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Abstract Malaria is a significant health issue in Rwanda. Its accurate identification 
is essential for effective treatment. Traditional methods, such as microscopy, often 
face limitations in these contexts. This paper investigates how advanced machine 
learning techniques can address diagnostic challenges commonly encountered in 
resource-limited settings like Rwanda. A powerful deep learning framework known 
as U-Net was utilized in this study to identify different types of malaria. This method 
demonstrated the ability to accurately identify the disease at a highly detailed level, 
yielding promising results. The findings from this study could contribute to the 
development of computer-aided diagnostic tools specifically designed for regions 
with limited resources. These tools could assist healthcare professionals in decision-
making processes and enhance patient outcomes. 
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1 Introduction 

Malaria is a deadly disease that is typically present in tropical regions and spread by 
infected mosquito bites. Fever, headache, chills, nausea, vomiting, diarrhea, anemia, 
and respiratory distress are among the symptoms [ 1]. It can cause consequences 
like cerebral malaria, breathing issues, organ failure, anemia, and low blood sugar if 
left untreated. By avoiding mosquito bites, using pesticides, sleeping beneath nets, 
donning long pants and shirts, and using creams or sprays to repel mosquitoes, 
malaria can be avoided. Physical examination, symptoms, and blood tests are used 
to make the diagnosis. Depending on the patient’s age and health status, several 
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treatments may be available [ 1]. Plasmodium parasites can be categorized into five 
distinct species, namely P. falciparum, P. vivax, P. ovale, P. knowlesi, and P. malariae. 
Among these, P. falciparum and P. vivax are the most virulent and account for most 
malaria cases [ 2]. 

Malaria is a severe disease, with 241 million infections and 627,000 deaths in 2020, 
with Africa having the highest number of cases and fatalities [ 3]. Commonwealth 
governments committed to eliminating malaria by 2030 [ 1]. There have been various 
studies on automating the process of malaria detection in various parts of the world. 
The common consensus is that using the Giemsa-stained specimen/blood sample 
observed under microscopic slides, known as light microscopy, is the gold standard 
for malaria detection [ 4– 6]. This process can be time-consuming and is only accurate 
based on the skill of the operator or technician. It can also be challenging in resource-
limited settings, thereby having rapid diagnostic tests as the next alternative [ 7]. 

This paper is a part of a broader study in which the authors explore and suggest a 
digital system for monitoring malaria [ 8]. The proposed system aims to streamline the 
process of data collection, delivery, aggregation, classification, treatment reporting, 
repository updates, and public information services. This could potentially improve 
the forecasting, management, and treatment of malaria [ 8]. As a step in the right 
direction and in an effort to enhance malaria control, [ 9] created a data management 
model. The authors examine existing data management models and propose a novel 
one that is specifically designed for Rwanda. The specific objective of the study 
discussed in this paper is to enhance malaria prediction and automate the process of 
diagnosing malaria. 

For malaria parasite detection and segmentation, numerous studies have explored 
both options and have found various results. Previous research in the field has shown 
that machine learning and artificial intelligence methods have the potential to aid in 
malaria detection significantly. In a foundational paper [ 10], advanced image anal-
ysis software and machine learning approaches were leveraged to identify malaria, 
showcasing the pivotal role of modern information technologies in effective disease 
mitigation. These methods encompassed image processing, cell segmentation, para-
site identification, and feature calculation, underscoring the diversity of approaches 
within this domain [ 10]. 

Furthermore, recent research efforts have explored alternative methods for malaria 
parasite detection. For instance, the work in [ 5] employed scaled YOLOv4 and 
YOLOv5 object identification models to classify malaria parasites, achieving notable 
accuracy rates of 83 and 78.5%. This result suggests the potential for these algorithms 
to assist medical practitioners in accurately identifying and predicting the malaria 
stage, a crucial aspect of disease management. While much research has primarily 
focused on detecting Plasmodium falciparum, given its prominence and lethality in 
sub-Saharan Africa as recognized by the WHO [ 1], promising strides have been made 
in diversifying the approaches. 

Another promising study is [ 11], where the authors suggest an automated ana-
lytic method for employing quantitative phase pictures to identify Plasmodium 
falciparum-infected red blood cells at the trophozoite or schizont stage. Linear dis-
criminant classification (LDC), logistic regression (LR), and K-nearest neighbor
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classification (NNC) are some of the techniques employed. Regarding schizont-stage 
detection, LDC has the best accuracy (up to 99.7%), whereas NNC has marginally 
greater accuracy (99.5%). These are all various studies contributing to automating 
malaria diagnosis. 

