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Abstract

Model evaluation is a cornerstone of machine learning, guiding model design and1

progress measurement. Designing generalizable evaluation processes remains a2

challenge, however, partly due to the vast number of possible domain, task and3

modality combinations and lack of knowledge of how informative they are. In4

this paper, we propose EEVEE (Efficient Evaluation process Evolution Engine)1, a5

method that frames evaluation process design as a learning problem. By analyzing6

a large number of evaluation metrics from diverse benchmarks and models, EEVEE7

identifies a smaller subset of tasks with high predictive power over the full set of8

evaluation metrics, reducing evaluation time. To find the optimal subset maximiz-9

ing signal while minimizing GPU hours, EEVEE evaluates pre-trained models of10

various architectures, pretraining schemes, and modalities on diverse downstream11

tasks and datasets including image classification, segmentation, relational reason-12

ing, zero-shot image-to-text tasks, medical classification and segmentation, video13

classification, and regression. Our results identify three subsets of benchmarks,14

with 8, 15 and 21 tasks, providing high quality signal for model generalization.15

Key benchmarks selected include iWildCam, CLEVR-Math, ACDC, WinoGround,16

CIFAR100, Fungi, and ADE20K. We structure the subsets into three tiers for17

12, 24, and 36 GPU-hour budgets and package them into a unified, efficient, and18

user-friendly Python framework that we built with the researcher in mind – which19

we refer to as the GATE engine. Our experiments reveal ConvNextV2, SigLIP20

and CLIP as top-performing model encoders, with EfficientNetV2 and ResNext5021

excelling in medical tasks and challenging image classification, in particular in22

Happy Whale Individual classification, ConvNet based models seem to outperform23

transformer models by a factor of 2.5x, which is surprising. The top performing en-24

coder being ConvNextV2 followed by CLIP seems to agree with other recent large25

scale evaluations. We also demonstrate the framework’s versatility in fine-tuning26

models from text and audio modalities, paving the way for future cross-modal27

evaluations.28

1 Introduction29

Increasing Complexities of Benchmarking: As we create benchmarks for expanding model capa-30

bility evaluation, the growing number and complexity of these benchmarks inadvertently complicates31

evaluation, requiring more resources like engineering, computation, and research time. Consequently,32

prioritizing which benchmarks to use becomes challenging. The high costs and longer wait times of33

newer, complex benchmarks often deter their adoption, leading researchers to rely on older, simpler34

benchmarks. This risks missing valuable insights from innovative ideas that may underperform on35

1Pronounced as /’i:vi:/ EE-vee
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simpler benchmarks but have broader applicability, while promoting incremental improvements that36

overfit to simpler benchmarks but underperform in comprehensive evaluations.37

To illustrate the mounting increase in available benchmarks, we can look at the historical benchmarks38

in deep learning. Few benchmarks have had as much impact as ImageNet [29], which remains a39

rich resource for model training and evaluation, particularly in visuo-linguistic models. As key40

capabilities for deep neural networks were discovered, more benchmarks were generated to measure41

and stimulate progress in those areas. In natural language processing, the GLUE benchmark [65],42

SQuAD [45], and CoNLL-2003 [48] have been instrumental. In audio processing, LibriSpeech [39],43

TIMIT [15], and VCTK [68] are widely used. For machine translation, WMT [3], IWSLT [22], and44

Europarl [25] have driven advancements. Relational reasoning has been advanced by benchmarks45

such as CLEVR [23], bAbI [66], and RAVEN [71]. In segmentation, PASCAL VOC [14], Cityscapes46

[8], and COCO [33] remain crucial. Large language models are often evaluated using benchmarks47

like SuperGLUE [64], LAMBADA [40], and MMLU [19]. Vision-language models are typically48

evaluated using benchmarks such as VQA [1], Visual7W [76], and Flickr30k [42].49

As a result, a researcher has to choose from all these options, and even more, and then find a50

way to unify and experiment with their models across all of them. The lack of unification, and51

the lack of guarantees for their generalization signal, quickly becomes a kind of “evaluation hell”,52

where researchers waste a lot of time just doing redudant things like fixing the same bugs to53

download datasets, preprocess them etc, while at the same time not having any real signal as to which54

benchmarks are more informative, other than just knowing what has been used the most – which is55

usually a function of popularity, and not real informativeness. To elaborate, the adoption of complex56

evaluation processes that could enhance research efficiency and impact is often hindered by the57

engineering effort required to evaluate machine learning models. Researchers must create involved58

pipelines across multiple datasets demanding high data engineering efforts, develop task-specific59

adapters, and derive nuanced training recipes, which is time-consuming. As a result, researchers60

often revert to simpler evaluation strategies instead of comprehensive assessments.61

A good benchmark should alleviate these burdens by automating dataset handling, integrating task62

adapters, optimizers, schedulers, and logging mechanisms seamlessly. It should provide broad and63

meaningful signals with minimal GPU time, accommodating various computational budgets, ensuring64

inclusivity. Furthermore, an increasingly important factor for a robust modern benchmark engine65

is its support for multi-modal learning and early fusion techniques. AI systems must seamlessly66

integrate and reason across multiple modalities, such as text, images, audio, and more. Multi-modal67

learning enhances self-supervised learning opportunities and provides inherent supervision through68

natural alignments, like audio-visual synchronization in videos. Early fusion, where data from69

different modalities is combined at the initial stages of processing, allows models to leverage shared70

representations, improving generalization and reasoning capabilities across varied tasks and domains.71

These key desiderata are what motivates the production of this work.72

With the desiderata in mind, we next introduce EEVEE, a methodology developed for building73

high-signal low-cost evaluation routines, and GATE, the resulting benchmark that is designed to74

be extensible, readable, flexible, modular and robust, supported by a new efficient, easy to use75

framework.76

EEVEE, Learning Optimal Benchmarks: The ability to find which benchmarks offer the most77

signal with respect to a given goal, such that we can optimize our compute time, research iteration78

speed, and engineering time is increasingly crucial. In this work, rather than just manually designing79

a new set of benchmarks, we propose a methodology, called EEVEE (Empirical Evaluation process80

Evolution Engine) that frames evaluation design as a learning problem and then leverages machine81

learning to automate the discovery and refinement of evaluation processes.82

More specifically, EEVEE operates by taking in a large set of performance metrics from diverse83

models applied across various benchmarks and identifies a smaller subset of benchmarks with high84

predictive power over the entire set. EEVEE achieves this through two main components: (a) an85

evolutionary algorithm to optimize the selection of benchmark combinations based on a computed86

score, and (b) a meta-model trained to predict a model’s performance on the full set of benchmarks87

using performance metrics from a chosen subset. We parameterize the meta-model as as a small88

neural network.89
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The meta-model receives input performance metrics from a subset of benchmarks and predicts perfor-90

mance on the full set of performance metrics. Through careful k-fold cross-validation and leveraging91

a diverse set of models and benchmarks, EEVEE iteratively evolves benchmark combinations that92

offer high information content with respect to the entire spectrum of benchmarks, ensuring robust,93

efficient and comprehensive evaluation that can be targeted to computational budgets ranging from94

more “GPU Poor” users to high-budget organizations.95

Taking the desiderata explained above and the resulting understanding of what a good evaluation96

engine should look like, we demonstrate the effectiveness of EEVEE by tasking it with the discovery97

of benchmark combinations that offer good signal-to-GPU-time ratio, for the evaluation of model98

encoders – also referred to as backbones, on their ability to adapt to new tasks, domains, and99

modalities. For this purpose, we choose a pool of 20 models, varying in their pretraining schemes100

(e.g CLIP, DINO, ImageNet Classification), architectures (e.g. ResNets, ViTs, ConvNext) and even101

their source modalities (e.g. Whisper, BERT), which we adapt on 31 benchmarks ranging from image102

classification, segmentation, relational reasoning, zero-shot image-to-text tasks, medical classification103

and segmentation, video classification, and regression, using robust fine tuning recipes, and training104

for 10K iterations, ensuring that the signal we get is about models that are adaptable, generalizable105

and efficient in their adaptation.106

By applying 20 models on 31 benchmarks and employing EEVEE on their resulting metrics, we107

identify three subsets of benchmarks, each targeted to a specific computational budget range. Some of108

the key benchmarks that have been selected include iWildCam, CLEVR-Math, ACDC, WinoGround,109

mini-ImageNet, Fungi, ADE20K, and dtextures. We refer to the discovered subsets as Tiers, and110

assign to them identifiers for their sizes, specifically, small (n=8, 12 GPU hours), base (n=15, 24 GPU111

hours) and big (n=31, 36 GPU hours). We package these tiers into our comprehensive benchmarking112

suite and software framework (called GATE) designed for domain, task and modality transferability113

evaluation, which facilitates the transfer of neural network encoders to different modalities, domains,114

and tasks. GATE’s architecture caters to the research community, enabling straightforward replace-115

ment of these transferable encoders with minimal effort. With these innovations, GATE seeks to116

evolve the landscape of model encoder evaluation, championing a deeper understanding of transfer117

learning and model adaptability.118

Contributions: 1. We introduce EEVEE, a machine learning approach for selecting subsets of119

benchmarks optimized to offer maximal predictive power over a larger benchmark set. 2. We conduct120

a comprehensive investigation of diverse benchmarks within the space of image, image+text and121

video modalities, pinpointing those with the highest predictive value for a model’s performance122

in downstream tasks. We apply EEVEE to model encoder evaluation by training 20 models on 31123

benchmarks, identifying subsets of 8, 15 and 21 benchmarks that offer high signal-to-GPU-hour ratios.124

3. We pack the EEVEE-discovered subsets (of 8, 15 and 21 benchmarks out of 31 benchmarks) into125

targeted benchmark packs, referred to as tiers, designed for specific compute budgets (of 12, 24 and126

36 GPU hours) and project phases, and establish standard experimental settings for these tiers. We call127

these collectively as the GATE Benchmarks. 4. We develop the GATE engine, a unified benchmark128

suite and software framework that automates dataset downloading, preprocessing, and pipelining129

for fine tuning and evaluation. GATE facilitates the incorporation of new model encoders, adapts130

input modalities, fine-tunes with robust recipes, and logs critical information such as training and131

evaluation metrics, power, energy, computational usage, task visualizations, and model gradients per132

layer. 5. Through our extensive investigation, we identify foundation models demonstrating superior133

transferability across diverse tasks. 6. We advocate for the inclusion of modality-shifting transfer134

experiments in the standard evaluation process for ML researchers, supported by our experimental135

results on the performance of existing foundation models in these benchmarks.136

2 Related Work137

On the Diversity of Benchmarks: There is a vast array of benchmark suites in machine learning.138

To the best of our knowledge, the benchmark suites relating strongly to GATE are ImageNet [9],139

VTAB [70], VLMBench [73] and WILDS [26]. ImageNet has been of tremendous importance and140

interest to the transfer learning community. Nevertheless, there has been skepticism about overfitting141

to such datasets resulting from implicitly qualifying models using the test set performance over142

the years [46, 6] or the test set not being challenging enough to gauge model generalization power143

[47]. Although ImageNet pre-training helps transfer performance to the many-shot classification144

setting [13], it provides minimal to no gains on more challenging datasets such as fine-grained145
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Desiderata ↓ Benchmark → ImageNet VTAB VLMBench WILDS GATE (Ours)
Diversity of Tasks
Diversity of Domains
Diversity of Modalities
Automatic Dataset Download/Preparation
Code allows for easy switch of encoders
Optimized for fast and effective research iteration
Run Time
Includes Medical Domains
Includes Environmental domains
Tiered compute budgets
GPU poor optimized

Table 1: Our Desiderata (first column) VS Benchmarks (first row)
classification [27]. Similarily, with a larger distribution shift, ImageNet pre-trained models was146

found to offer limited benefits for medical imaging tasks due to large distribution shifts induced by147

fundamental differences in data sizes, features, and task specifications; that is, lightweight models148

perform comparably to standard architectures [44]. To make matters worse, ImageNet performance149

is less correlated with and less predictive of downstream performance on diverse tasks beyond150

classification such as object detection, few-shot classification, and segmentation [13]. On top of it all,151

when ImageNet is extended with a perturbed temporal dimension, models performance significantly152

worsen [52].153

On the Usability of Benchmarks: Beyond ImageNet, VTAB introduced a benchmark with a wider154

diversity of tasks and domains [70]. Nevertheless, it does not offer task and domain shifts offered155

in GATE, such as medical segmentation and video classification and regression that are known to156

be ill-measured and gauged by ImageNet alone [44, 52]. That said, VTAB offers satellite imaging157

and 3D tasks which GATE does not. Nevertheless, GATE as a software framework was optimized to158

minimise usage friction, to take no more than 12 GPU hours on our smallest tier, and, to only require159

approximately 1 hour of adding the new encoder and wrapping it into GATE wrappers for GATE to be160

able to go away and take care of everything, including dataset downloading, task adapter integration161

and full train/val and test cycles with logging of various key metrics. VTAB, in our experience,162

requires a lot more manual work in getting the datasets, and integrating new models to be adapted.163

Similarly, VLMBench [73] and WILDS [26] offer more diverse datasets beyond previous work but164

neither offer a tiered approach that enables iterative development of models during pre-training, nor165

produce extensible and flexible benchmarks that can be easily glued into researchers experimentation166

code without friction.167

On the Systematic Selection of Benchmarks: Previous work investigated the properties inherit168

in multi-task benchmarks that trade-off diversity and sensitivity where the latter is how robust a169

benchmark ranking is to the inclusion of irrelevant models or minute changes in the tasks themselves170

[72]. It was found that multi-task benchmark are unstable to irrelevant changes in tasks design.171

Nevertheless, this is related to how the benchmark ranks models; whether it compares how model often172

ranks higher than another in cardinal benchmarks or if the performance across tasks is averaged to173

produce a single rank in cardinal ones. Meanwhile, our benchmark produces fine-grained information174

to model performances across diverse tasks rather than producing specific ranking which is delegated175

to the user analysis. Another complementary thread of work investigates dynamic benchmarks where176

model training and data collection is interleaved to continually challenge model knowledge [53]. To177

the best of our knowledge, this is the first work that studies the selection of multi-task, multi-domain178

benchmarks that satisfy limited compute budgets while maximizing research signal.179

In summary, Table 1 shows the desiderata that we believe a good evaluation suite and framework180

should have such that they can both offer the community useful signal, and also balance that with181

being practical so that people can adopt it.182

3 EEVEE Methodology183

EEVEE is our proposed method for automating the selection of Pareto-optimal benchmark subsets.184

By analyzing benchmark performance metrics, EEVEE identifies a small, highly informative subset185

that maximizes information relative to the entire benchmark pool. This ensures that, as machine186

learning benchmark breadth and depth increases, we will always be able to identify and select few that187

offer high information about the whole. We strike a balance between providing rich evaluation signals188

and maintaining simplicity, reducing computational costs and human efforts required for adopting189

new benchmarks. EEVEE enables the production of a tiered evaluation engine accommodating190

various computational budgets, fostering an inclusive and accessible research environment, and191

improving the quality of insights derived from machine learning research while addressing reluctance192
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towards resource-intensive evaluation processes. This balance between efficiency, simplicity, and193

signal richness presents EEVE’s value proposition for advancing machine learning research.194

