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ABSTRACT

We study an online stochastic matching problem in which an algorithm sequen-
tially matches U users to K arms, aiming to maximize cumulative reward over
T rounds under budget constraints. Without structural assumptions, computing
the optimal matching is NP-hard, making online learning computationally in-
feasible. To overcome this barrier, we focus on single-peaked preferences—a
well-established structure in social choice theory, where users’ preferences are
unimodal with respect to a common order over arms. We devise an efficient al-
gorithm for the offline budgeted matching problem, and leverage it into an effi-
cient online algorithm with a regret of O(UK 7%/ 3). Our approach relies on a
novel PQ tree-based order approximation method. If the single-peaked structure
is known, we develop an efficient UCB-like algorithm that achieves a regret bound

of O(UVTK).

1 INTRODUCTION

Modern recommendation systems often face the challenge of personalization at scale—Ilearning
individual user preferences while simultaneously satisfying global resource allocation constraints.
To illustrate, consider a content platform that must decide which content creators to commission
daily, where each creator has a different cost and produces ephemeral content on specific topics.
Each user has preferences over all creators’ content styles and topics. After commissioning a subset
of creators that fit the platform’s budget, it matches each user to content from one of these creators,
where the same creator’s content can be recommended to multiple users. The challenge lies in
learning individual user preferences for each creator’s content while selecting which creators to
commission and how to assign their content to maximize user satisfaction.

This problem fits the combinatorial multi-armed bandit framework, where the decision-maker must
choose structured action sets (Chen et al.| 2013)), such as assigning each user to an item. The goal
is to maximize cumulative reward, or equivalently, minimize regret by balancing exploration and
exploitation. Unfortunately, combinatorial problems like the one in the example above are NP-
complete even for offline settings. Therefore, traditional approaches settle for weaker notions of
a-regret (Chen et al.l |2013), competing against the best efficient computable solution rather than
the optimal one. This compromise can be unsatisfying, especially when the solution space is highly
structured or the stakes of poor decisions are high.

In this paper, we circumvent this computational barrier by focusing on single-peaked (hereinafter
SP) preferences—a structure that has been extensively studied in social choice theory since the sem-
inal work of |Black| (1948). Specifically, it implies that there is an order of the arms such that each
user’s utility is unimodal. SP preferences appear naturally in numerous domains: voters’ prefer-
ences over political candidates along an ideological spectrum, consumers’ preferences for products
varying in a single attribute, and users’ preferences for content recommendations based on genre
similarity. The single-peaked property has proven helpful in circumventing impossibility results
in voting theory (Arrow} [1950) and transforming NP-hard problems into polynomial-time solvable
ones (Faliszewski et al.,|2009; Elkind & Lackner, |2016)).
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1.1 OUR CONTRIBUTIONS

We study a stochastic combinatorial bandit problem over T rounds with K arms and U users. Each
arm k has a cost ¢, and the learner may select any subset of arms within a budget B, then assign
users to the selected arms. Each user derives a stochastic satisfaction from each arm, and the goal is
to maximize total user satisfaction. As the general case is NP-complete, we focus on SP preferences
(see Definition [2]), which enable efficient solutions. Our main contributions are as follows.

SP instances are statistically challenging To demonstrate that SP preferences do not trivialize
the learning problem, we show that the worst-case regret remains unchanged compared to general
preferences. Specifically, we prove that even when the SP order is known, a regret of Q(UvTK),
which matches the lower bound for general preferences, is unavoidable. Furthermore, even if the
user peaks are known as well, every algorithm incurs a regret of Q(max{U+v/T,VTK}).

Efficient offline algorithm. We develop SP-MATCHING, an efficient algorithm that optimally
solves the budget-constrained matching problem in O(K?2B + K2U) time when preferences are SP.

Learning with known SP structure We consider the case of known SP order and user peaks (but
not the cardinal preferences). Such an assumption is justified if, for example, preferences rely on
a known ideological spectrum where user peaks correspond to stated or inferred inclinations. We
design an efficient UCB-based algorithm, termed MVM, that achieves O(U VTK) regret. The key
property used in our approach is the existence of a maximal preferences matrix in the confidence set
of all plausible SP matrices—namely, a matrix that element-wise dominates all others in the set. We
use this maximal matrix as the basis for optimistic matching using our offline algorithm.

Learning with unknown SP structure We also consider the more challenging case, where the SP
structure is unknown. We introduce an explore-then-commit algorithm, named EMC, that devotes
an initial exploration phase to collecting reward estimates. Then, a novel PQ tree-based procedure
(Booth & Lueker,|1976)), which we refer to as EXTRACT-ORDER, recovers an approximate SP order
from these estimates. Given this order, the reward estimates are projected onto a nearby SP matrix,
and the corresponding offline matching is solved using SP-MATCHING; the resulting matching is
committed to for the remainder of the rounds. A careful approximation and concentration analysis
yields a regret bound of O(U K'T?/3), while all computational steps run in poly(U, K, B) time.

Additionally, due to space constraints, we defer two extensions of our main results to Appendix [Al
an extension of MVM for separated instances, and an extension of EMC to non-SP instances.

1.2 RELATED WORK

Our research intersects the combinatorial and matching threads of the multi-armed bandits literature,
as well as single-peaked preferences from social choice theory.

Multi-armed bandits. The multi-armed bandit framework provides the foundation for sequential
decision-making under uncertainty (Bubeck et al., 2012} Slivkins, [2019; [Lattimore & Szepesvari,
2020). This setting has been extended to the combinatorial domain, where actions are solutions
of a combinatorial optimization problem (Combes et al.| 2015; Kveton et al., |2015b). While ef-
ficient learning algorithms exist for certain combinatorial structures (Neu & Bartok, 2016), many
practical instances involve computationally intractable optimization problems. To address this com-
putational barrier, prior work introduced the notion of a-regret (Chen et al.l|2013), which compares
the learner’s performance against the best efficiently computable solution rather than the true op-
timum. This approach has led to the development of general frameworks for achieving a-regret
guarantees in computationally hard settings (Rizk et al., 2022} Nie et al., 2023). Notably, the single-
peaked structure we impose enables us to circumvent computational intractability entirely, allowing
us to achieve standard regret bounds rather than settle for a-regret. Our setting further incorporates
per-round budget constraints, which align with the cardinality and knapsack-type restrictions stud-
ied in prior works (Nie et al.,|2022}2023)). A closely related line of work considers bandit learning
for matching problems (Das & Kamenical, |2005; Liu et al., [2020; Kong et al., 20225 2024). Another
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perspective arises in content recommendation, which can be naturally viewed as a matching prob-
lem between users and creators. This has motivated a line of research on strategic content providers
(Mladenov et al., 2020; Hron et al., 2023} Immorlica et al.,[2024). Particularly, Ben-Porat & Torkan
(2023) study a variant where arms become unavailable if they are not selected sufficiently often,
and their proposed algorithm has runtime exponential in K. In contrast, in our setting, arms remain
continuously available (subject to budget constraints), and we devise efficient algorithms.

Single-peaked preferences. The study of single-peaked preferences dates back to seminal work
in social choice theory (Blackl [1948; |Arrow, [1950). From a computational perspective, several
problems have been investigated, including recognizing whether a given preferences profile admits
a single-peaked order and constructing such an order when it exists (Bartholdi III & Trickl, |1986;
Escoffier et al.l 2008). While recognition and construction of single-peaked orders can be solved
efficiently, the problem becomes computationally intractable when preferences are nearly but not
perfectly single-peaked. Specifically, finding an order that minimizes various distance measures
from single-peakedness has been shown to be NP-hard (Faliszewski et al.|[2011}; [Elkind & Lackner;,
2014} [Escoffier et al., [2021). In Section[6] we contribute to this literature by developing a technique
to extract single-peaked orders from approximately single-peaked cardinal preferences.

