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ABSTRACT

Membership inference attacks (MIAs) expose significant privacy risks by deter-
mining whether an individual’s data is in a dataset. While differential privacy
(DP) mitigates such risks, it faces challenges in general when achieving an op-
timal balance between privacy and utility, often requiring intractable sensitivity
calculations and limiting flexibility in complex compositions. We propose a game-
theoretic framework that models privacy protection as a Bayesian game between a
defender and an attacker, solved using a general-sum Generative Adversarial Net-
work (general-sum GAN). The Bayes Generative Privacy (BGP) response, based
on cross-entropy loss, defines the attacker’s optimal strategy, leading to the Bayes-
Nash Generative Privacy (BNGP) strategy, which achieves the optimal privacy-
utility trade-off tailored to the defender’s preferences. The BNGP strategy avoids
sensitivity calculations, supports compositions of correlated mechanisms, and is
robust to the attacker’s heterogeneous preferences over true and false positives. A
case study on binary dataset summary statistics demonstrates its superiority over
likelihood ratio test (LRT)-based attacks, including the uniformly most powerful
LRT. Empirical results confirm BNGP’s effectiveness.

1 INTRODUCTION

Membership inference attacks (MIAs) exploit vulnerabilities in data analysis and machine learn-
ing, enabling adversaries to determine whether an individual’s data is included in a dataset, such as
medical records or training data. MIAs represent not only a significant privacy threat but also a dom-
inant method for assessing privacy risks. To mitigate the privacy risks, noise perturbation strategies
like differential privacy (DP) (Dwork, 2006) introduce randomness to reduce information leakage.
DP provides strong theoretical guarantees by ensuring probabilistic near-indistinguishability of an
individual’s presence in a dataset based on the output of data sharing and processing mechanisms.

However, privacy protection inevitably leads to a tradeoff: adding noise increases uncertainty but
reduces data utility, while insufficient noise leaves sensitive information vulnerable to inference
attacks. Balancing this privacy-utility trade-off is essential for effective privacy protection across
diverse applications. The DP framework quantifies privacy preservation using an (ϵ, δ) scheme,
which measures the extent to which individual privacy is protected. However, this scheme does not
fully capture the utility of the released aggregate information, because for a given (ϵ, δ) (representing
a specific privacy level), different noise perturbation methods—such as varying noise distributions
(e.g., Gaussian or Laplace) or magnitudes can yield differing levels of utility (Geng et al., 2020).
Identifying optimal privacy parameters and noise mechanisms is therefore crucial to achieving an
optimal trade-off for a given objective using any privacy-preserving framework, DP included.

Despite its theoretical appeal, guaranteeing a desired level of DP for a data-processing mechanism is
often challenging. For instance, calculating sensitivity—the maximum possible change in the output
when a single data point is replaced—is generally NP-hard (Xiao & Tao, 2008). Furthermore, deter-
mining the optimal composition of multiple independent DP mechanisms is #P -complete (Murtagh
& Vadhan, 2015). Moreover, the tight characterization of aggregate differential privacy risk under
the composition of multiple mechanisms with arbitrary correlation remains open. These challenges
complicate the design of DP mechanisms that optimally balance privacy and utility, particularly in
scenarios involving multiple dataset accesses.
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In this paper, we propose a novel game-theoretic framework to address the optimal privacy-utility
trade-off by conceptualizing privacy risk as the outcome of strategic interactions between a defender
and an attacker. We model this interaction as a general-sum Bayesian game, where the defender
optimizes privacy while preserving utility, and the attacker seeks to perform MIAs. To solve for
the Bayes-Nash Equilibrium (BNE), we introduce the general-sum Generative Adversarial Network
(general-sum GAN), where the defender’s privacy strategy acts as the generator and the attacker’s
MIA strategy serves as the discriminator. At the core of this approach is the Bayes Generative
Privacy (BGP) response, which defines the attacker’s best response to the defender’s privacy strategy
by minimizing a cross-entropy loss that quantifies the discrepancy between the prior distribution of
the sensitive information and the attacker’s probabilistic inference. The resulting privacy strategy,
termed the Bayes-Nash Generative Privacy (BNGP) strategy, achieves the optimal privacy-utility
trade-off tailored to the defender’s preferences.

The BNGP strategy offers several key advantages. To address the attacker’s heterogeneous pref-
erences for true positives and false positives, we extend the membership advantage (MA) (Yeom
et al., 2018) to a Bayes-weighted MA (BWMA). The BGP response captures the defender’s worst-
case privacy risk regardless of the attacker’s preferences in terms of BWMA, ensuring no alternative
strategy achieves strictly better privacy or utility for a given trade-off objective. Furthermore, the
BGP response satisfies post-processing and composition properties, enabling BNGP strategies to
optimize privacy for complex compositions involving arbitrary correlations—surpassing the typical
independent mechanism assumptions of DP. In addition, we show that each BNGP privacy strategy
is also an optimal approximate DP framework for a given trade-off objective. Furthermore, we es-
tablish a necessary and sufficient condition for equivalence between BNGP privacy and pure ϵ-DP
for a given choice of ϵ. Unlike DP, BNGP avoids intractable sensitivity calculations for privacy
guarantees and worst-case proofs for composition, and it can also handle compositions of correlated
mechanisms. To demonstrate the effectiveness of our approach, we present a case study on shar-
ing binary dataset summary statistics. Under mild assumptions, we show that a bounded-rational
Bayesian attacker with a non-informative prior incurs higher worst-case loss for the defender than
the uniformly most powerful likelihood ratio test (LRT) per the Neyman-Pearson lemma (Neyman
& Pearson, 1933). Empirical results further confirm the efficacy of the BNGP strategy in achieving
superior privacy-preserving sharing of summary statistics and classification models.

Organization Section 2 provides the necessary preliminaries. Section 3 introduces the Bayesian
game framework for modeling privacy protection against MIAs. Sections 3.1 and 3.2 formally
define the general-sum GAN, BGP response, and BNGP strategy, and explore their properties and
relationship with differential privacy. Section 4 presents a case study on sharing summary statistics,
comparing the proposed approach to state-of-the-art LRT methods. Section 5 discusses numerical
experiments that validate the effectiveness of our framework, and Section 6 concludes the paper.

1.1 RELATED WORK

Quantitative Notions of Privacy Leakage Quantitative notions of privacy leakage have been ex-
tensively studied in various contexts which provides mathematically rigorous frameworks for mea-
suring the amount of sensitive information that may be inferred by attackers. Differential privacy
(Dwork et al., 2006; Dwork, 2006) and its variants (Bun & Steinke, 2016; Dwork & Rothblum,
2016; Mironov, 2017; Bun et al., 2018) formalize the privacy leakage using various parameterized
statistical divergence metrics. For example, Rényi differential privacy (RDP) (Mironov, 2017) gen-
eralizes the standard pure DP and quantifies the privacy leakage through the use of Rényi divergence.
Information-theoretic measures, such as mutual information (Chatzikokolakis et al., 2010; Cuff &
Yu, 2016), f-divergence (Xiao & Devadas, 2023), and Fisher information (Farokhi & Sandberg,
2017; Hannun et al., 2021; Guo et al., 2022), provide alternative ways to quantify and characterize
privacy loss. Empirical measurements are also widely studied (Shokri et al., 2017; Yeom et al.,
2018; Nasr et al., 2021; Stock et al., 2022) that quantify the actual privacy guarantees or leakage
under certain privacy protection methods.

Privacy-Utility Trade-off Balancing the trade-off between privacy and utility is a central challenge
in designing privacy-preserving mechanisms. This balance is often modeled as an optimization
problem (Lebanon et al., 2009; Sankar et al., 2013; Lopuhaä-Zwakenberg & Goseling, 2024; Ghosh
et al., 2009; Gupte & Sundararajan, 2010; Geng et al., 2020; du Pin Calmon & Fawaz, 2012; Al-
ghamdi et al., 2022; Goseling & Lopuhaä-Zwakenberg, 2022). For instance, Ghosh et al. (2009)
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formulated a loss-minimizing problem constrained by differential privacy and demonstrated that the
geometric mechanism is universally optimal in Bayesian settings. Similarly, optimization problems
can be framed with utility constraints Lebanon et al. (2009); Alghamdi et al. (2022). Moreover,
Gupte & Sundararajan (2010) modeled the trade-off as a zero-sum game, where the privacy mech-
anism maximizes privacy while information consumers minimize their worst-case loss using side
information.

GAN in Privacy The use of generative adversarial networks (GANs) for privacy protection has
gained increasing attention in recent years. Huang et al. (2018) introduced generative adversarial
privacy (GAP), which frames privacy protection as a non-cooperative game between a generator (de-
fender) and an adversarial discriminator (attacker). In GAP, the generator creates data that retains
target utility while obfuscating sensitive information, while the discriminator attempts to identify
the private data. The objective is to train a model that not only achieves high utility but is also
resilient to the most powerful inference attacks (i.e., high privacy). Similar efforts have also been
proposed in the form of compressive adversarial privacy (CAP), which compresses data before the
adversarial training step to enhance privacy (Chen et al., 2018). Nasr et al. (2018) proposed an ad-
versarial regularization method that mitigates this type of attack by adjusting the training process
to reduce the information leakage from the model. Similarly, Jordon et al. (2018) presented PATE-
GAN, combining the Private Aggregation of Teacher Ensembles (PATE) framework with GANs
to generate synthetic data with differential privacy guarantees. Other works in this line includes
privacy-preserving adversarial networks (Tripathy et al., 2019), reconstructive adversarial network
(Liu et al., 2019b), and federated GAN (Rasouli et al., 2020). Adversarial training has also been
applied to defend against MIAs specifically. For example, Li et al. (2021) explored methods where
models are trained alongside adversaries attempting MIAs, which enables the models to learn rep-
resentations that are less susceptible to such attacks. There are also works using GAN to perform
attacks, where the generator represents the attacker’s strategy (Baluja & Fischer, 2017; Hitaj et al.,
2017; Zhao et al., 2018; Liu et al., 2019a; Hayes et al.).

2 PRELIMINARIES: MEMBERSHIP INFERENCE ATTACK

Membership inference attacks (MIA) aim to infer whether a particular data point is a part of the
input dataset of a data analysis mechanism, which could output summary statistics (Sankararaman
et al., 2009; Dwork et al., 2015), any model learned from the dataset (Abadi et al., 2016; Shokri
et al., 2017), or other information or signals such as network traffic when processing the dataset
(Chen et al., 2010). Let U = [K] be a population of K individuals, where each individual k has a
data point dk (e.g., a feature vector). Let the binary vector b = (b1, b2, . . . , bK) ∈ W ≡ {0, 1}K
denote the membership vector, where each bk ∈ {0, 1}. The membership vector b indicates whether
each data point is included in the dataset B = {b, d}, where d = (dk)k∈U ; specifically, a data
point dk is included in B if and only if bk = 1. Suppose the underlying distribution of the dataset
induces a prior distribution of the membership, denoted by θ(·) ∈ ∆(W ). Consider a (potentially
randomized) mechanism f(B) ∈ X , which takes the dataset B as input and outputs x ∈ X , where
X is a set of outputs.

Example: Summary Statistic Sharing Consider a population U ≡ [K] of K individuals, where
each individual’s data is represented by a binary vector dk = (dkj)j∈Q, with dkj ∈ {0, 1} specifies
the binary value of the specific attribute at position j. The set Q represents the set of all attributes
under consideration, such as genomic positions or other features. The dataset B = {b, d} includes
a membership vector b and data points d = {dk}k∈U , where an individual’s data is included only
if bk = 1. The data-sharing mechanism f(B) = x = (x1, . . . , x|Q|) ∈ X = [0, 1]|Q| computes
the summary statistics x, which is the fraction of individuals with dkj = 1 at each attribute j. For
example, in genomic data, dk may represent single-nucleotide variants (SNVs), where each dkj
indicates the presence of an alternate allele at SNV j of individual k. The summary statistic in
this case, known as the alternate allele frequency (AAF), is computed as xj = 1∑

k bk

∑
k bkdkj ,

reflecting the fraction of individuals with the alternate allele at each SNV.

An MIA model is a (possibly randomized) mechanism A(dk, x) ∈ {0, 1}, which predicts the in-
dividual’s membership information given the target individual k’s data point and the output of the
mechanism f . The standard membership advantage (MA) (Yeom et al., 2018) is a common perfor-
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mance measure of the MIA model, defined for each k ∈ U as:

Advk (A) ≡ Pr [A(dk, x) = 1|bk = 1]− Pr [A(dk, x) = 1|bk = 0] . (1)

In other words, Advk (A) captures the difference between the model A’s true positive rate (TPR) and
false positive rate (FPR). Other metrics used to assess MIA performance include accuracy (Shokri
et al., 2017), area under the curve (AUC) (Chen et al., 2020), mutual membership information leak-
age (Farokhi & Kaafar, 2020), and privacy-leakage disparity (Zhong et al., 2022). For a comprehen-
sive review, see (Niu et al., 2024).

3 PRIVACY PROTECTION AGAINST MIA AS A BAYESIAN GAME

We define the data curator of the private dataset B as the defender, tasked with protecting privacy
against MIA, and the entity performing MIA as the attacker.

Defender To protect membership privacy, the defender randomizes the mechanism f via noise per-
turbation. Let gD : W 7→ ∆(D) denote the privacy strategy, where gD(δ|b) specifies the probability
distribution over noise δ ∈ D. The privacy strategy may also be independent of the membership vec-
tor, i.e., gD(·) ∈ ∆(D). The randomized version of f is represented as the mechanism M(·; gD),
and ρD : W 7→ ∆(X ) is the density function induced by gD and f . The defender, modeled as a Von
Neumann-Morgenstern (vNM) decision-maker, aims to minimize the expected privacy loss.

Noise Perturbation Our noise perturbation aligns with standard randomization paradigms in DP,
including input Dwork et al. (2006), objective Chaudhuri et al. (2011), and output Dwork et al.
(2006) perturbations. When an output x = M(B; gD) is realized with gD drawing a noise δ, we
denote it as x = r(δ). In output perturbation, δ is added to the output x̂ = f(B), and the publicly
released output is x = r(δ) = R(x̂+ δ), where R(·) ensures the perturbed x remains within the valid
range X . For example, as described in Section 2, when x̂ represents frequencies, the formulation
x = R(x̂+ δ) ≡ Clip[0,1](x̂+ δ) ensures x ∈ [0, 1]|Q|.

Attacker The attacker performs MIA and aims to infer the true membership vector. We consider the
attacker as a strategic Bayesian decision-maker, with their external knowledge represented by sub-
jective prior beliefs about b ∈ W , denoted by σ(·) ∈ ∆(W ). We refer to this as a σ-Bayesian attack.
The attacker employs a mixed strategy hA : X 7→ ∆(W ), which assigns a probability distribution
over W based on the output of M(·; gD). The MIA model is then written as A(·;hA, σ) ∈ {0, 1}.

The attacker may face trade-offs between maximizing privacy extraction and operational costs of
post-processing the inferred membership information (e.g., for personalized medicine or marketing).
These costs can affect their preference for true positives and true negatives. We extend (1) to the
Bayes-weighted membership advantage (BWMA) by introducing a coefficient 0 < γ ≤ 1 to weight
TPR and FPR. That is, BWMA is defined as:

Advγ (hA, gD) ≡ (1− γ)TPR (hA, gD)− γFPR (hA, gD) , (2)

where TPR (hA, gD) ≡
∑

k∈U,b−k
Pr [A(dk, x;hA, σ) = 1|bk = 1; gD] θ(bk = 1, b−k) is the TPR,

and FPR (hA, gD) ≡
∑

k∈U,b−k
Pr [A(dk, x;hA, σ) = 1|bk = 0; gD] θ(bk = 0, b−k) is the FPR.

Decreasing λ indicates a stronger preference for TPR while increasing λ reflects a greater preference
for FPR. When λ = 0.5, the attacker values TPR and FPR equally.

Attacker’s Expected Loss Let s = (sk)k∈U ∈ W denote the inference output of hA. Define

ℓA(s, b, γ) ≡ −v(s, b) + γcA(s),

where v(s, b) ≡
∑

k∈U skbk captures the sum of true positives, and cA(s) ≡
∑

k∈U sk captures
the operational costs to post-process positive inference outcomes (i.e., sk = 1, for all k ∈ U ).
Maximizing v(s, b) reflects maximizing true positives, while minimizing cA(s) reflects minimizing
the operational costs. Given a privacy strategy gD (and the induced ρD), prior σ, and the attacker’s
strategy hA, the expected loss is defined as:

Lγ
A(gD, hA) ≡

∑
s,b

∫
x

ℓA(s, b, γ)hA(s|x)ρD(x|b)dxσ(b). (3)

Proposition 1. Suppose σ = θ. Then, for any gD, hA, and 0 < γ ≤ 1, we have Lγ
A(gD, hA) =

−Advγ (hA, gD).
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Proposition 1 shows that when σ = θ and 0 < γ ≤ 1, the attacker’s optimal strategy simultaneously
minimizes Lγ

A(gD, hA) and maximizes Advγ(hA, gD) for any given gD. This equivalence simpli-
fies the defender-attacker interaction by modeling it as a Bayesian game, where s represents the
attacker’s pure strategy.

Given any gD, define the maximum MA as Advk (gD) ≡ maxhA
{TPR (hA, gD)− FPR (hA, gD)} .

Proposition 2. Let gD and g′D be two defense strategies, and suppose σ = θ. Then, Advk (gD) ≥
Advk (g

′
D) for all k ∈ U iff maxhA

Adv0.5 (hA, gD) ≥ maxhA
Adv0.5 (hA, g

′
D).

Proposition 2 establishes that the ordering of the privacy strength of the defender’s strategies, where
privacy risk is measured by the standard per-individual membership advantages (MAs), can be fully
characterized by the ordering of the Bayes-weighted membership advantage (BWMA). In other
words, comparing the BWMA is sufficient to determine which privacy strategy offers stronger pro-
tection in terms of per-individual privacy risk.

Defender’s Expected Loss The defender aims to optimally balance the privacy-utility trade-off.
Given any gD, hA, let LD(gD, hA) represent the expected loss function. We consider TPR or stan-
dard MA (hence Adv0.5) as the defender’s perceived privacy risk and impose Assumption 1 on LD.

Assumption 1. For a given gD, the defender’s expected loss LD(gD, hA) increases as either
TPR(hA, gD) or Adv0.5(hA, gD) increases.

