GNNs to
hypergraphs which we collectively call Hypegraph Neural Networks (HNNs). Most HNNs in
existing literature exchange messages among entities, which can occur either between vertices or
between vertices and hyperedges. The inductive bias of the message passing mechanism gives rise
to a phenomenon termed "over-squashing," where a vertex’s hidden feature becomes insensitive to
information present in distant vertices. Despite the extensive research on oversquashing in traditional
GNNs, the phenomenon remains unexplored in the realm of HNNs, to the best of our knowledge.
This paper fills this precise research gap and makes the following contributions:
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• We present a theoretical analysis to understand oversquashing in HNNs (Section 3).
• We introduce three novel tests termed HyperEdgeSingle, HyperEdgePath, and HyperEdgeRing

to assess the phenomenon of oversquashing in HNNs (Section 4).
• Our categorisation of existing HNNs into two distinct categories, particularly highlighting the

newer models, reveals through both theory and practical experimentation that newer models are
significantly more prone to oversquashing compared to their predecessors (Sections 2, 4, and 6).

• Our theory motivates a novel HNN, named SensHNN, to mitigate oversquashing (Section 5).
• We show that SensHNN achieves superior performance on the three tests and competitive

performance on real-world data compared to state-of-the-art HNNs (Section 6).

2 Related Work
Graph Neural Networks (GNNs). At their core, GNNs aim to learn and propagate information
across vertices in a graph, allowing them to capture relationships, dependencies, and patterns within
structured datasets [1–7]. Popular GNNs such as GCN [8], GAT [9], GraphSAGE [10], and GIN [11]
fall within the broader message passing neural networks [12].

Oversquashing in GNNs. The discovery of oversquashing in GNNs [13] revealed a new challenge
in training GNNs to propagate information across distant nodes in the input graph. Subsequently,
oversquashing has been investigated by evaluating how sensitive GNN hidden node features are to
the initial features of a distant node, a process that has included the use of Jacobian analysis [14–18].
There have been attempts to mitigate the phenomenon [19–24] which encompass rewiring [25–27].

Hypergraph Neural Networks (HNNs). In recent times, researchers have enhanced the versatility
of GNNs by creating HNNs to handle hyperedges in hypergraphs [28, 29]. Earlier models such
as HGNN [30] with weighted clique expansion, HyperGCN [31] featuring non-linear Laplacian,
and HCHA [32] incorporating attention on clique expansion are vertex-centric. More recent HNNs
such as the AllDeepSets and AllSetTransformer [33], equivariant models [34, 35], attention on star
expansion [36–39] among others [40, 41] compute hyperedge embeddings.

3 Theory of Oversquashing in HNNs
3.1 Problem Setup

Let H = (V,E) be a hyprgraph with vertices V = {1, · · · , n} and edges E ⊆ 2V . We make the
assumption that H includes initial vertex features {h(0)

v }v∈V ⊂ Rd. We can view HNNs as functions
parameterised by θ represented as HNNθ : (H, {h(0)

v }v∈V ) 7→ Y . We seek to estimate the parameters
in θ to generate an output in Y through training. This output is associated with common tasks, such
as vertex classification and hyperedge prediction. The same setup adapts to hypergraph-level tasks,
such as hypergraph classification. Furthermore, we let ϕ(l) represent the layer-specific aggregation
operation and ψ(l) the combine operation at layer l used in a message passing neural network [12].

We categorise HNNs as follows:

Vertex-centric HNNs (VC-HNNs). Models in this category follow the following form:

h(l+1)
v = ψ(l)

(
h(l)
v , ϕ

(l)
(
{h(l)

u : {v, u} ⊆ E}
))

,

for l = 0, · · · , L− 1 layers. Here, ϕ(l) are permutation-invariant aggregation functions while ψ(l)

combine the self-state with messages from the aggregated representations.

Vertex-Hyperedge HNNs (VH-HNNs). These models have the specific capability to compute
embeddings for hyperedges and can handle initial hyperedge features {h(0)

e }e∈E ⊂ Rd 2. The
propagation rules in each hidden layer are of the form:

h(l+1)
e = ψ

(l)
V

(
h(l)
e , ϕ

(l)
V

(
{h(l)

v : v ∈ e}
))

, h(l+1)
v = ψ

(l)
E

(
h(l)
v , ϕ

(l)
E

(
{h(l)

e : v ∈ e}
))

,

2We assume d is the same for initial vertex and initial hyperedge features for simplicity. Our analysis can be
easily extended to handle variable sizes.
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Atleast two alternative approaches for generalising HNNs were presented previously, specifically,
UniGNN [37] and AllSet [33]. In these generalisations, HNN models from VC-HNNs and VH-HNNs
can be viewed as specific instances. Nonetheless, our categorisation of HNNs into VC-HNNs and
VH-HNNs is rooted in our observation that these two categories exhibit significantly distinct effects
of oversquashing, a conclusion supported by both theoretical and empirical analyses in our paper.

Background on Oversquashing. Both VC-HNNs and VH-HNNs follow the message-passing
paradigm of an MPNN [12], where messages are exchanged to update hidden representations. For a
vertex v ∈ V to be influenced by features at a shortest-path distance r in the topology, the MPNN
must have at least r layers. A key observation [13] is that expanding a vertex’s receptive field in an
MPNN causes an exponential increase in the number of messages as r grows.