This work explores Semantic segmentation, specifically the U-Net architecture, 
to segment malaria plasmodium species in digital image data collected in African 
settings, specifically Rwanda. Semantic segmentation groups image regions or pix-
els belonging to the same object class. It provides a helpful solution for various 
applications, including colon crypt segmentation, tumor identification, localization 
of surgical instruments, road sign detection, and land use classification. Semantic 
segmentation offers a well-defined method based on object class semantics, unlike 
non-semantic segmentation, which clusters pixels based on general object proper-
ties [ 12]. This differentiation highlights its adaptability and usefulness in various 
contexts, particularly medicine, which helps with disease diagnostics and organ seg-
mentation [ 12]. U-Net is a famous semantic segmentation architecture proposed by 
Priyanshu et al. [ 13]. It is a customized convolutional neural network made specially 
for the segmentation of biomedical images. With skip connections, it has a recog-
nizable “U” shape with an encoding path for feature extraction and a decoding path 
for up-sampling and accurate localization. U-Net has gained significant traction in 
biomedical image analysis, providing precise segmentation findings and inspiring 
the creation of comparable image segmentation designs across various applications 
[ 13]. 

The choice of employing the U-Net architecture is well justified. The U-Net archi-
tecture’s proven success in biomedical image analysis, particularly in segmenting 
Plasmodium, makes it a suitable and promising approach to address the challenges 
in this domain. The U-Net architecture has become more well-known in the biomed-
ical industry because of the requirement for precise segmentation. U-Net’s capacity 
to concurrently integrate low-level and high-level information makes it suitable for 
medical image segmentation. High-level information makes it possible to extract 
intricate patterns, whereas low-level information enhances accuracy [ 14]. Consider 
the work by Abraham [ 15] which applies U-Net to segment Plasmodium within thin 
blood smear images and showcases U-Net’s remarkable accuracy in this task. This 
study examines three loss functions-mean-squared error, binary cross-entropy, and 
Huber loss-revealing that the Huber loss function outperforms the others. Testing 
metrics for F1 score, positive predictive value (PPV), sensitivity (SE), and rela-
tive segmentation accuracy (RSA) are notably higher with the Huber loss function, 
measuring 0.9297, 0.9715, 0.8957, and 0.9096, respectively. This underscores the 
effectiveness of U-Net coupled with the Huber loss function in achieving precise 
Plasmodium segmentation in thin blood smear images. 

Furthermore, U-Net’s adaptability to different color spaces and its consistently 
high accuracy rates across RGB, HSV, and GGB color spaces make it a compelling 
choice for malaria parasite segmentation as demonstrated in [ 16]. In the RGB, HSV, 
and GGB color spaces, respectively, the findings demonstrate astounding accuracy 
rates of 99.40%, 99.36%, and 99.47%, highlighting the suggested technique’s dura-
bility [ 16].
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Despite the effectiveness of U-Net, a predominant gap lies in the dataset’s com-
position, consisting primarily of thin images of malaria parasites. This limitation 
could hinder the generalizability of developed models to more diverse and com-
plex scenarios using thicker blood smears or different image types. Also, there is a 
dearth of studies addressing the diverse species of malaria parasites. The prevailing 
focus on a single species or the lack of species-specific identification in the literature 
could undermine the models’ effectiveness in handling multiple species scenarios. 
Addressing these gaps will not only enhance the comprehensiveness of the research 
but also lead to more robust and accurate solutions in the field of malaria parasite 
detection and segmentation. 

The rest of this paper is structured as follows: The detection includes the descrip-
tion of the extensive datasets acquisition and the U-Net architecture covered in Sect. 2; 
the results and discussion are covered in Sect. 3 followed by the limitations and rec-
ommendations in Sect. 4, and the conclusions are covered in Sect. 5. 

2 The Detection Method 

2.1 Datasets, Annotation, and Preprocessing 

The dataset consists of a comprehensive collection of microscopic images that capture 
four types of malaria parasites: Plasmodium falciparum, Plasmodium malariae, Plas-
modium ovale, and Plasmodium vivax. These images were meticulously collected 
at the Rwanda Biomedical Centre (RBC) [ 17] using a specialized microscope setup. 
The setup involved Giemsa-stained slides examined under a microscope, equipped 
with a camera attached to the eyepiece and connected to a laptop as shown in Fig. 1 
[ 9]. 