Working Principle of EEVEE: EEVEE works by building a meta-model over the performance195

metrics of models sufficient both in number and diversity, on the full benchmark pool from which we196

want to choose our subset. With the term benchmark in this paper we refer to a dataset + task197

pairs.198

Formally, given a large benchmark pool B = {b0, b1, . . . , bK}, where B is the full set of benchmarks,199

and bi are individual benchmarks therein, we have a sufficiently large and diverse pool of model200

performance metrics M = {m0
0,m

0
1, . . . ,m

N
K}. Here, mj

i is the performance metric of model j on201

benchmark bi. We aim to discover a subset of B of size k. This means k total benchmarks make202

up the subset. If we build a meta-model g(Mselected, θ) to predict all of M given only the selected203

subset Mselected, it should minimize the following loss:204

LEEV EE = MSE(M, g(Mselected, θ)) (1)

In this equation, MSE is the mean squared error. M represents the full set of performance metrics of205

all our models on the full benchmark pool B. The term g(Mselected, θ) represents the predictions of206

the meta-model g with parameters θ when it is given the performance metrics of all models from the207

selected subset of benchmarks Bselected, referred to as Mselected.208

However, our main focus lies in the selected combination of performance metrics Mselected that can209

generalize well on previously unseen models. To that end, we must split M into train, validation210

and test sets, each consisting of performance metrics acquired from different models (e.g. train211

→ ResNet50, ViT-Base, CLIP, and val → ResNext50, DINO, DeIT), and explicitly optimize the212

inner loop test loss rather than the training loss, while we use the validation loss to select the best213

meta-model for test. Hence the loss we wish to minimize is:214

Ltest
EEV EE = MSE(M test, g(M test

selected, θ)) (2)

We need a non-differentiable method for choosing the k benchmarks in Mselected, since brute215

force becomes intractable very quickly, so we employ evolutionary methods to learn the k selected216

benchmarks.217

This results in a bi-level optimization, with an evolutionary method on the outer loop e(Bselected),218

where e is the evolutionary method, and Bselected are the benchmarks being selected – or indeed, the219

genes being optimized, and a small meta-model parameterized as a neural network g(θ) that receives220

a train/val split from Bselected and trains itself to do the task described in Equation 1, after which221

process it is scored using the val set using the loss in Equation 2. Then, once a given candidate of222

benchmarks Bselected is scored, in this way, the outer loop performs a tournament selection where223

only the top 50 candidates are preserved and mutated by removing one benchmark at random, and224

adding another at random. Each winning candidate mutates into 10 children, and the parent is225

also preserved in the gene pool, producing a gene pool with 550 candidates for every cycle. At226

initialization, we sample 1000 random combinations. We have found that 1000 is a good starting227

population that is both tractable to score and facilitates the necessary diversity that enables limited228

variation in results across several runs, showcasing convergent behaviour. diversity that our results229

across runs have little variation from one another, pointing to a convergent behaviour. We include full230

pseudocode showcasing all the details related to how we performed EEVEE for our experiments in231

Algorithm 1, 2 and 3 in Figure 1232

Applying EEVEE on Model Encoder Generalization233

Why Model Encoder Evaluation? A common practice across machine learning applications involves234

augmenting general model encoders with task-oriented heads. The adaption of this paradigm can235

be attributed to the computational efficiency associated with training model encoders, over more236

expensive setups. Much of computer vision, as well as vision to text search and retrieval happen using237

model encoders. Similarly, various applications requiring translation from one domain/modality/task238

to another require an encoder of some sort. Even the “decoder-only” LLM models that have239

demonstrated incredible capabilities in the last few years, internally can be seen as a series of240

representation encoders, a series of refinement before they reach the decoding stage.241
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Algorithm 1 Scoring
Require: Performance metrics M , Input metrics Mselected,

Epochs E = 20, Hidden dimension dhidden = 100,
Learning rate α = 0.01, Weight decay λ = 0.01, Opti-
mizer type ω = "AdamW"

Ensure: Evaluation score mean(scores)
1: Convert data to tensors x = Mselected and y = M
2: Normalize x and y
3: Initialize ShuffleSplit cross-validation kf
4: Initialize empty list scores
5: for each train, val split in kf do
6: Divide x into xtrain and xval; y into ytrain and yval
7: Build meta-model g(θ) with hidden dimension dhidden
8: Train g(θ) on xtrain and ytrain for E epochs with learn-

ing rate α, weight decay λ, and optimizer ω
9: Predict ypred = g(xval, θ)

10: Compute mean squared error score =
MSE(ypred, yval)

11: Append score to scores
12: end for
13: return mean(scores)

Algorithm 2 Mutation
Require: Bselected ⊂ B, B = {b1, b2, . . . , bK}
Ensure: New B′

selected
1: Select bremove ∈ Bselected
2: Select badd ∈ B
3: while badd ∈ Bselected do
4: Select another badd ∈ B
5: end while
6: Create B′

selected by replacing bremove with badd
7: return B′

selected

Algorithm 3 Evolution
Require: Performance metrics M = {m1

1,m
2
1, . . . ,m

N
K},

Benchmark set B, Combination size k, Number of win-
ners W , Number of children per winner C, Number
of generations G, Initial combinations size I , Training
epochs E, Hidden dimension dhidden = 100, Learning
rate α = 0.01, Weight decay λ = 0.01, Optimizer type
ω = "AdamW"

Ensure: Evolved benchmark combinations Bwinners
1: Initialize initial combinations Binitial with I random sam-

ples from B of size k
2: Evaluate performance of Binitial using SCOR-

ING(M,Binitial, E, dhidden, α, λ, ω) and store scores in
S

3: Select top W combinations from S as Bwinners
4: for generation g = 1 to G do
5: Initialize a new set of combinations Bnew
6: for each combination Bselected ∈ Bwinners do
7: Add Bselected to Bnew
8: for each child c = 1 to C do
9: Mutate Bselected using MUTATION(Bselected, B)

to create a new combination B′
selected

10: Add B′
selected to Bnew

11: end for
12: end for
13: Evaluate performance of Bnew using SCOR-

ING(M,Bnew, E, dhidden, α, λ, ω) and store scores
in S

14: Select top W combinations from S as Bwinners
15: end for
16: return Bwinners

Figure 1: (a) EEVEE Scoring algorithm, Mutation algorithm,
and (b) Evolution algorithm.

Multi-modal early fusion is another242

topic closely related with model en-243

coders – as research in early fusion244

can be done most efficiently when try-245

ing to learn data encoders rather than246

a full encoder-decoder, or decoder-247

only models. World model research248

in multi-modal dimensions can also249

take place most efficiently within a250

model-encoder context. Recent works251

like I/VJEPA [2] for example have252

paved the way for self-supervised253

learning which functions using model254

encoders, and has been demonstrated255

to be more efficient and more gener-256

alizable than full pixel decoding vari-257

ants.258

Furthermore, model encoder evalua-259

tion has been quite diffused in the past260

few years, with new benchmarks be-261

ing produced in every facet of the machine learning field. Nonetheless, most of those lacked in some262

key quality: they were either simply too complex to use efficiently, requiring too much compute, or,263

more often than the others, missing a unifying software framework that can easily, in a user-conscious264

way, and a principled stance towards high readability, maintainability and hackability.265
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Figure 2: GATE Framework Pipeline

The goal of focusing on Model Encoder Eval-266

uation: By applying EEVEE to search for a267

pareto-optimal set of benchmarks, and packag-268

ing it up in a unified framework that is built for269

the researcher in mind from the ground up, one270

which offers out of the box automated down-271

loading, pipeline building, task adapters, and a272

very mature training and eval loop. Within this273

framework, we facilitate, all relevant logging in-274

formation, including key training and eval met-275

rics, rich gradient information, power and com-276

putational information, as well as visualizations277

where relevant. Finally, we support easy switching of model encoders, no matter what source modality278

they come from – our framework dubbed GATE is a one stop shop for ones model representation279

research needs, both during research, debugging, as well as at the evaluation phase.280

GATE comes in three tiers small, base and big-GATE. Each having 8, 15 and 21 benchmarks within it,281

and targetted towards 12/24 and 36 GPU hours on a A100 40GB. We hope that by making it very easy282

for the end user and offering such rich signal for machine learning research, many researchers will283

choose to use GATE, to enhance their research signal, whilst keeping the compute budgets relatively284

feasible.285

Preparations: Choosing Models, Benchmarks and Adaptation Processes: EEVEE will yield286

better results if the space of models, benchmarks and adaptation processes we use is diverse, but also287

thorough in numbers. A. Adaptation Process We wanted GATE to cover multiple domains, tasks288

and modalities when shifting from the source to the target setting. For that reason we decided that if289

a model encoder has an input layer that does not fit the target modality, we simply remove that input290

layer and replace it with a relevant ViT-like patchification [12] followed by a linear combination for291

each patch. For tasks where we have text, we would tokenize the text using BPE [51], and for tasks292

where we have video we would use the model encoder on each image, to acquire an image-level293

vector representation, and then follow that up with a simple 4 layer transformer that receives a294

sequence of image-vector tokens, to produce a video-level embedding, on top of which we apply the295

task-specific head at hand. The task-adapters we used leaned on established methods, and where296

possible we just used a transformer head, which includes segmentation, relational reasoning and297

video classification, with everything just using a linear head, full details available at 14. After these298
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modifications, described in Figure 2, we use a fine tuning scheme – this decision was informed by299

preliminary experiments on both full fine tuning and linear probe with a frozen backbone, in which300

we found that there was a clear superiority of fine tuning over linear probing for the benchmarks we301

chose in our pool. Full details of these preliminary experiments can be found in Appendix 8.1. In our302

preliminary experiments we were able to identify three recipes, one for ConvNet-style architectures,303

one for ViT-style architectures and one for Hybrid architectures such as ConvNext and ResNext that304

worked well for all tasks, details in 8.1.305

B. Model Pool We wanted the space of models used to cover many important pretraining schemes,306

architectures, and source modalities. The details of these choices are provided next: 1. Pretraining307

Task and Dataset Variation: With a consistent architecture, models were subjected to various308

pretraining tasks and datasets. Model instances representing this category include CLIPViT [43],309

ConvNextV2 [35], Siglip, FlexViT [7], LaionViT, ImageNet1K ViT [11] with Random Aug-310

ment, SAM-ViT, DiNoViT, EfficientFormerV2 [32] and DeiT3 [59]. Further to these, we include311

models initialized from scratch, specifically, ViT, ResNet50 [18], FlexViT, EfficientNetV2 [57],312

and then fine-tuned on the GATE tasks. 2. Architectural Variation: We explored models having the313

same pretraining dataset (ImageNet), but differing in their architecture. This group encompassed a314

mix of standard CNN models such as EffNetV2, ResNet50, ResNext50 [67], ConvNextV2_Base315

[35] and transformer-based models like EfficientFormer [32] and FlexViT [7]. 3. Modality316

and Dataset Variation: This axis comprised models trained on modalities other than vision such317

as Whisper, coming from an audio to text task and Bert [10], Bart [31] and Mpnet [55] coming318

from various text-based tasks. These models had their original input processing systems replaced by319

a Vision Transformer style embedding and were subsequently fine-tuned on the GATE tasks. A more320

comprehensive account of these models, including their selection rationale and unique characteristics,321

is provided in the Appendix Section 13.322

C. Benchmark Pool The benchmark pool, detailed in the Appendix, includes Image Classification323

(ImageNet1k [9], CIFAR100 [28], Places365 [74], Food101 [36], HappyWhale [17]), Few Shot324

Image Classification (Aircraft [37], Fungi [50], MiniImageNet [62], CUB200 [63], Describable325

Features [69]), Zero Shot Text-Image Classification (Flickr30K [41], New Yorker Caption Context326

[20], Winoground [58]), Visual Relational Reasoning (CLEVR [23], CLEVRMath [34]), Image327

Semantic Segmentation (ADE20K [75], COCO10K [33], COCO164K [33], NYU-Depth-v2 [54],328

PascalContext [38], Cityscapes [8]), Medical Image Classification (Chexpert [21], Diabetic Retinopa-329

thy [16], HAM10000 [60]), Medical Segmentation (ACDC [5]), Video Classification (HMDB51 [30],330

UCF-101 [56], Kinetics400 [24]) and Video Regression (iWildcam [4]).331

Producing Diverse Model Performance Metrics: We apply our adaptation process on each and332

every model chosen, on every benchmark in the benchmark pool. To acquire test results we ensemble333

by averaging logits of the top 1, 3 and 5 validation models to produce three separate ensemble results.334

D. Experimental Approach We wanted our research environment to reflect the end user, so we335

can properly understand their needs, and to offer a pragmatic experimental setup of in-the-wild336

researchers with little time to hyperparameter optimize, and which have to make decisions on small337

amounts of preliminary experiments – someone choosing a model encoder off the shelf and adapting it338

to downstream setting. For that reason, we kept any hyperparameter tuning, or human attention when339

it came to specific models to a minimum. Instead, we relied on existing good recipes, and did some340

preliminary experiments as explained in detail in 8.1. Briefly, we discovered specific adjustments341

for each architecture type: for Convolutional Architectures, we used AdamW with a learning rate of342

1e-3, and 6e-4 for segmentation tasks; for Vision Transformer Architectures, AdamW with a learning343

rate of 1e-5; and for Convolutional + Transformer Hybrid Architectures, AdamW with a learning rate344

of 2e-5. A plateau learning rate scheduler was configured with parameters like mode "min", factor345

0.5, patience 1000, and threshold 1e-4, allowing models to effectively choose their own schedules346

based on their learning progress. This adaptive scheduling facilitated “good enough” learning rates347

and enhanced performance across different architectures.348

4 Results349

Single Benchmark Predictiveness: As demonstrated in Figure 3, using EEVEE we quantified the350

predictive power of each benchmark on its own, when not in a combination with others. We have351

found that ADE20K, Flickr30K, and the New York Caption Competition lead in their predictive352

power, with few-shot tasks, and relational reasoning, being very close to the best in predictive power.353

ImageNet1K sits squarely in the middle of the competition. Furthermore, some of the most “novel”354
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Figure 3: The EEVEE MSE Loss (k=1)
shows "predictiveness over the whole," with
lower values being better. Benchmarks like
iWildcam, HappyWhale, and WinoGround
test unique capabilities and may not predict
all tasks, yet EEVEE often includes at least
two of these in its top combinations along
with a “natural-image representative” such
as CIFAR100, ADE20K or Flickr30K.
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Figure 4: Degradation of predictive power when a given benchmark is removed and the meta-model
trained from scratch, for different GATE tiers.

benchmarks like iwildcam, happy whale, ACDC, NYU and Winoground are the least predictive tasks,355

Winoground being magnitudes less predictive. We argue that this is mainly due to the tasks being356

“harder”, and our models being less designed for those. The results in WinoGround were bearly better357

than chance for example. However, when once we move to combinations of benchmarks, these ’less’358

predictive benchmarks become key contributors to better predictive power, as they represent edge359

cases, as can be seen in Figures 6g 7c, 7i, where these have the highest importance when removed360

from a given set.361
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Figure 5: Performance of Models build with K-
best datasets: We do a search over the space of all
k for EEVEE and box plot the population summary
statistics of the top 50 combination candidates.