Recent research on GNNs [14] has substantiated that in scenarios where vertices v and u are separated
by a large number of hops in the graph, the sensitivity of hidden features of v with respect to the
initial features of u is small. Mathematically, the sensitivity measured by the use of Jacobian can
be bounded as follows:

∥∥∥∂h(r)v /∂h
(0)
u

∥∥∥ ≤ c · (Ar)vu,. Here A is the symmetrically normalised
adjacency of the input graph and c is a constant determined by the Lipschitz regularity properties
specific to the MPNN. When the entry (Ar)vu is tiny, e.g., when the two vertices are connected by a
limited number of paths with "bottlenecked" edges [13, 14, 17], it implies that the hidden feature of
node v is insensitive to the information originating from node u.

3.2 Oversquashing in HNNs: Challenges

Adapting existing theory from GNNs involves addressing the following technical challenges:

• Hyperedge Embedding Incorporation: VH-HNNs can generate embeddings for hyperedges
through a hyperedge-specific aggregation ϕ and combine ψ operations, e.g., AllSet [33].

• Layer-dependent Aggregation: In contrast to GNNs, certain HNNs depict the input hypergraph
using layer-dependent graphs, each characterised by highly distinct neighbourhood properties.
This leads to significantly varied aggregation mechanisms across layers, e.g., HyperGCN [31].

• Hyperedge Size Variability: Hyperedges in hypergraphs vary significantly in size, making it
challenging to generalise oversquashing frameworks on graphs in a straightforward manner.

3.3 Oversquashing in HNNs: Results

The first result sets an upper limit on how much the hidden features of a vertex v can change in
response to variations in the initial features of a distant vertex u without making any assumptions
about the number of layers in the neural network. In contrast to previous research on GNNs [14],
our analysis considers arbitrary layer numbers of the HNN. A pivotal implication of the theorem is
that the upper bound is influenced by the hypergraph’s topology, emphasising its role as a significant
factor in oversquashing.

In the HNN’s update function ψ(l), consider that it combines the aggregated representation of other
entities with weight w ≤ 1 while giving the self-representation a weight of (1− w), i.e.,

h(l+1)
v = ψ(l)

(
h(l)
v , ϕ

(l)
(
{h(l)

u : u ⊂ V ∪ E}
))

= (1− w)h(l)v + wϕ(l)
(
{h(l)

u : u ⊂ V ∪ E}
)

This update function is category-agnostic. To clarify, we are examining those HNNs where all
instances of ψ(l) in VC-HNNs and all instances of ψ(l)

V and ψ(l)
E in VH-HNNs, for 0, · · · , L − 1,

adhere to the same aforementioned form.
Theorem 3.1. Let v, u ∈ V ∪ E, l ∈ N. If HNN belongs to the VH-HNN category, assume that∥∥∥∇ψ(j)

V

∥∥∥ ≤ Cψ,
∥∥∥∇ψ(j)

E

∥∥∥ ≤ Cψ, and max{
∥∥∥∇ϕ(j)V ∥∥∥ , 1} ≤ Cϕ, max{

∥∥∥∇ϕ(j)E ∥∥∥ , 1} ≤ Cϕ, where
∇f denotes the Jacobian of a map f . If HNN belongs to the VC-HNN category, assume that∥∥∇ψ(j)

∥∥ ≤ Cψ and max{
∥∥∇ϕ(j)∥∥ , 1} ≤ Cϕ for all j = 0, . . . , l. Further, let the layer-dependent

symmetrically degree normalised matrices of ϕ(j) be A(j). Then the sensitivity satisfies∥∥∥∥∥ ∂h(l)v∂h
(0)
u

∥∥∥∥∥ ≤ (2CψCϕ)
l

l∑
j=0

(T (j))vu,where T (j) =

j∏
i=0

(
(1− w)I + wA(i)

)
. (1)
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Please see Appendix Section A.1 for a proof. The oversquashing phenomenon arises when the
right-hand side of Eq. (1) is small, esp. when l is set to be at least r, the shortest-path distance
between v and u. A small derivative of h(l)

v with respect to h
(0)
u indicates that, after passing through l

HNN layers, the hidden features at vertex v become insensitive to the initial information originating
from vertex u, signifying an ineffective message propagation.

The second result connects oversquashing to resistance distance. Unlike shortest-path distance,
resistance distance decreases when multiple short paths exist between vertices v and u, considering a
set of short paths rather than a single route.

Resistance Distance. The "closeness" between vertices v and u depends on whether they are linked
by a short path within the same densely connected region of the graph. When v and u fall within
the boundaries of a shared high-density cluster in the graph, their resistance distance is evaluated
as smaller, indicating greater closeness. Conversely, if they are connected by a short path but are
situated in different high-density clusters, their resistance distance is a larger value [42, 43].

Let u and v be two distinct vertices of the (hyper)graph. The resistance distance between u and v is
defined as Rv,u = (1v − 1u)

TL+(1v − 1u), where 1v is the indicator vector of the vertex v and L+

is the pseudoinverse of the (hyper)graph Laplacian matrix L.

Jacobian Obstruction. Let u and v, be separated by a distance r ≫ 1. We are interested in
the transmission of information from vertex u to vertex v. Within the HNN, specifically at two
layers k and l with k < l, we envision that h(l)

v will be more influenced by its own representation
at the earlier layer, i.e., h(k)

v , as compared to h
(k)
u . In light of this, we bring forth the quantity:

J̃
(l)
k (v, u) := 1

dv

∂h(l)
v

∂h
(k)
v

− 1√
dvdu

∂h(l)
v

∂h
(k)
u

.