Assumption 1 establishes a relationship between the defender’s expected loss and privacy risk (de-
pendent on hA) under a given gD, indicating that as privacy risk increases, the defender incurs
greater loss. The defender aims to minimize privacy risk while maximizing the utility of the mech-
anism M. A common class of LD(gD, hA) satisfying Assumption 1 is an additive combination of
privacy risk and utility loss, with the utility loss independent of hA. A useful way to model the utility
loss is by the deviation of x = M(B; gD) from the unperturbed output x̂ = f(B). Specifically, let
ℓU : R+ 7→ R+ be an increasing, differentiable function, and let ∥ · ∥p be a norm on X , for p ≥ 1.
The utility loss is then defined by ℓU (∥x − x̂∥p). The defender’s privacy loss can be either v(s, b)
(capturing TPR) or −ℓA(s, b, 0.5) (capturing MA). For simplicity, we use the membership vector
b to represent the dataset B = {b, d}. If the defender’s privacy risk is measured by TPR, the loss
function is expressed as

ℓD(b, s) ≡ v(s, b) + κℓU (∥M(b; gD)− f(b)∥p). (4)

Given any gD (and the induced ρD) and hA, the defender’s expected loss LD is then given by

LD (gD, hA) ≡
∑

s,b

∫
x

ℓD (b, s)hA(s|x)ρD(x|b)dxθ(b). (5)

The interaction between the defender and attacker is modeled as a game, with each optimizing
their strategy. A σ-Bayesian Nash Equilibrium represents the point where neither can unilaterally
improve their outcome.

Definition 1 (σ-Bayes Nash Equilibrium). Let 0 < γ ≤ 1. A profile ⟨g∗D, h∗
A⟩ is a σ-Bayesian Nash

Equilibrium (σ-BNE) if

g∗D ∈ argmingD LD(gD, h∗
A) and h∗

A ∈ argminhA
Lγ
A(g

∗
D, hA). (6)

3.1 BAYES-NASH GENERATIVE PRIVACY MECHANISM

We train the BNE strategies using a GAN-like approach, termed general-sum GAN. The defender’s
strategy is represented by a neural network generator GλD

(b, ν), parameterized by λD, which takes
the true membership vector b and an auxiliary vector v as inputs, outputting a noise vector δ. Here,
we assume that the auxiliary vector ν of dimension q has entries uniformly distributed in [0, 1],
denoted by ν ∼ U . The attacker’s strategy is represented by a neural network discriminator HλA

(x),
parameterized by λA, which takes as input x = r (GλD

(b, ν)) and outputs an inference s ∈ W ,
where r(·) represents the relationship between δ and x.

We use G and H to represent the general forms of the models GλD
and HλA

, without reference to
specific parameterization. Unless otherwise specified, G and H will be used in analysis, where the
particular parameterization is not essential. For ease of exposition, we focus on output perturbation,
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where x = r(δ) = R(x̂ + δ), with x̂ = f(b) as the unperturbed output. Our method applies to
the general formulation of the privacy-utility trade-off objective under Assumption 1. Here, we use
ℓU (∥δ∥p) as the utility loss for simplicity, as minimizing ℓU (∥δ∥p) also minimizes ℓU (∥R(x̂+ δ)−
x̂∥p). Define the defender’s and attacker’s expected loss functions as:

L̃D (G,H) ≡ Eν∼U
b∼θ [v (H (r (G(b, ν))) , b) + κℓU (∥G(b, ν)∥)] ,

L̃γ
A(G,H) ≡ Eν∼U

b∼σ [−v (H (r (G(b, ν))) , b) + γcA (H (r (G(b, ν))))].
Then, the defender and the attacker play the following game:

G∗ ∈ argminG L̃D (G,H∗) , H∗ ∈ argminH L̃γ
A(G

∗, H). (7)
This equilibrium reformulates the σ-BNE using neural networks. The G and H implicitly define
probability distributions that match the mixed strategies gD and hA, respectively. With abuse of
notation, we denote TPR(·) and Advγ(·) by substituting hA and gD by H and G. Hence, we have
L̃D(G,H) = LD(gD, hA) and L̃γ

A(G,H) = Lγ
A(gD, hA). Moreover, if LD(gD, hA) satisfies

Assumption 1, then so does L̃D(G,H). If G and H are idealized, nonparametric models with
infinite capacity that accurately represent the true distributions of gD and hA, then Proposition 1
implies H∗ ∈ argmaxH Advγ(H,G∗) if and only if h∗

A ∈ argminhA
Lγ
A(g

∗
D, hA). Here, G∗ is

the privacy strategy that achieves the optimal privacy-utility trade-off captured by L̃D under the
worst-case privacy loss that can be induced.

Proxies of Loss Functions Since the function v(s, b) requires binary outputs from H , it is inherently
discrete. However, using sigmoid activation functions in the neural networks (particularly for H)
results in continuous outputs, which makes v(s, b) unsuitable for gradient-based optimization due to
non-differentiability. We provide proxies for v and ℓA. Let p = (pk)k∈U , where each pk ∈ (0, 1),
denote the output of H . We substitute v(s, b) with v(p, b) ≡

∑
k∈U pkbk, and use the binary cross-

entropy loss for ℓA, defined as ℓ̂A(p, b) = −
∑
k∈U

(bk log(pk) + (1− bk) log(1− pk)). Thus, the

attacker’s expected cross-entropy loss (CEL) is given by:

LCEL(G,H) ≡ Eν∼U
b∼σ

[
ℓ̂A (H (r (G(b, ν))) , b)

]
. (8)

Definition 2 (Bayes Generative Privacy Response). Given any G, the Bayes generative privacy
response (BGP response) to G is defined as H∗ ∈ argminH LCEL(G,H).
Definition 3 (Bayes-Nash Generative Privacy Strategy). The model G∗ is a Bayes-Nash genera-
tive privacy (BNGP) strategy for a given objective function L̃D(·) and subjective prior σ if it is
constrained by the BGP response: G∗ ∈ argminG L̃D(G,H∗), H∗ ∈ argminH LCEL(G

∗, H).

Theorem 1. Let G∗ be a BNGP strategy for L̃D and σ, and let H∗ be a BGP response to G∗.
Suppose that L̃D satisfies Assumption 1. Then, for any G′ ∈ argminG L̃D (G,H ′) with H ′ ∈
argminH L̃γ

A(G
′, H) where 0 < γ ≤ 1, and for any Ĥ , we have:

(i) TPR(Ĥ,G∗) ≤ TPR(H∗, G∗) ≤ TPR(H ′, G′).

(ii) Adv0.5(Ĥ,G∗) ≤ Adv0.5(H∗, G∗) ≤ Adv0.5(H ′, G′).

By definition, a BNGP strategy G∗ responds to the BGP response H∗, ensuring the optimal privacy-
utility trade-off by considering the worst-case privacy loss when the attacker minimizes LCEL. It
is important to note that TPR, Advγ , L̃D are independent of LCEL. Theorem 1 establishes that G∗

achieves the optimal privacy-utility trade-off given L̃D by leveraging the worst-case privacy risk
under the chosen privacy strategy. Specifically, the first inequalities in (i) and (ii) show that, under
G∗, an attacker using H∗ achieves the worst-case privacy risk for the defender, and no other attacker
can induce a strictly higher privacy loss in terms of TPR or Adv0.5. The second inequalities in (i) and
(ii) further demonstrate that G∗ minimizes the defender’s perceived privacy risk, ensuring that no
alternative privacy strategy G′ achieves a strictly lower privacy loss against the worst-case attacker.

3.2 PROPERTIES OF BGP RESPONSE

The BGP risk enjoys the properties of post-processing and composition. The post-processing prop-
erty requires that processing a data-sharing mechanism’s output cannot increase input data informa-
tion. Let Proc : X 7→ Z be a mechanism mapping M(b;G) ∈ X to Z , creating a new mechanism

6
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Proc ◦ M(b;G) ∈ Z . Proc ◦ G denotes the effective randomization device for Proc ◦ M(·;G).
Proposition 3 shows that the BGP risk satisfies the post-processing property.
Proposition 3 (Post-Processing). Suppose that G has BGP risk H ∈ argminH LCEL(G,H)

and L̂σ
A(G,H). Suppose in addition that for any Proc, Proc ◦ G has BGP risk H ′ ∈

argminH LCEL(Proc ◦G,H). Then, LCEL(Proc ◦G,H ′) ≥ LCEL(G,H).

Consider a profile G⃗ = {G1, . . . , Gn} for 1 ≤ n < ∞, where each Gj corresponds to the density
function gjD. With a slight abuse of notation, let Mj(Gj) : B 7→ X j denote the mechanism
Mj(g

j
D) (i.e., the randomized version of the mechanism f j) for all j ∈ [n], where X j represents

the output space of Mj . Additionally, let ρjD : B 7→ ∆(X j) denote the underlying density function
of Mj(Gj).

Define the composition M(G⃗) : B 7→
∏n

j=1 X j of mechanisms M1(G1), . . . ,Mn(Gn) as

M(b; G⃗) ≡ (M1(b;G1), . . . ,Mn(b;Gn)) .

The joint density function of M(b; G⃗), denoted by ρ⃗D : B 7→ ∆
(∏n

j=1 X j
)

, encodes any

underlying correlations among the mechanisms. Mechanisms in M(G⃗) are independent if
ρ⃗D(x1, . . . , xn|B) =

∏n
j=1 ρ

j
D(xj |B); otherwise, they are correlated. For simplicity, let r⃗(G⃗(b)) ≡

(r1(G1(b)), . . . , rn(Gn(b))) = x⃗ = (x1, . . . , xn).

Let H (⃗r(G⃗(b))) denote the attacker’s discriminator that utilizes all outputs (irrespective of their
order), and let Hj(rj(Gj(b))) represent the discriminator that takes only rj(Gj(b)) as input.

Proposition 4 (Composition). Suppose that M(G⃗) is a composition of n mechanisms with arbitrary
correlation. Then, we have, for H∗ ∈ argminH LCEL(G⃗,H), H∗

j ∈ argminHj
LCEL(Gj , Hj) for

all j ∈ [n],

LCEL(G⃗, H⃗∗) =
∑n

j=1
LCEL(Gj , H

∗
j )− Λ(G⃗, θ).

If mechanisms are independent, then Λ(G⃗, θ) = −
∑

b θ(b)
∫
X⃗ ρ⃗D(x⃗|b)·log (

∑
b′ ρ⃗D(x⃗|b′)θ(b′)) dx⃗.

If mechanisms are correlated, Λ(G⃗, θ) = −
∑

b θ(b)
∫
X⃗ ρ⃗D(x⃗|b) log

(∑
b′ ρ⃗D(x⃗|b′)θ(b′)

P (x⃗)

)
dx⃗, where

P (x⃗) =
∏n

j=1

∑
b′

∫
X⃗−j

ρ⃗D(xj , x⃗−j |b′)θ(b′)dx⃗−j .

Proposition 4 demonstrates that when privacy risk is quantified in terms of the minimum LCEL

(induced by the BGP response) for a given G⃗, the privacy risk adheres to an additive composition
property.

3.2.1 RELATIONSHIP TO DIFFERENTIAL PRIVACY

Differential privacy (DP) (Dwork et al., 2006) ensures data analysis outputs remain nearly indistin-
guishable regardless of an individual’s inclusion, hindering membership inference attacks (MIA).
For adjacent datasets B ≃ B′ differing by one entry, a mechanism M(G) satisfies (ϵ, ξ)-DP (ϵ ≥ 0,
ξ ∈ [0, 1]) if for all measurable X̂ ⊆ X : Pr [M(B;G) ∈ S] ≤ eϵPr [M(B′;G) ∈ S] + ξ.

To align with the standard DP framework, we assume that each individual’s membership in-
formation is independent of the others. With a slight abuse of notation, we represent θ(b) as
(θ1(b1), . . . , θ

K(bK)), a vector of independent priors for each individual’s membership.

Proposition 5. Let G⃗∗ = {G∗
1, . . . , G

∗
n}. Let M(G⃗∗) be a composition of n ≥ 1 mechanisms

with arbitrary correlation, where each G∗
j is BNGP strategies for some L̃j

D satisfying Assumption
1. Then, M(G⃗∗) is (ϵ, ξ)-DP for some ϵ ≥ 0 and ξ ∈ [0, 1].

Proposition 5 demonstrates that every mechanism employing a BNGP strategy profile is also differ-
entially private. However, it does not specify the corresponding DP parameters. In the following,
we outline how to design a BNGP strategy (or profile under composition) when the defender selects
a specific value of ϵ.
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For any ϵ ≥ 0 and any G⃗ = (G1, . . . , Gn), we define the following set:

DPH
[
G⃗; ϵ

]
≡

H

∣∣∣∣∣∣∣
θ(b)e−ϵ ≤H

(
r⃗
(
G⃗(b)

))
≤ θ(b)eϵ, ∀b ∈ W

1− (1− θ(b)) eϵ ≤H
(
r⃗
(
G⃗(b)

))
≤ 1− (1− θ(b)) e−ϵ, ∀b ∈ W

 . (9)

Definition 4 (ϵ-Bayes Generative Bounded Privacy Response). The ϵ-Bayes Generative Bounded
Privacy response (ϵ-BGBP response) for any G⃗ = {G1, G2, . . . , Gn} is defined as H∗ ∈
argminH LCEL(G⃗,H)

⋂
DPH[G⃗; ϵ].

An ϵ-BGBP response satisfies both (i) the conditions of a BGP response and (ii) the linear constraints in
DPH[G⃗; ϵ]. However, the attacker optimizing LCEL does not consider DPH[G⃗; ϵ] as a constraint in their opti-
mization. In other words, DPH[G⃗; ϵ] is not a restriction on the attacker’s strategy. Instead, it is the defender’s
choice of G⃗ that must ensure the induced attacker’s BGP response also satisfies the constraints in DPH[G⃗; ϵ].
That is, DPH[G⃗; ϵ] constrains the defender’s optimization problem.

Proposition 6. For any G⃗ = {G1, G2, . . . , Gn} and ϵ ≥ 0, the composition M(G⃗) of n ≥ 1 mechanisms is
ϵ-DP iff all the BGP responses to G⃗ are ϵ-BGBP responses.

Proposition 6 establishes the necessity and sufficiency of using the BGBP response to implement a pure (ξ = 0)
differentially private mechanism. Consequently, for a composition (or a single mechanism) M(G⃗∗) to satisfy
ϵ-DP, the defender selects G⃗∗ based on a given ϵ, ensuring:

G⃗∗ ∈ argminG⃗ L̃D

(
G⃗, s.t. H∗

)
, H∗ ∈ argminH LCEL(G⃗,H) ∩ DPH[G⃗; ϵ].

This choice of G⃗∗ guarantees that M(G⃗) is an ϵ-DP mechanism that optimally balances the privacy-utility
trade-off for a given privacy risk characterized by ϵ.

4 MIA IN SHARING SUMMARY STATISTICS

In this section, we apply Bayesian game-theoretic privacy protection to the sharing of summary statistics from
binary datasets, as outlined in Section 2. Assuming the attributes in each dk are independent, SNVs can be
prefiltered to retain only those in linkage equilibrium (Kimura, 1965). An MIA attacker uses the summary
statistics x output by f(B) to infer whether specific individuals k ∈ U belong to the private dataset B. We
compare our Bayesian model with state-of-the-art (SOTA) Frequentist attacks, including fixed(-threshold) LRT
(Sankararaman et al., 2009; Shringarpure & Bustamante, 2015; Venkatesaramani et al., 2021; 2023), adaptive
LRT (Venkatesaramani et al., 2021; 2023), and the optimal LRT. These attacks rely on the log-likelihood ratio
statistic lrs(dk, x), which compares observed summary statistics x to reference frequencies p̄j derived from a
population dataset independent of (b, d). Detailed definitions of these models and loss functions are provided
in Appendix C.

The fixed LRT attacker determines whether individual k is part of the dataset by rejecting Hk
0 (absence) in

favor of Hk
1 (presence) if lrs(dk, x) ≤ τ , where the fixed τ balances Type-I (ατ ) and Type-II (βτ ) errors.

The adaptive LRT dynamically adjusts τ (N) using reference population data to refine the hypothesis test. The
optimal LRT minimizes Type-II error βτ∗ for a given ατ∗ , achieving the most powerful test by Neyman-
Pearson lemma (Neyman & Pearson, 1933). Optimal α-LRT attacks refer to Likelihood Ratio Tests that are
Neyman-Pearson optimal at a fixed significance level α. The worst-case privacy loss (WCPL), representing the
defender’s strategy gD under each attack, is defined as the expected value of v(s, b). For the optimal, adaptive,
and fixed LRT attacks, the WCPL is denoted by Lα

Opt-LRT(gD), Lα
Adp(gD), and Lα

Fixed(gD), respectively (see
Appendix C for explicit definitions).

Let L(gD, hA) ≡
∑

b,s

∫
x
v(s, b)hA(s|x)ρD(x|b)dxθ(b) denote the expected true positive rate. Under σ-

Bayesian attacks using the BGP response, the worst-case privacy loss (WCPL) is given by Lσ
Bayesian(gD) ≡

max
H∗∈argminH LCEL(G,H)

L(gD, hA), where G and H are neural networks (ideal, non-parameterized) that im-

plicitly define gD and hA.

In the absence of parameterized priors over W , we assume a uniform distribution as the non-informative
prior, consistent with Laplace’s principle (Fienberg, 2006). Our analysis focuses on subjective priors, con-
sidering their informativeness relative to the true prior θ. For simplicity, let BRσ[gD] ≡ {h∗

A | H∗ ∈
argminH LCEL(G,H), H defines h∗

A}. When σ = θ, we denote this set as BRθ[gD].
Definition 5 (Aligned and Misaligned σ). For a fixed gD , σ is (weakly) informative if L(gD, hσ

A) ≤
L(gD, hθ

A), where hσ
A ∈ BRσ[gD] and hθ

A ∈ BRθ[gD]. It is non-informative if uniformly distributed over
W , aligned if either informative or non-informative, and misaligned otherwise. σ is strictly informative if the
inequality is strict.
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Theorem 2. Fix any gD and α. If σ ∈ ∆(W ) is an aligned prior, then:

Lσ
Bayesian(gD) ≥ Lα

Opt-LRT(gD) ≥ Lα
Adp(gD) ≥ Lα

Fixed(gD).

If σ is strictly aligned, then Lσ
Bay(gD) > Lα

Opt-LRT(gD).

Theorem 2 establishes a ranking of WCPL from the defender’s perspective across four types of attacks: σ-
Bayesian, optimal α-LRT, adaptive α-LRT, and fixed α-LRT. Among these, the σ-Bayesian attack produces
the highest WCPL. However, this ordering—particularly between Lσ

Bayesian(gD) and Lα
Opt-LRT(gD)—may not

hold if the attacker’s prior is misaligned. Appendix D shows an example of how to comparison between σ-
Bayesian attack and the α-LRT attack when σ is an arbitrary subjective prior.

