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Abstract
Computational inefficiency in transformers has
been a long-standing challenge, hindering the
deployment in resource-constrained or real-
time applications. One promising approach
to mitigate this limitation is to progressively
remove less significant tokens, given that the
sequence length strongly contributes to the in-
efficiency. However, this approach entails a po-
tential risk of losing crucial information due to
the irrevocable nature of token removal. In this
paper, we introduce Leap-of-Thought (LoT),
a novel token reduction approach that dynami-
cally routes tokens within layers. Unlike previ-
ous work that irrevocably discards tokens, LoT
enables tokens to ‘leap’ across layers. This
ensures that all tokens remain accessible in sub-
sequent layers while reducing the number of
tokens processed within layers. We achieve this
by pairing the transformer with dynamic token
routers, which learn to selectively process to-
kens essential for the task. Evaluation results
clearly show that LoT achieves substantial im-
provement on computational efficiency. Specif-
ically, LoT attains up to 25× faster inference
time without a significant loss in accuracy1.

1 Introduction

The advent of Transformer (Vaswani et al., 2017)
has spurred a paradigm shift, most notably in
natural language processing (Brown et al., 2020;
Chowdhery et al., 2022), but also extending to com-
puter vision (Dosovitskiy et al., 2021; Liu et al.,
2021). However, the impressive capabilities of the
transformer typically come with non-trivial com-
putational costs, which scale quadratically with
the length of the input sequence. This computa-
tional burden poses a significant challenge when de-
ploying the transformer-based models in resource-
constrained or real-time systems (Sun et al., 2020).

One typical approach to tackle this challenge is
to reduce the number of tokens processed within

1Our code is available at https://github.com/
yeachan-kr/lot

transformer layers (Goyal et al., 2020; Ye et al.,
2021; Guan et al., 2022). The rationales behind
this approach are two-fold: (i) not all tokens are
equally significant to the task (Dai et al., 2020), and
(ii) all token representations gradually become sim-
ilar over layers (Abnar and Zuidema, 2020; Phang
et al., 2021). Based on these rationales, previous
studies progressively removes the less significant
or redundant tokens (Figure 1a), selected either ran-
domly (Hou et al., 2022) or based on the attention
scores (Wang et al., 2019). However, the permanent
token removal in the previous work could entail a
risk of discarding crucial information in pursuit of
efficiency, which can potentially degrade perfor-
mance by hindering the fine-grained understanding
of the input. Moreover, since the token reduction
space with the permanent removal is proportionally
constrained with the number of remaining tokens,
it is sub-optimal to explore the diverse reduction
strategies that potentially offer a greater efficiency.
These limitations suggest that there is still room for
further improvement.

In this paper, we propose Leap-of-Thought
(LoT)2, a novel token reduction approach that en-
ables the dynamic routing of tokens across lay-
ers. In contrast to permanent removal strategies,
LoT allows the tokens to ‘leap’ over each layer,
thereby retaining access to all original tokens in the
subsequent layers while reducing the number of to-
kens processed within each layer of the transformer
(Figure 1c). We achieve this by coupling the trans-
former layers with dynamic token routers, which
learns to decide whether the given token should be
processed at the current layer or leaped forward
to the next layer. Moreover, in order to steer the
token router towards making informed and efficient
decisions, we introduce a gradient-guided training

2The name comes from the LoT behavior where each token
(corresponding meaning or thought) leaps over layers. LoT is
not related to the Chain-of-Thought (Wei et al., 2022), which
introduces the concept of continuous prompting.

https://github.com/yeachan-kr/lot
https://github.com/yeachan-kr/lot
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(c) Leap-of-Thought (Ours)

Figure 1: Reduction strategies of width-wise (token reduction), depth-wise (layer reduction) and Leap-of-Thought
(ours) to achieve computational efficiency. The tokens with the dashed lines indicate the unused tokens in each layer.

that informs each router of which tokens do signifi-
cantly contribute. Consequently, the router learns
to identify which tokens are crucial for the task
and where these tokens should be processed within
layers in order to achieve greater efficiency.