Intuition. Consider the scenario where, at layer l in the HNN, vertex v exhibits limited sensitivity
to the information relayed from the representation of vertex u at layer k. As a general trend, we
expect that ∥∂h(l)

v /∂h
(k)
u ∥ ≪ ∥∂h(l)

v /∂h
(k)
v ∥. In the opposite scenario, we generally expect that

∥∂h(m)
v /∂h

(k)
u ∥ ∼ ∥∂h(m)

v /∂h
(k)
v ∥. Consequently, ∥J̃(l)

k (v, u)∥ will be large when the information
at v and that at u both at layer k are (approximately) unrelated. We can extend this reasoning to
consider messages at each layer k ≤ m.

Inspired by the symmetry of resistance distanceRu,v , we will now focus on the bidirectional exchange
of information between vertices v and u. This differs from our previous quantity, which centered on
vertex v receiving information from vertex u. We introduce the following symmetric quantity:

J
(l)
k (v, u) := J̃

(l)
k (v, u) + J̃

(l)
k (u, v)

( 1

dv

∂h
(l)
v

∂h
(k)
v

− 1√
dvdu

∂h
(l)
v

∂h
(k)
u

)
+
( 1

du

∂h
(l)
u

∂h
(k)
u

− 1√
dvdu

∂h
(l)
u

∂h
(k)
v

)
.

As before, we anticipate that ∥J(l)
k (v, u)∥ will be greater when vertices v and u do not effectively

communicate within the HNN. Conversely, it will be smaller when communication is robust. We
apply the same idea at each layer k ≤ l.
Definition 3.2. The symmetric Jacobian obstruction of vertices v, u at layer l is O(l)(v, u) =∑m
k=0 ∥J

(l)
k (v, u)∥.

Assumption 3.3. In the HNN’s computation graph, every path is activated with an equal probability,
p, of success [44, 45].

With this understanding, we can now introduce the second result:
Theorem 3.4. [[16]] Consider an HNN with ν the maximal spectral norm of the weight matrices.
Let Assumption 3.3 hold. If ν ≤ 1, in expectation, we have O(l)(v, u) ≤ p

νwRv,u.

Please see Appendix Section A.2 for a proof. A lower value of O(l)(v, u) indicates that the sensitivity
between v and u in the HNN is stronger (and conversely, when O(l)(v, u) is higher). Hence, Theorem
3.4 suggests that vertex pairs characterised by shorter resistance distances will facilitate more efficient
information exchange within an HNN, while the opposite holds true for vertices with longer distances.
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Figure 1: (Best seen in colour) Topological structure of 1) HyperEdgeSingle, 2) HyperEdgePath,
and 3) HyperEdgeRing.

4 Tests for Oversquashing in HNNs
In this section, we introduce three novel tests for assessing oversquashing in HNNs summarised
pictorially in Figure 1. These tests are inspired by the theory, specifically the Theorem 3.4.

Source, Target Vertices. In all the proposed problems, there are always two specified vertices -
one referred to as the source vertex (coloured green in Figure 1) and the other as the target vertex
(coloured blue). The input features on each vertex have a dimensionality of d+ 2, where the initial d
features are utilised for matching, and the final 2 features represent class information. On the source
vertex, the initial d features precisely align with those on the target vertex, and the final 2 features on
the source are always [0 0]. In contrast, on the other vertices, the final 2 features represent one of two
classes: [0 1] or [1 0], thereby making the task a binary classification task.

Task Details. Formally, we are given a dataset D, consisting of N input-output pairs, where
inputs are (hypergraph, vertex features, id of source vertex, id of target vertex) quadru-
ples, and the outputs are binary labels on the target vertices. This is denoted as: D ={(

(H, X1, s1, t1), Y1

)
, · · · ,

(
(H, XN , sN , tN ), YN

)}
. We note that the hypergraph H is the same

for all the input-output instances. We use X[1 : d] ∈ Rd to represent the first d dimensions of X .
Each instance

(
(H, X, s, t), Y

)
∈ D is so that

• the n vertex feature vectors, each of dimension d + 2, are stored in the vertex feature matrix
X ∈ Rn×d × {0, 1}n×2,

• the first d features of the source are the same as the target, i.e., X[s][1 : d] = X[t][1 : d], and

• the output label is the same as the final two dimensions of the target, i.e., Y = X[t][d+1 : d+2].

In this task, an HNNθ is trained on the training dataset Dtrain using parameters θ, while hyperpa-
rameters are tuned using the validation dataset Dvalid. The model’s performance is then evaluated
on the test dataset Dtest where D = Dtrain ∪ Dvalid ∪ Dtest. Representing the model’s output
as Z = HNNθ(H, X) ∈ (0, 1)n×2, we calculate the training loss, such as cross-entropy loss, by
comparing Z[s] ∈ (0, 1)2 with the corresponding output Y ∈ {[1 0] ∪ [0 1]}.

Key Challenges. Firstly, we employ the HNN representation of the source vertex to conduct a
binary classification task by predicting the binary label on the target vertex. The HNN needs to
implicitly grasp the task of matching the features present on the source to those on the target to
"transfer" the label by accessing its features. The inclusion of features on the other vertices of the
hypergraph H introduces complexity and noise to the test, rendering seemingly simple structures
unexpectedly challenging.

VC-HNNs vs. VH-HNNs: A Contrast

We offer a brief intuition into the contrasting behaviors of the two HNN categories on the three tests.
We use the analogy of electrical network resistance, where message passing corresponds to the flow
of current within the network. Subsequently, we provide details of hypergraphs involved in the three
tests along with explicit resistance values for structures linked to VC-HNNs and VH-HNNs.
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VC-HNNs. In this category, direct pairwise connections between vertices create multiple paths
between most pairs of vertices, especially in large hyperedges. This network structure allows
messages or ‘current’ to flow through diverse routes, effectively lowering the resistance. Therefore,
we anticipate low resistance distance values for vertex pairs, facilitating message passing with reduced
oversquashing as per Theorem 3.4.