5 EXPERIMENTS

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1: (a)-(c): Genomic dataset with 5000 SNVs (attributes) per individual. (d): Adult dataset. (e)-(f):
Genomic dataset with 100 SNVs per individual. (g): Genomic dataset with 4000 SNVs per individual. (h):
MNIST dataset. (i) Genomic dataset with 1000 SNVs per individual.

Datasets and Baselines: Our experiments use three datasets: the Adult dataset (UCI Machine Learning
Repository), the MNIST dataset, and a genomic dataset. Detailed experimental setups and additional results are
provided in Appendix P. We compare our Bayesian attacker (inducing the BGP response using LCEL) with the
following baseline attack models: fixed-threshold and adaptive-threshold attackers (Sankararaman et al., 2009;
Shringarpure & Bustamante, 2015; Venkatesaramani et al., 2021; 2023), the score-based attacker (Dwork et al.,
2015), and decision-tree and support vector machine (SVM) attackers. The score-based attacker, proposed by
Dwork et al. (2015), relaxes the LRT attack from Homer et al. (2008), requiring only that distorted summary
statistics approximate the true marginals in ℓ1-norm. We also evaluate the BNGP strategy against baseline
defenses, including standard DP, new pure DP (Steinke & Ullman, 2016), the DP mean estimator (Cai et al.,
2021), and two state-of-the-art (SOTA) genomic defense models (Venkatesaramani et al., 2021; 2023). In the
experiments for Figures 1a-1e, 1a, and 1g, the mechanism releases summary statistics of the genomic dataset.

9
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For Figure 1f, the mechanism performs mean estimation under DP (Cai et al., 2021). In the experiments for
Figure 1h, the mechanism serves as a classifier for the MNIST dataset. For all experiments, we assume a
uniform prior θ and set the Bayesian attacker’s σ = θ. We measure the strength of privacy protection using the
attacker’s ROC curve and its Area Under the Curve (AUC), which quantifies the attacker’s ability to distinguish
members from non-members.

Figure 1a presents the defender’s performance against Bayesian, fixed-threshold LRT, and adaptive LRT at-
tackers, using the genomic dataset (see Appendix C for details). The results confirm that the Bayesian attacker
outperforms both the fixed-threshold and adaptive LRT attackers. That is, the Bayesian attacker poses the
greatest threat among the three attack models. Figure 1b illustrates the Bayesian attacker’s performance across
three scenarios, each with the mechanism protected by a different defense model, using the genomic dataset.
The Bayesian defender employs the BNGP strategy, while the fixed-threshold LRT and adaptive LRT defenders
adopt privacy strategies that best respond to their respective LRT attackers. The results demonstrate that the
Bayesian defender using the BNGP strategy is the most robust defense against the Bayesian attacker among the
three defense models.

Figure 1c compares the Bayesian attacker’s performance under two defenses using the genomic dataset: the
Bayesian defender employs the BNGP strategy, while the other uses conventional ϵ-DP. Detailed setup infor-
mation is in Appendix P.3. The Bayesian defender accounts for heterogeneous privacy-utility trade-offs by
assigning weights κ⃗ = (κj)j∈Q to SNV positions, with κj = 0 for 90% of 5000 SNVs and κj = 50 for the
remaining 10%, meaning that the defender only cares about the utility loss for 10% of SNVs. In contrast, the
ϵ-DP strategy ignores these preferences but selects ϵ to match the Bayesian defender’s expected utility loss. In
the experiment, the utility loss for the BNGP strategy is about 0.0001 and the corresponding ϵ = 1.25 × 105

(see Appendix P.3 for explanation). The results show that, despite equal utility loss, the ϵ-DP defense can incur
significantly greater privacy loss under the Bayesian attack, with an AUC of 0.53 against the Bayesian defender
and 0.91 against the ϵ-DP defender.

Figure 1d presents the performance of four attackers when the mechanism is protected by the Bayesian defense
adopting the BNGP strategy, using the Adult dataset. The results show that the Bayesian attacker outperforms
the others, with the adaptive LRT slightly surpassing the fixed-threshold LRT, and the score-based attacker
performing the weakest. Figures 1e and 1f present the performance of four attackers (Bayesian, fixed-threshold
LRT, adaptive LRT, and score-based) when the mechanism is protected by two defense models, using the
genomic dataset. In Figure 1e, the defender employs the new pure DP defense (Steinke & Ullman, 2016), while
in Figure 1f, the defender uses DP with peeling (Dwork et al., 2018) to protect the mean estimator (Cai et al.,
2021). The results show that the Bayesian attacker consistently achieves the highest performance, followed by
the adaptive LRT, which slightly outperforms the fixed-threshold LRT, with the score-based attacker performing
the worst.

Figure 1g compares the performance of four attackers (Bayesian, fixed-threshold LRT, adaptive LRT, and
score-based) when the mechanism is protected by a defender employing the strategy that best responds to
the score-based attacker, using the genomic dataset. The results show that the Bayesian attacker significantly
outperforms the others, while the fixed-threshold and adaptive LRT attackers perform similarly but lag behind,
with the score-based attacker performing the worst.

Figure 1h presents the results for a classifier trained on the MNIST dataset. The ROC curve compares the per-
formance of the Bayesian, decision-tree, and SVM attackers when the mechanism is protected by the Bayesian
defender employing the BNGP strategy. The results indicate that the Bayesian attacker performs the best,
followed by the decision-tree attacker, with the SVM attacker performing the worst.

The experiments in Figure 1i empirically evaluate the BNGP strategy with the BGP response satisfying the
condition in Proposition 6. “Composition” refers to the combination of five mechanisms, while “One Mecha-
nism” represents a single ϵ-DP mechanism. The single ϵ-DP mechanism serves as a reference to assess whether
the composition using the BNGP strategy also satisfies ϵ-DP by comparing the Bayesian attacker’s perfor-
mance. If the composition satisfies ϵ-DP, the Bayesian attacker’s performance should closely resemble that in
the single mechanism case. The results demonstrate that the BNGP strategy using the BGP response satisfying
the condition in Proposition 6 ensures that the composition is approximately ϵ-DP.

6 CONCLUSION

This paper introduces a game-theoretic framework for optimal privacy-utility trade-offs, addressing the limi-
tations of differential privacy in balancing privacy and utility. By modeling privacy protection as a Bayesian
game between a defender and an attacker, we derive the Bayes-Nash Generative Privacy (BNGP) strategy,
which achieves optimal trade-offs tailored to defender preferences. The BNGP strategy avoids intractable
sensitivity calculations, supports complex compositions, and remains robust to heterogeneous attacker prefer-
ences. Empirical results validate the effectiveness of BNGP in privacy-preserving data sharing and classifica-
tion, demonstrating its potential as a flexible and practical alternative to existing methods.
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REPRODUCIBILITY STATEMENT

We have taken extensive measures to ensure the reproducibility of our work. All theoretical proofs are included
in the appendix for transparency. Appendix P provides a comprehensive description of the experiment setups
and additional experiments to facilitate replication. Furthermore, the main source code has been submitted as
supplementary material
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APPENDIX

A NOTATIONS

NOTATIONS FOR SECTION 2

Symbol Description
U ∈ [K] population of K individuals
b ∈ W membership vector; W is the membership vector space
d = (dk)k∈U dk : data point of individual k
B = {b, d} dataset
θ true prior distribution of membership vector
f(·) (data processing) mechanism without privacy protection
x ∈ X output of f ; X is the output space
A(·) MIA model
Advk (A) standard membership advantage of A(·)

NOTATIONS FOR SECTION 3

Symbol Description
gD(·) defender’s privacy strategy
M(·; gD) randomized version of f by gD

ρD : W 7→ ∆(X ) density function induced by gD and f

r(·) x = r(δ) captures the relationship between an output sample x and a noise sample δ

R(·) clipping processing used in output perturbation to ensure the output is within X
σ attacker’s subjective prior
hA(·) Bayesian attacker’s (inference) strategy
A(·;hA, σ) MIA model given hA and σ

Advγ (hA, gD) Bayes-weighted membership advantage (BWMA)
Advk(gD) maximum (standard) MA: Advk (gD) ≡ maxhA

{TPR (hA, gD)− FPR (hA, gD)} .
0 < γ ≤ 1 coefficient weights the attacker’s preferences over TPR and FPR
ℓA(·) loss function of the attacker
Lγ
A(gD, hA) expected loss function of the attacker given gD and hA

ℓU (·) utility loss function of the defender
ℓD(·) loss function of the defender
LD(gD, hA) expected loss function of the defender given gD and hA

G non-parameterized neural network generator that represents gD
H non-parameterized neural network discriminator that represents hA

GλD
(b, ν) generator parameterized by λD, where ν is a uniform random variable

HλA
(x) discriminator parameterized by λA

L̃D(G,H) the defender’s expected loss given G and H

L̃γ
D(G,H) the attacker’s expected loss given G and H

ℓ̂A binary cross-entropy loss function of the attacker
LCEL expected cross-entropy loss function of the attacker

Note that from Equation (4) onward, the notation of the dataset B = (b, d) is simplified to its membership
vector b for clarity.
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NOTATIONS FOR SECTION 3.2

Symbol Description
Proc ◦M(b;G) post-processing of mechanism M
Proc ◦G underlying effective randomization device for Proc ◦M(b;G)

Mj(Gj) j-th mechanism, where Gj corresponds to gjD
G⃗ = {G1, · · · , Gn} a profile of n ≥ 1 generators, with output δ⃗ = (δ1, . . . , δn)

M(·; G⃗) composition of M1(G1), . . . ,Mn(Gn)

ρ⃗D joint density function of M(b; G⃗)

r⃗(·) x⃗ = r⃗(δ⃗) captures relationship between x⃗ and δ⃗

DPH[G⃗]; ϵ] a set of linear conditions for the attacker’s discriminator H , given by (9)

NOTATIONS FOR SECTION 4

Symbol Description
lrs(dx, x) log-likelihood ratio statistic defined in Appendix C
α, ατ significance level of a hypothesis testing, with threshold τ

βτ Type-II error rates given a threshold τ

Lα
Opt-LRT(gD) worst-case privacy loss (WCPL) under optimal α-LRT attack defined in Appendix C

Lα
Adp(gD) WCPL under adaptive α-LRT attack defined in Appendix C

Lα
Fixed(gD) WCPL under fixed α-LRT attack defined in Appendix C

Lσ
Bayesian(gD) WCPL under BGP response attacker

B THEORETICAL INSIGHTS AND SUPPLEMENTARY INTUITIONS

B.1 PROPOSITION 1

(Proposition 1 Restated). Suppose σ = θ. Then, for any gD , hA, and 0 < γ ≤ 1, we have Lγ
A(gD, hA) =

−Advγ (hA, gD).

The proof of Proposition 1 is given by Appendix F.

The proof of Proposition 1 begins by reformulating the attacker’s loss function ℓA(s, b, γ) to explicitly capture
the contributions of true positives (bk = 1) and false positives (bk = 0). The weights (1− γ) and −γ highlight
the balance between the attacker’s trade-offs for these cases, directly linking the loss to the attacker’s inference
strategy hA(s|x). The expected loss Lγ

A(gD, hA) is then expressed as an integral over the attacker’s strategy
hA(s|x), the defender’s output distribution ρD(x|b), and the prior distribution σ(b) of the membership vector.
This formulation ties the attacker’s loss to the probabilistic structure of the problem. A key simplification occurs
when σ = θ, aligning the prior distribution with the true membership distribution. Under this assumption, the
expected loss is simplified into terms weighted by (1 − γ) and γ, representing probabilities associated with
membership inference. Taking the expectation over the defender’s output distribution ρD(x|b), the proof shows
that:

Lγ
A(gD, hA) = −Adv

γ(hA, gD).

This result establishes that minimizing the attacker’s expected loss LA is equivalent to maximizing their γ-
weighted membership advantage. Thus, the proof connects the attacker’s strategy to membership advantage
within the Bayesian game-theoretic framework.

B.2 PROPOSITION 2

(Proposition 2 Restated). Let gD and g′D be two defense strategies, and suppose σ = θ. Then, Advk (gD) ≥
Advk (g

′
D) for all k ∈ U iff maxhA Adv0.5 (hA, gD) ≥ maxhA Adv0.5 (hA, g

′
D).

The proof of Proposition 2 is given by Appendix G.
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The proof of Proposition 2 establishes the equivalence between individual membership advantages and the
optimal Bayes-weighted membership advantage for two defense strategies, gD and g′D .

For the if direction, the proof assumes Advk(gD) ≥ Advk(g
′
D) for all k ∈ U . By applying the prior probabili-

ties of bk = 0 and bk = 1 to both sides of the inequality and summing over all individuals, it follows that the
total membership advantage of gD is greater than or equal to that of g′D , completing the if direction.

For the only if direction, the proof introduces Adv∗(gD), the maximum Bayes-weighted membership advan-
tage, and L∗

A(gD) = minhA LA(gD, hA) (i.e., the corresponding minimal attacker loss ). By Proposition 1,
Adv∗(gD) ≥ Adv∗(g′D) is equivalent to L∗

A(gD) ≤ L∗
A(g

′
D). Using the Blackwell informativeness order-

ing, the proof shows that gD is at least as informative as g′D , and this ordering is independent of the choice
of priors. By considering a uniform prior, the optimal Bayes-weighted membership advantage simplifies to
Adv†(gD) = 1

2

∑
k∈U Advk(gD). The informativeness ordering ensures no individual k0 ∈ U exists such that

Advk0(gD) > Advk0(g
′
D). This concludes the proof of the equivalence.

B.3 THEOREM 1

(Theorem 1 Restated). Let G∗ be a BNGP strategy for L̃D and σ, and let H∗ be a BGP response to
G∗. Suppose that L̃D satisfies Assumption 1. Then, for any G′ ∈ argminG L̃D (G,H ′) with H ′ ∈
argminH L̃γ

A(G
′, H) where 0 < γ ≤ 1, and for any Ĥ , we have:

(i) TPR(Ĥ,G∗) ≤ TPR(H∗, G∗) ≤ TPR(H ′, G′); (ii) Adv0.5(Ĥ,G∗) ≤ Adv0.5(H∗, G∗) ≤ Adv0.5(H ′, G′);
(iii) L̃D(Ĥ,G∗) ≤ L̃D(G∗, H∗) ≤ L̃D(G′, H ′).

The proof of Theorem 1 is given by Appendix H.

The proof of Theorem 1 establishes that the Bayes-Nash Generative Privacy (BNGP) strategy G∗, when paired
with the Bayes-Generative Privacy (BGP) response H∗, achieves optimal privacy-utility trade-offs under the
given assumptions. The proof builds on the definitions of expected loss functions and their relationships with
posterior beliefs, denoted by µσ . The proof uses two key definitions. First, the function Z(gD, σ;V ) is in-
troduced (Equation 12 in Appendix H) to aggregate the expected value of any general function V (s, b) over
the posterior belief µσ , which is induced by the defender’s strategy gD and prior σ. Second, the function
L(gD, hA;V ) is introduced (Equation 13 in Appendix H) to represent the attacker’s expected loss under strat-
egy hA for the same function V (s, b). When V (s, b) = ℓA(s, b; γ) for a given 0 < γ ≤ 1, this loss corresponds
to the attacker’s expected utility Lγ

A(gD, hA).

By Proposition 7, the expected value Z(gD, σ) coincides with the attacker’s loss Lσ(gD) when hA corresponds
to the posterior belief µσ . Furthermore, Proposition 8 ensures that every BGP response H∗ matches this
posterior belief, guaranteeing that the expected loss Lγ

A(G,H∗) is minimized. This implies that the adversary’s
membership advantage Adv0.5(H∗, G∗) is smaller than or equal to that of any other strategy H ′. The proof then
extends this result to the defender’s utility by considering V (s, b) = v(s, b). Since the BGP response minimizes
the expected loss for this utility function, the corresponding true positive rate (TPR) satisfies TPR(G∗, H∗) ≤
TPR(G′, H ′), where G′ is any other privacy strategy and H ′ is its corresponding best response.

These results collectively establish the inequalities in parts (i), (ii), and (iii) of the theorem, confirming that the
BNGP strategy G∗, coupled with the BGP response H∗, achieves optimal privacy-utility trade-offs.

B.4 PROPOSITION 3

(Proposition 3 Restated). Suppose that G has BGP risk H ∈ argminH LCEL(G,H) and L̂σ
A(G,H).

Suppose in addition that for any Proc, Proc ◦ G has BGP risk H ′ ∈ argminH LCEL(Proc ◦ G,H). Then,
LCEL(Proc ◦G,H ′) ≥ LCEL(G,H).

The proof of Proposition 3 is given by Appendix I.

Proposition 3 establishes that applying a post-processing function Proc to a defender’s privacy strategy G cannot
decrease the Bayes Generative Privacy (BGP) risk. This property aligns with the principle that post-processing
cannot increase the informativeness of a mechanism.

The proof relies on Blackwell’s informativeness ordering. By Theorem 2.10 of (Dong et al., 2021) (see also
(Blackwell, 1951)), for any fixed significance level, the minimum false positive rates for inferring each indi-
vidual’s membership status are denoted by T (G) and T (Proc ◦ G) when using G and Proc ◦ G, respectively.
It is shown that T (Proc ◦ G) ≥ T (G), meaning that G is at least as informative as Proc ◦ G. According to
Theorem 1 of (de Oliveira, 2018), Blackwell’s informativeness ordering implies that the attacker’s minimum
expected loss for the post-processed mechanism Proc ◦G satisfies LCEL(Proc ◦G,H ′) ≥ LCEL(G,H). There-
fore, the post-processing property ensures that applying Proc to G does not reduce the attacker’s expected loss,
confirming the proposition.
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B.5 PROPOSITION 4

(Proposition 4 Restated). Suppose that M(G⃗) is a composition of n mechanisms with arbitrary correlation.
Then, we have, for H∗ ∈ argminH LCEL(G⃗,H), H∗

j ∈ argminHj
LCEL(Gj , Hj) for all j ∈ [n],

LCEL(G⃗, H⃗∗) =
∑n

j=1
LCEL(Gj , H

∗
j )− Λ(G⃗, θ).

If mechanisms are independent, then Λ(G⃗, θ) = −
∑

b θ(b)
∫
X⃗ ρ⃗D(x⃗|b) · log

(∑
b′ ρ⃗D(x⃗|b′)θ(b′)

)
dx⃗. If

mechanisms are correlated, Λ(G⃗, θ) = −
∑

b θ(b)
∫
X⃗ ρ⃗D(x⃗|b) log

(∑
b′ ρ⃗D(x⃗|b′)θ(b′)

P (x⃗)

)
dx⃗, where P (x⃗) =∏n

j=1

∑
b′
∫
X⃗−j

ρ⃗D(xj , x⃗−j |b′)θ(b′)dx⃗−j .