As the microscope was adjusted, snapshots (fields) of the slides were taken and 
stored for further analysis. The images captured thick and thin film smears, providing 
a diverse range of samples for study. Each image was carefully annotated using the 
VGG Image Annotator 2.0.12 to ensure accuracy in identifying infected areas. This 
tool allowed for precise delineation of infected areas using its polygon feature. 

The dataset was strategically divided to facilitate practical training, validation, 
and testing of the proposed U-Net-based segmentation model on various Plasmodium 
infections. An 80% allocation was made for training, with the remaining 20% equally 
divided between validation and testing for each parasite species. This division ensures 
a comprehensive representation of each parasite species across different subsets. This 
dataset provides a robust foundation for studying malaria parasites and developing 
effective machine learning models for their identification and classification. The 
detailed split and total number of images is found in Table 1. 

The annotated masks were resized to a uniform dimension of 256.× 256 pixels and 
fed into the U-Net architecture. This standardization of image size not only ensures 
uniformity in training and results but boosts computational efficiency by minimizing
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Fig. 1 Camera mounted on microscope at RBC to collect digital images of microscopic slides 

Table 1 Summary of data split for all parasites 

Parasite Total Train Validation Test 

PF 58 46 6 6 

PM 139 111 14 14 

PO 191 152 19 20 

PV 114 91 11 12 

Note Abbreviations used: PF Plasmodium falciparum, PO Plasmodium ovale, PV Plasmodium 
vivax, PM Plasmodium malariae 

the time and memory required. This preprocessing step guarantees that the mask 
sizes are consistent for the segmentation model, enabling smooth integration of the 
annotated data into the training, validation, and testing stages. 

The samples used in this study were collected from patients with high fever who 
sought consultation at healthcare facilities. Positive slides were subsequently col-
lected by the Rwandan Biomedical Centre for further analysis, including our research. 
Sample collection is primarily conducted at healthcare facilities across Rwanda on a 
quarterly basis for quality control purposes. RBC holds the legal authority for quality 
control, research, and training within Rwanda. This justifies the ethics of our study.
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2.2 U-Net Architecture 

The U-Net is a convolutional neural network architecture designed specifically for 
biomedical image segmentation tasks. It was introduced in a paper titled “U-Net: Con-
volutional Networks for Biomedical Image Segmentation,” authored by Ronneberger 
et al. [ 13]. The architecture is notable for its distinctive U-shaped design, which 
includes a contracting path (down-sampling) and an expansive path (up-sampling).

• Contracting Path (Down-sampling): The contracting path is responsible for 
reducing the spatial dimensions of the input image while capturing hierarchical 
features. It achieves this through a series of convolutional layers designed to detect 
patterns and features at different scales. The contracting path involves a series of 
convolutional and max-pooling layers that gradually reduce the spatial dimensions 
of the input image while extracting hierarchical features.

• Expansive path (Up-sampling): On the other hand, the expansive path is respon-
sible for recovering the spatial resolution of the segmented regions. It uses trans-
posed convolutions (deconvolutions) to up-sample the feature maps obtained from 
the contracting path. This helps the network recreate the finer details of the seg-
mented objects. Additionally, during the up-sampling process, the expansive path 
incorporates information from the contracting path. This is achieved through con-
catenation operations, where feature maps from the contracting path are combined 
with those from the expansive path. This information fusion ensures that the net-
work has context and spatial information for accurate segmentation. 

The beauty of the U-Net architecture lies in the synergy between these two paths. 
The contracting path learns to extract meaningful features and patterns from the input 
image, while the expansive path uses this information to generate precise segmen-
tation masks. This U-shaped design allows the U-Net to excel at biomedical image 
segmentation tasks where accuracy and detail preservation are crucial, making it a 
popular choice for tasks like cell nucleus segmentation or detecting intricate struc-
tures within medical images. Inspired by [ 18, 19], the following U-Net approach in 
Fig. 2 is used for this study. 

2.3 Training 

This work conducts individual binary segmentation on all four parasite types, with 
the architectural focus on precisely segmenting objects of interest from images while 
adeptly addressing the unique challenges inherent in binary image segmentation 
tasks. The model’s training leverages the Adam optimizer with a learning rate set to 
1e-4 and employs binary cross-entropy loss. Alongside accuracy, the model’s efficacy 
is gauged through the mean Intersection over Union (IoU) metric, quantifying the 
overlap between the predicted and actual masks. The training phase encompasses 
model fitting to the training dataset using a batch size of 16 for 300 epochs.
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Fig. 2 U-Net architecture
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• Learning Rate (1e-2): The learning rate controls how much to update the weight 
in the optimization algorithm. A smaller learning rate could lead to converging to 
the global minimum but might take more time to train, while a larger learning rate 
could speed up the training but risks overshooting the global minimum. In this 
case, a learning rate 1e-2 is chosen to balance convergence speed and assurance 
of not missing the global minimum [ 20].