VH-HNNs. Within this category, every hyperedge is responsible for ‘transporting’ messages between
its connected vertices. Crucially, the direct link between the source vertex and any of its hyperedges
acts as a ‘narrow conduit’ hindering current flow or message passing from other vertices within the
same hyperedge. Hence, we anticipate significantly higher resistance distance values, intensifying
the impact of oversquashing, as per Theorem 3.4.

Test 1 - HyperEdgeSingle: HES(n). In this test, the task centers on a single hyperedge of size n
where the representation of the source vertex is used to predict the label assigned to the target vertex,
both of which are located within the same hyperedge. Typical VC-HNNs (e.g., HGNN) operate on
structures with source-target resistance distance 2

n whereas typcial VH-HNNs (e.g., UniGCN) with
a distance value of 2. Noting the values and later confirming through empirical analysis, even in a
hypergraph with a single hyperedge, we see markedly distinct behaviors of VC-HNNs and VH-HNNs.

Test 2 - HyperEdgePath: HEP(n,m). In this test, there exists a hyperedge of size n which contains
the source vertex and another vertex that is connected to the target vertex by a path of m hyperedges
each of size 2. The resistance distance between source and target vertices is a maximum of m+ 2

n
for structures associated with typical VC-HNNs whereas 2m+ 2 with typical VH-HNNs. Based on
the values and Theorem 3.4, we expect this test to be more challenging than the previous HES(n) test
and also observe contrasting behaviorus of VC-HNNs and VH-HNNs.

Test 3 - HyperEdgeRing: HER(n,m). Within this test, a ring structure is created by n vertices
(assuming an even n), with the source and target vertices positioned at a shortest-path distance of
n/2. Rather than conventional edges linking the ring’s vertices, we utilise hyperedges of size m ≥ 2,
where each hyperedge comprises precisely 2 vertices within the ring. The resistance distance between
source and target vertices is a maximum of n

2(m+2) for structures associated with typical VC-HNNs
whereas n

2 with typical VH-HNNs.

5 SensHNN: Sensitive Hypergraph Neural Network
As established in the previous section and supported by Theorem 3.4, it is clear that typical VC-HNNs
exhibit reduced oversquashing effects in comparison to typical VH-HNNs. Drawing from this pivotal
observation, this section introduces a novel and effective VC-HNN extension to further mitigate
oversquashing in HNNs, leveraging a connection to Theorem 3.1.

Shortest-Path Distance. If v, u ∈ V are two vertices and e1, · · · , ek ∈ E are k hyperedges in
H = (V,E), then we say that Pvu : e1, · · · , ek is a v − u path of length k, denoted |Pvu| = k
if the vertices are such that v ∈ e1, u ∈ ek, and hyperedges are such that |ei ∩ ei+1| ≥ 1 for
i = 1, · · · , k − 1. Assuming Pvu to contain all paths between v and u, the shortest-path distance
S : V × V → R+ between v and u is the minimum length of any path between v and u, i.e.,
S(v, u) = minPvu∈Pvu

|Pvu|.

Connection to Theory. Theorem 3.1 implies that the upper bound on the sensitivity is influenced
by the hypergraph’s topology. In particular, when the layer-dependent adjacency matrices are the
same, we notice that for message passing between distant vertices to occur, the HNN must traverse
intermediate vertices along each connecting path. Under the condition of degree normalisation, the
upper bound tends to decrease exponentially with the increase in the shortest-path distance between
vertex pairs.

Motivation. In typical VC-HNNs, vertices v and u separated by k hops, i.e., S(v, u) = k, initiate
their interaction exclusively from the k-th layer onward and do not interact at any preceding layers.
Drawing inspiration from our proposed ‘long-range’ problems, e.g., HyperEdgeRing, we propose
that an HNN should engage in direct interaction of distant vertices, in addition to the need to transmit
messages through immediate neighbours.
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SensHNN Details. Define Âk as the adjacency of the graph obtained by connecting vertices
exactly k-hops away. Let Ak be the symmetrically normalised adjacency of Âk, i.e., Ak(v, u) =

1√
dvdu

if S(v, u) = k and 0, otherwise, where dv = |e ∈ E : v ∈ e| is the degree of the vertex v. We
propose the following propagation rule:

H(l+1) = (1− w)H(l)+w

l+1∑
k=1

AkH
(l+1−k)W

(l)
k , for l = 0, · · · , L− 1. (2)

Equation 2 ensures that vertices v and u separated by L hops, i.e., S(v, u) = L, can directly interact
by transforming input vertex features themselves during the final layer. This interaction is facilitated
by the presence of theALH(0)W

(l)
k term. The inclusion of the other terms allows the model to handle

tasks that necessitate shorter-range dependencies.

Oversquashing Mitigation Intuition. For the scenario where w = 1 in Equation 2, the sensitivity
can be bounded, through a proof similar to that of Theorem 3.1 and that in prior work [46], as:∥∥∥∥∥ ∂h(l)v∂h

(0)
u

∥∥∥∥∥ ≤ (2CψCϕ)
l
( ∑
k1+···+kl=l

( ∏
k1,...,kl

(Ak)vu

))
.

Unlike typical HNNs including VC-HNNs, vertices separated by a distance of l can now interact
using message-passing matrices that involve less than l factors (including a direct interaction). Using
matrices like Ak, which are not powers of the same adjacency matrix, mitigates over-squashing.