The proof of Proposition 4 is given by Appendix J.

For independent mechanisms, the total BGP risk decomposes cleanly into the sum of individual mechanism
risks. The interaction term Λ(G⃗, θ) reflects the joint contribution to the risk but simplifies due to the inde-
pendence of outputs. This independence ensures that the attacker’s best response to each mechanism depends
solely on its marginal posterior distribution, making the overall composition straightforward to analyze. For
correlated mechanisms, Λ(G⃗, θ) explicitly accounts for dependencies among outputs by incorporating joint
densities and marginal probabilities. The joint posterior distribution µθ(b|x⃗) aligns the attacker’s best response
with the interdependent outputs of the mechanisms. This dependency modifies the interaction term and ensures
that the total BGP risk reflects both individual risks and the additional information provided by the correlation.

B.6 PROPOSITION 5

(Proposition 5 Restated). Let G⃗∗ = {G∗
1, . . . , G

∗
n}. Let M(G⃗∗) be a composition of n ≥ 1 mechanisms

with arbitrary correlation, where each G∗
j is BNGP strategies for some L̃j

D satisfying Assumption 1. Then,
M(G⃗∗) is (ϵ, ξ)-DP for some ϵ ≥ 0 and ξ ∈ [0, 1].

The proof of Proposition 5 is given by Appendix K.

The proof demonstrates that the composition M(G⃗∗) satisfies (ϵ, ξ)-differential privacy by applying the prop-
erties of likelihood-ratio tests and f-DP. The proof uses the properties of likelihood-ratio tests and trade-off
functions to establish f-DP guarantees, which are subsequently converted to (ϵ, ξ)-DP guarantees, ensuring
that the composition mechanism satisfies differential privacy even under arbitrary correlations.

Using the Neyman-Pearson lemma Neyman & Pearson (1933), the likelihood-ratio test is identified as the
Uniformly Most Powerful (UMP) test for distinguishing between the two hypotheses Hk

0 and Hk
1 , which cor-

respond to whether an individual’s data is included in the dataset. This establishes a fundamental relationship
between the test’s significance level αk and the corresponding rejection rule ϕ. The symmetric trade-off func-
tion f(αk) introduced in Dong et al. (2022) is then used to relate the false positive and false negative rates of this
hypothesis test. The function f(αk) has key properties, such as convexity, continuity, and monotonicity, which
make it suitable for capturing the privacy guarantees of the mechanism. By employing results from the f-DP
framework, the privacy guarantees of M(G⃗∗) as f-DP are translated into (ϵ, ξ)-DP guarantees. Specifically,
the composition satisfies (ϵk, ξk)-DP for individual components, where ξk is a function of ϵk. Aggregating
these guarantees across all components ensures that M(G⃗∗) satisfies (ϵ, ξ)-DP for some ϵ ≥ 0 and ξ ∈ [0, 1].

B.7 PROPOSITION 6

(Proposition 6 Restated). For any G⃗ = {G1, G2, . . . , Gn} and ϵ ≥ 0, the composition M(G⃗) is ϵ-DP iff
all the BGP responses H∗ ∈ DPH[G⃗; ϵ] ̸= ∅.

The proof of Proposition is given by Appendix L.

This proposition establishes a necessary and sufficient condition for a composition of mechanisms, M(G⃗), to
satisfy ϵ-differential privacy (DP). The core insight is the equivalence between ϵ-DP of the mechanism and
the properties of its best-response discriminators, known as BGP responses. Specifically, M(G⃗) is ϵ-DP if
and only if all BGP responses satisfy the conditions defined by DPH[G⃗; ϵ]. This bridges the classical notion
of ϵ-DP with the Bayesian framework by characterizing privacy guarantees in terms of adversarial inference
strategies. This result demonstrates the consistency between classical differential privacy and the Bayesian
game-theoretic approach, showing that ϵ-DP can be fully characterized through BGP responses. This pro-
vides a powerful perspective on privacy guarantees, uniting two complementary frameworks while maintaining
rigorous mathematical consistency.
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The proof leverages the posterior distribution µθ(b|x⃗) induced by G⃗ and the prior θ. If argminH LCEL(G⃗,H)∩
DPH[G⃗; ϵ] ̸= ∅, this posterior distribution satisfies the conditions for ϵ-DP as specified by DPH[G⃗; ϵ]. By the
necessary and sufficient conditions established in (Dwork et al., 2006), this implies that G⃗ is ϵ-DP. Conversely,
if G⃗ is ϵ-DP, the posterior distribution must also meet these conditions, ensuring that all BGP responses belong
to DPH[G⃗; ϵ]. The extension of Proposition 8 in Appendix H guarantees that the optimal BGP response aligns
with the posterior induced by G⃗, which completes the equivalence.

B.8 THEOREM 2

(Theorem 2 Restated). Fix any gD and α. If σ ∈ ∆(W ) is an aligned prior, then:

Lσ
Bayesian(gD) ≥ Lα

Opt-LRT(gD) ≥ Lα
Adp(gD) ≥ Lα

Fixed(gD).

If σ is strictly aligned, then Lσ
Bay(gD) > Lα

Opt-LRT(gD).

The proof of Theorem 2 is given by Appendix M.

Theorem 2 establishes a hierarchy of worst-case privacy losses incurred by the defender under different attacker
models: Bayesian, optimal α-LRT, adaptive α-LRT, and fixed-threshold α-LRT. It asserts that the Bayesian
attacker leads to the highest loss when the prior σ is aligned, and the Bayesian loss strictly exceeds the optimal
α-LRT loss if σ is strictly aligned.

The proof hinges on several key insights. First, Lemma 4 demonstrates that when σ is aligned, a Bayesian
attacker using the posterior belief µσ as a best-response strategy minimizes its loss. Lemma 5 further shows
that the Bayesian attacker cannot perform worse than the optimal α-LRT under the same defense strategy gD .
This is achieved by leveraging the relationship between the Bayesian attacker’s posterior and the likelihood ratio
statistic of the α-LRT, ensuring that the Bayesian strategy captures a broader range of risks. For non-informative
priors, the proof verifies that the Bayesian attacker still outperforms α-LRTs by demonstrating that any α-LRT
strategy can be virtually represented as a special case of the Bayesian framework with uniform prior. The
hierarchy of losses for adaptive and fixed-threshold α-LRTs follows directly from the Neyman-Pearson lemma
and existing results in the literature (Venkatesaramani et al., 2021; 2023). These results highlight the robustness
of the Bayesian approach in capturing privacy risks across various attacker models and priors.

C EXISTENCE FREQUENTIST ATTACK MODELS

Likelihood Ratio Test Attacks MIAs targeting genomic summary data releases are often framed as hy-
pothesis testing problems (Sankararaman et al., 2009; Shringarpure & Bustamante, 2015; Raisaro et al., 2017;
Venkatesaramani et al., 2021; 2023), where for each individual k ∈ U , the attacker tests Hk

0 : bk = 1 (i.e., the
individual k is in the dataset) versus Hk

1 : bk = 0 (i.e., the individual k is not). Additionally, p̄j denotes the
frequency of the alternate allele at the j-th SNV in a reference population that is not included in the dataset B.

First, assume δ = 0. The attacker is assumed to have external knowledge of the genomic data for individuals
[K], in the form of p̄ = (p̄j)j∈Q and d = (dkj)k∈[K],j∈Q. The log-likelihood ratio statistic (LRS) for each
individual k is given by (Sankararaman et al., 2009):

lrs(dk, x) =
∑

j∈Q

(
dkj log

p̄j
xj

+ (1− dkj) log
1− p̄j
1− xj

)
.

An LRT attacker performs MIA by testing Hk
0 against Hk

1 using lrs(dk, x) for each k ∈ [K]. The null hypoth-
esis Hk

0 is rejected in favor of Hk
1 if lrs(dk, x) ≤ τ for a threshold τ , and Hk

0 is accepted if lrs(dk, x) > τ .

Let P k
0 (·) ≡ Pr(·|Hk

0 ) and P k
1 (·) ≡ Pr(·|Hk

1 ) denote the probability distributions under H0 and H1, respec-
tively.

Definition 6 ((ατ , βτ )-LRT Attack). An attacker performs (ατ , βτ )-LRT Attack if P k
0 (lrs(dk, x) ≤ τ) = ατ

and 1− P k
1 (lrs(dk, x) ≤ τ) = βτ , for all k ∈ U , where ατ is the significance level and 1− βτ is the power

of the test with the threshold τ .

Define the trade-off function (Dong et al., 2021), T [P k
0 , P

k
1 ](α) ≡ infτ{βτ : ατ ≤ α}. By Neyman-

Pearson lemma (Neyman & Pearson, 1933), the LRT test is the uniformly most powerful (UMP) test for a
given significance level. Specifically, for a given ατ , there exists a threshold τ∗ such that no other test with
ατ ≤ ατ∗ can achieve a strictly smaller βτ < βτ∗ . Hence, T [P k

0 , P
k
1 ](ατ∗) = βτ∗ , for all k ∈ U . We refer

to an α-LRT as a UMP (α, β)-LRT and will interchangeably add or omit the corresponding threshold notation
as needed.
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From the vNM defender’s perspective, the expected privacy losses under an α-LRT attack, without and with
defense gD , respectively, are given by

Lo(τo, α) ≡ E
[
v(s̃, b̃)

∣∣∣α] =∑
k
P k
1 [yk(f(b, z), τ

o) = 1] θ(bk = 1) =
∑

k
(1− βτo)θ(bk = 1),

L(gD, τo, α) ≡ E
[
v(s̃, b̃)

∣∣∣gD, τo, α
]
=
∑

k
P k
1 [yk(r, τ

o) = 1|gD] θ(bk = 1),

where yk(x, τ
o) ≡ 1 {lrs(dk, x) ≥ τo} is the indicator function for the likelihood ratio statistic, and

P k
1 [yk(r, τ

o) = 1|gD] ≡
∫
r
1 {yk(r, τo) = 1} ρD(r|b)dr. Here, τo is the threshold associated with the

α-LRT.

Fixed-Threshold LRT Attack (Sankararaman et al., 2009; Shringarpure & Bustamante, 2015;
Venkatesaramani et al., 2021; 2023) A fixed(-threhsold) LRT attacker performs MIA without account-
ing for any privacy defense strategies. Such an attacker selects a fixed threshold τo that balances Type-I and
Type-II errors, resulting in a UMP α-LRT test in the absence of defense. This approximation can be achieved by
simulating Beacons on publicly available datasets or synthesized data using alternate allele frequencies (AAFs)
Venkatesaramani et al. (2023).

Given a fixed threshold τo, let
Lα

Fixed(gD) ≡ L(gD, τo, ατo)

The defender’s optimal strategy against the naive ατo -LRT attack is given by solving:

mingD Lα
Fixed(gD) + κE [ℓU (∥δ∥p)∥|gD, τo, ατo ] , (FixedLRT)

where E [ℓU (∥δ∥p)∥|gD, τo, ατo ] is induced expected utility loss.

Let βk(τ, gD, α) ≡ 1−P k
1 [yk(r, τ) = 1|gD] denote the actual Type-II error under the defense strategy gD for

the naive α-LRT attack. The defender can reduce privacy loss by choosing gD to increase βk(τ, gD, α) for all
k ∈ U . For the defense strategy g†D that solves (FixedLRT) to be effective in reducing privacy loss, it must
be implemented in a stealthy manner.

Adaptive-Threshold LRT Attack (Venkatesaramani et al., 2021; 2023) In an adaptive-threshold
LRT attack, the attacker is aware of the defense strategy and attempts to distinguish individuals in U from those
in the reference population Ū (individuals not in U ). Let Ū (N) ⊂ Ū represent the set of N individuals in Ū

with the lowest LRS values. The adaptive threshold is defined as τ (N)(x) = 1
N

∑
i∈Ū(N) lrs(di, x). The null

hypothesis H0 is rejected if lrs(dk, x) ≤ τ (N)(x).

The defender’s problem is then:

min
gD

L
α
τ(N)(x)

Adp (gD) + E
[
ℓU (∥δ∥p)∥

∣∣∣gD, τ (N)(x), ατ(N)(x)

]
, (AdaptLRT)

where ατ(N)(x) is the Type-I error associated with the adaptive threshold τ (N)(x), and

L
α
τ(N)(x)

Adp (gD) ≡ L(gD, τ (N)(x), ατ(N)(x)).

The WCPL L
α
τ(N)(x)

Adp (gD) in Section 4 has E[ατ(N)(r̃)] = α.

Optimal LRT Attack Let P k
0 (gD) = P k

0 [·|gD] and P k
1 (gD) = P k

1 [·|gD] denote the probability distribu-
tions under Hk

0 and Hk
1 , respectively, in the presence of defense gD . The worst-case privacy loss (WCPL) for

the defender occurs when the attacker’s hypothesis test achieves βk(τ∗, gD, α) = T [P k
0 (gD), P k

1 (gD)](α) for
some threshold τ∗, corresponding to a UMP test under gD . We refer to these as optimal α-LRT attacks.

The defender’s optimal strategy against such attacks solves the following problem:

min
gD

Lα
Opt-LRT(gD) + κE [ℓU (∥δ∥p)∥|gD, τ∗, α] ,

s.t. βk(τ∗, gD, α) = T [P k
0 (gD), P k

1 (gD)](α),
(OptLRT)

where
Lα

Opt-LRT(gD) ≡ L(gD, τ∗, α).

By the Neyman-Pearson lemma, the α-LRT with likelihood ratio statistics lrs(dk, r; gD) ≡∑
j∈Q

ρD(r|bk=0,b−k)

ρD(r|bk=1,b−k)
for all k ∈ U is optimal, attaining βk(τ∗, gD, α) = T [P k

0 (gD), P k
1 (gD)](α).

Furthermore, the defense gD obtained by solving (OptLRT) is robust against adaptive-threshold LRT attacks.
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D GAUSSIAN DEFENSE STRATEGIES

In this section, we consider gD is a Gaussian mechanism and study the comparison between the σ-Bayesian
attack and the α-LRT attack when σ is an arbitrary subjective prior.

Let Lσ(gD) ≡ maxhA L(gD, hA), where

L(gD, hA) ≡
∑
b,s

∫
x

v(s, b)hA(s|x)ρD(x|b)dxθ(b),

Define gD(δ|b) =
∏

j∈Q gjD(δj |b), where gjD(·|b) is the density function of a Gaussian distribution N (Mjb, V
j)

with mean M
j
b and variance Vj for each b ∈ U and j ∈ Q. Let y = x + δ = (xj + δj)j∈Q ∈ Y , where

yj = xj + δj ∈ Yj . The resulting conditional probability distribution is denoted by ρD(·|b) ∈ ∆(Y). Let bk[0]
and bk[1] represent two adjacent membership vectors that differ only in individual k’s value, where bk = 0 in
bk[0] and bk = 1 in bk[1]. The maximum conditional probability of sk = 0 given bk = 1 is defined as

µσ
0|1[|Q|] ≡ maxk∈U

∑
s−k

∫
y

µσ(sk = 0|y)ρD(y|bk[1]) dy,

where the posterior belief µσ is induced by gD and σ. For a Type-I error rate α̂, let β̂ represent the minimum
Type-II error rate achievable.

Lemma 1. Define F(α, β) ≡ (zα+zβ)2V

4M2 , where za is the 100(1 − a)-th percentile of the standard normal

distribution, M = 1
2

∑
j∈Q M̂2j , and V =

∑
j∈Q M̂2j . Then the following holds:

(i) F(α̂, β̂) = |Q|. (ii) For a fixed α̂, as |Q| increases (resp. decreases), β̂ decreases (resp. increases).

Theorem 3. Let gD be a Gaussian mechanism with each gjD(·|b) ∈ ∆(Yj) following N (Mjb, V
j) for any

b ∈ W . Suppose Vj =
(

|Q|
K† M̂j

)2
for all j ∈ Q, where 1 ≤ K† ≤ K is the minimum number of individuals

involved in B. Additionally, assume maxb,b′ |Mjb − M
j
b′ | ≤

|Q|
K† , where the maximum is taken over all adjacent

membership vectors. Then, for any Q with |Q| ≥ 1 and any subjective prior σ, if F(α, µσ
0|1[|Q|]) ≥ |Q|, it

holds that Lα
Opt-LRT(gD) ≤ Lσ(gD); if F(α, µσ

0|1[|Q|]) ≤ |Q|, it holds that Lα
Opt-LRT(gD) ≥ Lσ(gD).

Theorem 3 provides conditions under which the σ-Bayesian attack outperforms or underperforms the α-LRT
attack in Gaussian mechanisms, even when σ is an arbitrary subjective prior independent of the true prior q.
For any α, let 1−βα

|Q| denote the power of the α-LRT attack, and define mα = F(α, µσ
0|1[|Q|]) as the number

of SNVs used in the summary statistics such that 1 − βα
|Q| = 1 − µσ

0|1[|Q|], i.e., the power of the α-LRT
matches the worst-case true positive rate (TPR) of the σ-Bayesian attack. By Lemma 1, as m increases, βα

decreases. When mα ≥ |Q|, the actual power 1− βα
|Q| ≤ 1− µσ

0|1[|Q|]. Thus, by Proposition 7 in Appendix
M, the lowest TPR achievable by the σ-Bayesian attacker exceeds the best power of the α-LRT. Consequently,
Lα

Opt-LRT(gD) ≤ Lσ(gD). Similarly, when F(α, µσ
0|1[|Q|]) ≤ |Q|, the actual βα

|Q| ≤ µσ
0|1[|Q|], thus we have

Lα
Opt-LRT(gD) ≥ Lσ(gD).

Based on the sensitivity of f (see the proof at Appendix O for details), Theorem 3 considers the worst-case
bound of the powers of the LRT attack when the attacker knows the membership of every individual in the
dataset except for a single individual. This bound is evaluated over all possible input membership vectors.
Notably, the comparison in Theorem 3 is independent of the true prior distributions q = (qk)k∈U of the
membership vectors and does not rely on specific true membership vectors forming the Beacon dataset.

When F
(
α, µσ

0|1[m]
)
< m, the lowest true positive rate (TPR) of the σ-Bayesian attacker is strictly smaller

than the best power of the α-LRT attacker. However, this does not guarantee that every TPR of the σ-
Bayesian attacker is smaller than every power of the α-LRT attacker across different Beacon datasets. There-
fore, F

(
α, µσ

0|1[m]
)
< m generally cannot imply that Lα

Opt-LRT(gD) > Lσ(gD). Moreover, the condition
F
(
α, µσ

0|1[m]
)
≥ m is not necessary. That is, Lα

Opt-LRT(gD) ≤ Lσ(gD) does not imply F
(
α, µσ

0|1[m]
)
≥ m

for any arbitrary subjective prior σ. We can also conclude that the sufficient condition in Theorem 3 is not
applied only to aligned subjective priors. The following corollary directly follows Theorem 3.