Predictiveness of Discovered Combinations In362

Figure 5, we can see how the top-50 performing363

candidate combinations perform as we vary the364

number of benchmarks per combination from365

1 to 26. We can see that there is a point of di-366

minishing returns around the k = 8 point, after367

which there appears to be some “overfitting” oc-368

curing. We verified that the overfitting was a369

result of having a small sample number of 20370

models, to train, val and test our meta-models371

with, as well as the 2-layer MLP we used to372

model Few-to-All metric predictions. We tried373

our level best to find the best architecture and regularization schemes for our meta-model, and this374

was the best we could do given available compute and (human) time. We chose 8, 15, and 21 as375

the combination-threshold to make our packs out of as they satisfied the computational budgets376

we set for ourselves, and they have very diverse and predictive tasks, as can be seen in Figures 6g377

7c, 7i. For full details on all the discovered top-k combinations please look at Appendix Section378

16.1. Best Models based on GATE: As can be seen in Table 2, or the Appendix extended Table379

3, the best overall models are ConvNextV2, SigLIP and CLIP in that order, with SigLIP and CLIP380

often exchanging ranks between themselves. However, it is worth noting that EfficientNetV2381

demonstrated exceptional performance/compute across all tasks, and even outperformed all models in382

many medical tasks. Finally, ConvNet based models, and particularly ResNext50 seem to have done383

exceptionally well in the edge-case scenarios of ACDC, Happy Whale Individual identification, and384
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Metric ↓ | Model → cvnxtv2 siglip clip flex deit laion vit dino smvit rnx50 effv2 r50a1 effrmr seffv2 sflex svit whspr sr50a1 bert bart mpnet
Img Class
CIFAR-100 Acc@1 84.2 74.6 76.9 75.1 66.7 75.1 66.6 55.7 50.3 69.3 67.3 34.3 15.6 37.6 10.3 7.8 11.0 15.9 14.5 9.0 1.0
Food-101 Acc@1 92.9 91.6 93.3 89.1 87.3 91.4 86.5 84.8 75.7 86.1 86.4 69.4 61.6 36.5 24.5 25.8 17.0 16.3 18.7 11.6 8.5
HWhale Individual Acc@1 75.6 31.7 35.2 48.4 23.7 21.0 27.5 9.1 3.6 78.7 77.1 5.2 4.4 33.2 2.8 2.5 2.2 2.1 2.3 1.7 1.5
HWhale Species Acc@1 99.8 99.8 99.7 99.8 99.5 99.7 99.7 99.2 95.4 99.7 99.7 92.1 92.8 96.5 76.5 74.5 64.3 65.8 71.2 59.3 62.9
ImageNet-1K Acc@1 85.3 81.9 76.0 82.3 82.1 74.1 68.3 77.9 75.5 77.6 73.5 72.5 44.6 16.9 3.2 2.4 2.2 1.3 1.5 0.8 0.2
ImageNet-1K Acc@5 96.8 95.8 93.7 95.5 94.7 93.1 89.1 93.0 90.8 93.3 91.4 90.5 72.5 37.3 10.1 8.2 7.7 4.7 5.2 3.2 1.2
Places365 Acc@1 54.7 53.5 54.1 52.1 49.0 53.7 47.5 47.3 27.1 51.8 51.5 40.9 25.2 26.6 9.0 8.6 7.5 5.0 5.2 3.0 2.2
Task Mean 84.2 75.6 75.6 77.5 71.8 72.6 69.3 66.7 59.8 79.5 78.1 57.8 45.2 40.7 19.5 18.6 16.0 15.9 17.0 12.6 11.1
Few-Shot Img Class
Aircraft Acc@1 96.7 96.6 97.4 95.9 95.3 96.7 96.3 94.4 92.9 91.6 90.6 86.2 78.2 59.2 54.9 50.4 55.1 58.2 61.2 60.8 57.2
CUBirds Acc@1 98.0 97.9 97.2 96.4 96.2 96.6 95.9 94.4 93.4 92.8 92.1 89.4 86.3 52.5 50.0 45.2 44.4 31.9 48.4 50.3 48.5
DTextures Acc@1 85.0 85.2 88.6 78.9 81.9 86.1 80.8 79.4 81.9 77.7 60.3 77.2 68.5 46.6 50.2 50.5 50.0 33.1 44.6 49.8 38.3
Fungi Acc@1 85.8 85.6 85.7 83.7 80.6 85.2 81.3 77.4 77.7 74.1 73.7 67.1 59.2 27.6 38.0 37.0 33.9 28.2 32.9 33.8 7.6
Mini-Imagenet Acc@1 97.0 96.2 93.1 99.1 98.8 90.8 89.9 98.7 92.9 94.1 63.2 93.2 90.9 36.7 45.9 47.2 44.8 34.2 39.7 37.3 36.8
Omniglot Acc@1 98.6 98.9 99.0 98.9 98.7 98.9 98.8 98.6 98.6 98.5 98.7 95.5 95.8 98.2 93.4 93.6 82.9 80.5 90.2 84.1 90.7
VGG Flowers Acc@1 99.7 98.9 98.6 96.7 96.2 97.0 95.9 95.5 93.4 87.9 91.3 89.3 90.6 59.6 69.4 69.4 63.0 53.4 59.1 59.4 60.8
Task Mean 94.4 94.2 94.2 92.8 92.5 93.1 91.3 91.2 90.1 88.1 81.4 85.4 81.4 54.3 57.4 56.2 53.4 45.6 53.7 53.6 48.6
Img Seg
ADE20K mIoU 46.8 47.1 44.0 43.7 37.8 43.4 33.2 33.3 25.9 18.2 14.2 11.7 9.8 1.5 0.5 0.4 0.6 0.4 0.4 0.5 0.4
Cityscapes mIoU 62.3 69.8 67.6 67.5 63.9 67.7 63.9 61.4 59.5 40.8 64.2 40.2 2.5 46.7 22.8 23.5 17.1 18.6 2.7 2.0 2.7
COCO-10K mIoU 26.9 39.5 35.6 35.1 32.8 33.6 29.8 31.0 28.6 18.4 10.2 5.7 14.0 1.1 0.9 0.8 0.4 1.6 0.1 1.3 0.1
COCO-164K mIoU 32.7 36.7 33.8 33.0 30.5 32.4 27.0 28.9 25.7 16.8 9.7 4.7 13.7 1.0 0.7 0.7 0.5 0.7 0.1 1.1 0.1
NYU mIoU 7.5 7.7 7.8 6.9 12.2 5.7 6.1 12.1 11.0 5.9 8.3 6.4 10.5 6.8 3.5 3.7 2.9 7.2 5.4 5.0 5.4
Pascal mIoU 32.8 34.8 35.7 30.6 31.4 28.3 27.5 29.8 24.0 16.6 11.7 6.8 14.0 1.7 1.3 1.1 1.4 2.3 1.0 1.4 0.9
Task Mean 34.8 39.3 37.4 36.2 34.8 35.2 31.3 32.8 29.1 19.5 19.7 12.6 10.8 9.8 4.9 5.0 3.8 5.1 1.6 1.9 1.6
Img Relational
CLEVR Acc@1 52.5 52.7 52.7 52.1 52.6 52.6 52.8 52.8 51.6 50.1 40.6 49.3 45.2 39.3 46.1 45.9 46.4 44.9 42.6 42.5 41.2
CLEVR Colour 35.4 36.1 36.4 35.0 35.5 35.6 35.3 36.1 34.2 26.8 15.7 24.7 14.7 12.5 25.7 29.4 28.8 22.8 13.2 13.0 13.2
CLEVR Count 45.8 45.8 45.8 45.9 45.8 45.7 45.7 45.6 45.6 45.3 39.0 45.1 44.8 37.9 45.1 44.7 44.8 44.9 44.7 44.7 43.0
CLEVR Material 60.5 60.6 60.5 60.0 60.5 60.6 61.4 61.3 60.2 58.6 52.1 57.5 53.7 49.8 53.7 51.7 54.0 53.0 49.8 50.5 49.9
CLEVR Shape 52.1 52.4 52.5 51.1 52.2 52.4 52.9 51.2 49.9 50.2 34.3 50.2 44.8 33.3 35.8 34.9 36.1 34.6 34.6 33.7 33.4
CLEVR Size 61.0 61.1 61.3 60.7 61.1 60.8 62.0 62.3 60.9 59.6 53.5 58.3 55.7 50.6 56.2 55.2 55.2 54.6 54.2 54.1 50.1
CLEVR Yes/No 60.7 60.5 60.8 60.6 60.5 60.7 60.4 60.4 60.2 59.8 53.3 59.9 59.6 51.4 60.1 59.2 59.5 59.8 59.5 59.3 58.6
CLEVR-Math Acc@1 79.3 65.9 68.8 59.9 73.7 62.9 60.5 59.3 58.3 55.6 44.0 56.0 56.6 30.2 46.9 46.5 46.2 45.7 44.8 42.1 36.4
Task Mean 55.9 54.4 54.9 53.1 55.2 53.9 53.9 53.6 52.6 50.8 41.6 50.1 46.9 38.1 46.2 45.9 46.4 45.0 42.9 42.5 40.7
Medical Class
Chexpert APS Macro 61.6 61.0 61.2 62.6 62.3 60.9 61.2 59.9 61.5 59.8 60.2 54.1 55.2 48.0 33.9 34.1 34.3 35.7 36.9 33.7 33.0
Chexpert AUC Macro 82.5 82.5 82.3 83.2 82.9 82.5 82.4 81.8 82.8 81.1 81.9 79.1 79.9 74.7 64.7 65.1 65.5 67.0 67.6 65.3 64.9
Chexpert BS Macro 84.3 84.4 84.5 85.1 86.2 84.6 84.9 85.6 87.0 86.3 84.8 86.1 86.4 84.6 82.9 82.9 83.0 83.1 83.1 82.8 82.8
Diabetic APS Macro 56.9 57.2 56.4 56.3 54.2 56.4 54.4 51.9 45.2 55.6 58.7 35.5 36.6 20.6 21.6 21.5 22.5 23.3 22.4 21.2 21.3
Diabetic AUC Macro 87.5 86.7 86.0 85.7 85.0 85.3 84.7 83.8 81.2 85.6 86.1 76.0 79.0 53.4 55.7 55.7 57.8 61.3 59.4 55.1 54.0
Diabetic BS Macro 94.5 94.0 93.9 93.9 93.8 93.6 93.7 93.6 93.0 93.9 94.2 92.3 92.6 91.6 91.3 91.4 91.4 91.5 91.8 91.6 91.6
HAM10K APS Macro 94.5 93.3 91.4 92.2 91.3 92.1 91.6 90.8 83.4 87.9 87.1 43.7 46.9 38.8 38.0 35.9 32.2 48.5 50.6 37.6 32.6
HAM10K AUC Macro 99.1 98.6 98.7 98.5 98.6 98.6 98.7 98.5 97.8 97.9 97.5 89.3 90.1 85.6 86.1 84.6 82.8 91.0 91.1 85.9 83.3
HAM10K BS Macro 98.4 98.1 97.8 98.1 98.0 97.9 97.9 97.9 97.2 97.6 97.2 95.2 95.5 94.6 94.5 94.4 94.3 95.0 95.2 94.4 94.2
Task Mean 84.4 84.0 83.6 83.9 83.6 83.6 83.3 82.6 81.0 82.9 83.1 72.4 73.6 65.8 63.2 62.9 62.6 66.3 66.4 63.1 62.0
Medical Seg
ACDC Dice Score 63.1 48.1 51.3 45.9 43.8 48.0 50.4 47.7 44.6 44.2 61.0 40.2 18.7 46.0 16.5 18.5 32.2 28.7 23.2 26.2 25.3
Task Mean 63.1 48.1 51.3 45.9 43.8 48.0 50.4 47.7 44.6 44.2 61.0 40.2 18.7 46.0 16.5 18.5 32.2 28.7 23.2 26.2 25.3
Img to Txt ZS
Flickr30K Img2Txt 6.3 6.3 7.0 5.9 5.6 6.8 5.9 5.2 4.5 4.1 3.7 4.7 4.2 1.6 1.8 2.0 1.9 2.0 1.9 1.8 1.6
Flickr30K Txt2Img 5.7 5.9 6.0 5.3 5.1 6.5 6.0 5.1 5.0 3.8 4.0 4.2 3.9 1.7 1.8 2.0 2.2 2.3 1.9 1.7 1.6
NYCC Img2Txt 6.9 6.6 6.9 5.8 6.5 6.9 6.4 6.0 4.7 4.9 4.1 4.6 4.2 1.6 2.1 1.8 1.9 2.1 2.0 1.6 1.6
NYCC Txt2Img 6.1 5.9 6.4 5.5 6.0 6.2 6.4 5.8 4.8 4.3 4.1 3.9 3.7 1.6 2.0 1.7 2.0 2.4 1.9 1.8 1.6
Winoground Img2Txt 51.0 53.4 59.5 49.7 50.0 50.3 49.5 43.5 53.8 61.9 50.0 48.9 47.3 43.9 50.0 41.3 50.0 53.2 49.6 50.1 50.4
Winoground Txt2Img 50.0 55.2 56.2 53.1 50.0 55.5 48.3 54.2 48.6 54.8 50.0 49.6 52.4 52.8 50.0 54.2 51.8 52.2 51.8 48.8 52.1
Task Mean 21.0 22.2 23.7 20.9 20.5 22.0 20.4 20.0 20.2 22.3 19.3 19.3 19.3 17.2 18.0 17.2 18.3 19.0 18.2 17.6 18.1
Video Class
HMDB-51 Acc@1 52.5 40.7 40.6 32.2 39.3 24.9 27.4 32.8 33.1 5.6 11.5 1.8 2.1 3.8 8.3 7.9 6.1 5.4 6.4 7.5 4.0
Kinetics Acc@1 48.8 44.2 51.4 43.7 40.3 44.6 33.2 36.4 25.8 2.7 1.0 0.2 0.3 0.4 2.0 1.6 1.0 0.5 0.3 0.3 0.3
UCF-101 Acc@1 84.4 75.1 69.9 63.2 75.0 63.4 58.8 66.6 48.7 19.7 11.1 2.8 0.8 2.1 15.2 13.3 6.6 8.7 6.5 7.0 2.7
Task Mean 61.9 53.3 54.0 46.4 51.5 44.3 39.8 45.2 35.9 9.4 7.8 1.6 1.1 2.1 8.5 7.6 4.6 4.9 4.4 4.9 2.3
Video Reg
IWildCam MAE Score 55.2 53.1 56.0 54.9 54.1 46.1 52.1 49.1 45.3 34.6 35.8 37.3 13.9 29.6 41.3 39.3 36.3 40.3 27.5 38.7 29.2
Task Mean 55.2 53.1 56.0 54.9 54.1 46.1 52.1 49.1 45.3 34.6 35.8 37.3 13.9 29.6 41.3 39.3 36.3 40.3 27.5 38.7 29.2
GATE
Full GATE Mean 69.0 66.8 66.8 64.6 64.3 63.4 62.1 62.2 58.5 56.3 54.4 48.4 42.8 39.6 37.5 37.2 36.2 36.9 35.0 34.9 31.8
Big GATE Mean 76.6 74.5 74.4 72.8 72.0 71.9 70.6 70.0 66.8 66.7 64.8 58.5 53.1 46.8 43.8 43.4 41.9 41.5 40.9 39.8 37.1
Base GATE Mean 68.3 65.6 65.7 62.6 63.7 60.7 60.2 60.7 58.6 55.1 53.5 48.2 42.8 38.0 36.5 36.3 35.4 36.6 34.8 34.8 30.4
Small GATE Mean 77.7 74.9 74.6 73.3 72.4 71.2 68.9 69.1 65.3 65.7 61.7 58.5 49.3 40.5 35.7 35.4 35.9 35.3 34.1 34.4 30.4
Full GATE Rank 1.0 3.0 2.0 4.0 5.0 6.0 8.0 7.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 18.0 17.0 19.0 20.0 21.0
Big GATE Rank 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0
Base GATE Rank 1.0 3.0 2.0 5.0 4.0 7.0 8.0 6.0 9.0 10.0 11.0 12.0 13.0 14.0 16.0 17.0 18.0 15.0 20.0 19.0 21.0
Small GATE Rank 1.0 2.0 3.0 4.0 5.0 6.0 8.0 7.0 10.0 9.0 11.0 12.0 13.0 14.0 16.0 17.0 15.0 18.0 20.0 19.0 21.0