The single-peaked assumption has profound implications across different domains. In social choice
theory, it circumvents classical impossibility results and enables positive outcomes that fail under
general preferences. Most notably, Black’s median voter theorem (Blackl [1948) guarantees the
existence of a Condorcet winner under single-peaked preferences, resolving a fundamental challenge
in voting theory. From an algorithmic perspective, single-peakedness has been shown to simplify
computational challenges: numerous voting problems that are NP-hard under general preferences
become polynomial-time solvable when restricted to single-peaked structures (Faliszewski et al.|
2009; |[Elkind & Lackner, 2016). Our work reveals a similar phenomenon in an entirely distinct
setting. We demonstrate that in our cardinal matching model with budget constraints, the single-
peaked structure enables efficient optimization for problems that are computationally intractable
under general preferences.

2 PROBLEM DEFINITION

In this section, we formally introduce our model and notation (Section @, address the case of
general preferences (Section[2.2), and focus on single-peaked preferences (Section [2.3).

2.1 MODEL

We formalize the Constrained Bandit Recommendation problem (CBR for brevity) as follows. An
instance of CBR consists of the tuple (T, U, K, (Dy k)u.k, (Ck )k, B), whose components are de-
scribed below. The problem involves U users indexed by [U] = {1,...,U} and K items (arms)
indexed by [K] = {1,...,K}. The satisfaction of each user u with an item & is stochastic and
stationary over time, drawn from a distribution D,, j supported on [0, 1] with expected value 6, 1.
We denote the expected reward matrix © € [0,1]Y*¥ by setting its (u, k)-th entry to 6, . The
distributions are assumed to be independent across users and arms.

The goal of the learner is to recommend arms to users so as to maximize their overall satisfaction.
Interaction proceeds over T' rounds. In each round ¢ € [T, the learner chooses a matching m, :
[U] — [K], namely a function assigning each user a single item. The expected value of the matching
is the total expected satisfaction of the users with their assigned arms, V' (7;; ©) = Zue[U] O, (u)-

However, not all matchings are feasible. The algorithm has a budget constraint on the selected arms:
each selected arm (i.e., there is at least one user u such that 7;(u) = k) has a cost of ¢, and the total
cost of the selected arms in every round should remain below a known budget B € N. Formally, for
a matching 7, let Im(7) = {k € [K] : Ju € [U] s.t. 7(u) = k}. Hence, a matching is feasible only
if ), Elm(my) Ck < B. We denote the set of all feasible matchings as II. Without loss of generality,
we assume that ¢, < B for all k& € [K], since otherwise such arms could never be selected. As in
the motivating example of Section[I] the platform pays the content creators (arms) per creation, so
multiple users can be matched to the same arm without incurring additional cost.
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At the beginning of each round ¢, the learner has access to the history of past actions and observed
rewards, denoted by H;. Upon selecting a matching 7;, a random reward rfmt w ~ Dy, (u) 18
generated for each pair (u, ¢ (u)). We assume semi-bandit feedback, meaning the learner observes
rt () fOr every matched pair (u, m;(u)). The performance of the learner .A on a CBR instance 7

is measured using the standard notion of regret,

T
_ . t
Br(A 1) =T maxV(m0) - E DD Thmw |

t=1 ue[U]

where the expectation is over the algorithm’s randomness and the realized rewards. As is standard
in bandit settings, we assume 7' > K,U. As a useful intermediate step, we also consider the
offline version of the problem, where the algorithm is given the expected reward matrix © and must
compute the optimal feasible matching, i.e., arg max, . V(m; ©).

2.2  WARM UP: GENERAL PREFERENCES

Without structural assumptions on O, achieving low regret with polynomial time algorithms is hope-
less. In particular, we establish the following hardness result based on a reduction from the maxi-
mum coverage problem (Feigel |1998)):

Theorem 1. It is NP-hard to approximate arg max V (m; ©) within any factor better than (1—1/e).
mell

Consequently, since an efficient online algorithm with sublinear regret would imply an efficient
approximation algorithm for the offline problem, such an online algorithm cannot exist. We defer
the full analysis to Appendix [B] If we disregard computational constraints, optimal regret bounds
can be attained by, e.g., applying the CUCB algorithm (Chen et al., |2013)), assuming access to an
exact optimization oracle. Formally,

Corollary 2. There exists a UCB-based algorithm that achieves a regret of O(U+/KT logT), which
is optimal up to logarithmic factors.

While this algorithm is statistically optimal, it assumes an optimization oracle that must solve an
NP-hard problem at every time step, rendering it computationally impractical.

The literature typically addresses cases where the offline benchmark is intractable using the notion of
a-regret (Chen et al., 2013 |Nie et al., 2022} 2023)). This metric uses the best efficiently computable
approximation as the baseline, rather than the true optimum. Although it is computationally feasible
to achieve sublinear a-regret in our setting (e.g., with o = 0.5 using greedy oracle), this is a weaker
guarantee compared to the standard regret. This limitation motivates our assumption of structural
properties for ©, which enables efficient optimization without sacrificing regret guarantees.

2.3  SINGLE-PEAKED PREFERENCES

Single-peaked preferences arise naturally in numerous applications and, as we show, this structure
enables polynomial-time algorithms to achieve sublinear regret. We define it formally as follows.

Definition 1 (PSP matrix). We say that a matrix © is perfectly single-peaked (PSP for brevity) if for
every user u € [U], there exists an index p(u; ©) € [K] such that

Hu,l << au,p(u;@) =2 eu,K- (])

In other words, the entries of every row are unimodal. The index p(u; ©) is called the peak of user
u, or simply p(u) when © is clear from context; if multiple indices attain the maximum, we fix an
arbitrary choice)’'| More generally,

Definition 2 (SP matrix and SP order). We say that a matrix © is single-peaked (or SP) if there
exists a (total) order < on the arms such that the matrix obtained by permuting the columns of ©
according to < is PSP. In such a case, we say that < is an SP order of ©.

'See Appendixfor a discussion of how our algorithms and analyses handle such ties.
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Figure 1: Illustration of PSP and SP instances. Each subfigure consists of curves representing the
expected rewards of user-arm pairs. The instance in Figure [Ta]is SP, since if we reorder the arms,
we get the PSP instance in Figure[Th|.

Note that any PSP matrix is also SP, with the identity order serving as its SP order. In contexts
where the relevant order matters, we shall write that © is SP w.r.t. <. Furthermore, we say that a
CBR instance is (P)SP if its expected reward matrix © is (P)SP. The SP order need not be unique;
for example, the reverse order of any SP order is also an SP order.

To illustrate the PSP and SP properties, consider Figure [I] The instance comprises three users and
five arms, and each subfigure illustrates the expected rewards for each user. The instance in Figure[Ta]
is not PSP, since there are “valleys” that contradict Inequality If we reorder the arms according
to the order < suchthat1 < 2 <5 < 4 < 3, we obtain Figure@ Indeed, we observe a unimodal
preference shape for each user, indicating that the matrix is PSP. Thus, the instance in Figure|lalis
SP and < is its SP order.

3 STATISTICAL HARDNESS OF SINGLE-PEAKED INSTANCES

While SP instances are highly structured, they remain statistically as challenging to learn. To demon-
strate this, we establish a regret lower bound for SP instances of Q(U+/TK), which matches the
guarantee of Corollary [2|for general preferences. Moreover, we provide a comparable lower bound
for a more lenient case, where both the SP order and the users’ peaks are known to the learner in
advance. We do so by constructing families of hard instances where the known structural properties
are fixed, and only the cardinal values differ. Since the structural information is identical across in-
stances, the learner cannot leverage it to distinguish between them. We present these lower bounds
in Theorem

Theorem 3. For any algorithm, the worst-case regret over SP instances is Q(UVTK), and
Q(max{UVT,VTK?}) when the SP order and user peaks are known.