Differences with Multi-hop Models and Models with Skip Connections. In our novel model,
distant vertices interact directly through transformed input features. Unlike traditional multi-hop
models that gather information across multiple hops and vertices, our approach emphasizes direct
communication between distant vertices. While skip connections in other models use residues from
prior layers for residual learning, our model ensures that interactions between distant vertices occur
solely through transformations in deeper hidden layers, not through direct changes in input features.

6 Empirical Analyses
Our experiments aim to address the following research queries (Rs):

• R1: What are the contrasting effects in the empirical performance of VC-HNNs and VH-
HNNs on the three tests introduced in the paper (HyperEdgeSingle, HyperEdgePath, and
HyperEdgeRing)?

• R2: How effective is our proposed SensHNN on the three tests in mitigating oversquashing?
• R3: Can SensHNN handle heterophilic hypergraphs?
• R4: How does SensHNN perform on real-world hypergraph vertex classification datasets?
• R5: What is the tradeoff between accuracy and running time on a large real-world dataset?

We use HGNN [30], HyperGCN [31], and HCHA [32] as representative VC-HNNs and UniGCNII
[37], AllDeepSets, AllSetTransformers [33], ED-HNN [34] as representative VH-HNNs. Through
experiments designed to address questions R1 and R2, we substantiate the connections between the
three tests and the theoretical analysis, particularly Theorem 3.4 in Section 4 of the paper. We also
validate the connection between the proposed SensHNN and Theorem 3.1 in Section 5 of the paper.
Please see Appendix Section A.3 for dataset details, Section A.4 for visulaisation, Section A.5 for
complexity analysis, and Section A.6 for details on the hyperparameters.

Model HES(n) HEP(n,4) HES(n,3)

VC-HNNs 2
n 4 + 2

n
n
10

VH-HNNs 2 10 n
2

Table 1: Resistance distances of source-target pairs in structures typical of VC-HNNs and VH-HNNs.
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Figure 2: (Best seen in colour) Train Accuracy of different models on the three tests introduced.

Figure 3: (Best seen in colour) Validation Accuracy of different models on the three tests introduced.

R1: Contrasting Behaviours of VC-HNNs and VH-HNNs. We set m = 4 in HyperEdgePath
(HEP(n,m)) and m = 3 in HyperEdgeRing (HER(n,m)) to highlight the contrast. With these fixed
values, the resistance distances for typical VC-HNNs and VH-HNNs are shown in Table 1.

Figures 2 and 3 display the training and validation accuracies, respectively. These figures clearly
demonstrate the performance differences between VC-HNNs and VH-HNNs. When cross-referenced
with Table 1, it is evident that shorter resistance distances improve information exchange efficiency
within an HNN, leading to higher accuracies, while longer distances impede this efficiency.

Increasing m in HyperEdgePath (HEP(n,m)) presents greater challenges for both HNN types due
to issues like vanishing gradients with long-range dependencies. However, increasing m in Hyper-
EdgeRing (HER(n,m)) does not change the inherent test challenges, as the test already represents a
long-range scenario even for small n values (e.g., 15), where all models achieve a random guessing
accuracy of 50%. The test dataset results (not shown) followed the same trends as validation.

R2: Effectiveness of SensHNN. SensHNN achieves the highest training and validation accuracies
in all tests, further validating Section 5. In these tests, training accuracy is crucial because the HNN
model must retrieve information from a distant vertex. Stronger oversquashing effects reduce the
information gathered from the relevant distant vertex, resulting in lower training accuracy.

R3: Experiments on Hypergraphs with Varying Heterophily Levels.

Heterophily Level
Name 1 2 3 4 5 6 7

HGNN 98.4 83.7 79.4 74.5 69.5 66.9 63.8
HyperGCN 83.9 69.4 72.9 75.9 70.5 67.3 66.5

HCHA 98.1 81.8 78.3 75.88 74.1 71.1 70.8

AllDeepSets 99.8 86.8 82.4 78.6 77.4 74.9 73.4
AllSetTransformer 99.9 86.5 82.9 79.1 77.7 75.2 73.0

ED-HNN 99.9 91.3 88.4 84.1 80.7 78.8 76.5

SensHNN (Ours) 100 93.7 90.1 85.7 82.4 79.4 77.6

Figure 4: Heterophily Experiments.

We investigate hypergraph datasets with different het-
erophily levels, inspired by prior work [34]. Using a
contextual hypergraph stochastic block model, we gener-
ate hypergraphs with 5000 nodes (split equally between
two classes) and 1000 hyperedges, each containing 15 ver-
tices sampled from class 0. We vary the heterophily level
by adjusting the number of vertices from class 0. Table 4
shows the average accuracy across 10 runs, demonstrating
the method’s effectiveness.
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Table 2: Performance on real-world datasets. SensHNN method demonstrates competitive perfor-
mance.

Name Cora-CC Citeseer-CC Pubmed-CC Cora-CA DBLP-CA Senate House Congress

HGNN 79.39 ±1.36 72.45 ±1.16 86.44 ±0.44 82.64 ±1.65 91.03 ±0.20 48.59 ±4.52 61.39 ±2.96 91.26 ±1.15
HyperGCN 78.36 ±2.01 71.01 ±2.21 80.81 ±12.4 79.50 ±2.11 89.42 ±0.16 51.13 ±4.15 69.29 ±2.05 89.67 ±1.22

HCHA 79.14 ±1.02 72.42 ±1.42 86.41 ±0.36 82.55 ±0.97 90.92 ±0.22 48.62 ±4.41 61.36 ±2.53 90.43 ±1.20
HyperND 79.20 ±1.14 72.62 ±1.49 86.68 ±0.43 80.62 ±1.32 90.35 ±0.26 52.82 ±3.20 51.70 ±3.37 74.63 ±3.62