Table 2: Summary of experiments: Black/Bold best model, Green second best, Blue third best, and
red the worst performing model. Models prefixed with ’s’ refer to ’from scratch’ trained models,
rather than pretrained. For the full table look at Appendix Table 3
general medical tasks, which indicates perhaps some sort of learning efficiency advantages related to385

their inductive biases.386

Limitations: We empirically evaluatd EEVEE on a relatively large pool of models and benchmarks,387

however, with more models, and benchmarks it could yield much more general results. Especially388

with benchmarks targetting the text and audio modalities, as well as potentially offline RL.389

5 Conclusion390

In this paper, we propose EEVEE, an evolutionary-method-based search algorithm that can discover391

out of a large collection of benchmarks, the ones that can offer the most predictive value on the392

original collection, for a given set of models. We apply EEVEE on the task of model-encoder393

evaluation in the context of images, image-text, videos, and medical domains. As a result, we obtain394

the GATE Benchmark, which consists of 3 tiers, each targeted to a particular GPU budget, from 12,395

24 and 36 GPU hours, per model evaluation. We then introduce the GATE engine, which takes these396

benchmarks, and offers a researcher-designed environment in which one can easily port their own397

model encoder, and run the full GATE tiers, and automatically produce a variety of performance,398

energy/power, hardware utilization metrics and task visualizations. We evaluated 20 representative399

models ranging from image, image-text, text and audio pretrained models, on the GATE tiers, and we400

discovered that ConvNextV2 and SigLIP seem to lead the pack overall, with EfficientNetV2 being an401

exceptional, efficient alternative for the medical domain and for unique scenario tasks, such as Happy402

Whale, ACDC and WinoGround. Finally, ConvNet based models, and ResNext50 in particular, seem403

to have a lot more learning efficiency, as they are the best adapted models on very novel domains,404

such as Happy Whale individual prediction challenge, ACDC and medical tasks.405
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6 End-user Guidelines635

For an end-user to use GATE, they need to:636

1. Install the GATE framework python package, as described in the Github repo’s readme page.637

2. Choose a path for implementing the new foundation model encoder they wish to evaluate.638

This is either cloning the full GATE repo and modifying existing components directly,639

or, importing the GATEncoder and GATEModel classes from GATE, and wrapping up640

their model within it. Doing so requires the researcher to implement a relevant forward641

function that can take in the modalities their model needs to process, as well as defining a642

configuration that tells GATE what modalities a model can receive and output features on,643

as well as any transforms needed for a batch to be ready for their model.644

3. The user chooses a GATE tier to use (from smallGATE, baseGATE and bigGATE). Based645

on the configuration defined by the user in step 2.646

4. GATE generates a list of commands, each representing an experiment that needs to be run,647

and can then run these commands on your local GPU box, parallelizing the tasks, one on648

each available GPU, or, can provide a list of commands or json file that one can use to run649

these commands on a GPU cluster, or other hardware.650

5. GATE emits a wandb project, with metrics, visualizations and other measures, allowing easy651

tracking of experiments, and sharing thereof, as well as huggingface model weights for each652

model being trained – which is also used to achieve a stateless execution.653

6. Once the experiments are completed, one can invoke the produce-analysis.py file within654

GATE to get tables and figures that analyse the data, similar to what appears in this paper.655

Those results can then be used to report results in a paper, or, be used to make decisions for656

production models.657

This process ensures the GATE framework is aware of what a model’s supported modalities are, as658

well as how to produce modality-specific features, given the model. Once this is completed, the user,659

with a single line of code, can select a GATE tier, and launch all jobs needed to produce results for that660

tier. Importantly, GATE is made to facilitate and encourage foundation models that are diverse in their661

capabilities, and allow the researchers to focus on what matters – that is, designing and training their662

foundation model – rather than spending the majority of their time building and optimizing evaluation663

boilerplate. Furthermore, the diversity of signal that GATE provides allows better understanding of a664

given model’s strengths and weaknesses, which as a result makes the research, review and iteration665

process of the field as a whole more efficient. This is because there is a consistent boilerplate that666

runs all models, with broad signal that reduces probability of making erroneous conclusions – both in667

the overly optimistic, or overly pessimistic side of things.668

6.1 Principal Use Cases669

1. Model Development and Iteration: GATE serves as a valuable tool during the model670

research and development phase. By integrating the model into GATE and running either671

the smallGATE or baseGATE tiers, developers can obtain a comprehensive and robust672

performance evaluation of their model across diverse domains, tasks, and modalities. Worth673

noting that GATE allows easy inclusion of foundation models pretrained on images, video,674

audio, text, etc, to be fine-tuned on pixel-based tasks. It achieves this by replacing a675

model’s root layer / embedding layer, with one appropriate for a given task’s modality, and676

adding on top a relevant task adapter head.677

2. Model Evaluation for Machine Learning Research: GATE enhances the communication678

of research findings and their potential applications, a vital aspect of scientific collabo-679

ration. By using GATE as a benchmark, even at the most cost-efficient GPU hour level680

of smallGATE, the clarity and depth of future ML papers can be significantly improved.681

GATE’s explicit evaluation of modality, domain, and task shifts in a given foundation model682

provides a nuanced and informative perspective on a model’s true capabilities, offering a683

more detailed understanding of a model’s strengths and weaknesses than optimizing a single684

metric, such as ImageNet validation error.685
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7 Result Extras686

The results were logged in WandB, and then further processed after all experiments were completed687

to generate the tables and figures in this paper. Much of the logged information outside of testing688

metrics were not used for any of the figures and tables in this paper. The full set of experiments and689

all the logged results can be found at our wandb gate project repo2.690

7.1 Result Processing691

Once all experiments were completed, we queried our wandb project repository and returned test692

results from all our experiments, if an experiment name was duplicated, we used the latest entries,693

and, for each experiment type there existed three independent runs. We averaged the results of any694

metrics across such independent runs to acquire a better approximation to the true performance of695

those models.696

8 Preliminary Experiments Details697

8.1 Preliminary Experiments698

First, we trained models on ImageNet1k, CIFAR100, CLEVR, ADE20K, CityScapes, and, ACDC699

for 5K iterations, using cosine annealing learning schedule or plateau annealing, with AdamW,700

weight decays varying from 0.1 - 0.0001, and applied models from each major architecture category –701

specifically, the CLIPViT, ImageNet pretrained ViT, ResNext, ResNet and ConvNextV2. The results702

from these experiments pointed to the fact that there exists one general and good recipe for each703

architecture style. The recipes that we discovered were as follows:704

8.1.1 Across Architecture Settings705

Unless otherwise stated, the settings here are applied universally in all experiments.706

Optimizer: AdamW, weight decay 0.01, plateau annealing with patience 1000, relative scaling and707

scale factor 0.5, and, threshold 0.0001.708

Training Details: Training iterations: 10K, validate every 500 iterations.709

Test Details: Top-3 validation models (across all validated checkpoints) are ensembled by prediction710

averaging.711

8.1.2 Architecture Specific Settings712

Convolutional Architectures: Optimizer: AdamW, learning rate 1e-3, and for segmentation tasks713

only, we used learning rate 6e-4714

Vision Transformer Architectures: Optimizer: AdamW, learning rate 1e-5715

Convolutional + Transformer Hybrid Architectures Optimizer: AdamW, learning rate 2e-5716

The above recipes were what we used throughout all our experiments unless otherwise stated.717

9 GATE Guiding Principles718

The fundamental values driving the design decisions behind GATE are the following:719

1. Maximizing Generalization Signal: GATE is designed to provide a high signal-to-noise720

ratio concerning a model’s ability to generalize in diverse downstream contexts, that vary in721

domain, task and modality. This allows for a more robust assessment of a model’s capacity722

for adaptation and versatility. By noise here we refer to how clear a given signal response is.723

For example, an image classification test accuracy signal on ImageNet, would provide clear724

2omitted until double blind is over
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signal with respect to the natural domain and the classification task, but would be blurry for725

more compositional, object disentanglement and relational tasks, such as segmentation, or,726

visual question answering.727

2. Time Efficiency: Acknowledging the importance of computational resources and time,728

GATE operates within set benchmarks of 12, 24, and 36 GPU hours (established on A100 @729

40GB). These set timeframes ensure GATE’s assessments are both thorough and expedient.730

3. Minimizing Usage Friction: The framework supporting GATE is designed to be user-friendly,731

enabling easy integration of new backbones and facilitating smooth experimentation. This732

low-friction approach ensures a streamlined experience when using GATE, making the733

process of evaluation more efficient.734

We argue that a good balance of the above can generate a pragmatic, yet thorough foundation model735

evaluation suite, that will, importantly, be of real use to most researchers in the field.736

10 Defining the GATE Benchmark737

GATE is a comprehensive evaluation engine designed to advance the development of more general738

machine learning models. It improves on existing benchmarks by enabling the evaluation of models739

across diverse modalities, domains, and tasks.740

GATE is composed of three key components. The first is a benchmark pool, a broad collection of741

datasets, tasks, and processes that measure a model’s performance across various domains, tasks,742

and modalities. The second component is a set of benchmark tiers, which are meticulously curated743

subsets from the GATE benchmark pool, tailored to specific compute budgets and project phases.744

The final, and is a software framework, designed to seamlessly integrate new foundation models and745

execute the GATE tiers, thereby enabling efficient performance evaluation across a diverse range of746

downstream modalities, domains, and tasks. Practically, GATE is directed towards machine learning747

researchers and developers as a means to efficiently, and with little friction, get broad signal about748

how their model performs after transfer in diverse contexts, specifically selected for their empirically749

evaluated high signal-to-noise ratio with respect to predictive power in how a model performs in750

previously unseen contexts.751

Building GATE was a careful balancing act. We needed to respect specific time budgets while also752

aiming for a wide variety of evaluation scenarios. Our approach was as follows:753

1. Select a diverse set of learning contexts, spanning multiple domains, tasks and modalities.754

We refer this as the Benchmark Pool.755

2. Select a broad set of key foundation models, varying in their architecture, pretraining scheme756

and source modality. We refer to this as the Model Pool.757

3. Fine tune each of the models in the model pool, on each of the contexts in the benchmark758

pool. Evaluate trained models on each context’s test sets.759

4. Use the test set results acquired to quantify the predictive power each benchmark holds with760

respect to previously unseen benchmarks, both at the individual level and the collection761

level. We call this measure, the downstream generalization predictability measure (DGPM).762

5. Use the DGPM values of the various combinations of benchmarks to build the three GATE763

tiers, selecting combinations of benchmarks that can provide the most information within a764

target time budget.765

We elaborate on each of the above steps in the following subsections.766

11 Benchmark Pool Selection Details767

Medical Image Classification: Medical data are known to present a substantial shift in both domain768

and even modality depending on their format. We have selected datasets that not only pose significant769

challenges for foundation models but also align with the broader imperative to deliver real-world770

benefits downstream.771
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Chexpert: A dataset comprising a challenging array of chest x-rays annotated with findings critical to772

diagnosing thoracic diseases. It tests models on their ability to navigate complex, multi-label medical773

data, encapsulating the kind of nuanced decision-making that AI must augment in clinical settings.774

Diabetic Retinopathy Classification: Early detection of diabetic retinopathy from retinal images775

is a public health priority; models fine-tuned on this dataset can have immediate implications for776

preventing vision loss on a global scale. This dataset requires models to decipher fine-grained,777

progressive changes indicative of the disease, reflecting the precision necessary for medical AI778

applications.779

HAM10000 (Human Against Machine with 10000 dermatoscopic images): The dataset provides780

a diverse spectrum of skin lesion images vital for differentiating between benign and malignant781

conditions. Incorporating this dataset not only challenges the pattern recognition prowess of AI but782

also contributes to the advancement of dermatology through machine learning technologies.783

Metrics: We collect Average Precision Score (APS), Area Under the Receiver Operating Char-784

acteristics Curve (AUC), and Brier Score (BS) both overall (i.e. macro) as well as for individual785

pathologies/classes.786

Medical Segmentation: This category evaluates foundational models’ ability to generalize from787

natural to medical image modalities and to perform domain-specific tasks that require precision and788

complex spatial understanding:789

ACDC (Automated Cardiac Diagnosis Challenge): This dataset is aimed at assessing models’790

generalization to the medical domain, particularly the transferability of representations for segmenting791

anatomical structures in cardiac MRI images. By focusing on the heart’s intricate anatomy, ACDC792

tests the models’ ability to adapt to clinically relevant shapes and patterns—a shift from common793

visual recognition tasks to precise medical delineation. Metrics: We collect dice loss, mIoU, mean794

accuracy and overall accuracy.795

12 Benchmark Pool Details796

Having a set of diverse benchmarks ranging in challenge factor, as well as modality, task and domain797

shift was key. We explain in more detail why why consider these factors important in Appendix in798

more detail. We refer to this as our benchmark pool, and it consists of the following:799

Image Classification: We employ ImageNet1k [9], CIFAR100 [28], Places365 [74], and Food101800

[36] to cover diverse natural image domains. Additionally, we include HappyWhale [17] for a more801

challenging domain shift, aiding in wildlife research and providing an interesting test case for model802

evaluation.803

Few Shot Image Classification: We use the MetaDataset task recipe on the Aircraft [37], Fungi804

[50], MiniImageNet [62], CUB200 [63], and Describable Features [69] datasets to evaluate task805

and domain shift robustness for an evaluation model.806

Zero Shot Text-Image Classification: Another key setting is that of zero-shot text-image classifica-807

tion, on which many current key models were trained and evaluated [43]. We utilize Flickr30K, New808

Yorker Caption Context (a challenging humor task), and Winoground–a task requiring the model809

to match two texts with their corresponding images, focusing on compositional differences.810

Visual Relational Reasoning: A context where earlier models, such as ResNet50 [18] had low811

performance without layers with associative inductive biases (e.g., relational neural networks or812

transformers [49, 61]). This ensures we are aware of any trade-offs in relational compositional813

abilities in our models. We use CLEVR [23] and CLEVRMath [34].814

Image Semantic Segmentation: Essential for various real-world applications, serving as an indicator815

of a model’s ability to retain spatial information and identify objects at a per-pixel level. ADE20K816

[75], COCO10K [33], COCO164K [33], NYU-Depth-v2 [54], PascalContext [38], and Cityscapes817

[8].818

Medical Image Classification: Medical data exhibit substantial domain and modality shifts, posing819

significant challenges for machine learning models while aligning with the imperative to deliver820

real-world benefits.Chexpert [21] (chest X-rays annotated for thoracic disease diagnosis), Dia-821

18



betic Retinopathy Classification [16] (retinal images for early detection of diabetic retinopathy),822