Theorem [3|indicates that the SP assumption does not simplify the statistical aspect of the learning
problem. However, as we demonstrate in the subsequent sections, it does affect the computational
aspect—it enables efficient learning algorithms that achieve sublinear regret, standing in sharp con-
trast to the intractability of the general case discussed in Section[2.2]

4  OFFLINE ALGORITHM FOR SP INSTANCES

In this section, we present an efficient and optimal algorithm for computing arg max cp; V' (7; ©)
for SP instances. W.1.0.g., we shall assume that the SP order is the identity order, i.e., the instance is
PSP. Indeed, an SP order can be extracted using our EXTRACT-ORDER algorithm (see Algorithm 2))
with ¢ = 0 in O(U K?) time, after which the columns can be reordered accordingly.
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The main observation used by our algorithm relates to the optimal matching conditioned on a given
subset of arms. Namely, we show that if the set of selected arms is S, the optimal matching assigns
each user to the arm in S that is closest to their peak. We formalize this in Lemma 4]

Lemma 4. Fix any PSP matrix © with peaks p(-), and any arm subset S = {ky, ..., kmn}
with ki < -++ < kp,. Let 7* € argmax, 1,,(rycs V(7 0). For any user u, if kj < p( ) <
for some j with 1 < j < m, then *(u) € {k;, kj+1}; otherwise, 7*(u) € {k1, km }.

CK
kit

Lemma (4| guides the design of a dynamic programming-based approach for finding the optimal
matching for a given PSP matrix P, costs ¢(-), and budget B. We call this algorithm SP-MATCHING
and explain its essence here, deferring full details to Appendix [D] The algorithm maintains a table
F(k,b) representing the maximum achievable reward when arm £ is the rightmost selected arm, the
total budget is at most b, and we consider only users u such that p(u) < k. We add an auxiliary
degenerate arm O such that ¢p = 0 and P, o = 0 for every user u, and initialize F'(0,b) = 0 for
every b € {0} U [B].

The recurrence relation for F'(k,b) follows from Lemma {4 When k is the arm with the highest
index among the selected arms and ¢ is the second highest, users with peaks before ¢ are unaffected
by the inclusion of arm &, while those with peaks between ¢ and k are assigned to whichever of the
two arms offers a higher reward. Consequently, F'(k, b) is given by

i:(?gl?i(k, F(i,b—cp) + Z max{P, ;, P, r}

b>ci+ck w:i<p(u)<k
This maximum is always well-defined since arm 0 always satisfies its constraint. The optimal value
is then V* = maxyequ) [F(k B) + (s

arms are assigned to the last selected arm k. To enable efficient computation, we precompute for all
pairs (i, k) the sums 3 ;o max{P, ;, P, } in O(K?U) time. This allows each entry in F

to be filled in O(K) time, and since F' has K B entries, the total runtime is O(K2U + K2B).
Theorem 5. For any PSP matrix, SP-MATCHING finds an optimal matching in time O(K?(U+B)).

P, k} , where users with peaks beyond all selected

5 ONLINE ALGORITHM FOR THE KNOWN SP STRUCTURE REGIME

We now turn to the more challenging online setup. Although the underlying expected reward matrix
is SP, our reward estimates are generally not guaranteed to preserve this structure. For motivation,
suppose the true reward matrix is ©, but we only have access to a noisy estimate ©. If © is itself SP,
we could apply known methods to extract its SP order (Bartholdi III & Trickl (1986} [Escoffier et al.,
2008) and use the SP-MATCHING algorithm to obtain an approximately optimal matching w.r.t. ©.
However, since © only approximates ©, © may not be SP. Moreover, the SP order of ©, which is
crucial for our offline algorithm, remains unknown and may not be recoverable directly from ©.
Therefore, leveraging the fact that the instance is SP is non-trivial.

In this section, we take a first step towards resolving this challenge by leveraging additional struc-
tural information of the problem. Specifically, we assume that both the SP order and user peaks are
known in advance to the learner. Recall from Section [3| that despite this knowledge, the learning
problem remains statistically non-trivial. These structural assumptions, however, enable an effi-
cient, optimistic UCB-style algorithm that achieves O(U\/ TK) regret. Our approach involves the
construction of optimistic reward estimates using confidence sets (Slivkins| 2019, Chapter 8.4), as
detailed in Section[5.1] while preserving the single-peaked structure. Then, we use those estimates
to design the algorithm described in Section

5.1 CONFIDENCE SETS AND MAXIMAL MATRIX

Given the known SP order < and user peaks p(-), we construct confidence sets for the expected
reward matrix that contain the true parameters with high probability. Intuitively, these sets capture
all matrices that are statistically plausible given the data observed so far, and naturally shrink as
more data is collected. We begin by establishing notation for standard confidence bounds. Given a
history H, at round ¢, we denote by 8,, 1 (¢) and n,, 1, (¢) the empirical mean reward and the number of
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Algorithm 1 Match-via-Maximal (MVM)

Require: Order <, peaks p*(-)
1: fort =1to T do
2: Construct the maximal matrix P*
3:  Select 7y = SP-MATCHING(P?)
4: Observe rewards and update history H;

pulls of the pair (u, k) observed up to round ¢, respectively. The upper confidence bound is defined

as UCB,, x(t) = 0, x(t) + /2T /n, (1), with the lower confidence bound LCB,, j(t) defined
analogously using subtraction. We formally define the confidence set as follows.

Definition 3 (Confidence set). The confidence set C* = C!(<, p, H;) contains a matrix P if and only
if it is consistent with < and p(-), and for any u, k it holds that LCB,, ;,(t) < Py < UCB, (t).

The standard UCB approach requires picking the optimistic matching at every time ¢, namely

m € argmax max V (m; P). 2)
rell  Pect

This discrete optimization problem over a convex set may be tricky, as different matrices yield dif-
ferent optimal matchings. However, a structural property of C? simplifies this optimization problem.
As we demonstrate shortly in Lemma@ C? includes a unique maximal matrix P? in an element-wise
sense; thus, to find the solution of Equation , we should only find the optimal matching w.r.t. P?.

Lemma 6. For any non-empty confidence set Ct(<, p, Hy), there exists a unique element-wise max-
imal matrix P* € C* such that P}, ;, > P, for all P € C* and all u € [U], k € [K]|. Furthermore,

in;. <, UCB,;(t), k=
this matrix is given by P! , = {m?nz'kjljp(u) it p(u)‘
7 NG p(u)<i<k UCBu,Z(t)a p(u) =k
We refer to the above matrix as the maximal matrix of Ct, and note that its structure relies on
knowledge of both the order < and the peaks p(-).

5.2 THE MATCH-VIA-MAXIMAL ALGORITHM

Next, we present a combinatorial UCB-based algorithm, which we refer to as MVM (Algorithm [T)).
MVM acts optimistically—in each round, it selects the optimal matching w.r.t. the corresponding
maximal matrix. The regret analysis of MVM involves standard UCB-like arguments. By the con-
struction of the confidence sets and applying Hoeffding’s inequality with a union bound over all
(u, k) pairs and time steps, the actual expected reward matrix © is in C for all ¢ € [T'] with proba-
bility at least 1 — 25 Employing the clean event technique, we ignore the complementary (bad)
event, which occurs with low probability. In every round ¢, we have

mGaI;[(V(w; ©) = V(m;0) < V(m; P') = V(m;0) < Z 24/20T /0y - 3)
N uwe[U]

Summing Inequality (3)) over all rounds, we obtain the following theorem:

Theorem 7. For any SP instance with known SP order < and peaks p(-), MVM achieves regret of
at most O(UVTK InT) with per-round runtime of O(K2U + K?B).