LoT offers several advantages compared to the
permanent removal. Primarily, LoT has the poten-
tial to mitigate the risk of losing crucial informa-
tion related to the task, given that the decisions
for each token are recoverable in subsequent lay-
ers. In addition, LoT provides a higher degree of
freedom in token reduction, thereby facilitating the
exploration of a diverse search space for greater
efficiency, which is similarly observed in network
compression (Mao et al., 2017; Park et al., 2023).

To substantiate the efficacy of LoT, we perform
evaluations across extensive experiments. Compre-
hensive results demonstrate that the model employ-
ing LoT reveals substantial speedup gains without
a significant loss in task accuracy. Additionally,
through the analysis of LoT, we provide justifica-
tion for the efficacy of the dynamic token routing
mechanism and illustrate how LoT achieves greater
efficiency. In summary, the contributions of the pa-
per include the followings:

• We introduce Leap-of-Thought, a novel to-
ken reduction approach that enables dynamic
token routing within the transformer, which re-
duces the processed tokens within each layer
while preserving crucial information.

• We propose a gradient-guided training to steer
the dynamic token router towards making
more informed decisions about whether the
tokens should be processed or leaped over.

• We demonstrate the efficacy of LoT through
extensive experiments and analysis on various
benchmarks, establishing LoT as a promising
approach for the token reduction.

2 Related Work

In this section, we mainly review the methods that
adaptively control the computation in pre-trained
language models. Recent approaches can be clas-
sified into two categories: width-wise and depth-
wise approaches. The former focuses on reducing
the number of tokens processed by transformers,
while the latter aims to decrease the number of com-
putational layers. Figure 1 illustrates the distinct
behaviors of these approaches, including LoT.

2.1 Width-wise Reduction on Transformer

Given that the computational costs of the trans-
former are heavily influenced by the length of
the input sequence (Tay et al., 2023), recent re-
search has endeavored to minimize the sequence
length by progressively removing less significant
tokens from the input (Figure 1a). For instance,
PoWER-BERT (Goyal et al., 2020) have initially
explored the removal of tokens that receive the
least attention from other words, operating on the
premise that tokens with less attention are less sig-
nificant. However, several studies on the trans-
former interpretability have shown that the atten-
tion scores might not be reliable indicators of the
actual token contribution (Jain and Wallace, 2019;
Abnar and Zuidema, 2020; Meister et al., 2021).
As such, TR-BERT (Ye et al., 2021) and Tran-
skimmer (Guan et al., 2022) have suggested to-
ken removal strategies that can be learned during
training, by using reinforcement learning and re-
parameterization tricks, respectively. Subsequently,
AdapLeR (Modarressi et al., 2022) have proposed
a saliency-based strategy that eliminates tokens by
estimating the saliency of tokens via the gradients
of the input embeddings with respect to the predic-
tions.

While these methods have demonstrated effi-
ciency in downstream tasks, they irrevocably dis-
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Figure 2: Overview of Leap-of-Thought (LoT). Starting from the embedding layer, the token routers are located
between every transformer layers. For the words that are decided to be leaped forward to the next layer, their
representations are merged into one pseudo token to provide the minimal information of the unused tokens.

card input tokens, which might lead to a poten-
tial loss of crucial information. Moreover, the
search space for token removal is proportionally
constrained by the number of remaining tokens,
thereby restricting flexibility in optimizing reduc-
tion strategies. In contrast, since LoT allows the
model to revisit all tokens, the crucial information
can be better preserved within the transformer. Be-
sides, the ability to revisit tokens endows LoT with
a higher degree of flexibility in exploring diverse
reduction space that potentially offers greater effi-
ciency.

2.2 Depth-wise Reduction on Transformer

The principle behind depth-wise approach is to al-
locate minimal layer computations to easy samples
while dedicating more layer computations to diffi-
cult samples (Figure 1b). The distinction between
different works lies in the criteria for difficulty.
PABEE (Zhou et al., 2020) has proposed a patience-
based exit strategy that halts the forward-pass at
an intermediate layer only when the pre-defined
number of subsequent layers yield the same pre-
dictions. Similarly, DeeBERT (Xin et al., 2020)
and FastBERT (Liu et al., 2020) have employed
the predictive entropy to replace the patience, and
PCEE-BERT (Zhang et al., 2022) has combined
both patience and confidence for the exit criteria.