Corollary 1. Given a Gaussian mechanism gD with Q, if the number of SNVs of the Beacon dataset satisfies
|Q| ≤ F

(
α, µσ

0|1[|Q|]
)
, then the mechanism gD that is optimal to the σ-Bayesian attacks with any arbitrary σ

is guaranteed to be robust to any optimal α-LRT attacks.

In this section, we relax Theorem 3 and study the comparison between the Bayesian attacks with arbitrary
subjective priors and the optimal LRT attacks without considering the worst-case bound of the powers of the
LRT attacks. Suppose in addition that the number of individuals involved in the Beacon dataset is fixed to
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be 0 < n < K. For ease of exposition, we consider the noises added to all SNVs to be iid. Consider a
Gaussian mechanism gD(δ|b) =

∏
j∈Q gjD(δj |b), where each gjD(·|b) is the density function of N (Mb, V). Let

two adjacent membership vectors b
[k]
0 and b

[k]
1 differing in individual k’s bk, where b

[k]
0 has bk = 0 and b

[k]
1

has bk = 1. Define two hypotheses: H [k]
0 : the true membership is b[k]0 vs. H [k]

1 : the true membership is b[k]1 .
For any k ∈ U , it is straightforward to see that each ỹj = x̃j + δ̃j is a Gaussian random variable. That is,
ỹj ∼ N (M0 + x0

j , V) under H [k]
0 and ỹj ∼ N (M1 + x1

j , V) under H [k]
1 , where Mi = M

b
[k]
i

and xi
j = f(b

[k]
i , di)

is the unperturbed summary statistics given b
[k]
i with di, for i ∈ {0, 1}. Then, given any (b

[k]
0 , b

[k]
1 ), the power

of the optimal α-LRT performed upon the observation yj for all j ∈ Q can be obtained as

T (N (M0 + x0
j , V),N (M1 + x1

j , V))(α) = Φ

(
Φ−1 (1− α)−

|M1 − M0 + x1
j − x0

j |√
V

)
,

where Φ is the cumulative distribution function (CDF) of the standard normal distribution.

Under the assumption of linkage equilibrium (i.e., each SNV is independent of the others), the power of the
optimal α-LRT performed upon y = (yj)j can be obtained by the tensor product of |Q| trade-off functions
Dong et al. (2021). In particular, the power can be represented by

T
(
×j∈QN (M0 + x0

j , V),×j∈QN (M1 + x1
j , V)

)
(α) = T

(
N[k]

0 ,N[k]
1

)
(α),

where N[k]
0 = N (M0+x0

1, . . . , M0+x0
|Q|,Σ(V)) and N[k]

1 = N (M1+x1
1, . . . , M0+x1

|Q|,Σ(V)), in which Σ(V)

is a |Q| × |Q| diagonal matrix where each principal diagonal element is V. The Mahalanobis distance for the
joint distributions is

dΣ(V )

(
(M0 + x0

1, . . . , M0 + x0
|Q|), (M1 + x1

1, . . . , M1 + x1
|Q|)
)
=

√√√√∑
j∈Q

(
M1 − M0 + x1

j − x0
j

)2
V

.

Therefore, we have

T
(

N[k]
0 ,N[k]

1

)
(α) =Φ

Φ−1 (1− α)−

√√√√∑
j∈Q

(
M1 − M0 + x1

j − x0
j

)2
V


=T

(
N (0, 1),N (Meq[b

[k]
0 , b

[k]
1 ], 1)

)
(α),

where Meq[b
[k]
0 , b

[k]
1 ] =

√∑
j∈Q

(M1−M0+x1
j−x0

j)
2

V
, in which we show [b

[k]
0 , b

[k]
1 ] to indicate that the trade-off

function is based on b
[k]
0 and b

[k]
1 .

Let b[k]0 = (bk = 0, b̂−k) and b
[k]
1 = (bk = 1, b̂−k). Define

β(α, q) ≡
∑

bk,b̂−k

T
(
N (0, 1),N (Meq[b

[k]
0 , b

[k]
1 ], 1)

)
(α)qk(bk)q−k(b̂−k),

and

µ0|1(σ, q) ≡
∑

bk,b̂−k

∑
s−k

∫
y

µσ(sk = 0|y)ρD(y|bk = 1, b̂−k)dyqk(bk)q−k(b̂−k).

In addition, define
∆(α, σ, q) ≡ µ0|1(σ, q)− β(α, q).

The following corollary is straightforward.

Corollary 2. Let gD(δ|b) =
∏

j∈Q gjD(δj |b) be a Gaussian mechanism, where each gjD(·|b) is the density
function of N (Mb, V). Then, Lα

Opt-LRT(gD) ≤ Lσ(gD) if and only if ∆(α, σ, q) ≥ 0.

Corollary 2 represents shows a condition for Lα
Opt-LRT(gD) ≤ Lσ(gD) when the Bayesian attacker’s subjective

prior σ is arbitrary. Here, 1 − β(α, q) is the expected power of the α-LRT attacker perceived by the vNM
defender, while 1− µ0|1 is the expected posterior beliefs of {sk = 1}k∈U . Thus, ∆(α, σ, q) ≥ 0 implies that
the expected accuracy of inferring {sk = 1} using the posterior beliefs is higher than the expected power of
the σ-LRT. By Proposition 7, we have that the Bayesian strategy that mirrors the posterior belief leads to the
WCPL. Therefore, given any ρD and the true prior q, ∆(α, σ, q) ≥ 0 is equivalent to Lα

Opt-LRT(gD) ≤ Lσ(gD).
This condition is independent of the sensitivity of f but depends on gD and the true prior q.
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D.1 LRT VNM DEFENDER

We use gN, gAdp, and gOpt to denote the typical solutions to (FixedLRT), (AdaptLRT) and (OptLRT), respec-
tively. Suppose that all gN, gAdp, and gOpt are Gaussian mechanisms. We refer to the defender using gN, gAdp,
and gOpt, respectively, as the naive, adaptive, and optimal LRT vNM defender. Then, the WCPL is captured by
the power of the UMP test given a significant level α. Due to the Neyman-Pearson lemma, the WCPL is the
power or the TPR of the optimal α-LRT, 1− T [P k

0 (gD), P k
1 (gD)](α).

Corollary 3. Fix any gD and α. Let TPR(gD, σ) denote the maximum TPR can be obtained by a σ-Bayesian
attacker under gD . Suppose that gD is chosen such that the WCPL is 1 − T [P k

0 (gD), P k
1 (gD)](α). Then, the

following hold.

(i) If σ is an informative or non-informative prior, then TPR(gD, σ) ≥ 1− T [P k
0 (gD), P k

1 (gD)](α).

(ii) Suppose that gD is Gaussian as described in Theorem 3. If F
(
α, µσ

0|1[m]
)

≥ m, then
TPR(gD, σ) ≥ 1 − T [P k

0 (gD), P k
1 (gD)](α). If F

(
α, µσ

0|1[m]
)

< m, then TPR(gD, σ) <

1− T [P k
0 (gD), P k

1 (gD)](α).

Part (i) of Corollary 3 follows Theorem 2. In particular, from Theorem 2 we have Lσ(gD) ≥ L(gD, τ∗, α)
for aligned subjective priors. Hence, TPR(gD, σ) ≥ 1 − T [P k

0 (gD), P k
1 (gD)](α). Part (ii) of Corollary 3

follows Theorem 3. If F
(
α, µσ

0|1[m]
)
≥ m, Theorem 3 implies that L(gD, τ∗, α) ≤ Lσ(gD), which gives

TPR(gD, σ) ≥ 1 − T [P k
0 (gD), P k

1 (gD)](α). If F
(
α, µσ

0|1[m]
)
< m, then Lα

Opt-LRT(gD) > Lσ(gD), which
implies TPR(gD, σ) < 1− T [P k

0 (gD), P k
1 (gD)](α).

E DIFFERENTIAL PRIVACY

Standard Differential Privacy Differential privacy Dwork et al. (2006); Dwork (2006) is a widely used
data privacy preservation technique based on probabilistic distinguishability. Formally, we say a randomized
mechanism F is (ϵ, ϱ)-differentially private if for any two adjacent dataset D and D′ differing in only one entry
if holds that

P
(
F ((D′)) ∈ F

)
≤ eϵP

(
F (D′) ∈ F

)
+ ϱ

for any possible subset F of the image of the mechanism F . The parameter ϵ is usually referred to as the
privacy budget, which is small but non-negligible. (ϵ, 0)-DP or ϵ-DP is known as pure differential privacy,
while with a non-zero ϱ > 0, (ϵ, ϱ)-DP is viewed as approximate differential privacy.

Sensitivity Define the sensitivity of f by

sens(f) ≡ max
b,b′

|f(b, d)− f(b′, d′)|,

where the maximum is over all adjacent datasets (b, d) and (b′, d′) where b and b′ differs only in a single indi-
vidual with d and d′ as the corresponding SNVs, respectively. For a given SNV in a dataset with B ⊆ U , dkj is
either 0 or 1. Thus, the maximum possible difference between the averages over the columns that differ in one
entry is 1

|B| . Let 1 ≤ K† ≤ K be the minimum number of individuals involved in the Beacon dataset. Hence,

sens(f) = m
K† . Suppose we choose gD as a Laplace mechanism. That is, gD(·|b) is Laplace(0, sens(f)

ϵ
),

for all b ∈ W . Then, it satisfies (pure) ϵ-differential privacy if R is the identity function since the Laplace
mechanism performs output perturbation Dwork (2006). Due to the post-processing property of the standard
differential privacy, it is clear that the Laplace mechanism gD is also ϵ-differentially private for any non-identity
R.

Gaussian Differential Privacy Next, we consider the scenario when gD is a Gaussian mechanism de-
scribed in Theorem 3. In particular, given any b ∈ W , gjD(·|b) ∈ ∆(Yj) is the density function of N (Mjb, V

j)

for all j ∈ Q, where Vj =
(

m
K† M̂j

)2
and maxb,b′ |Mjb − M

j
b′ | ≤

m
K† , for all j ∈ Q. By Lemma 6, we have

T
[
Pb(g

j
D), Pb′(g

j
D)
]
(α) ≥ T

[
N (0, 1),N (M̂j , 1)

]
,

for all adjacent b and b′. Therefore, each gjD satisfies M̂j-Gaussian differential privacy (M̂j-GDP) Dong et al.
(2021), for all j ∈ Q. By Corollary 2.1 of Dong et al. (2021), this M̂j-GDP mechanism gjD is also (ϵj , ϱj(ϵj))-
DP for all ϵj ≥ 0 with

ϱj(ϵj) = Φ

(
− ϵj

M̂j
+

M̂j

2

)
− eϵjΦ

(
− ϵj

M̂j
− M̂j

2

)
,
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where Φ is the cumulative distribution function (CDF) of the standard normal distribution. Under the assump-
tion of linkage equilibrium and the construct of gD(y|b) =

∏
j∈Q gjD(yj |b), the Gaussian defense strategy gD

is M-GDP with M =
√∑

j∈Q M̂2j (Dong et al., 2021) due to the composition property.

F PROOF OF PROPOSITION 1

For any 0 < γ ≤ 1, we can rewrite

ℓA(s, b, γ) = −
∑
k∈U

(skbk − γsk) = −
∑
k∈U

(bk − γ) sk

= −
∑
k∈U

(
(1− γ)1{sk=1}1{bk=1} − γ1{sk=1}1{bk=0}

)
.

Then,

Lγ
A(gD, hA) =

∑
s,b

∫
x

ℓA(s, b, γ)hA(s|x)ρDdrσ(b)

= −
∑
s,b

∫
x

∑
k∈U

(
(1− γ)1{sk=1}1{bk=1} − γ1{sk=1}1{bk=0}

)
hA(s|x)ρD(x|b)dxσ(b).

Since σ = θ and∑
s−k,b−k

(
(1− γ)1{sk=1}1{bk=1} − γ1{sk=1}1{bk=0}

)
hA(sk, s−k|x)θ(bk, b−k)

= (1− γ)
∑
b−k

Pr [sk = 1|bk = 1, x] θ(bk, b−k)− γ
∑
b−k

Pr [sk = 1|bk = 1, x] θ(bk, b−k),

taking expectation over x using ρD yields Lγ
A(gD, hA) = −Advγ (hA).

G PROOF OF PROPOSITION 2

We start by showing the if part. Suppose that Advk (gD) ≥ Advk (g
′
D) for all k ∈ U . Then, the inequality also

holds for all k ∈ U if we apply both sides by the prior probabilities of bk = 0 and bk = 1. Thus, summing
over all individuals yields Advk (gD) ≥ Advk (g

′
D).

Next, we prove the only if part. Let Adv∗(gD) ≡ maxhA Adv0.5 (hA, gD), and let L∗
A(gD) ≡

minhA L′.▽
A(gD, hA). By Proposition 1, Adv∗(gD) ≥ Adv∗(g′D) is equivalent to L∗

A(gD) ≤ L∗
A(g

′
D). By

Theorem 1 of (de Oliveira, 2018), gD is more informative than g′D according to the Blackwell’s informativeness
ordering. Note that the informativeness ordering of gD and g′D is independent of the choice of priors. Thus,
when L∗

A(gD) ≤ L∗
A(g

′
D) also holds when the prior θ is uniform. Let Adv†(gD) ≡ maxhA Adv0.5 (hA, gD)

when θ is uniform. Thus, given any gD , the optimal Bayes-weighted membership advantage simplifies to
Adv†(gD) = 1

2

∑
k∈U Advk(gD). By definition of each Advk0(gD), the informativeness ordering of gD and

g′D ensures that there exists no individual k0 ∈ U such that Advk0(gD) > Advk0(g
′
D).

H PROOF OF THEOREM 1

In the proof, we use gD and G interchangeably. For any function V (s, b) ∈ R, define

Z(gD, σ;V ) ≡
∑

b,s

∫
x

V (s, b)µσ(s|x)ρD(x|b)dxq(b), (10)

where µσ is the posterior belief induced by gD and σ, which is independent of the σ-Bayesian attacker’s
strategy hA and the test conclusions of α-LRT attacker. In addition, define

L(gD, hA;V ) ≡
∑

b,s

∫
x

V (s, b)hA(s|x)ρD(x|b)dxθ(b). (11)

Hence, when V (·) = ℓA(·; γ), L(gD, hA;V ) = Lγ
A(gD, hA). Let Lσ(gD;V ) ≡

maxhA∈BRσ [gD ] L(gD, hA;V ). For simplicity, we write Z(gD, σ) = Z(gD, σ;V ) and Lσ(gD) =
Lσ(gD;V ), unless otherwise stated. In addition, define the set

BRσ[gD] ≡
{
h∗
A

∣∣∣∣h∗
A ∈ argmin

hA

Lγ
A (gD, hA)

}
.
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Proposition 7. For any gD and σ, Z(gD, σ) = Lσ(gD).

Proposition 7 shows that a hA that coincides with the posterior belief induced by gD and σ leads to the minimum
expected loss given any V .

Proposition 8. Given any G and σ, every H∗ ∈ argminH LCEL(G,H) coincides with the posterior distribu-
tion µσ induced by σ and G.

Proposition 8 implies that every best response H∗ ∈ argminH LCEL(G,H) leads to the probability distribution
coincides with the posterior belief given G and σ.

Then, by Proposition 7, every H∗ ∈ BN[G;σ] leads to Lγ
A(G,H∗) ≤ Lγ

A(G,H ′) (i.e., when V (·) = ℓA(·; γ)).
Thus, we have Adv0.5 (H∗, σ,G∗) ≤ Adv0.5 (H ′, G′). In addition, when V (·) = v(·; γ), H∗ ∈ BN[G;σ] leads
to the minimum expected TPR. Therefor, it holds that TPR(G∗, H∗) ≤ TPR(G′, H ′).

H.1 POOF OF PROPOSITION 7

For simplicity, we omit γ and denote ℓA(s, b) = ℓA(s, b, γ)

Given µσ (determined by gD and σ) and any hA, let ÛA(hA, b, x) ≡
∑

s ℓA(s, b)hA(s|x)µσ(b|x), which
depends on the membership vector b sampled by µσ but is independent of the samples s drawn by hA. Define

S∗[b, r; gD] ≡
{
hA(·|x)

∣∣∣hA(·|x) ∈ argminh′
A
ÛA(h

′
A, b, x)

}
,

for all b ∈ W with µσ(b|x) > 0, any x ∈ X , where S∗[b, x; gD] depends on gD through µσ . We first show
that there is a h∗

A(·|x) ∈ S∗[b, x; gD] that assigns probability 1 to b (with µσ(b|x) > 0). Suppose in contrast
that 0 ≤ h∗

A(b|x) < 1. Then, it holds that
∑

s:s ̸=b ℓA(s, b)hA(s|x)µσ(b|x) > 0, which gives

ÛA(h
∗
A, b, x) =

∑
s
ℓA(s, b)hA(s|x)µσ(b|x)

=
∑

s:s ̸=b
ℓA(s, b)hA(s|x)µσ(b|x) + ℓA(b, b)hA(b|x)µσ(b|x)

> ℓA(b, b)hA(b|x)µσ(b|x).

Thus, ÛA(h
∗
A, b, x)|h∗

A
(b|x)̸=1 > ÛA(h

′
A, b, x)|h′

A
(b|x)=1

, which contradicts to h∗
A(·|x) ∈ S∗[b, x; gD].

Therefore, we have ℓA(b, b)µσ(b|x) ≤
∑

s ℓA(s, b)hA(s|x)µσ(b|x), for all hA(·|x), b ∈ W , x ∈ X , where
the equality holds when hA(·|x) ∈ S∗[b, x; gD].

Let hµ
A : Γ 7→ ∆(W ) mirror the posterior belief µσ; i.e., hµ

A(s|x) = µσ(b|x)1{s = b}, for all s, b ∈ W ,
x ∈ X . It is clear that hµ

A(·|x) ∈ S∗[b, x; gD] for all b ∈ W . Next, we show that if hµ
A(s|x) is used by the

σ-Bayesian attacker, it induces the WCPL for the vNM defender, which is captured by Proposition 9.

Let L(gD, hA) ≡
∑

b,s

∫
r
v(s, b)hA(s|x)ρD(x|b)dxθ(b) denote the expected true positive rate.

Proposition 9. Given any gD and σ, L(gD, hµ
A) ≤ L(gD, h∗

A), for all h∗
A ∈ BRσ[gD].