Extension to partial structural knowledge The MVM algorithm naturally extends to settings
where the SP order and user peaks are not known exactly, but are known to belong to a polynomial-
sized set S of candidate structures. For each candidate (<,p) € S, one can construct the cor-
responding maximal matrix P(t <p) via Lemma [6| and compute its optimal matching wf <) using
SP-MATCHING. The algorithm then selects the matching achieving the highest optimistic value:
T € argmax(y p)es V(Wf ~<p) P(t <, p)). Since the true structure belongs to S, the selected match-
ing is at least as optimistic as the one corresponding to the true parameters, and the same regret
analysis yields O(U+/TK) regret. The per-round runtime becomes O(|S| - (K2U + K2B)), which

remains polynomial when |S| = poly(U, K, B).
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Algorithm 2 Extract-Order Algorithm 3 EMC
Require: PeRUXE > Require: Exploration rounds N
Ensure: Anorder < s.t. P is 2Ke-ASP, if such exists. Ensure:TA sequence of feasible matchings
1: Initialize PQ tree 7" on [K] (mt)1=1
2: forue[U} do 1: DeﬁnegN<—\/21nT/N
3 Let k¥, ... k% be st Py gu > -+ > Py o 2: Pull each arm k£ € [K] for N rounds,
. = S K let © be the empirical mean matrix
4 fori e [K —1]s.t. .Pu,k? — Pyjgy, >2edo 5 EXTRACT-ORDER(O), £ )
S Add the constraint {kY', ..., ki'} to T 4: Construct an SP matrix © from (0, <)
6: if There exists some feasible order in 7" then via Lemma 9] with & =2Ken
7 return some feasible order < 5: T < SP-MATCHING(O)
8: else, return fail 6: Play 7 for the remaining rounds

6 ONLINE ALGORITHM FOR THE UNKNOWN SP STRUCTURE REGIME

We now turn to the more general setting, where the learner knows only that © is SP, but lacks
knowledge of the specific underlying order or user peaks. When the order is unknown, the confi-
dence set must include all matrices consistent with any valid SP order, and the optimistic approach
from Section [5]can no longer be applied efficiently; we discuss this barrier formally in Section

To tackle this challenge, we take a three-step approach. First, we define the concept of approximate
single-peaked matrices that relaxes the strict SP condition while remaining amenable to analysis.
Second, we present an efficient procedure to extract a plausible SP order from empirical data. Fi-
nally, we combine these tools in an explore-then-commit algorithm that achieves sublinear regret. A
key insight underlying our approach is that due to estimation noise, we cannot hope to recover the
exact SP order of the true matrix ©; instead, we aim to find some order under which the empirical
estimates are approximately single-peaked, which suffices for near-optimal matching.

6.1 APPROXIMATE SINGLE-PEAKED MATRICES

We begin our analysis by defining the concept of approximately single-peaked (ASP) matrices.

Definition 4. We say a matrix P is §-approximately single-peaked (or §-ASP) w.r.t. an order < if
foreveryi, j,l € [K]suchthati < j <l anduserw € U, it holds that P, ; > min{P, ;, P, ;} —d.

If Pis 0-ASP w.r.t. <, we say < is its §-ASP order, analogously to SP order. The parameter
0 quantifies the tolerable violation of the single-peaked property. When § = 0, this condition is
equivalent to the matrix being SP w.r.t. <, as we prove in the following proposition.

Proposition 8. A matrix is SP w.r.t. an order < if and only if it is 0-ASP w.rt. <.

The 0-ASP condition proves useful beyond the strict § = 0 case. In fact, it follows directly from
Deﬁnitionthat if P is SP w.rt. < and P satisfies || P — P||o, < 6, then P is 26-ASP w.r.t. <. This
implies that a noisy estimate of an SP matrix remains ASP. Conversely, given any §-ASP matrix and
its ASP order, we can construct a matrix that is (exact) SP with respect to the same order, with each
entry differing from the original by at most §.

Lemma 9. Let~]5 be a §-ASP matrix w.r.t. <. There exists a matrix P which is SP w.rt. <, and
satisfies |P — P|loo < 4.

We prove Lemma@]by construction, which can be implemented in O(U K)) time. Lemma@] enables
us to work with SP matrices even when the estimate matrix is not SP, while not sacrificing the
approximation quality. However, Lemma 9] requires the ASP order <, which we do not have.

6.2 EXTRACT-ORDER PROCEDURE

Relating to the previous subsection, even if we know that the estimate matrix © is ASP w.r.t. the
SP order of ©, this order is still unknown. In what follows, we develop the EXTRACT-ORDER
algorithm, which extracts an ASP order from © (not necessarily the SP order of ©).



Published as a conference paper at ICLR 2026

We start with some intuition. Finding an order boils down to solving a set of contiguity constraints—
subsets of arms that must be contiguous in any valid order. To illustrate, fix an SP matrix P and
suppose there exists a user v and a partition of [K] into two sets A; and As. Let f = mingea, Pk
and v = maxyea, Py k. If B —~ > 0, then every arm in A; is preferred by user v over every arm
in As. In this case, any order < that places an arm j € A, between two arms ¢,[ € A; violates the
0-ASP condition (Definition [d)). Hence, according to Proposition[8] < cannot be an SP order of P.
Thus, any SP order of P places the arms in A; in a contiguous block. As a result, any order that
satisfies all such contiguity constraints is an SP order of P.

Next, assume we have a matrix P such that |[P — P||o, < ¢ for the SP matrix P. Since every
entry in P only approximates P, we cannot hope to discover all the contiguity constraints of P.
For instance, if mingec 4, Pu’k = 0 — ¢ and maxyeca, Pu’k = 7y + ¢ for the user u and partition
A1, Ag, then mingea, Puyk — MaXkeA, Pu,k = f — e — v — &. In the case that this expression
is negative, we would not discover the contiguity constraint of A;. Similarly, we might enforce
incorrect constraints. Thus, we should aim to discover as many contiguity constraints as possible
from P, while remaining consistent with the contiguity constraints of P. To that end, if a triplet
u, A1 and A, satisfies

min P ,—maXIE’ > 2¢ 4
KEA, u,k ke Ay u,k 5 ( )

we can safely add a contiguity constraint on A; since the proximity between Pand P guarantees
mingea, Py r — maxgea, Py > 0; hence, this constraint also applies to the matrix P.

The EXTRACT-ORDER algorithm, described in Algorithm [2} formalizes this approach using a PQ
tree (Booth & Lueker], [1976), an efficient data structure that specializes in encoding and resolving
contiguity constraints. PQ trees maintain sets of items that must appear consecutively in any valid
order, and can be used both to determine whether a consistent order exists and to efficiently construct
such an order. EXTRACT-ORDER initializes a PQ tree (Line E]) and for each user u, it sorts the
arms by preference values (Lines 2}f3). Whenever there is a significant gap (exceeding 2¢) between
consecutive preference values, which exactly corresponds to the case described in Inequality
it adds a contiguity constraint requiring all higher-valued arms to appear consecutively (Line [5).
Finally, the algorithm returns an order on the columns of P that satisfies all the imposed contiguity
constraints, if such an order exists (Line . Otherwise, it fails and returns nothing (Line@

Notably, the constraints enforced by this procedure are not only consistent with the SP order of P,
but also ensure bounded valley depth (in the sense of Definition d). Formally,

Lemma 10. Let P be a matrix such that |P — P||oc < ¢ for some SP matrix P. EXTRACT-
ORDER(P, ¢) returns an order < such that P is (2Ke)-ASP w.r.t. <.

The runtime complexity of EXTRACT-ORDER is dominated by sorting user preferences and PQ tree
operations. Sorting preferences for all users requires O(U K log K') time. Subsequently, for each
user, we may add up to K — 1 contiguity constraints to the PQ tree, where each addition takes O(K)
time, yielding O(U K?) time for all constraints. The final feasibility check and order extraction from
the PQ tree requires O(K ) time. Thus, the overall runtime is O(U K?2).