Instead of implementing an exit strategy, Layer-
Drop (Fan et al., 2020) has demonstrated its effi-
ciency by randomly dropping the layers, and BERT-
of-Theseus (Xu et al., 2020) has learned to replace
the subsequent two layers with a single layer.

While these works allow adaptive computation
on different inputs to achieve efficiency, the level
of granularity in the depth-wise approach is con-
strained by the number of layers. This could result
in the sub-optimal efficiency and difficulty in as-
signing fine-grained computations to a diverse set
of samples.

3 Leap-of-Thought: Dynamic Token
Routing for Accelerating Transformer

In this section, we elaborate on Leap of Thought
(LoT), which dynamically routes tokens across lay-
ers to improve computational efficiency. To this
end, we introduce a dynamic token router in learn-
ing to decide which token should be processed in
the current layer or leaped forward to the subse-
quent layer (Section 3.1). To ensure that the token
router makes well-informed decisions, each token
router is trained by a gradient-based token impor-
tance (Section 3.2). The overall process of LoT is
illustrated in Figure 2.



3.1 Learning to Leap Transformer Layer
In order to enable tokens to leap across transformer
layers, we introduce a dynamic token routing mech-
anism that adaptively selects tokens for utilizing in
the current layer, while pushing the unused tokens
forward to subsequent layers for potential use.

Dynamic Token Router. To initiate the routing
mechanism, we start by the definition of a dynamic
token router, a lightweight module located between
every transformer layers. Each router takes token
representations as the input (i.e., embedding or out-
puts from the previous layer) and learns to produce
a binary decision for each token: "1" denotes that
it is processed at the current layer, and "0" denotes
that it leaps to the next layer. The dynamic token
router is formulated as follows:

u(w) = σ2(W2σ1(W1(LN(w)) + b1) + b2) (1)

where w is a token representation, W and b denote
the weights and biases for linear transformation,
respectively, σ1 and σ2 indicate the GeLU activa-
tion and softmax function, respectively, and LN (·)
denotes the layer normalization (Ba et al., 2016)3.
We then derive the routing decision based on the
prediction of the router.

R(w) =

{
1 if uprocess(w) > uleap(w)

0 otherwise,
(2)

where the subscript of u(w) represents the prob-
ability for each actions (i.e., process or leap the
layer).

Routing Tokens. Once the token router is estab-
lished, the routing decision is applied to all tokens
before they are fed into the transformer computa-
tion. Formally, let the token representations in the
l-th layer be denoted as w(l)

0 , w
(l)
1 , ..., w

(l)
n−1, where

n is the length of an input. The routing decision
is made for each token4 by applying the following
gating function.

w
(l)
i = R(l)(w

(l)
i + c(l))⊙ w

(l)
i , (3)

where R(l)(·) is the routing function on the l-th
layer, ⊙ indicates the Hadamard product, and c(l)

is the context vector used to make the routing deci-
sion by considering the current context information.

3We empirically observed that applying layer normaliza-
tion makes the training of LoT more stable.

4Note that the [CLS] token is not forwarded to the router
to perform the classification task correctly.

Notably, we employ the [CLS] token (i.e., w(l)
0 ) as

the context vector, given that it serves as a contex-
tual memory, being retained throughout all layers.

However, training the router in an end-to-end
manner is non-trivial due to the non-differentiable
nature of the routing function. To circumvent this,
we utilize the Gumbel-softmax reparameterization
(Jang et al., 2017) to approximate the discrete de-
cisions during training. Specifically, we introduce
a continuous relaxation for the discrete decision-
making process. During the forward pass, we sam-
ple from a Gumbel distribution and apply the soft-
max function to approximate the discrete decisions

u(w) = softmax ((log(u(w)) + g) /τ) , (4)

where g is a sample from a Gumbel distribution,
and τ is the temperature parameter controlling the
smoothness of the approximation. During the back-
ward pass, we replace the gradient of the non-
differentiable function with that of the Gumbel-
softmax using straight-through-estimator (Bengio
et al., 2013). This allows gradients to flow through
the router, enabling end-to-end optimization of the
entire model.