HAM10000 [60] (dermatoscopic images for differentiating skin lesions).823

Medical Segmentation → ACDC (Automated Cardiac Diagnosis Challenge) [5]: This dataset as-824

sesses models’ generalization to the medical domain, particularly the transferability of representations825

for segmenting anatomical structures in cardiac MRI images. By focusing on the heart’s intricate826

anatomy, ACDC tests the models’ ability to adapt to clinically relevant shapes and patterns.827

Video Classification: Video classification tasks test models on their temporal generalization abilities828

and require an understanding of not only individual frame content but also the transition and context829

between frames. HMDB51 (Human Motion Database) [30], UCF-101 (University of Central830

Florida - 101 action categories) [56], Kinetics400 [24].831

Video Regression: Where classification tasks gauge categorical distinctions, video regression tasks832

assess models’ ability to make continuous numerical predictions from temporal data, serving as an833

indicator of a model’s capability to process and quantify dynamic content. iWildcam (International834

Wildlife Camera Trap Challenge) [4]: This dataset targets estimating animal species abundance from835

videos and is a direct test of modality and task shift, and showcases a models’ potential impact on836

ecological monitoring and species conservation efforts.837

1. Modality shifting contexts: Contexts where the foundation model is asked to learn to do838

well at a task that requires understanding of a previously unseen modality. More specifically,839

assuming a foundation model has been trained on natural images, this would be transferring840

to medical imaging, video, audio and test contexts. This would shed light on the performance841

of a model’s middle layers.842

2. Task shifting contexts: Contexts where a model is tasked with performing a previously843

unseen task, for example, transferring from classification to segmentation or relational844

reasoning.845

3. Domain shifting contexts: Contexts where a model is required to perform a task on a846

domain that is different from the one it was trained on. For example moving from natural847

images on ImageNet at 224x224 resolution to black and white Omniglot characters at 28x28848

resolution, or, moving from ImageNet to images of fungi. More extreme domain shifts849

would be going from natural images to medical images for example.850

13 Model Pool Details851

14 Task Adapter Details852

15 Experimental Details853

Experimental Environment Details: GPUs: 4 x A6000 Ada @ 48GB, CPUs: 128 Core AMD854

EPYC 7713 64-Core Processor, RAM: 1 TB, HD: 15TB NVME. All experiments were done with855

BF16 precision.856

16 Additional Results857

16.1 Full details on discovered combinations858
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Figure 6: Degradation of predictive power when a given benchmark is removed and the meta-model
trained from scratch, for different best combinations in varying k.
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Metric ↓ | Model → cvnxtv2 siglip clip flex deit laion vit dino smvit rnx50 effv2 r50a1 effrmr seffv2 sflex svit whspr sr50a1 bert bart mpnet