• Batch Size (16): The batch size determines the number of samples propagated 
through the network simultaneously. A smaller batch size is chosen because it 
requires less memory to process, allows the model to start learning from data 
earlier, and provides a regular weight update, which can result in a robust model. 
The data size also accounts for why this figure was chosen. However, it might 
make the training process noisier and longer [ 20].

• Number of Epochs (300): The number of epochs is the number of times the 
entire dataset is passed forward and backward through the neural network. A 
higher number of epochs could lead to better performance until a certain point, 
after which the model might start overfitting. Therefore, 300 epochs are chosen to 
allow the model to learn complex patterns in the data without overfitting [ 21]. 

The model uses binary cross-entropy loss and Adam optimizer, which combines 
the advantages of two other extensions of stochastic gradient descent: AdaGrad and 
RMSProp. The mean Intersection over Union (IoU) metric is used for evaluating 
segmentation models by quantifying the overlap between the predicted and actual 
masks. Finally, precision, .F1 score, and recall metrics are explored via hyperpa-
rameter tuning to identify an optimal threshold yielding the highest .F1 score. The 
.F1 score is a performance metric commonly used in binary classification problems. 
The accuracy and comprehensiveness of the model are assessed using the harmonic 
mean of recall and precision. The.F1 score runs from 0 to 1, with 1 being the highest 
number that can be achieved [ 22, 23]. Unlike accuracy, it offers reliable findings for 
both balanced and unbalanced datasets. 

3 Results and Discussion 

Table 2 presents a concise overview of the outcomes obtained during the testing 
phases for all four parasite types. Figure 3 shows the training and validation loss of 
the model on the different Plasmodium species. Additionally, the ensuing figures in 
Fig. 4 offer visual representations of the model results on the four parasites, providing 
valuable insights into the project’s performance. 

The model achieved remarkable accuracy and low losses, yet there is potential 
for improvement when considering other evaluation metrics. Accuracy is a valuable 
metric when the classes are approximately equally distributed. It measures the pro-
portion of correct predictions (true positives and negatives) among the total number 
of cases examined [ 24]. The .F1 score, combining precision and recall, provides a 
holistic view of the model’s performance. Plasmodium ovale displays the highest
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Table 2 Results of metrics on four parasites 

Parasite Loss Accuracy .F1 score Precision Recall 

PF 0.0186 0.9955 0.0868 0.1175 0.0688 

PM 0.0152 0.9969 0.5420 0.5282 0.5565 

PO 0.0298 0.9882 0.6020 0.5444 0.6731 

PV 0.0278 0.9840 0.5936 0.5365 0.6642 

Fig. 3 Training result: a model on Plasmodium falciparum b model on Plasmodium malariae B c 
model on Plasmodium ovale d model on Plasmodium vivax 

.F1 score and recall among parasites, closely trailed by Plasmodium vivax and then 
Plasmodium malariae. In contrast, Plasmodium falciparum exhibits poorer perfor-
mance, attributed to limited training data. Data augmentation was omitted to assess 
the model’s inherent learning. .F1 score, precision, and recall collectively showcase 
the segmentation’s efficacy. Plasmodium malariae exhibits peak accuracy, followed 
closely by falciparum, ovale, and vivax. .F1 scores align with training data, yielding 
results under 0.7. Visuals highlight accurate data detection, yet recall and precision 
at the optimal threshold are lacking.
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Fig. 4 Real image, ground truth, and model segmentation on the four parasites: a Plasmodium 
falciparum b Plasmodium malariae c Plasmodium ovale d Plasmodium vivax
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Generally, the model accurately detects 99.6% of Plasmodium falciparum, 99.7% 
of Plasmodium malariae, 98.8% of Plasmodium ovale, and 98.4% of Plasmodium 
vivax. Despite strong accuracies, they might not fully depict effectiveness. The dis-
crepancies between accuracies and other metrics reveal nuanced evaluation. In the 
study, while Plasmodium malariae exhibits peak accuracy, the .F1-scores for all par-
asites are under 0.7. This discrepancy between accuracy and .F1-score suggests that 
while the model is generally good at identifying the presence or absence of parasites 
(high accuracy), it may be less effective at correctly identifying positive cases (lower 
.F1-score), particularly for classes with fewer instances in the training data [ 24]. 