Token Merging. While the routing ability allows
the model to preserve crucial information, main-
taining the minimal information of unused tokens
can be beneficial. We thus introduce token merging
mechanism. Formally, the merged token is con-
structed as follows:

w
(l)
merge =

1

m

n−1∑
i=1

1[R(l)(w
(l)
i + c(l)) = 0]w

(l)
i ,

(5)
where 1[x] is the indicator function that returns one
if the statement x is true; otherwise zero, and m
is the number of tokens to be leaped. The merged
token is appended to the input and only utilized in
the self-attention layer. In the next layer, the token
is replaced with a new merged token based on the
new routing results (i.e., R(l+1)).

3.2 Gradient-guided Router Training
To steer the token router towards making informed
decisions, we also introduce a gradient-guided
router training, which directly provides the super-
vision of the significant tokens to the routers.

Guidance Derivation. As a guidance for the
router, the gradients of the token representations
are leveraged, given that the gradient information



can encode the sensitivity of the output to the in-
put tokens, providing insight into which tokens are
being more influential for prediction (Jain and Wal-
lace, 2019; Abnar and Zuidema, 2020). Inspired
by Grad-CAM (gradient-weighted class activation
map) (Selvaraju et al., 2017) which uses gradient
information flowing into the final layer of convolu-
tional neural networks, we derive class activation
tokens on each each layer. Formally, let y be the
prediction for the ground-truth, the class activation
tokens (CAT) can be derived as follows:

CAT(l)
i =

∂y

∂w
(l)
i

⊙ w
(l)
i , (6)

Based on the gradient-weighted token representa-
tions, we derive the importance by the magnitude
of each CAT. Specifically, we aggregate the token
importance from all layers since it can provide a
better identification for the important tokens (Qiang
et al., 2022) (detailed in Section 5.1):

CATi =
L−1∑
l=0

∥CAT(l)
i ∥2 (7)

Lastly, we need to identify which range of token
importance should be considered as significant. To
this end, we simply select the tokens whose cumula-
tive sum of their sorted and normalized importance
scores falls below a pre-defined threshold p, similar
to the candidate set of nucleus sampling (Holtzman
et al., 2020).

Training Objective. The dynamic token routers
are trained to process only the significant tokens
which are selected from the above procedure. Let
ŵi be the selection decision for the i-th token given
the selected tokens with a value of one otherwise
zero, the objective for the router is formulated as
follows:

L(l)
router = −

n−1∑
i=1

ŵi · log(uprocess(w
(l)
i ))

+(1− ŵi) · log(uleap(w
(l)
i )), (8)

The overall objective function for the downstream
task can be formulated as follows:

L = Ltask +
λ

L

L−1∑
l=0

L(l)
router. (9)

where Ltask is the task-specific loss function (e.g.,
cross entropy for the classification), and a harmony
coefficient λ to balance the two loss terms.

4 Experiment

In this section, we evaluate the proposed method
on a series of downstream tasks. We specifically
demonstrate that introducing the leap action results
in a more favorable computational efficiency com-
pared to the prior methods.

4.1 Experimental Setup

4.1.1 Datasets
We perform diverse tasks to verify the general ap-
plicability. These tasks involve scenarios where the
model needs to comprehend a single sequence, as
well as cases that requires understanding the seman-
tic relationship between multiple sequences. For
the single input tasks, we use SST-2 (Socher et al.,
2013) and IMDB (Maas et al., 2011) for sentiment
analysis, AG’s news (Zhang et al., 2015) for topic
classification, DBpedia (Lehmann et al., 2015) for
ontology classification, and HateXplain (Mathew
et al., 2021) for hate speech detection. For the mul-
tiple input tasks, we perform paraphrasing tasks
on MRPC (Dolan and Brockett, 2005) and natural
language inference tasks on MNLI (Williams et al.,
2018) and QNLI (Rajpurkar et al., 2016).

4.1.2 Baselines
Following the prior work, we use the pre-trained
BERTbase (Devlin et al., 2019) as a backbone net-
work5. We then compare with six baselines includ-
ing the backbone model: PoWER-BERT (Goyal
et al., 2020) which utilizes the attention maps to
eliminate the tokens; TR-BERT (Ye et al., 2021)
that adopts reinforcement learning to learn a re-
moval strategy; AdapLeR (Modarressi et al., 2022)
that utilizes the saliency maps of the input words to
remove tokens. Additionally, we also compare LoT
with different direction of reduction approaches.
We compare PCEE-BERT (Zhang et al., 2022),
which adaptively exits from the transformer by con-
sidering both the confidence and patience, and Dis-
tilBERT (Sanh et al., 2019), which is the resultant
model from knowledge distillation.