Img Class
CIFAR-100 Acc@1 84.2 74.6 76.9 75.1 66.7 75.1 66.6 55.7 50.3 69.3 67.3 34.3 15.6 37.6 10.3 7.8 11.0 15.9 14.5 9.0 1.0
CIFAR-100 Acc@5 97.4 93.8 95.1 94.4 90.9 93.9 89.7 83.6 80.1 91.9 90.7 65.9 42.3 67.6 30.6 25.5 31.6 40.2 38.1 29.2 5.0
CIFAR-100 Loss 0.6 0.9 0.8 0.9 1.2 0.9 1.2 1.6 1.9 1.2 1.3 2.5 3.5 2.4 3.9 4.1 3.9 3.6 3.7 4.0 4.6
Food-101 Acc@1 92.9 91.6 93.3 89.1 87.3 91.4 86.5 84.8 75.7 86.1 86.4 69.4 61.6 36.5 24.5 25.8 17.0 16.3 18.7 11.6 8.5
Food-101 Acc@5 99.0 98.7 99.1 98.1 97.8 98.7 97.4 97.0 93.5 97.2 97.1 91.0 86.6 66.1 51.0 52.8 41.1 38.9 43.0 32.2 26.1
Food-101 Loss 0.3 0.3 0.2 0.4 0.4 0.3 0.5 0.5 1.0 0.6 0.6 1.1 1.5 2.6 3.2 3.1 3.6 3.6 3.5 3.9 4.1
HWhale Individual Acc@1 75.6 31.7 35.2 48.4 23.7 21.0 27.5 9.1 3.6 78.7 77.1 5.2 4.4 33.2 2.8 2.5 2.2 2.1 2.3 1.7 1.5
HWhale Individual Acc@5 84.6 49.5 53.9 64.5 40.9 37.9 46.0 22.0 11.0 86.7 83.6 14.8 11.9 52.5 9.2 8.1 6.9 6.8 7.6 5.7 5.4
HWhale Individual Loss 1.6 4.6 4.3 3.6 4.9 5.1 4.7 5.9 6.7 1.3 1.5 6.4 6.6 3.9 7.0 7.1 7.3 7.3 7.2 7.5 7.4
HWhale Species Acc@1 99.8 99.8 99.7 99.8 99.5 99.7 99.7 99.2 95.4 99.7 99.7 92.1 92.8 96.5 76.5 74.5 64.3 65.8 71.2 59.3 62.9
HWhale Species Acc@5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.9 99.6 100.0 100.0 98.9 99.1 99.8 96.1 95.8 92.0 92.6 94.2 89.8 91.1
HWhale Species Loss 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.3 0.2 0.1 0.8 0.8 1.2 1.1 0.9 1.4 1.2
ImageNet-1K Acc@1 85.3 81.9 76.0 82.3 82.1 74.1 68.3 77.9 75.5 77.6 73.5 72.5 44.6 16.9 3.2 2.4 2.2 1.3 1.5 0.8 0.2
ImageNet-1K Acc@5 96.8 95.8 93.7 95.5 94.7 93.1 89.1 93.0 90.8 93.3 91.4 90.5 72.5 37.3 10.1 8.2 7.7 4.7 5.2 3.2 1.2
ImageNet-1K Loss 0.6 0.8 1.0 0.8 0.8 1.1 1.3 1.0 2.3 1.0 1.2 1.1 2.8 4.3 6.0 6.1 6.1 6.5 6.4 6.6 6.8
Places365 Acc@1 54.7 53.5 54.1 52.1 49.0 53.7 47.5 47.3 27.1 51.8 51.5 40.9 25.2 26.6 9.0 8.6 7.5 5.0 5.2 3.0 2.2
Places365 Acc@5 85.3 84.1 84.7 83.3 80.8 84.3 79.9 79.5 59.9 82.9 82.6 73.5 55.2 55.5 26.3 25.0 22.4 16.4 16.4 11.0 9.0
Places365 Loss 1.7 1.7 1.7 1.8 1.9 1.7 2.0 2.0 3.1 1.8 1.8 2.3 3.3 3.2 4.5 4.6 4.6 5.0 5.0 5.3 5.3
Task Mean 88.0 79.6 80.1 81.9 76.1 76.9 74.8 70.8 63.5 84.6 83.4 62.4 51.0 52.2 29.1 28.1 25.5 25.5 26.5 21.4 17.8
Few-Shot Img Class
Aircraft Acc@1 96.7 96.6 97.4 95.9 95.3 96.7 96.3 94.4 92.9 91.6 90.6 86.2 78.2 59.2 54.9 50.4 55.1 58.2 61.2 60.8 57.2
Aircraft Loss 0.2 0.2 0.2 0.2 0.3 0.2 0.2 0.3 0.3 0.4 1.2 0.4 311.5 44.1 2.1 2.1 1.6 2.3 2.5 1.2 1.6
CUBirds Acc@1 98.0 97.9 97.2 96.4 96.2 96.6 95.9 94.4 93.4 92.8 92.1 89.4 86.3 52.5 50.0 45.2 44.4 31.9 48.4 50.3 48.5
CUBirds Loss 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.3 0.3 0.4 0.5 0.4 33.7 2.5 3.6 3.5 2.3 8.8 3.2 2.0 1.6
DTextures Acc@1 85.0 85.2 88.6 78.9 81.9 86.1 80.8 79.4 81.9 77.7 60.3 77.2 68.5 46.6 50.2 50.5 50.0 33.1 44.6 49.8 38.3
DTextures Loss 0.9 0.7 0.5 1.1 0.9 0.7 1.1 1.2 0.9 0.7 14.3 0.6 3.6 1.8 2.5 2.7 2.4 5.0 2.0 1.9 1.4
Fungi Acc@1 85.8 85.6 85.7 83.7 80.6 85.2 81.3 77.4 77.7 74.1 73.7 67.1 59.2 27.6 38.0 37.0 33.9 28.2 32.9 33.8 7.6
Fungi Loss 0.6 0.6 0.6 0.7 0.8 0.6 0.8 0.9 0.8 1.1 5.8 1.1 1031.2 2.6 2.2 2.2 2.2 2.4 2.4 2.3 2.9
Mini-Imagenet Acc@1 97.0 96.2 93.1 99.1 98.8 90.8 89.9 98.7 92.9 94.1 63.2 93.2 90.9 36.7 45.9 47.2 44.8 34.2 39.7 37.3 36.8
Mini-Imagenet Loss 0.1 0.1 0.3 0.0 0.0 0.3 0.4 0.1 0.2 0.3 23.7 0.3 0.6 2.4 1.6 1.6 1.6 2.1 1.8 1.9 1.9
Omniglot Acc@1 98.6 98.9 99.0 98.9 98.7 98.9 98.8 98.6 98.6 98.5 98.7 95.5 95.8 98.2 93.4 93.6 82.9 80.5 90.2 84.1 90.7
Omniglot Loss 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.1 0.3 0.2 0.6 0.7 0.4 0.6 0.3
VGG Flowers Acc@1 99.7 98.9 98.6 96.7 96.2 97.0 95.9 95.5 93.4 87.9 91.3 89.3 90.6 59.6 69.4 69.4 63.0 53.4 59.1 59.4 60.8
VGG Flowers Loss 0.1 0.1 0.1 0.2 0.2 0.1 0.2 0.2 0.2 0.4 0.5 0.4 0.3 1.6 1.8 1.6 1.4 4.2 2.5 1.6 1.5
Task Mean 94.4 94.2 94.2 92.8 92.5 93.1 91.3 91.2 90.1 88.1 81.4 85.4 81.4 54.3 57.4 56.2 53.4 45.6 53.7 53.6 48.6
Img Seg
ADE20K CE Loss 1.1 1.0 1.1 1.1 1.3 1.0 1.3 1.4 1.7 2.0 2.2 2.8 2.8 3.3 3.8 3.8 3.7 3.7 3.7 3.7 3.8
ADE20K Focal Loss 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.4 0.5 0.6 0.6 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9
ADE20K Mean Acc@ 59.8 60.8 57.5 56.0 49.1 57.3 44.2 45.1 36.3 26.8 20.4 17.9 15.2 3.6 1.6 1.6 1.8 1.8 1.8 1.8 1.8
ADE20K Overall Acc@ 71.8 74.4 72.6 71.4 66.9 72.4 64.2 63.5 57.5 49.6 43.9 34.6 39.7 21.3 11.7 11.9 13.1 14.1 14.0 14.4 14.2
ADE20K mIoU 46.8 47.1 44.0 43.7 37.8 43.4 33.2 33.3 25.9 18.2 14.2 11.7 9.8 1.5 0.5 0.4 0.6 0.4 0.4 0.5 0.4
Cityscapes CE Loss 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.4 0.2 0.4 4.1 0.3 0.7 0.7 0.9 0.9 3.9 4.0 3.8
Cityscapes Focal Loss 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 1.0 0.0 0.1 0.1 0.1 0.1 0.9 0.9 0.9
Cityscapes Overall Acc@ 92.5 94.2 93.9 93.6 93.1 93.7 93.4 93.1 92.8 88.5 93.2 87.4 41.5 90.4 78.1 78.6 72.2 75.4 47.4 37.7 47.3
Cityscapes mIoU 62.3 69.8 67.6 67.5 63.9 67.7 63.9 61.4 59.5 40.8 64.2 40.2 2.5 46.7 22.8 23.5 17.1 18.6 2.7 2.0 2.7
COCO-10K CE Loss 3.0 1.3 1.5 1.4 1.5 1.4 1.5 1.6 1.6 2.1 2.6 3.3 3.5 3.6 4.5 3.8 4.0 3.6 4.1 3.7 4.1
COCO-10K Focal Loss 0.7 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.6 0.8 0.8 0.8 1.1 0.9 0.9 0.8 1.0 0.9 1.0
COCO-10K Mean Acc@ 38.8 50.6 47.2 46.0 43.4 44.9 41.2 43.5 40.7 27.0 15.8 8.2 20.9 2.2 1.7 1.9 1.3 2.9 0.6 2.5 0.6
COCO-10K Overall Acc@ 57.9 69.8 66.4 66.0 64.4 65.9 62.8 63.1 61.2 51.3 40.1 23.3 45.2 20.9 15.2 20.5 14.7 24.6 9.4 22.5 9.3
COCO-10K mIoU 26.9 39.5 35.6 35.1 32.8 33.6 29.8 31.0 28.6 18.4 10.2 5.7 14.0 1.1 0.9 0.8 0.4 1.6 0.1 1.3 0.1
COCO-164K CE Loss 1.9 1.4 1.5 1.5 1.6 1.5 1.6 1.7 1.8 2.2 2.7 3.5 7.0 3.7 4.3 3.9 4.0 4.0 4.2 3.7 4.2
COCO-164K Focal Loss 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.5 0.6 0.8 1.7 0.9 1.0 0.9 0.9 0.9 1.0 0.9 1.0
COCO-164K Mean Acc@ 45.9 50.1 46.9 45.3 42.6 44.5 38.6 43.0 38.7 25.4 14.7 7.0 21.3 2.0 1.5 1.9 1.5 1.8 0.6 2.5 0.7
COCO-164K Overall Acc@ 60.9 65.8 63.5 63.0 60.3 63.2 59.5 59.1 55.6 47.9 39.3 20.3 39.3 19.2 13.6 19.4 15.6 18.3 9.5 21.7 9.6
COCO-164K mIoU 32.7 36.7 33.8 33.0 30.5 32.4 27.0 28.9 25.7 16.8 9.7 4.7 13.7 1.0 0.7 0.7 0.5 0.7 0.1 1.1 0.1
NYU CE Loss 2.5 1.5 2.0 2.3 1.5 2.5 2.3 1.5 1.6 1.6 1.8 1.6 1.4 1.6 1.6 1.6 1.7 1.5 1.5 1.5 1.5
NYU Dice Score 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.7 0.8 0.8 0.8 0.8
NYU Focal Loss 0.5 0.2 0.4 0.5 0.3 0.5 0.5 0.3 0.3 0.3 0.3 0.3 0.2 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.2
NYU Mean Acc@ 19.7 21.5 13.0 19.6 22.7 19.4 19.7 23.0 22.9 18.5 18.3 12.7 18.9 14.1 10.0 10.1 10.2 13.0 11.9 11.7 12.0
NYU Overall Acc@ 19.0 37.2 30.8 30.0 42.8 25.2 27.3 34.7 31.2 33.4 30.7 33.4 39.1 31.9 34.6 34.6 34.3 36.3 37.2 37.1 37.4
NYU mIoU 7.5 7.7 7.8 6.9 12.2 5.7 6.1 12.1 11.0 5.9 8.3 6.4 10.5 6.8 3.5 3.7 2.9 7.2 5.4 5.0 5.4
Pascal CE Loss 1.0 0.5 0.5 0.6 0.9 0.5 0.8 0.8 0.9 1.4 1.5 2.2 3.1 2.3 2.4 2.4 2.4 2.4 2.6 2.5 2.6
Pascal Dice Loss 0.8 0.6 0.4 0.5 0.5 0.4 0.5 0.5 0.4 0.5 0.4 0.5 0.5 0.2 0.4 0.4 0.4 0.4 0.5 0.5 0.4
Pascal Focal Loss 0.2 0.1 0.1 0.1 0.2 0.1 0.2 0.1 0.2 0.2 0.3 0.4 0.7 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Pascal Loss 1.4 0.5 0.1 0.3 0.3 0.4 0.3 0.6 0.6 0.5 0.4 1.4 4.2 1.6 1.6 1.6 1.6 1.6 3.4 1.7 3.5
Pascal Mean Acc@ 42.2 43.5 44.2 39.6 38.8 37.4 34.7 40.3 29.1 20.7 16.2 10.6 18.0 3.5 3.1 2.8 3.3 4.5 2.6 3.3 2.5
Pascal Overall Acc@ 75.1 87.6 87.2 86.6 77.5 86.6 78.9 79.5 76.7 68.2 60.6 49.7 66.6 37.3 34.2 35.4 37.4 39.6 34.4 35.3 32.3
Pascal mIoU 32.8 34.8 35.7 30.6 31.4 28.3 27.5 29.8 24.0 16.6 11.7 6.8 14.0 1.7 1.3 1.1 1.4 2.3 1.0 1.4 0.9
Task Mean 44.1 49.6 47.1 46.4 45.1 45.7 41.8 43.6 39.9 31.9 28.5 21.2 24.0 17.0 13.1 13.9 12.7 14.7 10.0 11.2 9.9
Img Relational
CLEVR Acc@1 52.5 52.7 52.7 52.1 52.6 52.6 52.8 52.8 51.6 50.1 40.6 49.3 45.2 39.3 46.1 45.9 46.4 44.9 42.6 42.5 41.2
CLEVR Colour Acc@1 35.4 36.1 36.4 35.0 35.5 35.6 35.3 36.1 34.2 26.8 15.7 24.7 14.7 12.5 25.7 29.4 28.8 22.8 13.2 13.0 13.2
CLEVR Colour Loss 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.6 1.9 2.1 2.0 2.1 2.1 2.0 1.9 1.9 2.0 2.1 2.1 2.1
CLEVR Count Acc@1 45.8 45.8 45.8 45.9 45.8 45.7 45.7 45.6 45.6 45.3 39.0 45.1 44.8 37.9 45.1 44.7 44.8 44.9 44.7 44.7 43.0
CLEVR Count Loss 1.1 1.2 1.1 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.3 1.2 1.2 1.4 1.2 1.2 1.2 1.2 1.2 1.2 1.2
CLEVR Material Acc@1 60.5 60.6 60.5 60.0 60.5 60.6 61.4 61.3 60.2 58.6 52.1 57.5 53.7 49.8 53.7 51.7 54.0 53.0 49.8 50.5 49.9
CLEVR Material Loss 0.7 0.7 0.7 0.7 0.7 0.7 0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7
CLEVR Shape Acc@1 52.1 52.4 52.5 51.1 52.2 52.4 52.9 51.2 49.9 50.2 34.3 50.2 44.8 33.3 35.8 34.9 36.1 34.6 34.6 33.7 33.4
CLEVR Shape Loss 0.9 0.9 0.9 1.0 0.9 0.9 0.9 1.0 1.0 1.0 1.1 1.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1
CLEVR Size Acc@1 61.0 61.1 61.3 60.7 61.1 60.8 62.0 62.3 60.9 59.6 53.5 58.3 55.7 50.6 56.2 55.2 55.2 54.6 54.2 54.1 50.1
CLEVR Size Loss 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7
CLEVR Yes/No Acc@1 60.7 60.5 60.8 60.6 60.5 60.7 60.4 60.4 60.2 59.8 53.3 59.9 59.6 51.4 60.1 59.2 59.5 59.8 59.5 59.3 58.6
CLEVR Yes/No Loss 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.7 0.6 0.6 0.7 0.6 0.6 0.6 0.6 0.6 0.6 0.6
CLEVR-Math Acc@1 79.3 65.9 68.8 59.9 73.7 62.9 60.5 59.3 58.3 55.6 44.0 56.0 56.6 30.2 46.9 46.5 46.2 45.7 44.8 42.1 36.4
CLEVR-Math Acc@5 99.8 99.5 99.6 98.9 99.7 99.3 99.2 98.9 98.9 98.8 97.7 98.8 98.8 86.1 98.1 98.1 98.1 97.7 97.5 96.9 92.8
CLEVR-Math Loss 0.5 0.8 0.7 0.9 0.6 0.8 0.9 0.9 1.0 1.0 1.3 1.0 1.0 1.7 1.2 1.2 1.2 1.2 1.3 1.3 1.5
Task Mean 60.8 59.4 59.8 58.2 60.2 59.0 58.9 58.7 57.8 56.1 47.8 55.5 52.7 43.5 52.0 51.7 52.1 50.9 49.0 48.5 46.5
Medical Class
Chexpert 0 APS 75.7 76.5 76.6 76.8 76.8 74.7 76.0 75.8 76.3 75.1 75.2 69.1 70.3 65.3 20.6 22.3 21.9 29.4 31.6 25.2 23.2
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Chexpert 0 AUC 91.3 92.1 92.5 92.3 92.6 91.4 92.2 92.3 92.6 91.0 91.6 89.9 90.5 88.5 61.5 64.0 65.2 71.3 72.3 66.4 65.9
Chexpert 0 BS 7.8 7.4 7.3 7.4 7.0 7.5 7.3 7.3 6.9 7.9 7.3 7.9 7.7 8.4 12.6 12.5 12.5 11.9 12.1 12.4 12.4
Chexpert 1 APS 55.3 55.2 55.5 55.8 54.2 54.4 54.2 52.1 55.9 53.1 53.3 44.2 43.0 33.5 28.9 30.1 31.0 28.9 30.1 29.9 28.5
Chexpert 1 AUC 75.7 76.0 75.3 77.0 75.4 75.3 75.3 73.8 76.1 74.9 75.2 69.4 69.8 64.1 56.3 56.9 57.7 57.1 57.6 57.5 57.0
Chexpert 1 BS 18.8 18.5 19.4 20.2 18.7 20.6 20.6 18.6 16.3 17.6 20.3 17.2 17.2 18.3 18.7 18.6 18.6 18.6 18.5 18.6 18.6
Chexpert 2 APS 43.8 43.8 43.5 45.1 45.5 44.8 43.9 42.3 43.6 43.5 44.4 41.8 42.8 35.3 30.1 31.1 30.4 32.3 32.6 31.2 30.8
Chexpert 2 AUC 71.8 71.2 71.8 72.4 72.1 72.0 71.7 71.3 71.7 70.5 71.1 69.9 70.9 63.1 58.6 59.0 58.7 60.7 60.5 60.1 58.9
Chexpert 2 BS 18.5 17.8 21.0 21.1 18.6 21.2 20.5 19.1 17.0 16.0 20.4 16.2 16.2 17.4 18.4 18.2 18.1 17.9 17.9 17.8 17.9
Chexpert 3 APS 80.7 80.9 80.8 82.1 81.7 80.5 79.7 78.6 79.1 79.2 80.6 73.5 75.3 58.6 51.7 50.3 52.4 53.2 54.0 48.8 49.4
Chexpert 3 AUC 86.8 86.8 86.5 87.9 87.2 86.6 85.9 84.6 85.8 84.9 87.0 82.3 83.5 73.0 65.6 65.5 65.2 65.6 67.2 64.2 64.2