6.3 EXPLORE-THEN-COMMIT ALGORITHM

We now present the Explore-then-Match-and-Commit algorithm (EMC), described in Algorithm 3]
which combines the tools developed in the previous subsections to achieve sublinear regret. It op-
erates in five phases. First, given an input parameter [V, the algorithm explores by pulling each arm
k € [K] for N rounds and collects empirical means ©. Second, it applies EXTRACT-ORDER and
extracts an order < from ©. The parameter ¢ is chosen so that ||© — ©||o < ¢ holds with high
probability. In the third phase, it uses © and the order < to construct the matrix ©, which is SP
w.r.t. < and is element-wise close to ©. Fourth, it executes SP-MATCHING on © to find an optimal
matching 7. And in the fifth and last phase, it exploits—it plays 7 for the remaining 7' — N K rounds.
Importantly, the computational effort in Lines is only O(K?U + K?B), ensuring that the algo-
rithm is computationally efficient. This is in sharp contrast to the exponential runtime we obtain for
general instances in Section
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The regret analysis for the commitment phase hinges on the approximation quality between the
matrix © used for the matching and the true expected reward matrix ©. Since O is constructed to
be close to the empirical estimates O, and © concentrates around © with sufficient exploration, the
value gap V (7; ©) — V (#; ©) is bounded by the estimation errors and the approximation errors from
Lemma [0]and EXTRACT-ORDER. By optimizing the choice of exploration rounds N, we balance

the exploration cost against the quality of the resulting approximation.
Theorem 11. EMC(N = [T%3(InT)'/3)) yields an expected regret of at most O(UKT?3),

6.4 HARDNESS OF OPTIMISTIC MATCHING WITH UNKNOWN ORDER

In the known SP structure regime (Section , the MVM algorithm achieves O(U+vT K) regret by
solving the optimistic matching problem in each round. A natural question is whether a similar
approach can yield improved regret guarantees when the SP structure is unknown. Recall that the
optimistic approach requires solving Equation , where C! is now the confidence set of statistically
plausible SP matrices. When the order and peaks are known, Lemma E] shows that C* admits a
unique element-wise maximal matrix, reducing the optimization to a single call to SP-MATCHING.
However, when the order is unknown, C* must include all SP matrices consistent with any valid
order, and no such maximal element exists in general.

We note that if the optimistic matching could be solved efficiently in this regime, the same analysis
as in Theorem [7| would yield the same O(U VTK) regret guarantee. One might hope that a more
sophisticated algorithm could achieve this. We show that this is unlikely by proving that even a
simpler subproblem—finding the best matrix in C* for a fixed matching—is NP-hard to approximate.

Theorem 12. Consider the following optimization problem, termed MAX-SP-WCS: given sets of
users U and arms K, a matching 7 : U — K, and confidence intervals [LCB,, ,, UCB,, ] for each
(u, k) € U x K, find maxpec V (; P), where C contains all SP matrices respecting the confidence
intervals. Then, approximating MAX-SP-WCS within a factor of% + § is NP-hard for any § > 0.

7 DISCUSSION

We studied a budgeted matching problem under single-peaked preferences. While the general of-
fline problem is NP-hard to approximate within a constant factor, imposing a single-peaked structure
enables polynomial-time optimization. Nevertheless, we demonstrated that this structure does not
trivialize the statistical aspect of the learning problem, which remains as challenging as the gen-
eral preferences case. When the SP structure is unknown, we introduce an explore-then-commit
approach that first extracts an approximate order, then commits to a near-optimal policy, yielding
O(UK T2/3 ) regret. For the more lenient case of known SP order and user peaks, we developed
an optimistic algorithm based on maximal matrices that achieves O(U VTK) regret. We also con-
ducted an experimental validation, which is deferred to Appendix [H]due to space constraints.

We identify several interesting directions for future work. First, comparing our algorithmic results
with the lower bounds, we observe room for improvement. For the unknown SP structure regime,
EMC achieves O(U KT?/3) regret, while the Q(U+/TK ) lower bound is statistically tight (achiev-
able by inefficient algorithms). It remains open whether the /7 rate can be achieved efficiently, or
if our 7%/3 rate is tight for polynomial-time algorithms. Theorem provides evidence toward the
latter: exponentially many SP structures may remain consistent with observations, and we show that
even evaluating the optimistic value for a fixed matching is NP-hard to approximate. For known
order and peaks, MVM achieves O(U\/ TK) regret (Theorem , exceeding the lower bound by
VInT - max{v/K, U}. Future work could resolve this gap.

Second, our results suggest that single-peaked preferences could potentially simplify other computa-
tionally challenging problems in online learning, suggesting an alternative route to a solution rather
than a-regret. Finally, extending our results to more complex preference structures (Sliwinski &
Elkind, [2019; |Peters & Lackner, |2020) presents an intriguing challenge.
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REPRODUCIBILITY STATEMENT

All theoretical results are supported by complete proofs provided in the appendices. Algorithms
are fully specified in the main text and appendices, including pseudocode and complexity analyses.
The assumptions required for our results are explicitly stated and discussed in the problem defi-
nition and algorithmic sections. Our experimental evaluation is based on synthetic single-peaked
preference matrices generated according to a well-defined random procedure, with details given in
Appendix [H| The source code implementing all algorithms and experiments, along with instructions
for reproducing the figures, is attached to the submission and will be released upon publication. The
experiments rely only on standard Python libraries and require modest computational resources (a
single CPU).
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Our work is theoretical, and the experimental evaluation relies only on synthetic data, involving no
human subjects or sensitive information. The results may inform the design of recommendation
and matching systems under budget constraints. Applying such methods in sensitive domains (e.g.,
political content or hiring) requires careful consideration of fairness and user autonomy.
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Algorithm 4 Sep-MvM

1: Initialize n,, , < 0, 0, < 0 for all u, k.
2: // Phase 1: Exploration with Monitoring
3:fort=1,...,7=KT??do

: Select arm k; = (¢ (mod K')) + 1 for all users (Round-Robin).
Observe rewards, update empirical means 0, ,, and counts n,, j.

Update Confidence Intervals: 7, (t) = [éu,k — /3l éu,k + 21’"T].

N,k 0 T,k
SEP « Yu, Vi # j,Z,,(t) N L, ;(t) = 0.
if SEP is True then
9: Break Phase 1., proceed to Phase 2.
10: // Phase 2: Structure Exploitation
11: if SEP is True (Structure Recovered) then ~
12: Recover SP Order < using EXTRACT-ORDER(O, 0) and the peaks.

A S

13: Run MVM using recovered order < and inferred peaks.

14: else

15: // Timeout Reached - fallback to EMC Strategy

16: Solve 7@ < SP-MATCHING(O) (using the commitment phase of EMC).
17: Commit to 7 for rounds ¢, ..., T.

A EXTENSIONS

In this appendix, we present two extensions of our main results. First, we extend the MVM algo-
rithm to handle instances with unknown structure but statistically simpler learning due to distinct
preference values (Section[A.T). Second, we generalize the EMC algorithm to accommodate non-
single-peaked instances (Section[A.2)).

A.1 SEPARATED INSTANCES

We improve our guarantees for instances that are statistically simpler to learn due to distinct pref-
erence values. Specifically, we consider separated instances, where we quantify separation by
Aglobal = Ming, ming;[0y ; — Oy 5.

Algorithm overview. The SEP-MVM algorithm, presented in Algorithm [] follows a hybrid
exploration-exploitation strategy. It begins by exploring all arms in a round-robin manner, maintain-
ing confidence intervals Z, ;. (t) = [LCB,, x(t), UCB,, x(t)] for each user-arm pair. The algorithm
seeks a separation event before a timeout 7 = K T2/3, Separation occurs when, for each user, the
confidence intervals of all arms are pairwise disjoint. A direct concentration analysis reveals that
such separation must occur after at most O(KIn7/a2, ) rounds. After separation, the algorithm re-
constructs the SP order using EXTRACT-ORDER and switches to MVM with the estimated order and
peaks. If separation is not achieved by 7, the algorithm infers that the instance is not well-separated
and reverts to EMC.

Proposition 13. SEP-MVM yields a regret of at most O (U min {K T3 VTK + K/az,, }) for
, with a per-step computational complexity of O(K*U + K*?B).

Aglobal = min,, Inini#jw%i - gu,j

Proof. We analyze the regret conditioned on the standard clean event £ = {Vu, k, ¢t : \éu k(t) —

Ous| < /72 1‘; E‘C) }, which holds with probability at least 1 — 2UK/73. Under &, the true mean is

always contained within the confidence intervals Z,, 4 (¢).