4.1.3 Evaluation Metrics
Following the recent prior work (Modarressi et al.,
2022), we evaluate each method using both the task
accuracy and the number of floating-operations
(FLOPs). Given that FLOPs are independent of

5In Appendix, we included the experiments on different
architectures (TinyBERT, BERTlarge)



Table 1: Evaluation results of test accuracy (%) and speedup ratio on the single input tasks. The speedup ratio
(denoted as Speed) is computed by comparing the FLOPs of each baseline with the backbone. The best and second
best results are highlighted in boldface and underlined, respectively.

Method
SST-2 IMDB HateXplain AG’s news DBpedia

Acc. Speed Acc. Speed Acc. Speed Acc. Speed Acc. Speed

Baseline 92.7 1.00× 93.8 1.00× 68.3 1.00× 94.4 1.00× 99.3 1.00×

DistilBERT (Sanh et al., 2019) 92.2 2.00× 92.4 2.00× 68.4 2.00× 94.2 2.00× 99.0 2.00×
PCEE-BERT (Zhang et al., 2022) 91.9 1.56× 92.3 2.63× 67.9 3.09× 93.4 5.54× 99.0 5.80×

PoWER-BERT (Goyal et al., 2020) 92.1 1.18× 92.3 1.70× 66.9 2.69× 92.1 12.50× 98.1 14.80×
TR-BERT (Ye et al., 2021) 92.1 1.46× 93.2 2.90× 67.9 2.23× 93.2 10.20× 98.9 10.01×
AdapLeR (Modarressi et al., 2022) 92.3 1.49× 91.7 3.21× 68.6 4.73× 92.5 17.10× 98.9 22.23×
LoT (ours) 92.9 2.30× 92.4 3.84× 68.8 5.21× 92.4 25.10× 99.1 19.76×

Table 2: Evaluation results of test accuracy (%) on mul-
tiple input tasks. The best and second best results are
highlighted in boldface and underlined, respectively.

Method
MRPC MNLI QNLI

F1. Speed Acc. Speed Acc. Speed

Baseline 87.5 1.00× 84.2 1.00× 90.3 1.00×

DistilBERT 87.7 2.00× 82.0 2.00× 87.9 2.00×
PCEE-BERT 87.2 1.34× 82.5 1.10× 90.4 1.31×

PoWER-BERT 88.0 1.07× 82.9 1.10× 89.7 1.23×
TR-BERT 81.9 1.16× 84.8 1.00× 89.0 1.09×
AdapLeR 87.6 1.27× 82.9 1.42× 89.3 1.47×
LoT (ours) 88.4 3.29× 83.1 2.53× 90.2 2.74×

hardware, this allows us to evaluate the accelera-
tion of the model without taking into account the
operating environment6. Furthermore, following
the recent practice (Guan et al., 2022; Modarressi
et al., 2022), we compute FLOPs for a single in-
ference, which enables us to evaluate per-example
inference and avoid pseudo speed-up resulting from
the elimination of padding tokens. In the experi-
ments, we present the relative speed-up compared
to that of the BERTbase.

4.1.4 Training Details
We implement the proposed method using PyTorch.
For the hyper-parameters associated with LoT (i.e.,
threshold p in Eq. (8), and λ in Eq (9)), we search
the best practice parameters on the validation sets.
The hyper-parameters are listed in the Appendix.

4.2 Main Results

Singe input tasks. In Table 1, we first present the
evaluation results on the single input tasks along
with strong baselines. Notably, LoT achieves sub-
stantial speedup gains without compromising the

6We also calculated wall-clock inference time in Appendix.

DistilBERT

(a) SST-2

DistilBERT

(b) QNLI

Figure 3: Trade-off curve between task accuracy and
speedup on SST and QNLI datasets.

accuracy. For example, LoT achieves speedup of
25.10× on the AG’s news dataset without a signif-
icant loss in task accuracy. Such a speedup with
comparable performance to other baselines demon-
strates that LoT better preserves the crucial infor-
mation related to tasks. This result clearly supports
the significance of the leap action in the token re-
duction approach.