Chexpert 3 BS 17.4 16.4 16.4 15.6 15.3 16.2 16.9 17.2 15.9 17.6 16.3 18.1 17.1 23.5 26.1 26.0 26.0 25.2 24.8 26.1 26.1
Chexpert 4 APS 53.4 49.5 50.1 53.4 54.5 50.9 52.6 50.8 52.3 49.9 50.7 41.7 44.9 47.3 38.4 36.7 36.0 39.2 37.9 35.9 33.2
Chexpert 4 AUC 87.5 86.7 87.0 88.1 88.0 87.0 87.3 86.8 87.7 86.0 86.4 84.1 85.1 84.8 81.7 80.3 80.8 81.5 81.3 79.4 79.3
Chexpert 4 BS 10.4 10.0 10.9 10.2 9.1 10.9 10.2 9.9 8.8 9.4 11.6 10.1 9.6 9.4 9.7 10.0 9.9 9.9 10.7 10.1 10.4
Chexpert APS Macro 61.6 61.0 61.2 62.6 62.3 60.9 61.2 59.9 61.5 59.8 60.2 54.1 55.2 48.0 33.9 34.1 34.3 35.7 36.9 33.7 33.0
Chexpert AUC Macro 82.5 82.5 82.3 83.2 82.9 82.5 82.4 81.8 82.8 81.1 81.9 79.1 79.9 74.7 64.7 65.1 65.5 67.0 67.6 65.3 64.9
Chexpert BS Macro 15.7 15.6 15.5 14.9 13.8 15.4 15.1 14.4 13.0 13.7 15.2 13.9 13.6 15.4 17.1 17.1 17.0 16.9 16.9 17.2 17.2
Chexpert Loss 0.3 0.4 0.5 0.3 0.3 0.3 0.4 0.4 0.3 0.3 0.4 0.3 0.4 0.4 0.5 0.5 0.5 0.5 0.4 0.5 0.5
Diabetic 0 APS 93.0 91.8 91.5 91.3 90.9 91.3 90.6 90.4 88.3 90.8 91.5 85.4 87.2 75.5 76.3 75.6 77.4 79.8 79.4 76.4 77.2
Diabetic 0 AUC 86.3 84.6 84.0 83.9 83.0 83.6 81.7 80.9 77.2 83.9 84.3 72.2 75.1 52.4 54.3 53.6 56.5 60.4 58.6 54.7 55.3
Diabetic 0 BS 10.7 11.9 12.3 12.4 12.6 12.6 13.0 13.0 14.6 12.1 11.7 16.5 15.7 19.0 19.5 19.4 19.3 19.1 18.6 19.0 19.0
Diabetic 1 APS 14.0 13.6 14.0 13.0 13.0 12.9 14.5 10.8 9.0 12.6 13.5 8.4 9.0 7.2 8.4 8.8 8.9 8.4 7.7 7.4 7.3
Diabetic 1 AUC 69.6 67.2 67.4 66.0 65.3 66.1 66.5 65.3 59.7 66.5 66.4 54.4 59.5 51.4 54.9 56.9 54.5 53.9 54.9 52.1 53.3
Diabetic 1 BS 6.1 6.4 6.5 6.1 6.0 6.8 6.4 5.8 5.8 6.0 6.4 6.9 5.3 6.5 6.7 6.5 6.9 6.4 6.3 6.4 6.3
Diabetic 2 APS 65.5 61.6 60.7 61.4 58.4 57.1 54.2 51.1 44.3 59.7 63.1 28.9 32.2 14.6 17.0 16.7 17.9 20.2 17.8 17.0 17.3
Diabetic 2 AUC 88.5 86.9 86.3 86.0 84.7 85.3 84.3 82.5 79.6 85.5 87.4 71.6 73.8 50.9 53.4 52.2 55.8 61.2 57.7 54.1 55.5
Diabetic 2 BS 8.0 8.5 9.0 9.3 9.7 9.0 9.5 9.9 10.7 9.2 8.3 11.7 11.7 12.1 12.7 12.8 12.6 12.7 11.9 12.4 12.5
Diabetic 3 APS 41.6 49.7 47.6 48.4 45.3 53.1 46.5 38.8 37.1 47.2 50.7 22.4 32.0 2.8 3.1 3.1 4.1 4.6 4.0 3.4 2.6
Diabetic 3 AUC 94.8 96.5 95.7 95.6 93.9 95.1 95.0 94.1 93.5 95.1 96.2 87.2 92.3 56.0 56.1 57.2 59.1 64.2 64.9 58.4 52.3
Diabetic 3 BS 1.9 1.6 1.6 1.6 1.7 1.9 1.7 1.8 1.8 1.7 1.5 2.0 2.1 2.4 2.4 2.5 2.3 2.2 2.3 2.1 2.1
Diabetic 4 APS 73.9 74.3 73.0 75.3 67.5 68.7 70.2 72.3 47.5 67.5 74.6 32.4 23.7 2.9 3.1 3.0 4.4 3.9 3.7 2.5 2.6
Diabetic 4 AUC 98.7 98.2 97.7 98.7 98.0 97.4 98.4 98.3 96.9 97.2 97.9 94.7 94.3 56.4 60.1 58.6 63.0 68.1 64.3 56.9 57.8
Diabetic 4 BS 1.0 1.1 1.0 0.9 1.1 1.1 0.9 0.9 1.3 1.1 0.8 1.4 1.8 1.9 1.9 1.8 1.7 1.7 1.8 1.9 1.8
Diabetic APS Macro 56.9 57.2 56.4 56.3 54.2 56.4 54.4 51.9 45.2 55.6 58.7 35.5 36.6 20.6 21.6 21.5 22.5 23.3 22.4 21.2 21.3
Diabetic AUC Macro 87.5 86.7 86.0 85.7 85.0 85.3 84.7 83.8 81.2 85.6 86.1 76.0 79.0 53.4 55.7 55.7 57.8 61.3 59.4 55.1 54.0
Diabetic BS Macro 5.5 6.0 6.1 6.1 6.2 6.4 6.3 6.4 7.0 6.1 5.8 7.7 7.4 8.4 8.7 8.6 8.6 8.5 8.2 8.4 8.4
Diabetic Loss 0.2 0.1 0.2 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.2 0.3 0.3 0.3 0.3 0.3 0.2 0.3
HAM10K 0 APS 94.3 90.0 90.3 88.7 89.2 90.9 89.8 89.0 83.3 88.2 84.1 47.4 58.0 30.4 32.8 25.8 25.0 41.2 46.2 34.4 33.8
HAM10K 0 AUC 99.1 98.2 98.3 97.6 97.8 98.2 97.7 98.0 96.7 97.6 97.0 89.0 91.7 80.6 81.2 78.5 79.4 85.2 86.9 82.1 79.7
HAM10K 0 BS 2.1 2.9 3.5 2.8 3.1 3.1 3.1 3.4 3.8 3.4 4.0 7.0 6.3 8.2 8.1 8.5 8.6 7.6 7.3 8.1 8.3
HAM10K 1 APS 99.2 99.2 99.1 99.2 99.2 99.1 99.1 99.2 98.7 98.9 98.1 96.2 96.5 94.2 93.9 93.7 93.1 95.5 96.0 94.0 93.7
HAM10K 1 AUC 98.9 98.7 98.4 98.5 98.4 98.4 98.4 98.4 97.3 98.1 97.1 92.7 93.5 89.7 88.7 88.1 87.8 91.0 91.9 88.3 87.3
HAM10K 1 BS 3.1 3.7 4.5 4.2 4.5 4.4 4.6 4.4 6.2 5.0 6.3 10.0 9.4 11.7 12.5 12.8 12.9 11.3 10.7 13.0 13.9
HAM10K 2 APS 95.5 98.6 89.0 94.4 88.7 92.1 92.4 95.3 69.7 81.6 89.0 11.3 5.0 5.7 5.2 8.1 2.2 19.5 12.2 7.4 3.6
HAM10K 2 AUC 99.9 100.0 99.7 99.9 99.7 99.8 99.8 99.9 99.3 98.4 99.8 81.1 75.6 79.4 79.6 73.0 68.2 90.8 87.2 81.2 78.3
HAM10K 2 BS 0.3 0.3 0.4 0.3 0.5 0.3 0.3 0.3 0.8 0.5 0.4 1.3 1.3 1.3 1.3 1.3 1.3 1.2 1.3 1.3 1.3
HAM10K 3 APS 88.0 85.5 83.9 85.2 86.2 83.0 84.0 82.5 74.2 80.8 74.3 41.9 46.7 34.7 35.1 33.2 31.5 42.5 48.4 42.4 35.2
HAM10K 3 AUC 96.7 95.5 95.6 95.9 96.1 95.3 95.9 96.1 94.4 95.4 92.5 83.8 84.9 81.7 80.0 80.3 80.7 85.9 88.1 84.2 82.6
HAM10K 3 BS 3.5 3.7 4.2 3.9 3.5 4.1 4.2 4.4 5.0 4.7 5.1 7.9 7.6 8.4 8.4 8.4 8.5 7.7 7.2 8.0 8.2
HAM10K 4 APS 99.5 100.0 99.7 98.2 100.0 98.5 100.0 98.5 98.7 96.4 96.9 26.8 21.9 33.6 32.3 24.6 26.4 52.8 73.8 34.8 11.5
HAM10K 4 AUC 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.9 100.0 92.3 94.5 84.2 89.0 89.5 87.1 97.7 97.6 92.0 78.7
HAM10K 4 BS 0.0 0.0 0.1 0.1 0.0 0.1 0.0 0.0 0.2 0.1 0.2 1.1 1.2 1.2 1.0 1.1 1.2 0.9 0.5 1.1 1.2
HAM10K 5 APS 95.6 94.8 94.5 91.5 90.3 93.7 91.6 90.8 83.2 88.0 91.4 54.1 67.0 41.8 36.4 36.8 22.3 48.1 41.3 36.6 26.8
HAM10K 5 AUC 99.7 99.7 99.6 99.5 99.2 99.5 99.4 99.0 98.8 98.0 99.4 94.7 96.6 92.9 92.0 91.5 87.5 94.0 92.5 90.3 88.2
HAM10K 5 BS 1.1 1.1 1.1 1.1 1.3 1.0 1.2 1.3 1.7 1.5 1.4 3.4 2.8 3.8 3.9 3.9 4.4 3.6 3.9 4.2 4.3
HAM10K 6 APS 89.2 85.2 83.9 86.3 88.0 87.6 84.7 83.3 75.8 81.3 83.2 28.4 33.4 31.4 30.5 29.5 24.5 39.6 36.6 25.8 23.5
HAM10K 6 AUC 99.3 98.3 99.1 98.6 98.9 99.1 99.3 98.6 98.0 98.0 98.6 91.6 93.6 91.2 91.9 91.4 89.1 92.3 93.4 90.5 88.5
HAM10K 6 BS 1.0 1.5 1.5 1.1 1.1 1.3 1.4 1.3 1.7 1.4 1.6 3.0 2.9 3.0 3.0 3.0 3.2 2.8 2.9 3.2 3.2
HAM10K APS Macro 94.5 93.3 91.4 92.2 91.3 92.1 91.6 90.8 83.4 87.9 87.1 43.7 46.9 38.8 38.0 35.9 32.2 48.5 50.6 37.6 32.6
HAM10K AUC Macro 99.1 98.6 98.7 98.5 98.6 98.6 98.7 98.5 97.8 97.9 97.5 89.3 90.1 85.6 86.1 84.6 82.8 91.0 91.1 85.9 83.3
HAM10K BS Macro 1.6 1.9 2.2 1.9 2.0 2.1 2.1 2.1 2.8 2.4 2.8 4.8 4.5 5.4 5.5 5.6 5.7 5.0 4.8 5.6 5.8
HAM10K Loss 0.3 0.2 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.6 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Task Mean 57.0 56.7 56.5 56.7 56.2 56.4 56.2 55.5 53.6 55.3 56.0 45.0 46.0 39.4 37.4 37.0 36.7 40.6 40.8 37.7 36.2
Medical Seg
ACDC Dice Score 0.6 0.5 0.5 0.5 0.4 0.5 0.5 0.5 0.4 0.4 0.6 0.4 0.2 0.5 0.2 0.2 0.3 0.3 0.2 0.3 0.3
ACDC Mean Acc@ 86.3 85.8 83.4 78.5 75.5 78.0 76.9 79.4 74.0 93.4 94.1 71.7 67.6 76.0 46.7 53.7 54.5 60.3 56.1 50.8 50.9
ACDC Overall Acc@ 86.5 86.2 83.2 78.7 75.1 78.3 77.0 79.0 73.5 93.5 94.2 71.5 67.5 76.0 47.2 53.4 54.2 60.3 55.5 51.4 51.4
ACDC mIoU 57.9 57.0 57.4 53.1 50.2 53.0 47.7 54.3 50.1 66.9 67.2 47.5 47.9 50.8 27.6 30.4 35.6 35.1 32.1 24.3 26.9
Task Mean 57.8 57.3 56.1 52.7 50.3 52.4 50.5 53.3 49.5 63.6 64.0 47.8 45.8 50.8 30.4 34.4 36.2 39.0 36.0 31.7 32.4
Img to Txt ZS
Flickr30K Img2Txt Acc@1 6.3 6.3 7.0 5.9 5.6 6.8 5.9 5.2 4.5 4.1 3.7 4.7 4.2 1.6 1.8 2.0 1.9 2.0 1.9 1.8 1.6
Flickr30K Img2Txt Acc@5 20.9 21.3 21.0 20.0 19.3 22.1 20.4 18.8 18.0 16.0 16.1 16.9 15.5 8.1 8.6 8.4 8.9 9.1 9.1 8.5 8.4
Flickr30K Img2Txt Loss 3.8 3.8 3.8 3.8 3.9 3.7 3.8 3.9 3.9 3.9 3.9 4.0 4.0 4.2 4.1 4.1 4.1 4.1 4.1 4.2 4.1
Flickr30K Txt2Img Acc@1 5.7 5.9 6.0 5.3 5.1 6.5 6.0 5.1 5.0 3.8 4.0 4.2 3.9 1.7 1.8 2.0 2.2 2.3 1.9 1.7 1.6
Flickr30K Txt2Img Acc@5 20.9 22.1 21.6 20.8 20.0 23.0 21.0 19.8 18.9 16.5 17.3 17.1 15.5 7.8 8.9 8.4 9.2 9.4 9.5 8.8 8.3
Flickr30K Txt2Img Loss 3.8 3.8 3.8 3.9 3.9 3.8 3.8 3.9 3.9 3.9 4.0 4.0 4.0 4.2 4.2 4.2 4.1 4.1 4.1 4.2 4.2
NYCC Img2Txt Acc@5 21.4 21.4 22.0 20.0 21.2 22.1 21.4 20.0 17.8 17.1 17.0 15.9 15.8 7.9 8.7 8.9 8.7 9.5 8.9 8.5 7.9
NYCC Img2Txt Loss 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.9 3.9 3.9 4.0 4.0 4.2 4.1 4.1 4.1 4.1 4.1 4.1 4.2
NYCC Img2Txt 6.9 6.6 6.9 5.8 6.5 6.9 6.4 6.0 4.7 4.9 4.1 4.6 4.2 1.6 2.1 1.8 1.9 2.1 2.0 1.6 1.6
NYCC Loss 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.9 3.9 3.9 4.0 4.0 4.9 4.1 4.1 4.1 4.1 4.1 4.2 4.2
NYCC Txt2Img Acc@5 21.9 21.6 22.5 20.2 21.9 21.9 22.7 20.7 18.4 17.3 17.4 16.0 15.3 7.9 9.4 8.3 9.4 9.9 8.9 8.9 7.9
NYCC Txt2Img Loss 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.9 3.9 3.9 3.9 4.0 4.0 5.5 4.1 4.1 4.1 4.1 4.1 4.2 4.2
NYCC Txt2Img 6.1 5.9 6.4 5.5 6.0 6.2 6.4 5.8 4.8 4.3 4.1 3.9 3.7 1.6 2.0 1.7 2.0 2.4 1.9 1.8 1.6
Winoground Img2Txt Loss 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7
Winoground Img2Txt 51.0 53.4 59.5 49.7 50.0 50.3 49.5 43.5 53.8 61.9 50.0 48.9 47.3 43.9 50.0 41.3 50.0 53.2 49.6 50.1 50.4
Winoground Txt2Img Loss 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7
Winoground Txt2Img 50.0 55.2 56.2 53.1 50.0 55.5 48.3 54.2 48.6 54.8 50.0 49.6 52.4 52.8 50.0 54.2 51.8 52.2 51.8 48.8 52.1
Task Mean 21.1 22.0 22.9 20.6 20.6 22.1 20.8 19.9 19.4 20.0 18.4 18.2 17.8 13.5 14.3 13.7 14.6 15.2 14.6 14.1 14.1
Video Class
HMDB-51 Acc@1 52.5 40.7 40.6 32.2 39.3 24.9 27.4 32.8 33.1 5.6 11.5 1.8 2.1 3.8 8.3 7.9 6.1 5.4 6.4 7.5 4.0
HMDB-51 Acc@5 81.4 70.0 70.5 60.9 68.6 54.2 58.5 59.8 63.8 23.0 28.8 10.4 10.2 13.6 26.4 25.3 17.8 23.6 24.4 24.9 15.6
HMDB-51 Loss 2.1 2.8 3.1 3.4 2.7 3.8 3.3 3.1 3.0 4.7 4.4 4.7 4.1 3.9 4.2 4.3 4.4 3.7 3.8 3.7 3.9
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Kinetics Acc@1 48.8 44.2 51.4 43.7 40.3 44.6 33.2 36.4 25.8 2.7 1.0 0.2 0.3 0.4 2.0 1.6 1.0 0.5 0.3 0.3 0.3
Kinetics Acc@5 75.5 70.9 77.9 70.7 67.6 71.7 59.9 63.0 51.8 9.7 4.3 1.3 1.4 1.7 7.0 6.5 3.5 2.2 1.3 1.3 1.3
Kinetics Loss 2.4 2.6 2.1 2.5 2.7 2.5 3.2 3.0 3.5 5.5 6.1 6.1 6.1 6.1 5.7 5.8 6.0 6.1 6.1 6.1 6.1
UCF-101 Acc@1 84.4 75.1 69.9 63.2 75.0 63.4 58.8 66.6 48.7 19.7 11.1 2.8 0.8 2.1 15.2 13.3 6.6 8.7 6.5 7.0 2.7
UCF-101 Acc@5 95.4 92.5 89.1 82.3 91.6 86.2 81.7 86.3 75.3 42.2 28.9 8.5 5.0 8.2 35.5 33.8 17.9 25.2 23.1 20.2 11.2
UCF-101 Loss 0.6 1.0 1.3 1.7 1.0 1.5 1.7 1.4 2.3 4.3 5.0 4.8 4.7 4.6 3.7 3.8 4.5 4.0 4.2 4.2 4.5
Task Mean 73.0 65.6 66.6 58.8 63.7 57.5 53.3 57.5 49.8 17.2 14.3 4.2 3.3 5.0 15.7 14.7 8.8 10.9 10.3 10.2 5.8
Video Reg
IWildCam MAE Score 1.3 1.4 1.3 1.4 1.4 1.6 1.4 1.5 1.6 2.0 1.9 1.9 2.6 2.1 1.8 1.8 1.9 1.8 2.2 1.8 2.1
IWildCam MSE Loss 3.7 4.4 4.0 4.0 4.1 5.4 4.3 5.0 5.9 7.1 6.5 6.2 12.5 8.5 5.1 6.3 6.0 6.2 8.6 6.4 8.4
Task Mean 1.3 1.4 1.3 1.4 1.4 1.6 1.4 1.5 1.6 2.0 1.9 1.9 2.6 2.1 1.8 1.8 1.9 1.8 2.2 1.8 2.1
GATE
Full GATE Mean 69.0 66.8 66.8 64.6 64.3 63.4 62.1 62.2 58.5 56.3 54.4 48.4 42.8 39.6 37.5 37.2 36.2 36.9 35.0 34.9 31.8
Big GATE Mean 76.6 74.5 74.4 72.8 72.0 71.9 70.6 70.0 66.8 66.7 64.8 58.5 53.1 46.8 43.8 43.4 41.9 41.5 40.9 39.8 37.1
Base GATE Mean 68.3 65.6 65.7 62.6 63.7 60.7 60.2 60.7 58.6 55.1 53.5 48.2 42.8 38.0 36.5 36.3 35.4 36.6 34.8 34.8 30.4
Small GATE Mean 77.7 74.9 74.6 73.3 72.4 71.2 68.9 69.1 65.3 65.7 61.7 58.5 49.3 40.5 35.7 35.4 35.9 35.3 34.1 34.4 30.4
Full GATE Rank 1.0 3.0 2.0 4.0 5.0 6.0 8.0 7.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 18.0 17.0 19.0 20.0 21.0
Big GATE Rank 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0
Base GATE Rank 1.0 3.0 2.0 5.0 4.0 7.0 8.0 6.0 9.0 10.0 11.0 12.0 13.0 14.0 16.0 17.0 18.0 15.0 20.0 19.0 21.0
Small GATE Rank 1.0 2.0 3.0 4.0 5.0 6.0 8.0 7.0 10.0 9.0 11.0 12.0 13.0 14.0 16.0 17.0 15.0 18.0 20.0 19.0 21.0