HNHN 76.36 ±1.92 72.64 ±1.57 86.90 ±0.30 77.19 ±1.49 86.78 ±0.29 50.93 ±6.33 67.8 ±2.59 53.35 ±1.45
UniGCNII 78.81 ±1.05 73.05 ±2.21 88.25 ±0.33 83.60 ±1.14 91.69 ±0.19 49.30 ±4.25 67.25 ±2.57 94.81 ±0.81

AllDeepSets 76.88 ±1.80 70.83 ±1.63 88.75 ±0.33 81.97 ±1.50 91.27 ±0.27 48.17 ±5.67 67.82 ±2.40 91.80 ±1.53
AllSetTransformers 78.58 ±1.47 73.08 ±1.20 88.72 ±0.37 83.63 ±1.47 91.53 ±0.23 51.83 ±5.22 69.33 ±2.20 92.16 ±1.05

ED-HNN 80.31 ±1.35 73.70 ±1.38 89.03 ±0.53 83.97 ±1.55 91.90 ±0.19 64.79 ±5.14 72.45 ±2.28 95.00 ±0.99
SensHNN (Ours) 81.19 ±1.52 74.67 ±1.28 87.93 ±0.48 85.89 ±1.15 91.20 ±0.28 68.36 ±4.12 72.11 ±2.02 91.97 ±1.42

R4: Experiments on Real-World Hypergraphs. Our SensHNN is evaluated on eight real-world
datasets, covering a wide range of domains, scales, and heterophily levels. These datasets are
commonly used for hypergraph benchmarking (please see the appendix for descriptions).

To ensure rigorous baseline comparisons, we follow the training procedures from a prior work [34].
Data is split into 50% training, 25% validation, and 25% test samples. Each model is run 10 times
with different random splits, and results are reported as average accuracy with standard deviation.

Table 2 compares the performance of representative VC-HNNs, VH-HNNs, and our SensHNN.
SensHNN outperforms competitors on 4 datasets, demonstrating its effectiveness in handling both
long-range tasks and shorter-range hypergraphs.

Figure 5: Accuracy - training time tradeoff analysis

R5: Accuracy-Time Tradeoff Analysis.
Figure 5 illustrates the relationship between
accuracy and training time for various meth-
ods applied to the large Walmart dataset
[33]. The horizontal axis represents train-
ing time relative to the quickest method,
HyperND, with time measured in multiples.
Our proposed method, SensHNN, demon-
strates an impressive balance by achieving
high accuracy while maintaining a reason-
ably fast training time, making it a competi-
tive choice for large-scale data analysis.

7 Concluding Remarks
In this paper, we investigated oversquashing in HNNs. Our theoretical analyses reveal that oversquash-
ing is influenced by the topologuy and resistance distance of vertex pairs induced by message passing
operations in HNNs. We introduced three novel tests to assess oversquashing and classified HNNs
into VC-HNNs and VH-HNNs, finding that VH-HNNs are particularly prone to oversquashing. We
proposed SensHNN, a novel extension to VC-HNNs, as a solution to oversquashing, demonstrating
its effectiveness and competitiveness with existing HNNs on real-world hypergraph datasets.

Limitations and Future Research. There are multiple avenues for extending our work, and we
outline three specific directions for future research. Firstly, the three tests introduced to assess
oversquashing are synthetic in nature. Exploring and isolating oversquashing tendencies within
the more nuanced real-world hypergraph datasets could provide valuable insights. Transformer-
based models provide an alternative to HNNs for hypergraph learning tasks, though they come with
limitations [47]. Lastly, exploring the interplay between oversmoothing and oversquashing presents a
compelling avenue for future research.
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A Appendix
A.1 Statement and Proof of Theorem 3.1

Theorem 3.1. Let v, u ∈ V ∪ E, l ∈ N. If HNN belongs to the VH-HNN category, assume that∥∥∥∇ψ(j)
V

∥∥∥ ≤ Cψ,
∥∥∥∇ψ(j)

E

∥∥∥ ≤ Cψ, and max{
∥∥∥∇ϕ(j)V ∥∥∥ , 1} ≤ Cϕ, max{

∥∥∥∇ϕ(j)E ∥∥∥ , 1} ≤ Cϕ, where
∇f denotes the Jacobian of a map f . If HNN belongs to the VC-HNN category, assume that∥∥∇ψ(j)

∥∥ ≤ Cψ and max{
∥∥∇ϕ(j)∥∥ , 1} ≤ Cϕ for all j = 0, . . . , l. Further, let the layer-dependent

symmetrically degree normalised matrices of ϕ(j) be A(j). Then the sensitivity satisfies∥∥∥∥∥ ∂h(l)v∂h
(0)
u

∥∥∥∥∥ ≤ (2CψCϕ)
l

l∑
j=0

(T (j))vu,where T (j) =

j∏
i=0

(
(1− w)I + wA(i)

)
. (1)

Proof. We prove this by induction on the layer r. For the base case of r = 0, either v = u or v ̸= u;
in the first case

∂h
(0)
v

∂h
(0)
u

=
∂h

(0)
v

∂h
(0)
v

= Idd×d,
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and in the second case,

∂h
(0)
v

∂h
(0)
u

= 0d×d.

Therefore, ∥∥∥∥∥∂h(0)v∂h
(0)
u

∥∥∥∥∥ ≤ max{∥Idd×d∥ , ∥0d×d∥} = 1. (3)

Assume that the statement holds for some k ≥ 0. We assume that the update function is ψ(k) and
message function is ϕ(k) corresponding to the VC-HNN category. In clear contexts, they can be
replaced by ψ(k)

V , ψ(k)
E and ϕ(k)V , ϕ(k)E respectively of VH-HNNs. We now prove the inductive case of

k + 1.