Multiple input tasks. We also highlight the re-
sults on the tasks that involve pairs of distinct sen-
tences in Table 2. Given that these tasks require the
model to comprehend the semantic relationships
between multiple sentences, removing tokens could
lead to the loss of important information needed for



Table 3: Ablation study of LoT on SST-2 and MRPC,
and ‘w/o’ indicates the model without the corresponding
component. The token merging is related to Eq. (5), and
the layer-wise aggregation of CAT is related to Eq. (7).

Method
SST-2 MRPC

Acc. SpeedUp F1. SpeedUp

LoT (ours) 92.9 2.30× 88.4 3.29×
w/o token merging 92.4 2.16× 88.0 2.94×
w/o layer-wise CAT 92.3 1.96× 88.6 2.46×
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Figure 4: Remaining token distribution across various
layers and datasets, excluding [PAD] tokens that may
lead to a pseudo speedup.

understanding these relationships. Hence the ex-
isting methods, which permanently remove the to-
kens, reveal the low speedup gains on these datasets.
Nevertheless, LoT achieves greater speedup gains
with comparable accuracy, which shows the versa-
tility of LoT on diverse tasks. The overall experi-
mental results verify that LoT can be successfully
applied into real-world applications that demand
both accuracy and efficiency.

Trade-off. To confirm the better computational
efficiency of LoT, we show the trade-off curves
between task accuracy and speedup gains on two
representative datasets in Figure 3. This shows that
LoT maintains the higher accuracy over a wide
range of speedups, clearly demonstrating the better
trade-off of LoT compared to other approaches.

5 Analysis

In this section, we analyze the behavior of LoT in
detail. We specifically focus on how LoT achieves
a greater efficiency than other baselines.

5.1 Ablation Study

In Table 3, we present an ablation study to dis-
sect the contributions of components in LoT. We

w/				guidance (SpeedUp:	2.30×,Accuracy:	92.9%)
w/o	guidance (SpeedUp:	1.79×,	Accuracy:	91.9%)

(a) SST-2
w/				guidance (SpeedUp:	5.21×,	Accuracy:	68.8%)
w/o	guidance (SpeedUp:	2.31×,	Accuracy:	67.9%)

(b) HateXplain

Figure 5: Comparison with a LoT variant that learns the
leap action in an end-to-end manner.

initially observe that merging tokens enhances per-
formance on both metrics. This indicates that pro-
viding abstractive information about tokens to be
leaped enables the model to process more reduced
tokens in each layer, thereby leading to the im-
proved efficiency. On the other hand, in contrast to
GradCAM (Selvaraju et al., 2017), which utilizes
gradient information from the input space, LoT ag-
gregates gradient information from all layers. To
evaluate the impact of the aggregation, we compare
the performance when extracting gradient informa-
tion solely from the input. The ablation shows that
aggregating CAT from all layers substantially im-
proves the computational efficiency, indicating that
the aggregation allows the model to better identify
tokens that are crucial to the task at hand.

5.2 Routing Distribution on Different Layers

We also analyze the routing distribution across dif-
ferent layers for various datasets. Figure 4 shows
the ratio of remaining tokens in each layer. Inter-
estingly, we observe distinctive patterns of LoT for
the reduction strategy. In the majority of datasets,
less than half of the tokens are processed in the first
layer. Subsequently, the behavior of LoT varies
depending on the complexity of the tasks. For
the simpler tasks (i.e., achieved higher speedup
gains), the number of the processed tokens tend to
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Figure 6: Illustration of the token routing on two examples. The darker block in each layer indicates the use of
corresponding token in the layer while the lighter block denotes the leap action.

consistently decrease over the subsequent layers.
Conversely, for more challenging tasks (e.g., SST,
MRPC, QNLI), the model tends to make use of a
larger number of tokens in few subsequent layers.
These patterns indicate that LoT is capable of adap-
tively executing optimized reduction strategies for
different datasets, underscoring the flexibility and
diversified search space of LoT.