Table 3: Full experiments table: Black/Bold best model, Green second best, Blue third best, and red
the worst performing model. Models prefixed with ’s’ refer to ’from scratch’ trained models, rather
than pretrained. This table showcases the full set of data we use to evolve GATE using EEVEE.
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Figure 7: Degradation of predictive power when a given benchmark is removed and the meta-model
trained from scratch, for different best combinations in varying k.
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Figure 8: Degradation of predictive power when a given benchmark is removed and the meta-model
trained from scratch, for different best combinations in varying k.

Figure 9: Ranking Heatmap for bigGATE We show how the various models on the y-axis rank on the
metrics on the x-axis, where brighter is higher/better rank. From left to right we apply a spearman
correlation sorting to capture tasks more similar to imagenet1k more towards the leftmost side, and,
dissimilar ones towards the rightmost side. From top to bottom we rank models based on average
rank.
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Figure 10: Ranking Heatmap for baseGATE: We show how the various models on the y-axis rank on
the metrics on the x-axis, where brighter is higher/better rank. From left to right we apply a spearman
correlation sorting to capture tasks more similar to imagenet1k more towards the leftmost side, and,
dissimilar ones towards the rightmost side. From top to bottom we rank models based on average
rank.
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Figure 11: Ranking Heatmap for smallGATE: We show how the various models on the y-axis rank on
the metrics on the x-axis, where brighter is higher/better rank. From left to right we apply a spearman
correlation sorting to capture tasks more similar to imagenet1k more towards the leftmost side, and,
dissimilar ones towards the rightmost side. From top to bottom we rank models based on average
rank.
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Figure 12: Architecture Variation: Results of keeping the pretraining method the same as ImageNet1k
classification and varying the architecture across various key task domains.
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Figure 13: Pretraining Scheme Variation: Results of varying the pretraining method and keeping the
architecture as ViT B16 across various key task domains.
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Figure 14: Modality Variation: Results of attempting modality shifting from audio and text to vision
tasks.
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Figure 15: Modality Variation: Results of attempting modality shifting from audio and text to vision
tasks.
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NeurIPS Paper Checklist859

1. Claims860

Question: Do the main claims made in the abstract and introduction accurately reflect the861

paper’s contributions and scope?862

Answer: [Yes]863

Justification: All the claims made are substantiated with rigorous empirical results and864

communicated via tables and figures.865

Guidelines:866

• The answer NA means that the abstract and introduction do not include the claims867

made in the paper.868

• The abstract and/or introduction should clearly state the claims made, including the869

contributions made in the paper and important assumptions and limitations. A No or870

NA answer to this question will not be perceived well by the reviewers.871

• The claims made should match theoretical and experimental results, and reflect how872

much the results can be expected to generalize to other settings.873

• It is fine to include aspirational goals as motivation as long as it is clear that these goals874

are not attained by the paper.875

2. Limitations876

Question: Does the paper discuss the limitations of the work performed by the authors?877

Answer: [Yes]878

Justification: We have an explicit limitations section.879

Guidelines:880

• The answer NA means that the paper has no limitation while the answer No means that881

the paper has limitations, but those are not discussed in the paper.882

• The authors are encouraged to create a separate "Limitations" section in their paper.883

• The paper should point out any strong assumptions and how robust the results are to884

violations of these assumptions (e.g., independence assumptions, noiseless settings,885

model well-specification, asymptotic approximations only holding locally). The authors886

should reflect on how these assumptions might be violated in practice and what the887

implications would be.888

• The authors should reflect on the scope of the claims made, e.g., if the approach was889

only tested on a few datasets or with a few runs. In general, empirical results often890

depend on implicit assumptions, which should be articulated.891

• The authors should reflect on the factors that influence the performance of the approach.892

For example, a facial recognition algorithm may perform poorly when image resolution893

is low or images are taken in low lighting. Or a speech-to-text system might not be894

used reliably to provide closed captions for online lectures because it fails to handle895

technical jargon.896

• The authors should discuss the computational efficiency of the proposed algorithms897

and how they scale with dataset size.898

• If applicable, the authors should discuss possible limitations of their approach to899

address problems of privacy and fairness.900

• While the authors might fear that complete honesty about limitations might be used by901

reviewers as grounds for rejection, a worse outcome might be that reviewers discover902

limitations that aren’t acknowledged in the paper. The authors should use their best903

judgment and recognize that individual actions in favor of transparency play an impor-904

tant role in developing norms that preserve the integrity of the community. Reviewers905

will be specifically instructed to not penalize honesty concerning limitations.906

3. Theory Assumptions and Proofs907

Question: For each theoretical result, does the paper provide the full set of assumptions and908

a complete (and correct) proof?909

Answer: [NA]910
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Justification: No theories were derived.911

Guidelines:912

• The answer NA means that the paper does not include theoretical results.913

• All the theorems, formulas, and proofs in the paper should be numbered and cross-914

referenced.915

• All assumptions should be clearly stated or referenced in the statement of any theorems.916

• The proofs can either appear in the main paper or the supplemental material, but if917

they appear in the supplemental material, the authors are encouraged to provide a short918

proof sketch to provide intuition.919

• Inversely, any informal proof provided in the core of the paper should be complemented920

by formal proofs provided in appendix or supplemental material.921

• Theorems and Lemmas that the proof relies upon should be properly referenced.922

4. Experimental Result Reproducibility923

Question: Does the paper fully disclose all the information needed to reproduce the main ex-924

perimental results of the paper to the extent that it affects the main claims and/or conclusions925

of the paper (regardless of whether the code and data are provided or not)?926

Answer: [Yes]927

Justification: We do so both in the main paper, and in more detail in the appendix, in addition928

to offering the codebase that reproduces all results.929

Guidelines:930

• The answer NA means that the paper does not include experiments.931

• If the paper includes experiments, a No answer to this question will not be perceived932

well by the reviewers: Making the paper reproducible is important, regardless of933

whether the code and data are provided or not.934

• If the contribution is a dataset and/or model, the authors should describe the steps taken935

to make their results reproducible or verifiable.936

• Depending on the contribution, reproducibility can be accomplished in various ways.937

For example, if the contribution is a novel architecture, describing the architecture fully938

might suffice, or if the contribution is a specific model and empirical evaluation, it may939

be necessary to either make it possible for others to replicate the model with the same940

dataset, or provide access to the model. In general. releasing code and data is often941

one good way to accomplish this, but reproducibility can also be provided via detailed942

instructions for how to replicate the results, access to a hosted model (e.g., in the case943

of a large language model), releasing of a model checkpoint, or other means that are944

appropriate to the research performed.945

• While NeurIPS does not require releasing code, the conference does require all submis-946

sions to provide some reasonable avenue for reproducibility, which may depend on the947

nature of the contribution. For example948

(a) If the contribution is primarily a new algorithm, the paper should make it clear how949

to reproduce that algorithm.950

(b) If the contribution is primarily a new model architecture, the paper should describe951

the architecture clearly and fully.952

(c) If the contribution is a new model (e.g., a large language model), then there should953

either be a way to access this model for reproducing the results or a way to reproduce954

the model (e.g., with an open-source dataset or instructions for how to construct955

the dataset).956

(d) We recognize that reproducibility may be tricky in some cases, in which case957

authors are welcome to describe the particular way they provide for reproducibility.958

In the case of closed-source models, it may be that access to the model is limited in959

some way (e.g., to registered users), but it should be possible for other researchers960

to have some path to reproducing or verifying the results.961

5. Open access to data and code962

Question: Does the paper provide open access to the data and code, with sufficient instruc-963

tions to faithfully reproduce the main experimental results, as described in supplemental964

material?965
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Answer: [Yes]966

Justification: Full code and data are available and shared on github and huggingface.967

Guidelines:968

• The answer NA means that paper does not include experiments requiring code.969

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/970

public/guides/CodeSubmissionPolicy) for more details.971

• While we encourage the release of code and data, we understand that this might not be972

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not973

including code, unless this is central to the contribution (e.g., for a new open-source974

benchmark).975

• The instructions should contain the exact command and environment needed to run to976

reproduce the results. See the NeurIPS code and data submission guidelines (https:977

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.978

• The authors should provide instructions on data access and preparation, including how979

to access the raw data, preprocessed data, intermediate data, and generated data, etc.980

• The authors should provide scripts to reproduce all experimental results for the new981

proposed method and baselines. If only a subset of experiments are reproducible, they982

should state which ones are omitted from the script and why.983

• At submission time, to preserve anonymity, the authors should release anonymized984

versions (if applicable).985

• Providing as much information as possible in supplemental material (appended to the986

paper) is recommended, but including URLs to data and code is permitted.987

6. Experimental Setting/Details988

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-989

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the990

results?991

Answer: [Yes]992

Justification: We describe these in the experiments section in summary, and in the appendix993

in detail.994

Guidelines:995

• The answer NA means that the paper does not include experiments.996

• The experimental setting should be presented in the core of the paper to a level of detail997

that is necessary to appreciate the results and make sense of them.998

• The full details can be provided either with the code, in appendix, or as supplemental999

material.1000

7. Experiment Statistical Significance1001

Question: Does the paper report error bars suitably and correctly defined or other appropriate1002

information about the statistical significance of the experiments?1003

Answer: [Yes]1004

Justification: Where relevant our results include error bars.1005

Guidelines:1006

• The answer NA means that the paper does not include experiments.1007

• The authors should answer "Yes" if the results are accompanied by error bars, confi-1008

dence intervals, or statistical significance tests, at least for the experiments that support1009

the main claims of the paper.1010

• The factors of variability that the error bars are capturing should be clearly stated (for1011

example, train/test split, initialization, random drawing of some parameter, or overall1012

run with given experimental conditions).1013

• The method for calculating the error bars should be explained (closed form formula,1014

call to a library function, bootstrap, etc.)1015

• The assumptions made should be given (e.g., Normally distributed errors).1016
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• It should be clear whether the error bar is the standard deviation or the standard error1017

of the mean.1018

• It is OK to report 1-sigma error bars, but one should state it. The authors should1019

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis1020

of Normality of errors is not verified.1021

• For asymmetric distributions, the authors should be careful not to show in tables or1022

figures symmetric error bars that would yield results that are out of range (e.g. negative1023

error rates).1024

• If error bars are reported in tables or plots, The authors should explain in the text how1025

they were calculated and reference the corresponding figures or tables in the text.1026

8. Experiments Compute Resources1027

Question: For each experiment, does the paper provide sufficient information on the com-1028

puter resources (type of compute workers, memory, time of execution) needed to reproduce1029

the experiments?1030

Answer: [TODO]1031

Justification: [TODO]1032

Guidelines:1033

• The answer NA means that the paper does not include experiments.1034

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,1035

or cloud provider, including relevant memory and storage.1036

• The paper should provide the amount of compute required for each of the individual1037

experimental runs as well as estimate the total compute.1038

• The paper should disclose whether the full research project required more compute1039

than the experiments reported in the paper (e.g., preliminary or failed experiments that1040

didn’t make it into the paper).1041

9. Code Of Ethics1042

Question: Does the research conducted in the paper conform, in every respect, with the1043

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?1044

Answer: [Yes]1045

Justification: Yes it does abide by the code of ethics to our best of our understanding.1046

Guidelines:1047

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.1048

• If the authors answer No, they should explain the special circumstances that require a1049

deviation from the Code of Ethics.1050

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-1051

eration due to laws or regulations in their jurisdiction).1052

10. Broader Impacts1053

Question: Does the paper discuss both potential positive societal impacts and negative1054

societal impacts of the work performed?1055

Answer: [No]1056

Justification: It’s a method for finding optimal subsets of benchmarks from a large pool and1057

a framework that automates model encoder evaluation. Societal impacts relate to improved1058

research efficiency and hopefully compute usage, however this is too far from what one1059

would consider strongly tied societal impacts.1060

Guidelines:1061

• The answer NA means that there is no societal impact of the work performed.1062

• If the authors answer NA or No, they should explain why their work has no societal1063

impact or why the paper does not address societal impact.1064

• Examples of negative societal impacts include potential malicious or unintended uses1065

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations1066

(e.g., deployment of technologies that could make decisions that unfairly impact specific1067

groups), privacy considerations, and security considerations.1068
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• The conference expects that many papers will be foundational research and not tied1069

to particular applications, let alone deployments. However, if there is a direct path to1070

any negative applications, the authors should point it out. For example, it is legitimate1071

to point out that an improvement in the quality of generative models could be used to1072

generate deepfakes for disinformation. On the other hand, it is not needed to point out1073

that a generic algorithm for optimizing neural networks could enable people to train1074

models that generate Deepfakes faster.1075

• The authors should consider possible harms that could arise when the technology is1076

being used as intended and functioning correctly, harms that could arise when the1077

technology is being used as intended but gives incorrect results, and harms following1078

from (intentional or unintentional) misuse of the technology.1079

• If there are negative societal impacts, the authors could also discuss possible mitigation1080

strategies (e.g., gated release of models, providing defenses in addition to attacks,1081

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1082

feedback over time, improving the efficiency and accessibility of ML).1083

11. Safeguards1084

Question: Does the paper describe safeguards that have been put in place for responsible1085

release of data or models that have a high risk for misuse (e.g., pretrained language models,1086

image generators, or scraped datasets)?1087

Answer: [NA]1088

Justification: It’s a benchmark with datasets that are already public and previously published1089

in other papers.1090

Guidelines:1091

• The answer NA means that the paper poses no such risks.1092

• Released models that have a high risk for misuse or dual-use should be released with1093

necessary safeguards to allow for controlled use of the model, for example by requiring1094

that users adhere to usage guidelines or restrictions to access the model or implementing1095

safety filters.1096

• Datasets that have been scraped from the Internet could pose safety risks. The authors1097

should describe how they avoided releasing unsafe images.1098

• We recognize that providing effective safeguards is challenging, and many papers do1099

not require this, but we encourage authors to take this into account and make a best1100

faith effort.1101

12. Licenses for existing assets1102

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1103

the paper, properly credited and are the license and terms of use explicitly mentioned and1104

properly respected?1105

Answer: [Yes]1106

Justification: All datasets used have appropriate licenses, and the code packages used in1107

implementing our software framework have appropriate licenses as well.1108

Guidelines:1109

• The answer NA means that the paper does not use existing assets.1110

• The authors should cite the original paper that produced the code package or dataset.1111

• The authors should state which version of the asset is used and, if possible, include a1112

URL.1113

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1114

• For scraped data from a particular source (e.g., website), the copyright and terms of1115

service of that source should be provided.1116

• If assets are released, the license, copyright information, and terms of use in the1117

package should be provided. For popular datasets, paperswithcode.com/datasets1118

has curated licenses for some datasets. Their licensing guide can help determine the1119

license of a dataset.1120
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• For existing datasets that are re-packaged, both the original license and the license of1121

the derived asset (if it has changed) should be provided.1122

• If this information is not available online, the authors are encouraged to reach out to1123

the asset’s creators.1124

13. New Assets1125

Question: Are new assets introduced in the paper well documented and is the documentation1126

provided alongside the assets?1127

Answer: [Yes]1128

Justification: Our codebase is fully documented.1129

Guidelines:1130

• The answer NA means that the paper does not release new assets.1131

• Researchers should communicate the details of the dataset/code/model as part of their1132

submissions via structured templates. This includes details about training, license,1133

limitations, etc.1134

• The paper should discuss whether and how consent was obtained from people whose1135

asset is used.1136

• At submission time, remember to anonymize your assets (if applicable). You can either1137

create an anonymized URL or include an anonymized zip file.1138

14. Crowdsourcing and Research with Human Subjects1139

Question: For crowdsourcing experiments and research with human subjects, does the paper1140

include the full text of instructions given to participants and screenshots, if applicable, as1141

well as details about compensation (if any)?1142

Answer: [NA]1143

Justification: No crowdsourcing with humans1144

Guidelines:1145

• The answer NA means that the paper does not involve crowdsourcing nor research with1146

human subjects.1147

• Including this information in the supplemental material is fine, but if the main contribu-1148

tion of the paper involves human subjects, then as much detail as possible should be1149

included in the main paper.1150

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1151

or other labor should be paid at least the minimum wage in the country of the data1152

collector.1153

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human1154

Subjects1155

Question: Does the paper describe potential risks incurred by study participants, whether1156

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1157

approvals (or an equivalent approval/review based on the requirements of your country or1158

institution) were obtained?1159

Answer: [NA]1160

Justification: Same as previous answer.1161

Guidelines:1162

• The answer NA means that the paper does not involve crowdsourcing nor research with1163

human subjects.1164

• Depending on the country in which research is conducted, IRB approval (or equivalent)1165

may be required for any human subjects research. If you obtained IRB approval, you1166

should clearly state this in the paper.1167

• We recognize that the procedures for this may vary significantly between institutions1168

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1169

guidelines for their institution.1170

• For initial submissions, do not include any information that would break anonymity (if1171

applicable), such as the institution conducting the review.1172
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