Proof. Define π ≡ hA ◦ ρD : W 7→ ∆(W ) by π(s|b) =
∑

r hA(s|r)ρD(r|b), for all s, b ∈ W . Define the
set

Π[gD] ≡ {π = hA ◦ ρD|hA : Γ 7→ ∆(W )} .
That is, Π[gD] is the set of all feasible probabilistic mappings from a true membership vector b to an inference
s, perceived by the defender. We first establish the following lemma regarding the informativeness of gD in the
sense of Blackwell’s ordering of informatinveness (Blackwell, 1951; de Oliveira, 2018).

Lemma 2. Fix any σ ∈ ∆(W ). Given any two gD, g′D , Π[gD] ⊆ Π[g′D], if and only if, for any function
ζ : W ×W 7→ R, ∑

b,s
ζ(s, b)π′(s|b)σ(b) ≤

∑
b,s

ζ(s, b)π(s|b)σ(b),

where π ∈ Π[gD] and π′ ∈ Π[g′D].

Proof. We start by showing the “only if” part. Let Π∗[gD] ≡ {π|π ∈
argminπ∈Π[gD ]

∑
b,s ζ(s, b)π

′(s|b)σ(b)}. Since Π[gD] ⊆ Π[g′D] and Π∗[gD] ⊆ Π[gD], it must hold
that Π∗[gD] ⊆ Π[g′D]. Hence,∑

b,s
ζ(s, b)π′(s|b)σ(b) ≤

∑
b,s

ζ(s, b)π(s|b)σ(b),

for all π ∈ Π[gD] and π′ ∈ Π[g′D].
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Next, we show the “if” part. Suppose in contrast that Π[gD] ̸⊆ Π[g′D]. Then, there exists a π ∈ Π[gD] such
that π ̸∈ Π[g′D]. Since the set Π[ḡD] for every ḡD : W 7→ ∆(D) is closed under convex combinations of
its elements, it is convex. In addition, it is a continuous image of a compact set in the space of probability
distributions. Hence, the set Π[ḡD] is also compact. The set Π[ḡD] can be seen as a subset of RW×W .
Therefore, we can also perceive π ∈ RW×W \Π[g′D].

Let πσ(s, b) ≡ π(s|b)σ(b) for all s, b ∈ W . With abuse of notation, let Π[g′′D, σ] ≡ {πσ|π ∈ Π[g′′D]}. Then,
the set Π[g′′D, σ] is a subset of RW×W . Thus, πσ ∈ RW×W \Π[g′D, σ]. Let ζ̂ ∈ RW×W represents the matrix
form of the function ζ. Since |W | = 2K with K > 1, there exists a separating hyperplane orthogonal to ζ̂,
which separates the set Π[g′D] from the point π, such that∑

b,s
ζ(s, b)π′(s|b) >

∑
b,s

ζ(s, b)π(s|b),

for all π′ ∈ Π[g′D]. Then, the attacker with a non-informative (i.e., uniform prior) σ obtains an ex-ante expected
payoff using hA such that π = hA ◦ gD that is strictly better than any h′

A such that h′
A ◦ ρD ∈ Π[g′D]. Thus,

we obtain a contradiction to
∑

b,s ζ(s, b)π
′(s|b)σ(b) ≤

∑
b,s ζ(s, b)π(s|b)σ(b) for all σ ∈ ∆(W ).

Next, we want to show that Π[gD] ⊆ Π[g′D] is equivalent to g′D = η ◦ gD for some garbling η : Γ 7→ ∆(Γ),
which is another format of Blackwell’s ordering of information structures (Blackwell, 1951; de Oliveira, 2018).

Lemma 3. For any two gD, g′D , Π[g′D] ⊆ Π[gD] if and only if g′D = η◦gD for some garbling η : X 7→ ∆(X ).

Proof. If g′D = η ◦ gD , then there is a garbling η̂ : X 7→ ∆(X ) such that ρ′D = η̂ ◦ ρD . Hence, π′ = η̂ ◦ π
for every π′ ∈ Π[g′D] and π ∈ Π[gD]. Then, from (1) and (2) of Theorem 1 in (de Oliveira, 2018), we obtain
g′D = η̂ ◦ gD is equivalent to Π[g′D] ⊆ Π[gD].

For simplicity, let µx
σ = µσ(·|x). Since hA ∈ BRσ[gD], there exists a randomized correspondence Y such that

hA(·|x) = Y (·|µx
σ) for all x ∈ X . Then, from Blackwell’s theorem (Blackwell, 1951; de Oliveira, 2018), there

exists a garbling y : W 7→ ∆(W ) such that hA = y ◦µσ . Let ρ̂D ≡ µσ ◦ρD and let ρ̂′D ≡ y ◦ ρ̂D . In addition,
let ĝD and ĝ′D , respectively, be corresponding to ρ̂D and ρ̂′D . Then, from Lemma 3, we have Π[ĝ′D] ⊆ Π[ĝD].
In addition, Lemma 2 implies that∑

b,s
ζ(s, b)π̂(s|b)σ(b) ≤

∑
b,s

ζ(s, b)π̂′(s|b)σ(b)

for any σ ∈ ∆(W ), any function ζ : W × W 7→ R, where π̂ ∈ Π[ĝD] and π̂′ ∈ Π[ĝ′D]. If we take
ζ(·) = V (·) and σ(·) = θ(·), then we have Lσ(ĝD) ≥ Lσ(ĝ′D). Therefore, L(gD, hµ

A) ≤ L(gD, h∗
A) for all

h∗
A ∈ BRσ[gD], which concludes the proof of Proposition 9.

Next, we show that there is a h∗
A ∈ BRσ[gD] such that h∗

A(s|x) = hµ
A(s|x) for all s ∈ W , x ∈ X . Define

Û ♮(s, x) ≡
∑

b ℓA(s, b)µσ(b|x), which depends on samples of s ∈ W and x ∈ X . Let

W ♮[x] ≡
{
s ∈ W

∣∣∣s ∈ argmins′ Û
♮(s′, x)

}
.

Let ŝ ∈ W such that ĥA(ŝ|x) = 1 for ĥA ∈ S∗[b, x; gD]. We want to show ŝ ∈ W ♮[x]. Suppose in
contrast that ŝ ̸∈ W ♮[x]. Then, Û ♮(s, x) < Û ♮(ŝ, x) for all s ∈ W ♮[x]. That is,

∑
b ℓA(s, b)µσ(b|x) <∑

b ℓA(ŝ, b)µσ(b|x). Since ĥA ∈ S∗[b, r; gD], we have ℓA(ŝ = b, b) ≤
∑

s µA(s, b)h
′
A(s|x) for all

h′
A(·|x), including h′

A(s|x) = 1 for any s ∈ W . Since every µσ(·) ≥ 0, we have ℓA(ŝ = b, b)µσ(b|x) ≤
µA(s, b)µσ(b|x), for all s, b ∈ W . Then, Û ♮(ŝ, x) ≤ Û ♮(s, x), contradicting to ŝ ̸∈ W ♮[x]. Therefore,
ŝ ∈ W ♮[x].

Next, we show that for every s∗ ∈ W ♮[x], there is a b ∈ W with µσ(b|x) > 0 such that ĥA(s
∗|x) = 1

for ĥA ∈ S∗[b, r; gD]. Suppose in contrast that there exists a s∗ ∈ W ♮[x] such that ĥA(s
∗|x) = 0, for a

ĥA ∈ S∗[b, x; gD]. Then, there exists ŝ with ĥA(ŝ|x) = 1 such that, for all h′
A : Γ 7→ ∆(W ),∑

s
ℓA(s, b)ĥA(s|x)µσ(b|x)

= ℓA(ŝ, b)µσ(b|x) ≤ ℓA(s
∗, b)h′

A(s
∗|x)µσ(b|x) +

∑
s:s ̸=s∗

ℓA(s, b)h
′
A(s|x)µσ(b|x),

where the equality of the inequality holds when h′
A = ĥA. For all h′

A ̸= ĥA, h′
A(s

∗|x) ∈ [0, 1],
which implies ℓA(ŝ, b)µσ(b|x) < ℓA(ŝ, b)µσ(b|x) for all b ∈ W and x ∈ X with µσ(b|x) > 0. Thus,∑

b ℓA(ŝ, b)µσ(b|x) <
∑

b ℓA(s
∗, b)µσ(b|x), which contradicts to s∗ ∈ W ♮[x]. Therefore, W ♮[x] = ∪b{s ∈
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W |hA(s|x) = 1, hA ∈ S∗[b, x; gD]}. It is not hard to see that every feasible mixed strategy hA(·|x) that as-
signs strictly positive probability only to elements of W ♮[x] is a best response to gD . Since hµ

A ∈ S∗[b, x; gD],
we can conclude that h∗

A ∈ BRσ[gD] with h∗
A(s|x) = hµ

A(s|x), for all s ∈ W , x ∈ X . In addition, we can
rewrite Z(gD, σ) in terms of hµ

A as Z(gD, σ) =
∑

b,s

∫
x
v(s, b)hµ

A(s|x)ρD(x|b)dxq(b). Thus, by Proposition
9, we conclude that Lσ(gD) = Z(gD, σ).

H.2 PROOF OF PROPOSITION 8

For ease of exposition, we directly use the underlying density functions gD (and ρD) and hA of G and H ,
respectively, so that hA(sk = 1) = qk and hA(sk = 0) = 1− qk. Thus, we can rewrite

LCEL(G,H) = LCEL(gD, hA) =−
∑
b

∫
x

σ(b) log(hA(b|x))ρD(x|b)dx.

Let µσ denote the posterior distribution induced by σ and gD according to Bayes’ rule. Then,

LCEL(gD, hA)− LCEL(gD, µσ)

= −
∑
b

∫
x

σ(b) log(hA(b|x))ρD(x|b)dx+
∑
b

∫
x

σ(b) log(µσ(b|x))ρD(x|b)dx

=
∑
b

∫
x

σ(b)ρD(x|b) (log(µσ(b|x))− log(hA(b|x))) dx

=
∑
b

∫
x

σ(b)ρD(x|b) log(µσ(b|x)
hA(b|x)

)dx.

By definition of µθ using Bayes’ rule, we have

σ(b)ρD(x|b) = µσ(b|x)Pσ(x),

where Pσ(x) ≡
∑

b′ σ(b)ρD(x|b). Then, we have

LCEL(gD, hA)− LCEL(gD, µσ) =
∑
b

∫
x

µσ(b|x)Pσ(x) log
(
µσ(b|x)
hA(b|x)

)
dx ≥ 0

which is non-negative because it is the Kullback–Leibler (KL) divergence. In addition, LCEL(gD, hA) −
LCEL(gD, µσ) = 0 if and only if hA(b|x) = µσ(b|x) for all b ∈ W and x ∈ X .

I PROOF OF PROPOSITION 3

By by Theorem 2.10. of (Dong et al., 2021) (also see (Blackwell, 1951)), we have that for a fixed significance
level, the minimum false positive rates (of inferring each individual k’s membership status), denoted by T (G)
and T (Proc ◦G), can be achieved by G and Proc ◦G satisfy

T (Proc ◦G) ≥ T (G).

Thus, G is more informative than Proc ◦ G according to Blackwell’s ordering of informativeness (Blackwell,
1951). By Theorem 1 of (de Oliveira, 2018), we can conclude that LCEL(Proc ◦G,H ′) ≥ LCEL(G,H).

J PROOF OF PROPOSITION 4

For ease of exposition, we focus on the case when there are two mechanisms that are composed. That is,
G⃗ = (G1, G2). The proof can be easily extended to general n ≥ 2.

We start by proving the scenario when the mechanisms are independent. Let ρ1(·|b) ∈ ∆(X1) and ρ2(·|b) ∈
∆(X2) be induced density functions by G1 and G2, respectively. In addition, we directly use the underlying
density function hA of H , so that hA(sk = 1) = qk and hA(sk = 0) = 1 − qk. We can easily generalize
Proposition 8 in Appendix H to the case when there are multiple data-sharing mechanisms randomized by
G⃗. That is, every H ∈ argminH′ LCEL(G,H ′) coincides with the posterior distribution µθ(bk, b−k) =
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ρ1(x1|b)ρ2(x2|b)θ(b)∑
b′ ρ1(x1|b′)ρ2(x2|b′)θ(b′)

induced by G⃗ and the prior θ. Thus, we have

LCEL(G⃗, H⃗∗) = −
∑
b∈W

∫
x1,x2

θ(b) log(hA(b|x1, x2))θ(b)ρ1(x1|b)ρ2(x2|b)dx1dx2

=−
∑
b∈W

∫
x1,x2

θ(b) log(µθ(b|x1, x2))θ(b)ρ1(x1|b)ρ2(x2|b)

=−
∑
b

bθ(b) log(θ(b)) ·
∫
x1,x2

ρ1(x1|b)ρ2(x2|b)dx1dx2

−
∑
b

∫
x1,x2

θ(b) · ρ1(x1|b)ρ2(x2|b) · log(ρ1(x1|b)ρ2(x2|b))dx1dx2

+
∑
b

∫
x1,x2

θ(b) · ρ1(x1|b)ρ2(x2|b) · log

(∑
b′

ρ1(x1|b′)ρ2(x2|b′)θ(b′)

)
dx1dx2

=−
∑
b

θ(b) log(θ(b))−
∑
b

∫
x1,x2

θ(b) · ρ1(x1|b)ρ2(x2|b) · log(ρ1(x1|b)ρ2(x2|b))dx1dx2

+

∫
x1,x2

(∑
b′

ρ1(x1|b′)ρ2(x2|b′)θ(b′)

)
· log

(∑
b′

ρ1(x1|b′)ρ2(x2|b′)θ(b′)

)
.

We can following the same steps for each Gj for j ∈ {1, 2} with Hj ∈ argminH′
j
LCEL(Gj , H

′
j):

LCEL(Gj , Hj) =−
∑
b

θ(b) log(θ(b))−
∑
b

∫
xj

θ(b) · ρj(xj |b) · log (ρj(xj |b)) dxj

+

∫
xj

(∑
b′

ρj(xj |b′)θ(b)

)
log

(∑
b′

ρj(xj |b′)θ(b)

)
dxj .

Summing individual losses yields

2∑
j=1

LCEL(Gj , Hj) =− 2
∑
b

θ(b) log(θ(b))

−
2∑

j=1

∑
b

∫
xj

θ(b) · ρj(xj |b) · log (ρj(xj |b)) dxj

+

2∑
j=1

∫
xj

(∑
b′

ρj(xj |b′)θ(b′)

)
log

(∑
b′

ρj(xj |b′)θ(b)

)
dxj .

Let H ≡
∑

b θ(b) log(θ(b)), Fj ≡
∑

b

∫
xj

θ(b) · ρj(xj |b) · log (ρj(xj |b)) dxj , and K ≡∑
b θ(b)

∫
x1,x2

ρ1(x1|b)ρ2(x2|b) · log
(∑

b′ ρ1(x1|b′)ρ2(x2|b′)θ(b′)
)
dx1dx2.

Since ∑
b

∫
x1,x2

θ(b) · ρ1(x1|b)ρ2(x2|b) · log(ρ1(x1|b)ρ2(x2|b))dx1dx2

=
∑
b

∫
x1,x2

θ(b) · ρ1(x1|b)ρ2(x2|b) · (log(ρ1(x1|b)) + log(ρ2(x2|b))) dx1dx2

=

2∑
j=1

∑
b

∫
xj

θ(b) · ρj(xj |b) · log(ρj(xj |b)) dxj =

2∑
j=1

Fj ,

we obtain

LCEL(G⃗, H⃗∗) =

(
2∑

j=1

(LCEL(Gj , Hj)−Fj) + 2H

)
−H+K

=

2∑
j=1

LCEL(Gj , Hj) +H(b)−
2∑

j=1

Fj(x̃j) +K.
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By combining Λ(G⃗, θ) = −
(
H(b)−

∑2
j=1 Fj(x̃j) +K

)
, we have

Λ(G⃗, θ) = −
∑

b
θ(b)

∫
x1,x2

ρ1(x1|b)ρ2(x2|b) · log
(∑

b′
ρ1(x1|b)ρ2(x2|b)θ(b′)

)
dx1x2.

For general n ≥ 2, we have Λ(G⃗, θ) = −
∑

b θ(b)
∫
X⃗ ρ⃗D(x⃗|b) · log

(∑
b′ ρ⃗D(x⃗|b′)θ(b′)

)
dx⃗.

Next, we proceed with the proof when the mechanisms are correlated. Again, for simplicity, we first focus on
n = 2, i.e., G⃗ = (G1, G2), and generalize to n ≥ 2 afterward.

By Proposition 8, the posterior distribution µθ(b|x1, x2) is given by:

µθ(b|x1, x2) =
ρ⃗D(x1, x2|b)θ(b)∑
b′ ρ⃗D(x1, x2|b′)θ(b′)

.

The BGP risk LCEL(G⃗, H⃗∗) for the composed mechanism becomes:

LCEL(G⃗, H⃗∗) = −
∑
b

∫
x1,x2

θ(b) log(µθ(b|x1, x2))ρ⃗D(x1, x2|b)dx1dx2.

Substituting µθ(b|x1, x2) into the loss function:

LCEL(G⃗, H⃗∗) = −
∑
b

∫
x1,x2

θ(b)ρ⃗D(x1, x2|b) log
(

ρ⃗D(x1, x2|b)θ(b)∑
b′ ρ⃗D(x1, x2|b′)θ(b′)

)
dx1dx2,

which can be broken into three terms:

LCEL(G⃗, H⃗∗) = −
∑
b

θ(b) log(θ(b))

∫
x1,x2

ρ⃗D(x1, x2|b)dx1dx2

−
∑
b

∫
x1,x2

θ(b)ρ⃗D(x1, x2|b) log(ρ⃗D(x1, x2|b))dx1dx2

+

∫
x1,x2

∑
b

θ(b)ρ⃗D(x1, x2|b) log

(∑
b′

ρ⃗D(x1, x2|b′)θ(b′)

)
dx1dx2.

Define the following terms:

H ≡ −
∑
b

θ(b) log(θ(b)), (entropy of the prior)

F ≡ −
∑
b

∫
x1,x2

θ(b)ρ⃗D(x1, x2|b) log(ρ⃗D(x1, x2|b))dx1dx2, (conditional entropy)

K ≡
∫
x1,x2

∑
b

θ(b)ρ⃗D(x1, x2|b) log

(∑
b′

ρ⃗D(x1, x2|b′)θ(b′)

)
dx1dx2, (interaction term).

Thus, the loss can be expressed as:
LCEL(G⃗, H⃗∗) = H+ F −K.