5.3 Significance of Router Guidance

The token routers in LoT are supervised directly
from the aggregated gradient information. To verify
the significance of the supervised router training,
we compare LoT with an alternative version that
learns to decide the leap action without the guid-
ance. To implement this baseline, we replace the
guidance loss (i.e., Eq. (8)) with a regularization
loss that enforces leap actions for all tokens, which
is similarly used in previous work (Ye et al., 2021;
Guan et al., 2022; Modarressi et al., 2022). Since
this regularization term conflicts with the task ob-
jective, the router could learn to retain only the
contributing tokens while bypassing the less con-
tributing tokens. Figure 5 shows the comparison
result. We observe that the model without guidance
can also achieve computational efficiency by learn-
ing to leap tokens. However, explicit supervision
on the important tokens enables the router to by-
pass a greater number of tokens, especially in the
earlier layers. This phenomenon can be attributed
to the low learning capacities of the earlier layers
in identifying significant tokens without an explicit
guidance. The overall results empirically justify the
significance of the gradient-guided router training.

5.4 Case Study of Leap-of-Thought

Lastly, we examine the behavior of LoT through
case studies. Figure 6 exhibits the routing exam-

ples on two different tasks, SST-2 and QNLI. It
is evident that the routing maps are irregular and
sparse, which demonstrates the flexibility of LoT
to reach greater efficiency. Moreover, the impor-
tant tokens related to tasks (e.g., dull, lifeless and
amateur in SST-2) tend to be utilized in the deeper
layers, whereas less contributing tokens are often
bypassed. Interestingly, those important tokens are
not consistently used in all layers. For example, the
sentiment-related words in SST-2 are temporally
used in the earlier layers and then reused after sev-
eral layers. This result highlights LoT’s distinctive
strategy in optimizing computational efficiency by
selectively engaging with task-relevant tokens as
needed. We provide the additional case study in
Section F of Appendix.

6 Conclusion

In this work, we have proposed Leap-of-Thought
(LoT), a novel token reduction strategy that en-
ables the dynamic routing of tokens within the
transformer layers. Unlike the previous works that
permanently remove tokens, LoT learns to decide
whether the given token should be processed in the
current layer or leaped forward to the next layer.
This ensures that all tokens remain accessible in
subsequent layers while reducing the number of
tokens processed within layers. Through the guid-
ance from the gradient information, each router
learns to process only the significant tokens to the
task while bypassing the less contributing tokens.
The comprehensive evaluations have convincingly
supported the superiority of the proposed method
by showing that LoT achieves substantial speedup
gains over state-of-the-art methods with the compa-
rable task accuracy. The analysis also have strongly
supported that introducing the leap action leads to
the substantially improved efficiency.



Limitations

While the proposed method allows transformer-
based pre-trained models to achieve greater com-
putational efficiency, there are a few potential limi-
tations.

- Interpretability Several existing methods for
interpretability, such as layer-wise analysis (Ten-
ney et al., 2019), might not be compatible with
our method, given that LoT benefits from the ir-
regularity. As an alternative, we believe that ag-
gregating routing results across layers can serve
as a reliable indicator of interpretability to a cer-
tain extent. For example, in the case study (Figure
6), while there are irregularity on individual layers,
the model tends to frequently use the task-related
tokens across layers, such as dull, lifeless, and am-
ateur in the first sample (sentiment analysis), and
who, most, player (in the question part of the pair),
Bart, Starr, MVP (in the answer part of the pair) in
the second example (natural language inference).
Such a comprehensive analysis across layers can
provide some degree of interpretability for the pre-
dictions.

- Router Overhead In comparison to the vanilla
backbone, LoT employs token routers to perform
the dynamic computation, which imposes extra
model parameters and computation overhead, simi-
lar to other baselines (Ye et al., 2021; Modarressi
et al., 2022; Zhang et al., 2022). This is the rea-
son why we have carefully designed the routers
as lightweight modules that only account for 2.1%
(0.17% for each router) and 2.2% (0.18% for each
router) of the memory and computational overhead
of the entire model, respectively. To understand the
effect of the router capacity, we analyze the trade-
off between the computational overhead and total
performance in Section D of Appendix. The result
shows that such a lightweight router is sufficient to
achieve significant speedup gains without compro-
mising task accuracy. Nevertheless, in this paper,
we confirm the applicability of such a lightweight
router only in the natural language understanding
tasks. Therefore, designing routers for natural lan-
guage generation tasks (e.g., summarization, ma-
chine translation) can be a promising avenue for
future research.
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Appendix

A Dataset statistics

We provide the statistics of the dataset in Table A.