We consider two cases based on the magnitude of the instance gap Agiobal-

Case 1: Aggpu < ,/%ﬁ?? . First, notice that if separation does occur before the timeout

T = KT?/3, then the regret will be at most O(UKT?/?), as it comprises of the exploration re-
gret (which will be less that K7'2/3 rounds) and the regret of the MVM algorithm, which is at
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most O(UvTK) when run with the correct parameters. Next, suppose the separation condition
is not met by the timeout. The algorithm switches to the EMC commitment strategy, after per-
forming its exact exploration phase with the same exploration parameter as in Theorem [T} Thus,
the same regret bound applies, and we get R(T) < O(U KT? 3). And indeed, when the condi-

32InT
T2/3

poly-logarithmic factors).

tion Aglobal <

holds, this is the smallest of the two expressions in the minimum (up to

Case 2: Agjopa > 4/ 3;5}? . In this case, separation occurs before the timeout. To see this, notice

that under the clean event, separation must occur if % < Agiobal /4. Since samples are collected

round-robin, n,, ;(t) ~ t/K. The condition requires:

2KInT Aglobal 32K InT
== > ——.
V= S 4 ~ A2

global

Thus, the separation event occurs at ts, = O( IZ%“T) <T

global

After the separation, the structure can be recovered perfectly (again, conditioning on the clean
event)—pairwise disjointness implies the sorted order of empirical means is identical to the sorted
order of true means. Thus, EXTRACT-ORDER will recover a true SP order and peaks.

After ¢.p, we switch to MVM. The total regret is the sum of the exploration regret (up to ¢.,) and
the MVM regret (from ¢, to T'):

R(T) S U . tsep + RMVM(T - tsep)
Exploration MVM Regret

Substituting ¢sc, = O(K/A%,) and the MVM bound O(UVTK):

~ K
R(T) <O (Z + U\/TK) .
A
global

Conclusion. Taking the minimum of the two cases (since the algorithm automatically executes the
better strategy via the timeout mechanism), we obtain the bound:

O(Umin{KTQ/B,\/TK+ 2K })

global

A.2 BEYOND SINGLE-PEAKED INSTANCES

We extend EMC to work on non-single-peaked instances. The key idea is that even when the true
preference matrix © is not SP, we can still apply our algorithmic framework and obtain meaningful
guarantees that degrade gracefully with the distance from the nearest SP instance.

Algorithm overview. The NSP-EMC algorithm, presented in Algorithm [5] maintains the same
explore-then-commit structure as EMC but adds a binary search procedure to find the minimal
tolerance parameter € for which EXTRACT-ORDER succeeds. This adaptive approach allows the al-
gorithm to handle instances that are approximately single-peaked without requiring prior knowledge
of the approximation quality.

Proposition 14. Fix an instance I (possibly not SP), and let © be its expectation matrix. Then,
NSP-EMC achieves a regret of atmost O (UKT?/3(InT)'/3 + yUKT), where y = inf p ;s sp||©—
P|| s, with a computational complexity of O(UK?1og(T) + K?B).

Proof. Let P* € S be an SP matrix such that |© — P*||c = 7, and let A,y = /2InT/N.

We condition on the clean event & = {||© — O] < A.s}, which holds with probability at least
1 — 2UK/T* by Hoeffding’s inequality and a union bound.
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Algorithm 5 NSP-EMC

Require: Exploration rounds NV

1: Match each user u to each arm k € [K] for N rounds; let © be the empirical mean matrix.
2: Binary Search for ¢:
3: Set 0w + 0,€nign + 1,€ <= 1, << Identity
4: while Ehigh — €low > % do
5: Emid < (5low + Ehigh)/2
6: <tempt EXTRACT-ORDER(O, &i4)
7: if <¢cmp# fail then
8: €+ Emid
9: <—<temp
10: Ehigh < €mid
11: else

12: Elow = Emid

13: Construct SP matrix © from (0, <) via Lemma@with 0 = 2Kepigh.

14: 7 + SP-MATCHING(O)
15: Play 7 for the remaining 7' — N K rounds.

Step 1: Feasibility of the Binary Search. By the triangle inequality and the definition of ~:
1 = P*lloc < [1© = Olloc + [0 = PTlloc < Acst + 7.

Lete* = Acst + 7. Since P* is an SP matrix (and thus valid with respect to some SP order < p-),

Lemma guarantees that EXTRACT-ORDER(O, ¢*) will succeed and return a valid order. Because

the binary search finds the minimal feasible & (up to precision 1/T") for which EXTRACT-ORDER
returns a valid order (note that this condition is monotone in €), the found parameter £ satisfies:

2 2

Ehigh < e+ T = Agst +v+ T

We omit the % term in the remainder of the analysis, as it is negligible in the final bound.

Step 2: Bounding the Approximation Error. The algorithm produces an order < using €p;gp.
According to Lemmam the empirical matrix O is (2K ep; gn)-ASP with respect to <. Subsequently,

the algorithm constructs 5} using Lemma@ with 6 = 2Kepign. Lemma@ guarantees that O is SP
with respect to < and satisfies:

||(:) - @”oo S 2K5high'
Substituting the bound for €44, from Step 1:

||é - @HOO < QK(Aest + ’Y)

Step 3: Total Value Gap and Regret. We bound the difference between the true optimal matching
7* and our committed matching 7. Since 7 is optimal for O:

V(7*;0) = V(7;0) = V(x*;0) = V(r*;0) + V(x*;0) — V(7;0)
<V(r*;0) = V(r*;0) + V(7:0)
<2U)® — 0.

—V(7;0©) (optimality of 7 on ©)

Using the triangle inequality:

18 = Olloc < 10 = Blloc + 6 = Ol
S Aest + 2I(-(Aest + ’Y)
= (2K + 1)Acqt + 2K 7.

Thus, the per-round regret during the commitment phase is bounded by:

V(r*0) — V(7;0) < 2U(2K + 1)Apyy + AUK~.
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Step 4: Total Regret. Substituting N = [T7%/3(InT)/3] and A.s; = \/2InT/N:

[2InT
Rr < NKU+T <2U(2K + 1) Jr\} + 4UK7> <OWUKT**(InT)"3 + y\UKT).

Computational Complexity. The exploration phase requires O(NK) = O(KT?/3(InT)'/3)
rounds. The binary search performs O(logT)) calls to EXTRACT-ORDER, each taking O(UK?)
time, for a total of O(U K? log T'). The final SP-MATCHING call takes O(K2(U + B)) time. Thus,
the total computational complexity is O(UK?log T + K2B). O

B GENERAL PREFERENCES ANALYSIS

In this appendix, we provide a comprehensive analysis of the computational complexity of achieving
sublinear regret under general preferences. We first establish the fundamental hardness of the offline
problem, then derive its implications for online learning, and finally discuss the a-regret framework
as a tractable alternative.

B.1 HARDNESS OF THE OFFLINE PROBLEM

We begin by proving that the offline budgeted matching problem is NP-hard to approximate within
any factor better than (1 — 1/e).

Theorem 1. It is NP-hard to approximate arg max V (m; ©) within any factor better than (1 —1/e).
mwell

Proof of Theorem[1l We proceed via reduction from the MAX ¢-COVER problem. In this problem,
one is given a universe U of elements, a collection of subsets S = {S1,...,S,,}, and an integer £.
The objective is to select at most £ subsets whose union covers the maximum number of elements in
U. This problem is known to be NP-hard to approximate better than (1 — 1/¢) (Feige, 1998).

Given an instance of the Max ¢-Cover problem, we construct a CBR instance with U = || users
(representing elements) and K = m arms (representing subsets). We set unit costs ¢, = 1, budget
B = ¢, and define preferences such that ©,, , = 1 if element u € S, and 0 otherwise.