By combining Λ(G⃗, θ) = − (H−F +K), we have

Λ(G⃗, θ) = −
∑
b

θ(b)

∫
x1,x2

ρ⃗D(x1, x2|b) log
(∑

b′ρ⃗D(x1, x2|b′)θ(b′)
P (x1, x2)

)
dx1dx2,

where

P (x1, x2) =
∏

j = 12
∑
b′

∫
X−j

ρ⃗D(xj , x−j |b′)θ(b′)dx−j .

For n ≥ 2, this expression naturally generalizes:

Λ(G⃗, θ) = −
∑
b

θ(b)

∫
X⃗
ρ⃗D(x⃗|b) log

(∑
b′ρ⃗D(x⃗|b′)θ(b′)

P (x⃗)

)
dx⃗,

where P (x⃗) =
∏n

j=1

∑
b′
∫
X⃗−j

ρ⃗D(xj , x⃗−j |b′)θ(b′)dx⃗−j .
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K PROOF OF PROPOSITION 5

Let x⃗ = (x1, . . . , xn) denote the outputs of the composition M(G⃗∗), and let ρ⃗D is the joint distribution
given G⃗, {f1, . . . , fn}, and any intrinsic correlations among mechanisms. For simplicity, we consider each
individual k has probability θk = θk(bk = 1) to have bk = 1 and probability 1− θk to have bk = 0. Consider
the following binary hypothesis test:

Hk
0 : bk = 0 with b−k vs. Hk

1 : bk = 1 with b−k,

where b−k is the same for both Hk
0 and Hk

1 . Since ρ⃗D(x⃗|b) is well-defined, this binary hypothesis test is a well-
defined simple binary hypothesis test. Then, the Neyman-Pearson lemma implies that the likelihood-ratio test
is the Uniformly Most Powerful (UMP) test. Then, for any given significance level αk, there exists a rejection
rule ϕ such that

αk = E
[
ϕ
∣∣∣Hk

0 , G⃗
∗
]

and f(α) = 1− E
[
ϕ
∣∣∣Hk

1 , G⃗
∗
]
,

where f(αk) =
∫ {

t ∈ [0, 1] : f(t) ≤ αk
}

is the symmetric trade-off function introduced by Dong et al.
(2022) , which is convex, continuous, non-increasing, and satisfies f(αk) ≤ 1 − αk and f(αk) =

inf
{
t ∈ [0, 1] : f(t) ≤ αk

}
for αk ∈ [0, 1]. Hence, the composition M(G⃗∗) is f-differentially private (f-DP)

(Definition 2.3 of (Dong et al., 2022)). Then, by Proposition 2.4 of Dong et al. (2022), M(G⃗∗) is also f∗-DP,
where f∗(z) = sup0≤α̂k≤1 zα̂

k − f(α̂k). Then, by Proposition 2.12 of Dong et al. (2022), for any ϵk ≥ 0,
the composition M(G⃗∗) is (ϵk, ξk)-DP, where ξk = δ(ϵk), for any given bk. Therefore, the composition M
is (ϵ, ξ)-DP for some ϵ ≥ 0 and ξ ∈ [0, 1].

L PROOF OF PROPOSITION 6

Proposition 8 in Appendix H can be easily extended to the case when there are multiple data-sharing mecha-
nisms randomized by G⃗. Thus, if H∗ ∈ argminH LCEL(G⃗,H)

⋂
DPH[G⃗; ϵ], the posterior distribution induced

by G⃗ and θ satisfies the conditions specified by DPH[G⃗; ϵ]. By the necessary and sufficient condition given by
Claim 3 of (Dwork et al., 2006), G⃗ is ϵ-DP. Again, by Claim 3 of (Dwork et al., 2006), if G⃗ is ϵ-DP, the posterior
distribution must satisfy the conditions specified by DPH[G⃗; ϵ]. Then, based on the extension of Proposition 8,
it must holds that H∗ ∈ argminH LCEL(G⃗,H)

⋂
DPH[G⃗; ϵ].

M PROOF OF THEOREM 2

For any function V (s, b) ∈ R, define

Z(gD, σ;V ) ≡
∑

b,s

∫
x

V (s, b)µσ(s|x)ρD(x|b)dxq(b), (12)

where µσ is the posterior belief induced by gD and σ, which is independent of the σ-Bayesian attacker’s
strategy hA and the test conclusions of α-LRT attacker. In addition, define

L(gD, hA;V ) ≡
∑

b,s

∫
x

V (s, b)hA(s|x)ρD(x|b)dxθ(b). (13)

Hence, when V (·) = ℓA(·; γ), L(gD, hA;V ) = Lγ
A(gD, hA). Let Lσ(gD;V ) ≡

maxhA∈BRσ [gD ] L(gD, hA;V ). For simplicity, we write Z(gD, σ) = Z(gD, σ;V ) and Lσ(gD) =
Lσ(gD;V ), unless otherwise stated. Define the set

BRσ[gD] ≡
{
h∗
A

∣∣∣∣h∗
A ∈ argmin

hA

Lγ
A (gD, hA)

}
.

We start by proving Lemma 4.

Lemma 4. Fix any gD . Suppose that σ is aligned. Let hµ
A : X 7→ ∆(W ) be defined by hµ

A(s|x) =
µσ(b|x)1(s = b) for all s, b ∈ W , x ∈ X . Then, hµ

A ∈ BRσ[gD].

Proof. Let V ‡
A(s, x) ≡

∑
b ℓA(s, b)µσ(b|x) Define W ‡[x] ≡ {s ∈ W |s ∈ argmins′ V

‡
A(s, x)}. Hence, each

hA : X 7→ ∆(W ) that only assigns strictly positive probabilities to s ∈ W ‡[x] satisfies hA ∈ BRσ[gD]. In
addition, let W ♯[x] ≡ {s ∈ W |µσ(s|x) > 0}. By definition of cA and vs,b, γcA(s) − vA(s, b) (weakly)
decreases as

∑
k∈U 1{sk = bk} increases. Thus, V ‡

A(s
♯, x) ≤ V ‡

A(s, x) for all s♯ ∈ W ♯[x] and s ∈ W .
Hence, W ♯[x] ⊆ W ‡[x] for all x. Hence, hµ

A ∈ BRσ
Γ[gD] holds.
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With abuse of notation, we let q(b) and q(bk) =
∑

b−k
q(bk, b−k) denote the prior and the marginalized prior,

respectively. Next, we show that optimal α-LRT cannot strictly outperform σ-Bayesian under the same gD .

Lemma 5. Fix gD and α. Suppose σ = q. Then, Z(gD, q) ≥ Lα
Opt-LRT(gD).

Proof. Suppose in contrast that Z(gD, q) < Lα
Opt-LRT(gD). Then,∑

k
P k
1 [yk(x, τ

∗) = 1|gD] q(bk = 1) >
∑

b,s

∫
x

v(s, b)µσ(s|x)ρD(x|b)dxq(b)

=
∑

k
P k
σ [sk = 1|gD, bk = 1] q(bk = 1),

where P k
σ [sk = 1|gD, bk = 1] =

∫
x
µσ(sk = 1|x)ρD(x|b)dx. By letting V (·) = v(·), from Proposition

7, we have Lσ(gD) = Z(gD, q; v) < Lα
Opt-LRT(gD). Let h†

A(sk = 1|x) = 1 {yk(x, τ∗) = 1} for all x ∈
X . Since σ = q, h†

A is the best response of the Bayesian attacker. Hence, Lα
Opt-LRT(gD) = L(gD, h†

A) ≤
Z(gD, q; v), which contradicts to Z(gD, q; v) < Lα

Opt-LRT(gD). Therefore, Z(gD, q; v) ≥ Lα
Opt-LRT(gD).

If σ is informative, we have L(gD, hσ
A) ≤ L(gD, hθ

A). Hence, it also holds that Z(gD, σ; v) ≥ Z(gD, θ; v).
Lemma 5 imples Z(gD, σ; v) ≥ Lα

Opt-LRT(gD).

Next, we show that when σ is non-informative. Let hσ
A(s|x) = µσ(b|x)1{s = b}, for all s, b ∈ W , x ∈ X .

By Lemma 4, it holds that hσ
A ∈ BRσ[gD]. Suppose in contrast that Lα

Opt-LRT(gD) > Z(gD, σ; v). Then,
hσ
A ∈ BRσ

Γ[gD] implies∑
k
P k
1 [yk(x, τ

∗) = 1|gD] >
∑

k,s

∫
x

v(sk = 1, bk = 1)µσ(sk = 1|x).

Let h†
A : X 7→ ∆(W ) such that h†

A(sk = 1|x) = 1 {yk(x, τ∗) = 1} for all x ∈ X . Then, h†
A ∈ BRσ[gD]

when σ is uniform (i.e., non-informative). Proposition 7 implies Z(gD, σ; v) ≥ L(gD, h†
A, σ), which leads to

a contradiction. The inequality Lα
Opt-LRT(gD) ≥ Lα

Adp(gD) follows the Neyman-Pearson lemma. In addition, by
Venkatesaramani et al. (2021; 2023), Lα

Adp(gD) ≥ Lα
Fixed(gD). Thus, we can conclude the proof of Theorem

2.

N PROOF OF LEMMA 1

First, we show that the test statistics L(ỹ) =
∑

j∈Q log
(
ρj(ỹj |Ĥ0)/ρj(ỹj |Ĥ1)

)
is normally distributed under

Ĥ0 and Ĥ1, respectively, with N
(
M,V

)
and N

(
−M,V

)
, where M = 1

2

∑
j∈Q M̂2j and V =

∑
j∈Q M̂2j . For

each yj , ỹj ∼ N (0, 1) under Ĥ0, and ỹj ∼ N (M̂j , 1) under Ĥ1. Thus, the log-likelihood ratio for each

yj is log
(

ρj(yj |Ĥ0)

ρj(yj |Ĥ1)

)
. Since ρj(·|Ĥ0) and ρj(·|Ĥ1) are the density functions of normal distribution, the log-

likelihood ratio becomes

log

 1√
2π

e−
y2
j
2

1√
2π

e−
(yj−M̂j)

2

2

 =
(yj − M̂j)

2 − y2
j

2
=

−2yj M̂j + M̂2j

2
= −yj M̂j +

M̂2j

2
.

Under Ĥ0, the mean is E[yj |Ĥ0] = 0 and the variance is Var[yj |Ĥ0] = 1. Hence, the mean of L(y) under Ĥ0

is

E[L(y)] = E

[∑
j∈Q

(
−yj M̂j +

M̂2j

2

)]
=
∑
j∈Q

(
−E[yj ]M̂j +

M̂2j

2

)
=
∑
j∈Q

M̂2j

2
,

and the variance is

Var[L(y)] = Var

[∑
j∈Q

(
−yj M̂j +

M̂2j

2

)]
=
∑
j∈Q

Var[−yj M̂j ] =
∑
j∈Q

M̂
2
j .

Similarly, under Ĥ1, the mean of L(y) is

E[L(y)] = E

[∑
j∈Q

(
−yj M̂j +

M̂2j

2

)]
=
∑
j∈Q

(
−E[yj ]M̂j +

M̂2j

2

)
=
∑
j∈Q

(
−M̂

2
j +

M̂2j

2

)
=
∑
j∈Q

−
M̂2j

2
.
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In addition, the variance of L(y) under Ĥ1 is

Var[L(y)] = Var

[∑
j∈Q

(
−yj M̂j +

M̂2j

2

)]
=
∑
j∈Q

Var[−yj M̂j ] =
∑
j∈Q

M̂
2
j .

Since the test statistics L(y) is normally distributed under Ĥ0 and Ĥ1, we have

Z0 =
y − M√
V/

√
m

∼ N (0, 1) and Z1 =
y + M√
V/

√
m

∼ N

 −2M√
V/

√
m

, 1

 ,

where y is the sample mean. For a given significance level α̂, the threshold for Z0 is set so that Pr(Z0 < zα̂) =

α̂, corresponding to the value M + zα̂

√
V
m

. For a given Type-II error rate β̂, the threshold for Z1 is set so

that Pr(Z1 < zβ̂) = β̂, where zβ̂ aligns with −M − zβ̂

√
V
m

. To maintain the consistency of decision-making

between Ĥ0 and Ĥ1, the threshold at which we switch decisions from failing to reject Ĥ0 to rejecting Ĥ0 under
Ĥ0 and Ĥ1 are equated. Therefore, we have

√
mM + zα̂

√
V = −

√
mM − zβ̂

√
V.

Thus, F
(
α̂, β̂

)
= m holds.

Next, we show the monotone relationship between β̂ and m given F
(
α̂, β̂

)
= m while everything else is

fixed. Since, zβ̂ = Φ−1(1− β̂), where Φ is the cumulative distribution function (CDF) of the standard normal

distribution, zβ̂ decreases as β̂ increases as the quantile function Φ−1 decreases as the probability increases.

As a result, (zα̂, zβ̂) decreases when β̂ increases. Therefore, F
(
α̂, β̂

)
= m implies that m decreases when β̂

increases.

O PROOF OF THEOREM 3

We first obtain the following lemma, which extends Theorem 2.7 of (Dong et al., 2021).

Lemma 6. Fix α ∈ (0, 1). Let gD be Gaussian defined above with each gjD(·|b) ∈ ∆(Yj) as the density
function of N (Mjb, V

j) given any b ∈ W , where Vj =
(
2sensj(f)/M̂j

)2
. Let Pb(g

j
D) denote the probability

distribution associated with gjD(·|b). Suppose maxb,b′ |Mjb − M
j
b′ | ≤ sensj(f). Then, it holds

T
[
Pb(g

j
D), Pb′(g

j
D)
]
(α) ≥ T

[
N (0, 1),N (M̂j , 1)

]
.

Proof. For any two b, b′ ∈ W , y(b) = fj(b, d) + δj and y(b′) = fj(b
′, d′) + δ′j are normally distributed with

means f j(b, d) + Mb and f j(b′, d′) + Mb′ , respectively, and a common variance Vj . Then, we have

T
[
Pb(g

j
D), Pb′(g

j
D)
]
(α) =T

[
N
(
f j(b, d) + Mb, V

)
,N
(
f j(b′, d′) + Mb′ , V

)]
(α)

=Φ

(
Φ−1 (1− α)− |f j(b, d)− f j(b′, d′) + Mb − Mb′ |√

Vj

)
,

where Φ is the cumulative distribution function (CDF) of the standard normal distribution. Since Vj =(
2sensj(f)/M̂j

)2
and maxb,b′ |Mjb − M

j
b′ | ≤ sensj(f), by definition of sensitivity, we obtain

T
[
N
(
f j(b, d) + Mb, V

)
,N
(
f j(b′, d′) + Mb′ , V

)]
(α) ≥ Φ

(
Φ−1 (1− α)− M̂j

)
= T

[
N (0, 1),N (M̂j , 1)

]
(α).

Lemma 6 shows that distinguishing between b and b′ is as hard as distinguishing between N (0, 1) and
N (M̂j , 1). Thus, if the α-LRT attacker only observes yj for jth SNV, then the maximum power he can obtain
is 1− T

[
N (0, 1),N (M̂j , 1)

]
(α), which leads to the WCPL for the vNM defender among all possible powers
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when different membership vectors are realized. considered are independent, 1 − T
[
N (0, 1),N (M̂j , 1)

]
(α)

serves as the performance bound for every j ∈ Q.

Given any two b, b′ ∈ W , define the hypothesis testing problem: H0 : the membership vector is b versus H1 :
the membership vector is b′. From the assumption of independent SNVs, we can obtain the log-likelihood
statistics

lrs(y; gD, b, b′) ≡
∑

j∈Q
log

(
ρjD(yj |H0)

ρjD(yj |H1)

)
.

Let Pi[·|gD] denote the probability distribution associated with Hi for i ∈ {0, 1}.

Lemma 7. Fix α ∈ (0, 1). Let gD be Gaussian defined above with each gjD(·|b) ∈ ∆(Yj) as the density
function of N (Mjb, V

j) given any b ∈ W , where Vj =
(
2sensj(f)/M̂j

)2
. Suppose maxb,b′ |Mjb − M

j
b′ | ≤

sensj(f). Then, it holds for all pair b, b′ ∈ W ,

max
τ

P1

[
lrs(ỹ; gD, b, b′) ≥ τ

∣∣gD] ≤ 1− T

[
N (0, 1),N

(√∑
j∈Q

M̂2j , 1

)]
(α), (14)

with P0 [lrs(ỹ; gD, b, b′) < τ |gD] = α.

Proof. Since the SNVs are independent, the joint probability density P (y|Hi) over Y that is equal to the
product

∏
j∈Q ρjD(yj |Hi) for i ∈ {0, 1}. It is a |Q|-fold composition of {ρjD}j∈Q, where each ρjD accesses

to the same dataset. In addition, maxτ P1 [lrs(ỹ; gD, b, b′) ≥ τ |gD] is the power of α-LRT given gD for any
b, b′ ∈ W . Then, (14) follows Corollary 3.3 of Dong et al. (2021).

Let I|Q| denote a |Q| × |Q| identity matrix. Let M̂ ≡ (M̂1, . . . , M̂|Q|). Consider two multivariate nor-
mal distribution N (0, I|Q|) and N (M̂, I|Q|). Here, N (0, I|Q|) is rotation invariant, and N (M̂, I|Q|) can

be rotated to N
(√∑

j∈Q M̂2j , 1
)

. In addition, the rotation here is an invertible transformation. There-

fore, T
[
N (0, 1),N

(√∑
j∈Q M̂2j , 1

)]
(α) is the same as the T

[
N (0, I|Q|),N (M̂, I|Q|)

]
(α) for any α

because the trade-off function is invariant under invertible transformations Dong et al. (2021). Let β̂ =

T
[
N (0, I|Q|),N (M̂, I|Q|)

]
(α). Thus, the α-LRT with the LR statistics formulated by L(y) has the power

1− β̂. Therefore, it holds that F(α, β̂) = |Q|.

Now, let us focus on when the attacker (either Bayesian or LRT) targets a specific individual k. Given any
subjective prior σ and Q, let µσ

1|0[|Q|] =
∫
r
µσ(sk = 1|r)ρD(r|bk = 0). By Proposition 7, a Bayesian

attacker’s strategy that mirrors the distribution of the posterior belief leads to the WCPL for the defender.
Hence, µσ

1|0[|Q|] captures the highest Type-II errors of the Bayesian attacker. Then, F
(
α, µσ

0|1[|Q|]
)

captures
the number of SNVs (i.e., |Q|) so that α-LRT can attain the power µσ

0|1[|Q|] when the set Q of SNVs of each
individual are used in the dataset, leading to L(gD, τ∗, α) = Lσ(gD). If F

(
α, µσ

0|1[|Q|]
)
≥ |Q|, then more

SNVs needs to be used to make α-LRT have the power µσ
0|1[|Q|]. This is equivalent to β̂ < µσ

0|1[|Q|], which
implies L(gD, τ∗, α) ≤ Lσ(gD).