Table 4: Statistics of the datasets used in evaluations.

Dataset
Average
length

Number of
train/test data

Number of
classes

Single
Input

SST-2 14 70k / 1.8k 2
IMDB 275 25k / 25k 2

HateXplain 30 15.4k / 1.9k 3
AG’s news 53 120k / 7.6k 4
DBpedia 64 560k / 70k 14

Multiple
Input

MRPC 53 3.6k / 1.7k 2
MNLI 40 390K / 9.7k 2
QNLI 50 104k / 5.4K 2

B Selected Hyper-Parameters

In table 5, we present the selected hyper-parameters
for each dataset. When selecting the threshold p,
we start to assign lower values ranging from 0.0
to 0.9 with the step size 0.05. The rationale be-
hind the lowest-to-highest search is that the lowest
threshold (even the threshold of 0.0) can still pro-
vide efficiency to some extent (as in the analysis of
Section 5.3) by transforming the supervision loss
into the regularization loss, as similar in previous
works (Ye et al., 2021; Modarressi et al., 2022).
Additionally, to prevent the router from leaping at
the beginning of the training, we initialize the last
layer of the routers to favor the non-leap action by
setting large biases against the leap action

Table 5: Hyper-parameters of LoT used in each dataset.

Dataset
Threshold

p
Balance term

λ
Temperature

τ

SST-2 0.2 2.0

1.0
IMDB 0.5 1.0

HateXplain 0.3 1.0
AG’s news 0.05 4.0
DBpedia 0.05 4.0

MRPC 0.4 1.5
1.0MNLI 0.5 0.9

QNLI 0.2 0.9

C Additional Case Study of LoT

In Figure 7, we additionally provide the case study
for the two datasets, AG’s news and SST-2.
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Figure 7: Illustration of the token routing on two examples. The darker block in each layer indicates the use of
corresponding token in the layer while the lighter block denotes the leap action.

D Computational Overhead

Since LoT requires the dynamic token routers in
the transformer, it imposes additional computation
cost on our method. This is why we design the
router to be a lightweight module, which takes only
2% of the FLOPs from the entire model. Here, we
analyze the trade-off between the capacity of the
router and total speed-up. Specifically, we set the
target performance as fixed and evaluate the total
speedup gains with the varying capacity7 of the
router. Figure 8 shows the evaluation results for
the trade-off. Notably, increasing the capacity of
the router from 0.5% to 2% leads to the improved
speedup in both datasets. However, we observe that
increasing the computation of the routers to 6% ad-
ditional FLOPs does not bring speedup gains. This
result indicates the router requiring 2% additional
FLOPs is enough to achieve reasonable efficiency.

2.12×
2.30× 2.25×2.38×

2.74× 2.76×

Figure 8: Speedup ratio on the different capacity of
dynamic token routers. Note that the router consists of
two linear layers.

E LoT on Different Architectures

To verify the scalability of LoT, we performed the
additional experiments on smaller model (i.e., Tiny-

7For the capacity variation, we adjust the dimension of
hidden layers of the routers.

BERT (Jiao et al., 2020)) and larger model (i.e.,
BERTlarge) than the model used in the main paper.
Table 6 shows the evaluation results of different
scales on SST-2 dataset. The results verify that
the proposed method can boost the inference speed
on the different scales of PLMs, demonstrating the
scalability of LoT.

Table 6: Evaluation results of test accuracy (%) and
speedup ratio on the SST-2 dataset.

Method Accuracy SpeedUp

BERTlarge 93.5 1.00×
BERTlarge+LoT (ours) 93.1 2.13×

TinyBERT 89.7 1.00×
TinyBERT+LoT (ours) 89.5 2.22×

F Wall-clock Inference Time

To assess the speedup gains on specific computa-
tional environments, we measured the inference
time on a single NVIDIA V100 GPU. As a result,
we observed that the real-time speedup gains (2.2x,
Base: 37ms, LoT: 17ms) consist with the gains in
FLOPs (2.3x). This observation aligns with the pre-
vious finding (Ye et al., 2021), which suggest that
theoretical speedups (i.e., FLOPs) often closely
match the actual speedup gains.