In this constructed instance, each matching 7 induces a set of selected arms K = {k : Ju €
Us.t. m(u) = k}. A user u contributes 1 to the total reward only if assigned to a selected arm k
where u € Si. Accordingly, given a fixed KC, the optimal matching allocates each user to a covering
item if one exists; otherwise, the user yields zero reward. This implies that maximizing total reward
is equivalent to maximizing coverage using at most ¢ items. It follows that any algorithm approxi-
mating the offline matching problem better than (1 —1/¢) would violate the inapproximability result
for Max ¢-Cover. O

B.2 COMPUTATIONAL BARRIER FOR EFFICIENT ONLINE LEARNING

The NP-hardness of approximating the offline problem beyond (1 — 1/¢) directly implies that effi-
cient online learning with sublinear regret is impossible under standard complexity assumptions.

Corollary 15. For any U, K, B and T = poly(U, K, B), any poly-time online algorithm achieves
regret Q)(T), unless P = NP.

Proof of Corollary[15] Assume towards contradiction that there exists an algorithm .A running in
time poly(U, K, B) per round that achieves regret Ry < CT” for some constants p € [0,1) and
C > 0, for horizons T that are polynomial in U, K, B. For ease of presentation, we assume 7' =
U*KP B for some o, 3,7 > 1.

Restriction to hard instances. By Theorem |1} the inapproximability result holds already for in-
stances produced by the reduction from Max-¢-Cover [Feige (1998). These instances have © €
{0, 1}V <K with unit costs, budget B = ¢, and at least one entry equal to 1. Consequently, for such
instances we always have max cre) V(7;©) > 1. Since the hardness persists on this restricted
subclass, it suffices to prove the corollary under the additional assumption max,, j 0, = 1.
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Construction of the online instance. Given such an offline instance with expected reward matrix
©, we construct a deterministic online instance where the realized reward of each (u, k) pair is fixed
to 0,, k. Additionally, we pick an arbitrary arm and duplicate it so that there are

1 a(p—1)  ~(p—1)
D = max 1’ (100)5(1_0)Uﬁ(l_P)B/B(l—l))

copies of it. Let © denote the resulting matrix. Duplicating an arm cannot increase the optimal
offline value, since multiple users can already be assigned to the same arm at no additional per-
round cost. Therefore,

max V(m;©')= max V(m;0)=O0PT > 1.
Tell(©) Tell(©)

Simulating A. Run A for 7" = U®D? B” rounds on the expanded instance, obtaining matchings

’
w1, ..., 77, and return

7 = arg max V(7'; @').
te[T"]
The regret guarantee yields
T/
T'-OPT - V(r';0') < CT”.
t=1

Since V(x*; 0') > L ST V(xt; @), it follows that

OPT — V(™ 0') < CT" .

Approximation guarantee. By construction of D, we ensured that CT"?~1 < 0.1. Hence

OPT — V(7 @’) < 0.1 < 0.10PT.

Since any matching on the duplicated instance is equivalent to a matching on the non-duplicated
one, without loss of generality, we assume that 7°** € I1(©). Thus:

V(7* 0) > 0.9V (1*;0).

Contradiction. The algorithm above runs in poly(U, K, B) time and produces a 0.9-
approximation to the offline optimum, contradicting the (1 — 1/¢)-hardness result from Theorem
unless P = NP.

B.3 OPTIMAL REGRET WITHOUT COMPUTATIONAL CONSTRAINTS

If we disregard computational constraints, optimal regret bounds can be attained by applying the
standard CUCB algorithm (Chen et al.|2013)), assuming access to an exact optimization oracle.

Corollary 2. There exists a UCB-based algorithm that achieves a regret of O(U+/KT logT), which
is optimal up to logarithmic factors.

Proof of Corollary The CUCB algorithm (Chen et al., [2013) maintains averages éu’k(t) and
counts n, x(t) for each user-arm pair. In each round ¢, it computes UCB estimates P, ;(t) =

Ou k() + /2 T/n, 4 () (or 00 if ny x(t) = 0) and selects 7; € arg max, i V(m; P(t)) using an
optimization oracle. We note that we slightly changed the exact specification of the constants of
CUCB, but it is of the same spirit.

By Hoeffding’s inequality and a union bound over all (u, k) pairs and time steps, the clean event

E ={0y1 € [LCB, x(t),UCB,, x(t)] for all u, k, ¢}
holds with probability at least 1 — 2U K /7. We condition on &; its complement contributes negli-
gible regret.
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Under €&, since P(t) is element-wise maximal over all matrices respecting the confidence bounds,
optimistic selection ensures that for any round ¢:

maI%(V(Tr; ©) —V(m;0) < V(m; P(t)) — V(m; 9)

e

uG[U Ty m(u)( )

The first inequality uses optimism: V(m; P(t)) > V(n*; P(t)) > V(n*;0), where 7* is the
optimal matching. The second inequality bounds the gap by the sum of confidence widths.

Summing Inequality [5|over all rounds and regrouping by arm pulls:

N,k (T)

meo(iTy YOS L

uelU] ke[K] j=1

=0 \/72 Z‘/n“k

u€[U] kE[K]
where we used the standard bound " 21 1/V/J < 2y/n. Applying Jensen’s inequality to the inner

sum yields >, \/nu k(1) < /K> ;. nur(T) = VKT. Summing over all U users gives Ry =
OUVTKInT).

The matching lower bound Q(U+/T K) follows from Theorem as SP instances form a subclass of
general instances. O

While this algorithm is statistically optimal, it assumes an optimization oracle that must solve an
NP-hard problem at every time step, rendering it computationally impractical for general instances.

B.4 EFFICIENT APPROXIMATION VIA ALPHA-REGRET

To bridge the gap between computational efficiency and performance guarantees, we consider the
a-regret framework, which compares against the best efficiently computable solution rather than the
true optimum.

Definition 5 (Alpha Regret). For an approximation factor a € (0, 1], the expected cumulative -
regret over T' rounds is defined as:

R.(T)=a T maxV(r Z Z Tl rt (w)

mell
t=1 ue[U]

By reformulating our problem as submodular maximization subject to knapsack constraints, we can
leverage existing approximation algorithms to achieve efficient learning with meaningful guarantees.

Lemma 16. The reformulated reward function
= 2 O
u€elU]

is submodular and monotone.

Proof of Lemma We prove both properties separately.
Submodularity. For M C N C [K] and k € [K]\ N, we need
F(MU{k}) — f(M) = f(NU{k}) = f(N).

Let 07 = max;cp O, and 0 = max;cn O, ;. Since M C N, we have 62 < Y. The
marginal gains are:

JALU(RY) = (M) = 3 max{0,0,., — 0,

u€e[U]
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Table 1: Reward structure for the base case (Case 1). Costs are shown in parentheses.

| Arm 1 (c; =1) | Arm2(c2 =3) | Arm3 (c3 =1) | Arm4 (¢4 = 1)

User 1 W 1 v 0
User 2 0 0 0 1
User 3 0 0 0 1

FINUEY) = f(N) = Y max{0,0,,, — 05}

ue[U]

For each user u, since 8 < 9N:

max{0, 0, x — M} > max{0,0,, — 0 }.

Summing over all users gives the desired inequality.

Monotonicity. For M C N, since maxgens Oy,1 < maxgzen O, for each user u, we have:

FON = 2 g Oue < 2 O = /(N

ue[U] u€[U]
O

Proposition 17. There exists an algorithm running in O(K3U) time per-round achieving expected
cumulative %-regret of:

B[Ry »(T)) < O (U(K + B)*T%/7),

where 8 = B/miny, ¢, is the budget-to-minimum-cost ratio.