P EXPERIMENT DETAILS

P.1 DATASET

Our experiments use three datasets: Adult dataset (UCI Machine Learning Repository), MNIST dataset, and
genomic dataset. The genomic dataset was provided by the 2016 iDASH Workshop on Privacy and Security
Tang et al. (2016), derived from the 1000 Genomes Project 1000 Genomes Project Consortium et al. (2015). The
genomic dataset used in our experiments was initially provided by the organizers of the 2016 iDash Privacy and
Security Workshop Tang et al. (2016) as part of their challenge on Practical Protection of Genomic Data Sharing
Through Beacon Services. In this research, we follow Venkatesaramani et al. (2021; 2023) and employ SNVs
from chromosome 10 for a subset of 400 individuals to construct the Beacon, with another 400 individuals
excluded from the Beacon. We use 800 individuals with different numbers of SNVs of each individual on
Chromosome 10. In the experiments, we randomly select 400 individuals from the 800 to constitute a dataset
according to the uniform distribution. The experiments were conducted using an NVIDIA A40 48G GPU.
PyTorch was used as the deep learning framework.

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

(a) (b) (c)

(d)

Figure 2: (a)-(c): Bayesian Defender with κ = 0, 1.5, 50, respectively. (d): Different attackers under
non-strategic DP with ϵ = 600.

P.2 NOTES: EXPERIMENT DETAILS FOR LRTS

The output of the defender’s neural network GλD is a noise term within the range [−0.5, 0.5]. We assess the
strength of privacy protection using the attacker’s ROC curve, converting HλA ’s output to binary values sk ∈
{0, 1} by varying thresholds. A lower AUC indicates stronger privacy protection by GλD . In addition to the
proxies from Section 3.1, we use the sigmoid function to approximate the threshold-based rejection rule of the
LRT. Specifically, 1{lrs(dk, x) ≤ τ} is approximated by 1/(1+exp(−(τ−lrs(dk, x)))), where lrs(dk, x)
is the log-likelihood statistic. Similarly, the sigmoid function approximates 1{lrs(dk, r) ≤ τ (N)(r)}. The
fixed- and adaptive-threshold LRT defenders optimally select gD by solving (FixedLRT) and (AdaptLRT),
as detailed in Appendix C.

P.3 NOTES: BAYESIAN DEFENDER VS. DIFFERENTIAL PRIVACY

In this experiment (Figure 1c), we illustrate the advantages of the Bayesian defender (i.e., using the BNGP
strategy) over standard DP in addressing defender-customized objectives for the privacy-utility trade-off, when
the same utility loss is maintained in the trade-off of privacy and utility.

In this experiment, we consider a specific loss function for the defender:

ℓD(δ, b, s) ≡ v(s, b) +
∑

j∈Q
κj |δj |,

where κj ≥ 0 represents the defender’s preference for balancing the privacy-utility trade-off for the summary
statistics of the j-th attribute (e.g., SNV in genomic data). In genomic datasets, each SNP position corresponds
to a specific allele at a particular genomic location, and the importance of these positions can vary significantly
depending on their association with diseases or traits in medical studies. Consequently, different SNPs may
require varying levels of data quality and utility, necessitating less noise for some positions. For SNPs where
higher data utility is crucial, we assign larger κj values to increase the weight of noise costs in the defender’s
decision-making process. This position-dependent weighting enables a more customized and refined privacy-
utility trade-off.

In the experiment, we define κ⃗ = (κj)j∈Q for SNV positions, where κj = 0 for 90% of the 5000 SNVs and
κj = 50 for the remaining 10%. The BNGP strategy in this setting results in an average utility loss of 0.0001.

The sensitivity of the summary statistics function f(·) is given by sensitivity = m
K† (see Appendix E), where

m = |Q| and 1 ≤ K† ≤ K is the number of individuals in U included in the dataset. For the experiment, the
dataset comprises 400 individuals, each with 5000 SNVs, resulting in a sensitivity of m

K† = 12.5.
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The scale parameter of the Laplace distribution in the DP framework is:

sensitivity
ϵ

.

To match the utility loss of 0.0001 (measured as the expected absolute value of the noise), the scale parameter
must equal 0.0001. This implies:

sensitivity
ϵ

= 0.0001,

which gives ϵ = 1.25× 105.

In general, the number of SNVs (m) is often much larger than the number of individuals (K), i.e.,
m ≫ K. Consequently, small ϵ values (e.g., between 1 and 10) result in very large scale parame-
ters for the Laplace distribution. Therefore, relatively large ϵ values are chosen to preserve the utility
of genomic datasets. For example, in (Venkatesaramani et al., 2023), the values of ϵ are selected from
{10, 000, 50, 000, 100, 000, 500, 000, 1 million, 5 million, 10 million}.

P.4 NOTES: SCORE-BASED ATTACKER:

Figure 1g compares attackers under the defense trained against the score-based attacker. The Bayesian attacker
significantly outperforms the others, achieving near-perfect classification, while LRT and adaptive LRT per-
form similarly but lag behind. As explained in (Dwork et al., 2015), the score-based attacker is assumed to
have less external information and knowledge than the Bayesian, the fixed-threshold LRT, and the adaptive
LRT attackers. Theoretically, the score-based attacker uses O(n2 log(n)) SNVs, where n is the number of
individuals in the dataset. In the experiments for Figure 1g, to guarantee certain accuracy for the score-based
attacker, we consider 20 individuals and each time a dataset of 5 individuals with 4000 SNVs being randomly
sampled. In this setting, the Bayesian attacker performs very well (with AUC close to 1).

P.5 NOTES: ADULT AND MNIST DATASET

Adult Dataset In the experiments using the Adult dataset, the original mechanism f (i.e., without privacy
protection) releases the summary statistics of the Adult dataset. Specifically, we turn the attributes of the Adult
dataset into binary values to simplify the representation of categorical and continuous attributes. For example,
categorical attributes like “occupation” or “education level” are one-hot encoded, while continuous attributes
like “age” are discretized into binary intervals. This binary transformation allows us to construct a dataset that
represents the presence or absence of specific attribute values, making it compatible with our framework for
privacy protection and utility optimization. The summary statistics released include the counts or proportions of
individuals possessing specific binary attributes. These statistics form the basis for evaluating the membership
inference risks and utility trade-offs in our experiments. By using this transformed representation, we ensure
the methodology aligns with the assumptions of our privacy-utility trade-off framework.

MNIST Dataset For the MNIST dataset, the original mechanism is a trained classifier that outputs predicted
class probabilities for given input images. Specifically, this classifier is trained on the MNIST training set to
perform digit recognition, mapping each image to a probability distribution over the 10-digit classes (0 through
9). In our experiments, we consider the privacy of the test data (or inference dataset) used to query the classifier.
The attacker aims to infer whether a specific test image belongs to the inference dataset based on the output
probabilities provided by the classifier.

P.6 NOTES: BGBP RESPONSE

The BGBP response acts as a constraint for the defender since the defender’s choice of G induces H , which
(1) represents the attacker’s best response, and (2) satisfies the conditions defined by PH[G⃗; ϵ]. The attacker,
however, simply responds optimally to the defender’s choice of G. To incorporate the conditions for H set
by PH[G⃗; ϵ], we apply the penalty method to the defender’s loss function. In our experiments, we relax the
strict pure differential privacy framework and focus on a class of neural networks G that select ϵ for a Gaussian
distribution N (0, Var(ϵ)), where Var(ϵ) = C/ϵ2 and C is a fixed constant. For the composition of five mech-
anisms, four are pre-designed with noise perturbation using N (0, Var(ϵ)). The defender’s neural network G5

selects ϵ for the fifth mechanism, constrained by the BGBP response with BDP[G⃗; 5ϵ]. We evaluate whether
the target 5ϵ can be approximately achieved if the attacker’s performance aligns closely with that of a single
5ϵ-DP mechanism (One Mechanism), where the single 5ϵ-DP mechanism is also perturbed by Gaussian noise
N (0, Var(5ϵ)). Our experimental results demonstrate that the BNGP strategy, constrained by BGBP response,
successfully implements parameterized privacy in a generative manner.
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P.7 ADDITIONAL EXPERIMENT:

As shown in Figure 2, the privacy strength of the defense decreases (resp. increases) as κ increases (resp. de-
creases), as we would expect, since κ captures the tradeoff between privacy and utility. Figure 2d demonstrates
the performances of the Bayesian, fixed-threshold, and adaptive-threshold attackers under ϵ-DP defense where
ϵ = 600. The choice of such a large value of ϵ is explained in Appendix E). Similar to the scenarios under the
Bayesian defense, the Bayesian attacker outperforms the LRT attackers under the ϵ-DP.

P.8 NETWORK CONFIGURATIONS AND HYPERPARAMETERS

The Defender neural network is a generative model designed to process membership vectors and produce
beacon modification decisions. The input layer feeds into two fully connected layers with batch normalization
and activation functions applied after each layer. The first hidden layer uses ReLU activation, while the second
hidden layer uses LeakyReLU activation. The output layer applies a scaled sigmoid activation function. The
output of the Defender neural network is a real value between -0.5 and 0.5, which is guaranteed by the scaled
sigmoid activation function. All Defender neural networks were trained using the Adam optimizer with a
learning rate of 0.001, weight decay of 0.00001, and an ExponentialLR scheduler with a decay rate of 0.988.

The Attacker neural network is a generative model designed to process beacons and noise to produce mem-
bership vectors. The input layer feeds into two fully connected layers with batch normalization and activation
functions. The first hidden layer uses ReLU activation. The output layer applies a sigmoid activation func-
tion. All Attacker models were trained using the Adam optimizer, a learning rate of 0.0001, weight decay of
0.00001, and an ExponentialLR scheduler with a decay rate of 0.988.

The specific configurations for each model are provided in the tables below. Table 1a shows the configurations
of the neural network Defender under the Bayesian, the fixed-threshold, and the adaptive-threshold attackers
when the trade-off parameter κ is a vector (i.e., each κj = κ for all j ∈ Q). Table 1b shows the configurations
of Defender when the trade-off parameter is a vector; i.e., κ⃗ = (κj)j∈Q where κj = 0 for the 90% of 5000
SNVs and κj = 50 for the remaining 10%. Table 2a lists the configurations of the neural network Attacker
under the Bayesian, the fixed-threshold LRT, and the adaptive-threshold LRT defenders. Table 2b lists the
configurations of Attacker under the standard ϵ-DP which induces the same κ⃗-weighted expected utility loss
for the defender.

Table 1: Bayesian Defender Configurations

(a) Defender with scalar κ

Layer Input Units Output Units
Input Layer 830 1500
Hidden Layer 1 1500 1100
Hidden Layer 2 1100 500
Output Layer 500 5000

(b) Defender with vector κ⃗

Layer Input Units Output Units
Input Layer 830 1000
Hidden Layer 1 1000 3000
Hidden Layer 2 3000 4600
Output Layer 4600 5000

Table 2: Attacker Configurations

(a) Attacker vs. Defender

Layer Input Units Output Units
Input Layer 5000 3400
Hidden Layer 1 3400 2000
Output Layer 2000 800

(b) Bayesian Attacker vs. ϵ-DP

Layer Input Units Output Units
Input Layer 5000 3000
Hidden Layer 1 3000 1000
Output Layer 1000 800

P.9 COMPLEXITY ANALYSIS OF THE NEURAL NETWORKS

Here, we use snp dim to denote the number of single-nucleotide variants (SNVs) per data point and ind dim
to represent the total number of individuals.

We provide a complexity analysis of the Attacker (D) and Defender (G) neural networks used in our general-
sum GAN. This analysis covers the trainable parameters and computational complexity for both networks.
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The Attacker takes input of dimension snp dim and produces a membership vector of dimension ind dim. Its
architecture consists of fully connected layers, batch normalization, and activation functions. Specifically, the
first linear layer maps the concatenated input to a hidden layer of dimension Hidden Layer 1 dim, followed
by another linear layer reducing the dimensionality to Hidden Layer 2 dim, a batch normalization layer, a
ReLU activation function, and a final linear layer mapping to ind dim with a Sigmoid activation function for
output.

The total number of trainable parameters in the Attacker is derived as follows. The first linear layer has
(snp dim) · Hidden Layer 1 dim weights and Hidden Layer 1 dim biases. The second linear layer includes
Hidden Layer 1 dim · Hidden Layer 2 dim weights and Hidden Layer 2 dim biases, while the batch nor-
malization layer adds Hidden Layer 2 dim · 2 scale and shift parameters. The final linear layer contributes
Hidden Layer 2 dim · ind dim weights and ind dim biases. Therefore, the total number of trainable param-
eters in the Attacker is:

snp dim · Hidden Layer 1 dim+ Hidden Layer 1 dim · Hidden Layer 2 dim

+ Hidden Layer 2 dim · 2 + Hidden Layer 2 dim · ind dim+ ind dim.

For computational complexity during a forward pass, the dominant operations occur in the linear layers, leading
to a total complexity of:

O
(
B · [snp dim · Hidden Layer 1 dim+ Hidden Layer 1 dim · Hidden Layer 2 dim

+ Hidden Layer 2 dim · ind dim]
)
,

where B is the batch size.

The Defender network takes input of dimension ind dim+ noise dim and produces an output of dimension
snp dim. Its architecture comprises multiple fully connected layers, batch normalization layers, and activa-
tion functions. The first linear layer maps the input to a hidden layer of dimension Hidden Layer 1 dim,
followed by a second linear layer reducing the dimensionality to Hidden Layer 2 dim. Batch normaliza-
tion and ReLU activation are applied at this stage. A third linear layer further reduces the dimensionality to
Hidden Layer 3 dim, followed by another batch normalization layer and a LeakyReLU activation. Finally,
the output layer maps the representation to snp dim with a ScaledSigmoid activation function for output.

The total number of trainable parameters in the Defender is as follows. The first linear layer contributes
(ind dim+ noise dim) · Hidden Layer 1 dim weights and Hidden Layer 1 dim biases. The second linear
layer includes Hidden Layer 1 dim · Hidden Layer 2 dim weights and Hidden Layer 2 dim biases, and
the batch normalization layer adds Hidden Layer 2 dim · 2 scale and shift parameters. The third linear layer
has Hidden Layer 2 dim · Hidden Layer 3 dim weights and Hidden Layer 3 dim biases, while the second
batch normalization layer adds Hidden Layer 3 dim · 2 scale and shift parameters. The output layer includes
Hidden Layer 3 dim · snp dim weights and snp dim biases. Thus, the total number of trainable parameters
is:

(ind dim+ noise dim) · Hidden Layer 1 dim+ Hidden Layer 1 dim · Hidden Layer 2 dim

+ Hidden Layer 2 dim · 2 + Hidden Layer 2 dim · Hidden Layer 3 dim

+ Hidden Layer 3 dim · 2 + Hidden Layer 3 dim · snp dim

+ snp dim.

The forward-pass computational complexity is dominated by the linear layers, resulting in:

O
(
B · [(ind dim+ noise dim) · Hidden Layer 1 dim

+ Hidden Layer 1 dim · Hidden Layer 2 dim+ Hidden Layer 2 dim · Hidden Layer 3 dim

+ Hidden Layer 3 dim · snp dim]
)
.

In summary, the Attacker and Defender networks are both computationally efficient and scalable. Their
forward-pass complexities scale linearly with the batch size and input dimensions, while the number of train-
able parameters remains manageable for modern deep-learning hardware. This ensures that the networks are
expressive enough for the task while being feasible for practical implementation.

P.10 AUC VALUES OF ROC CURVES WITH STANDARD DEVIATIONS

Tables 3, 4, and 5 show the AUC values of the ROC curves shown in the plots of the experiments.
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Table 3: AUC Values For Different Attackers Under Varying κ

Attacker Figure 2a (κ = 0) Figure 1a and 2b (κ = 1.5) Figure 2c (κ = 50)

Bayesian attacker 0.5205± 0.0055 0.7253± 0.0069 0.8076± 0.0040

Fixed-Threshold LRT attacker 0.5026± 0.0062 0.6214± 0.0322 0.7284± 0.0089

Adaptive-Threshold LRT attacker 0.1552± 0.0100 0.1716± 0.0144 0.1719± 0.0174

Table 4: AUC Values of Attackers For Figures 1b to 1h

Figure Scenarios AUC ± std Condition

1b
Under Bayesian Defender 0.7237± 0.0066 κ = 1.5

Under Fixed-threshold LRT Defender 0.9124± 0.0026 κ = 1.5

Under Adaptive-threshold LRT Defender 0.7487± 0.0027 κ = 1.5

1c
Under Bayesian Defender 0.5318± 0.0222 κ⃗

Under ϵ-DP Defender 0.9153± 0.0025 κ⃗

1d
Bayesian Attacker 0.5600± 0.0040 κ = 1.5

Fix-LRT Attacker 0.5287± 0.0052 κ = 1.5

Adp-LRT Attacker 0.1431± 0.0120 κ = 1.5

Score-Based Attacker 0.1267± 0.0207 κ = 1.5

1e
Bayesian Attacker 0.6317± 0.0050

Fix-LRT Attacker 0.5865± 0.0060

Adp-LRT Attacker 0.1722± 0.0752

Score-Based Attacker 0.1223± 0.0170

1f
Bayesian Attacker 0.5868± 0.0035

Fix-LRT Attacker 0.5615± 0.0065

Adp-LRT Attacker 0.2076± 0.0160

Score-Based Attacker 0.1229± 0.0028

1g
Bayesian Attacker 1± 0

Fix-LRT Attacker 0.8618± 0.0019

Adp-LRT Attacker 0.2221± 0.0106

Score-Based Attacker 0.1542± 0.0227

1h
Bayesian Attacker 0.7422± 0.0085 κ = 1.5

Decision-Tree Attacker 0.6609± 0.0110 κ = 1.5

SVM Attacker 0.5226± 0.0108 κ = 1.5
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Table 5: AUC Values of Figure 1i

Scenarios AUC ± std

Composition (ϵ = 0.05) 0.7387± 0.0050

One Mechanism (ϵ = 0.05) 0.7427± 0.0063

Composition (ϵ = 0.1) 0.8033± 0.0057

One Mechanism (ϵ = 0.1) 0.8241± 0.0035

Composition (ϵ = 0.3) 0.8921± 0.0037

One Mechanism (ϵ = 0.3) 0.9018± 0.0033

Composition (ϵ = 0.6) 0.9108± 0.0032

One Mechanism (ϵ = 0.6) 0.9201± 0.0032

Composition (ϵ = 1) 0.9318± 0.0031

One Mechanism (ϵ = 1) 0.9373± 0.0030
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