∥∥∥∥∥∂h(k+1)
v

∂h
(0)
u

∥∥∥∥∥ =

∥∥∥∥∥∥∇1ψ
(k) · ∂h

(k)
v

∂h
(0)
u

+∇2ψ
(k) ·

∑
t∈N (u)

Atu · ∇ϕ(k) ·
∂h

(k)
t

∂h
(0)
u

∥∥∥∥∥∥
≤
∥∥∥∇1ψ

(k)
∥∥∥ · ∥∥∥∥∥∂h(k)v

∂h
(0)
u

∥∥∥∥∥+ ∥∥∥∇2ψ
(k)
∥∥∥ · ∑

t∈N (u)

Atu

∥∥∥∇ϕ(k)∥∥∥ · ∥∥∥∥∥∂h(k)t

∂h
(0)
u

∥∥∥∥∥
(as Ttu ≥= 0,∀ t, u)

≤ Cψ ·

∥∥∥∥∥∂h(k)v

∂h
(0)
u

∥∥∥∥∥+ CψCϕ ·
∑

t∈N (u)

Atu ·

∥∥∥∥∥∂h(r)t∂h
(0)
u

∥∥∥∥∥ (Theorem hypothesis)

≤ 2k(CψCϕ)
k+1

k∑
j=0

(T (j))vu + 2k(CψCϕ)
k+1

k∑
j=0

∑
t∈N (u)

Ttu(T
(k))tv (induction)

= 2k(CψCϕ)
k+1

k∑
j=0

(T (j))vu + 2k(CψCϕ)
k+1

k+1∑
j=1

(T (j))vu (matrix multiplication)

≤ (2CψCϕ)
k+1

k+1∑
j=0

(T (j))vu.

Here ∇ψ(k) = [∇1ψ
(k)|∇2ψ

(k)] and ∇ϕ(k) denote the Jacobian matrices for ψ(k) and ϕ(k), re-
spectively. ∇1ψ

(k) corresponds to partial derivatives w.r.t. the first several arguments in ψ(k)

corresponding to h(r)v and ∇2ψ
(k) is defined similarly. In the second inequality, we have used the fact

for 2-norm that ∥[A|B]∥ ≥ max{∥A∥ , ∥B∥}. In the third inequality, we used the fact that β ≥ 1,
and we have that α ≤ αβ.

A.2 Statement and Proof of Theorem 3.4

Assumption. Assume that all paths in the computation graph of the model are activated with the
same probability of success p. When we refer to computing the expectation E[∂hv(l)/∂hu(k)], it
indicates that we are essentially finding the average across these Bernoulli variables.

Theorem. Consider an HNN with ν the maximal spectral norm of the weight matrices. Let Assumption
3.3 hold. If ν ≤ 1, in expectation,

O(l)(v, u) ≤ p

νw
Rv,u.
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Proof. Using the assumption, we can write

E
[
J
(l)
k (v, u)

]
= E

[ 1

dv

∂h
(l)
v

∂h
(k)
v

− 1√
dvdu

∂h
(l)
v

∂h
(k)
u

+
1

du

∂h
(l)
u

∂h
(k)
u

− 1√
dvdu

∂h
(l)
u

∂h
(k)
v

]
= p

∏l
i=k+1W

(i)

(
1
dv

((
(1− w)I + wA

)l−k)
vv

+ 1
du

((
(1− w)I + wA

)l−k)
uu

− 2

((
(1− w)I + wA

)l−k)
vu

)

= p

l∏
i=k+1

W (i)⟨ 1v√
dv

− 1u√
du
,
(
(1− w)I + wA

)l−k( 1v√
dv

− 1u√
du

)
⟩

We rely on the spectral decomposition

(1− w)I + wA =

n−1∑
i=0

((−wλi)) eie⊤i , where ei are the eigenvectors of the Laplacian, Lei = λiei

We can then bound in expectation the obstruction by

O(l)(v, u) =

l∑
k=0

∥J(l)
k (v, u)∥ ≤

l∑
k=0

pνl−k
n−1∑
i=0

(−wλi))l−k
(ei(v)√

dv
− ei(u)√

du

)2
= p

n−1∑
i=0

(
l∑

k=0

νl−k (−wλi))l−k
)(ei(v)√

dv
− ei(u)√

du

)2
= p

n−1∑
i=1

(
l∑

k=0

νl−k (−wλi))l−k
)(ei(v)√

dv
− ei(u)√

du

)2
≤ p

n−1∑
i=1

1− (−ν(wλi))l+1

1− ν + νwλi

(ei(v)√
dv

− ei(u)√
du

)2
≤
n−1∑
i=1

p

νwλi

(ei(v)√
dv

− ei(u)√
du

)2
=

p

νw

n−1∑
i=1

1

λi

(ei(v)√
dv

− ei(u)√
du

)2
≤ p

νw
Rv,u

A.3 Dataset Details

Datasets for the Three Tests. We use N = 10, 000 data instances, i.e., quadruples in the set
{(H, Xi, si, ti)}Ni=1 in all the three tests, viz., HyperEdgeSingle, HyperEdgePath, HyperEdgeRing.
The initial d vertex features in each vertex are randomly assigned while the label on the target vertex
is randomly assigned one of two binary classes.