4 Limitations and Recommendations 

Effective diagnosis and treatment of malaria need efficient and precise segmentation 
of the parasites. As we explore the complexities of automatic segmentation using 
the U-Net architecture, a few crucial factors come into focus that may significantly 
impact the model’s effectiveness and dependability. Three key limitations stand out 
and present opportunities for improvement. 

One of the primary limitations of the current approach is the lack of a compre-
hensive dataset that encompasses the wide range of parasite variants, particularly 
for the P. falciparum parasite [ 25]. The model’s effectiveness hinges on its ability to 
generalize across subtle variations. A larger dataset encompassing diverse parasite 
stages, morphologies, and image qualities can facilitate more effective learning. This 
enables the model to better address the complex challenges posed by various parasite 
species, fostering a comprehensive and adaptable solution. Data augmentation tech-
niques can be employed to artificially expand the size and diversity of the training 
data, particularly when acquiring new data is challenging or expensive. This may be 
especially advantageous for the model’s detection of P. falciparum parasites, which 
currently perform poorly due to a lack of training data [ 26]. 

In addition, the success of any segmentation model is inherently linked to the 
quality of its ground truth masks [ 27]. Investigating cutting-edge computer vision 
methods for producing these masks is essential to improving the precision of the 
.F1-score and overall performance. Techniques such as instance segmentation, active 
contour modeling, and combining annotations from multiple perspectives should be 
utilized to achieve this [ 16]. Employing image processing techniques to eliminate 
or mitigate the impact of artifacts and white blood cells can further enhance the 
quality of ground truth annotations. Ground truth masks can be meticulously crafted 
by leveraging the strengths of these methods, effectively bridging the gap between 
manual annotation and automated detection. The outcome is a more streamlined and 
reliable training procedure that bolsters segmentation accuracy. 

Furthermore, segmentation accuracy extends beyond data collection and model 
design. The choice of metrics and loss functions employed for evaluating model per-
formance naturally influences the learning process and assessment accuracy. Explor-
ing alternative solutions holds promise [ 28]. Investigating loss functions tailored to
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the specifics of binary segmentation, such as Huber loss or dice loss, may lead to 
improved convergence and segmentation quality [ 15]. Additionally, incorporating 
metrics like the Matthews correlation coefficient (MCC) or the Jaccard index into 
the evaluation repertoire enables a more comprehensive assessment that considers 
various aspects of model performance. 

Finally, one of the challenges faced is the inadequate training of laboratory tech-
nicians, resulting in poorly prepared malaria blood films. These substandard samples 
are often rejected, leading to delays in acquiring suitable specimens. Additionally, 
the inconsistent quality of stainers (reagents) can produce images with varying col-
orations. Experts must regularly check and validate reagents at endemic sites, further 
hindering the sample collection process. 

By addressing the limitations identified and implementing the recommended 
improvements, the effectiveness and reliability of automatic segmentation of malaria 
parasites using the U-Net architecture can be significantly enhanced. This can lead to 
more accurate diagnoses and timely treatment decisions, improving patient outcomes 
and contributing to the fight against malaria. 

5 Conclusion 

The study reported accuracy levels of 99.6% for Plasmodium falciparum, 99.7% for 
Plasmodium malariae, 98.8% for Plasmodium ovale, and 98.4% for Plasmodium 
vivax, indicating a significant improvement in the accuracy of malaria diagnosis. 
Despite these impressive figures, there is potential for further improvement when 
considering other evaluation metrics such as the .F1 score, precision, and recall. The 
performance for Plasmodium falciparum was lower due to insufficient training data, 
highlighting the need for a comprehensive dataset for effective learning. The quality 
of ground truth masks and the choice of metrics and loss functions also significantly 
influence the model’s success. 

To extend this work, more data could be collected, advanced computer vision 
methods could be explored for each parasite, and other methods of segmentation 
such as MaskRCNN could be significantly explored. By implementing these steps, 
it is hoped that the model’s performance can be enhanced, leading to more efficient 
and precise diagnosis and treatment of malaria. This study substantially contributes 
to malaria parasite detection and segmentation and identifies critical areas for future 
improvement. There are plans to implement automated malaria diagnosis in collabo-
ration with the Rwandan Biomedical Centre (RBC), our most important stakeholder. 
This constitutes a part of the investigative phase, with the hope of transitioning to 
the deployment and testing phase with enhanced outcomes.
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