Real-World Datasets. Table 3 summarizes the statistics of the real-world hypergraph datasets
utilized in this study. We assess our model’s performance on well-known datasets, including Cora-CC,
Citeseer-CC, Pubmed-CC, Cora-CA, and DBLP-CA [31], as well as House, Senate, and Congress
[33]. These datasets represent various network types, such as co-citation, co-authorship, and political
affiliation networks, each with distinct vertex and hyperedge features.

In co-citation networks (Cora-CC, Citeseer-CC, Pubmed-CC), hyperedges connect all documents
cited by a specific document. In co-authorship networks (Cora-CA, DBLP-CA), hyperedges group all
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Table 3: Dataset statistics. CE homophily is the homophily score based on the clique expansion of
hypergraphs.

Cora-CC Citeseer-CC Pubmed-CC Cora-CA DBLP-CA Congress Senate Walmart House

# nodes 2708 3312 19717 2708 41302 1718 282 88860 1290
# edges 1579 1079 7963 1072 22363 83105 315 69906 340
# classes 7 6 3 7 6 2 2 11 2
avg. |e| 1.748 1.541 1.963 1.929 2.213 8.654 9.531 3.461 8.056
CE Homophily 0.897 0.893 0.952 0.803 0.869 0.555 0.498 0.530 0.509

documents co-authored by a particular author. Vertex features in both types of networks are derived
from the bag-of-words of the associated documents, while vertex labels indicate paper classes.

In the House dataset, each vertex represents a member of the US House of Representatives, with
hyperedges linking members of the same committee. The Congress and Senate datasets follow similar
configurations as previous studies [34]. In the Congress dataset, vertices represent US Congress
members, and hyperedges consist of sponsors and co-sponsors of legislative bills. In the Senate
dataset, hyperedges include sponsors and co-sponsors of bills introduced solely in the Senate, with
each vertex labeled by its political party affiliation.

A.4 Vertex Representation Visualisation

Figure 6 shows the t-SNE visualisations of SensHNN (leftmost) and five competitive baselines. The
color code indicates the vertex classes in the Cora-CA dataset. We selected the vertex embeddings
that yielded the highest vertex classification scores across all competing methods. It is evident that all
methods produce interpretable visualisations, demonstrating distinct inter-class separation. Notably,
SensHNN achieves compact, well-separated clusters with the same class labels, exhibiting visually
improved separation compared to other methods.

Figure 6: t-SNE visualisation on Cora-CA.

A.5 Complexity Analysis

SensHNN utilises shortest paths, necessitating up to k-hop adjacency information for layer k. Using
breadth-first search, pre-computation can be done in worst-case time O(|V ||E|), and the resulting
data can be employed for all subsequent runs.

In the worst-case scenario, where l exceeds the graph’s maximum diameter, SensHNN aggregates
O(|V |2) elements, encompassing all possible vertex pairs. Fortunately, the computation of each
k-neighborhood aggregation can be performed simultaneously, mitigating this concern in practical
applications. Moreover, SensHNN constructs the computational graph incrementally at each layer,
ensuring efficient performance in practice.

A.6 Hyperparameters

To ensure fairness in our evaluation, we apply identical training procedures to all models. We adhere
closely to the hyperparameter configurations outlined in a previous study for our baseline models
[34]. We employ the Adam optimizer with a constant learning rate of 0.001 and no weight decay
in training SensHNN. The training process is conducted over 500 epochs across all datasets. To
calculate the standard deviation, we conduct experiments across ten distinct data splits and report
the resulting variability. We set the input dropout rate at 0.2 and the dropout rate at 0.3. Model sizes
and other parameters are determined through a grid search. The layer number is chosen from 1, 2, 4,
6, 8 and hidden dimensions from 96, 128, 256, 512. Our findings show that model size is directly
proportional to the dataset scale, with heterophilic data generally requiring deeper architectures.
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A.7 Differences with Shortest Path Message Passing

Shortest Path Message Passing Neural Networks (SP-GNNs) [48] aim to overcome the limitations of
traditional message passing neural networks (MPNNs), such as over-squashing, by using shortest path
neighborhoods instead of relying solely on direct neighborhoods. SP-GNNs propagate information
through shortest paths, allowing direct communication between nodes that are multiple hops apart,
thereby improving the learning of graph representations and alleviating information loss across layers.
The two models, each centered on shortest paths, have subtle differences.

SensHNN employs a weighted transformation approach. Specifically, it multiplies the adjacency
matrix Ak, which encodes k-hop neighbours, with the hidden state H(l+k−1) from previous layers.
After this, a weight matrix W (l)

k is applied to the result, allowing for learnable feature transformation
at each hop. This matrix W (l)

k introduces a layer-specific transformation, making it flexible in how
the model processes and learns from different neighborhood distances. This weight matrix controls
how features from different k-hop neighborhoods are transformed, offering a more complex feature
mapping with greater flexibility in learning relationships between nodes at varying distances.

SP-GNN, in contrast, focuses purely on aggregation without involving any weight matrices for feature
transformation. It aggregates information directly from the k-hop neighbors Ak using the hidden
vectors H(k) at the current layer k. In this model, the hidden states are propagated through layers, but
the aggregation process does not involve an additional learnable transformation (like a weight matrix).
By avoiding weight matrices, SP-GNN simplifies the message-passing process, focusing purely on
neighborhood aggregation based on shortest paths, thus prioritizing efficiency over complexity in
feature transformation.

In a nut shell, SensHNN incorporates learnable weights to transform features after multiplying
adjacency matrices, providing greater flexibility in adjusting how node features evolve across layers.
SP-GNN avoids this complexity by directly aggregating hidden states from shortest path neighbor-
hoods without applying extra transformations, making the model simpler and potentially faster.
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