Proof of Proposition[I7] Regret analysis. We reformulate our problem as submodular maximiza-
tion over subsets, where we select S C [K] subject to the budget constraint » res Ck < B and each
user receives their most preferred item from the selected subset. The reformulated reward func-
tion f(S) = ZUE[U] maxges Oy, is submodular and monotone by Lemma Under knapsack

constraints, the Greedy+Max algorithm of |Yaroslavtsev et al.| (2020) achieves a %-approximation

and is (%, i+ K+ 26) -robust in the sense of |Nie et al. (2023), where K = min{K, B/cuin }
and 8 = B/c¢min. Applying the C-ETC framework of |Nie et al.| (2023) with normalized rewards
f(S) = L f(S) yields the bound O(U - (4 + K + 2B)?/3(KK)/3T?/3log(T)'/?). To obtain
our clean bound, we use (3 + K + 28)%? < (K + 8)¥? and (KK)'/? < K?/3, then apply

(K + B)?/% . K?/3 < (K + 8)*3 to get the stated bound.
The runtime analysis stems directly from the algorithm of Nie et al.| (2023)). O

C PROOF OF THEOREM [3]

Theorem 3. For any algorithm, the worst-case regret over SP instances is Q(UVTK), and
Q(max{UV/T,VTK}) when the SP order and user peaks are known.

Proof of Theorem[3 We prove the lower bounds by constructing specific hard instances for each
regime.

Case 1: Known Order and Peaks (R = Q(U+/T)). We construct a family of hard instances

parameterized by w = ((;, Vi))iil € [1/4,3/4)?Y. To illustrate the construction, consider a “base
case” consisting of three users and four arms with a budget B = 3 and costs ¢ = (1,3,1,1). The
reward structure for this case is shown in Table[]l
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The full instance comprises U copies of User 1 (indexed 1,...,U) and 2U copies of Users 2 and
3 (indexed U + 1,...,3U). The instance is PSP with order 1 < 2 < 3 < 4. Users 1...U peak
at Arm 2, while the others peak at Arm 4. Due to the budget B = 3, any feasible matching must
either select Arm 2 alone (cost 3), or a subset of {1,3,4}. The optimal matching selects {1, 3,4},
assigning users 1...U to argmax(u;, v;) and the rest to Arm 4. The optimal expected reward is

V*(w) = S max{u;, v;} + 2U.

Consider an algorithm A generating matchings w‘. Let 7o = {t € [T] : Im(n") = {2}} be the
rounds where Arm 2 is selected, and Ty = [T'] \ 7. In rounds ¢ € T, the reward is exactly U. In
rounds ¢ € Ty, users U +1...3U contribute at most 2U (if they are being matched to Arm 4), while
user i € [U] contributes based on their assignment to 1,3,4. Decomposing the cumulative reward,
similar to the classical bandit analysis, we can upper-bound the reward by

T

ZV(ﬂ't; o)

t=1

EA <EZ}

U

i=1

where [V ; is the number of times user 7 is matched to arm j. The regret is then bounded by:

U U
Ry > B |U|Ty| + |T4| Zmax{/% vi} — Z (1Nt + viN3)

=1 =1

If E[|Ty|] > /T, the first term yields Q(UV/T). If E[|Tz|] < VT, then E[|Ty|] = Q(T), and
the remaining terms correspond to the regret of U independent 2-armed bandit problems played for
Q(T') rounds. By the standard minimax lower bound (Auer et al., 2002), this scales as Q(U\/T)

Case 2: Known Order and Peaks (R = Q(v/TK)). To capture the dependency on K, assume
U = 2, budget B = 1 (forcing a choice of exactly one arm per round), and costs ¢, = 1. We
construct a family of hard PSP instances parameterized by i* € [K]. For each i*, the reward
structure is defined as follows: User 1 has preferences 1/2 4+ A for arms k£ < ¢* and 1/2 for arms
k > i*, while User 2 has preferences 1/2 for arms k < i* and 1/2 + A for arms k > i*.

Each instance is PSP: User 1’s preferences are non-increasing with a peak at arm 1, and User 2’s
preferences are non-decreasing with a peak at arm K. For any choice of ¢*, arm ¢* is the unique
optimal arm with total reward 1 4+ 2A, while all other arms yield 1 + A. Identifying the optimal arm
among K possibilities reduces to the classical K-armed bandit problem. Following the standard
change-of-measure argument via Bretagnolle-Huber (e.g., |Lattimore & Szepesvari| (2020, Chap-
ter 15)) with A =< /K /T, we obtain a lower bound of Q(+/TK). Note that although each round
yields two reward observations rather than one, this only affects the KL-divergence by a constant
factor and does not change the order of the lower bound. Combining this with Case 1, we have a
regret lower bound of Q(max{U~+/T,VTK?}).

Case 3: Unknown Peaks (R = Q(UVTK)). If the peaks are unknown, we rely on the classic
construction of the multi-armed bandit lower bound (e.g., Slivkins| (2019, Chapter 2)). Specifically,
we construct an instance where each user u has a unique, unknown peak p(u) with reward 1/2 +
A, while all other arms offer reward 1/2. Observe that such preference profiles are trivially PSP
regardless of the underlying order of arms, as they are constant everywhere except at a single point
(the peak). Since the distributions are independent across users, learning the peak for one user
provides no information about the others. This reduces to U independent K -armed bandit instances.
By the standard minimax lower bound, each user contributes (/T K) to the regret, resulting in a

total regret of Q(UVTK). O

D DEFERRED PROOFS FROM SECTION [4]
Lemma 4. Fix any PSP matrix © with peaks p(-), and any arm subset S = {k1,...,k

m
}
with ki < -+ < ky,. Let 7 € argmax, p,(r)cs V(7 ©). For any user u, if k; < p(u) <
for some j with 1 < j < m, then 7 (u) € {k;, kj+1}; otherwise, 7*(u) € {k1, km }.
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Algorithm 6 SP-MATCHING

Require: PSP matrix P with peaks p(-), budget B, costs c(-)
Ensure: 7* = arg max, .y V(m; P)

1: Add arm 0 with cost ¢ = 0 and P, o = 0 for all u € [U]

2: Vi, j € {0yU[K]:Gij + > max{Py;, Pu;}

wii<p(u)<j
Vb=1,...,B:F(0,b) + 0
fork=1,...,Kdo
forb=cp,...,Bdo
F(k,b) «+ max [F(’L, b—ck)+ Gi,k]

:0<i<k,
b>citey

AN AN

7. V* F(k, B P,
i) B PIR
w:p(u)>k

8: Backtrack to find selected arms S*
9: return 7*(u) = arg max,cg. Py k

Proof of Lemmald] Recall that under single-peaked preferences, the preferences of each user u
are unimodal with a peak at p(u)—the reward function 6, ;, is non-decreasing for k£ < p(u) and
non-increasing for p(u) < k.

For the first case, assume that k; < p(u) =< kj;1 for some 1 < j < m. For any £ < j, since
k¢ = k;j = p(u), the non-decreasing property gives 0y, < 0, x,. Similarly, for any £ > j+1, since
p(u) < kji1 = ke, the non-increasing property yields 0, x,,, > 0y x,. Therefore, any arm outside
{k;,kj11} is dominated by at least one arm in this pair, establishing that 7*(u) € {k;, kj41}.

For the second case, start with the case of p(u) =< kp, which implies p(u) < k; < -+ < k,,,. By
the non-increasing property after the peak, we have 0, 1, > 6y 5, > -+ > 0, , . which implies
7*(u) = k1. The case of ky, < p(u) is similar, and yields 7*(u) = ky,. O

Theorem 5. For any PSP matrix, SP-MATCHING finds an optimal matching in time O(K?(U+ B)).

Proof of Theorem[3 Define OPT(k, b) as the maximum reward achievable when arm k is the right-
most selected arm, the total budget is at most b, and we consider only users whose peaks lie in
{0,1,...,k}. Note that the fictive arm 0 contributes zero reward and zero cost. We prove by induc-
tion that F'(k,b) = OPT(k,b) forall k > 0 and b > 0.

Base case: For the fictive arm, OPT(0, ) = 0 for all b < B since no users have peaks at arm 0 and
the arm contributes zero reward. The algorithm correctly assigns £'(0,b) = 0 in Line (3).

Inductive step: Assume F(i,b") = OPT(i,b) for all 0 < ¢ < k and all budgets ¢, < b’ < b. For
any k£ > 1 and budget b > ¢y, the optimal solution must select some arm 7 with 0 < ¢ < k as the
second-rightmost selected arm (where ¢ = 0 corresponds to selecting only arm k).

By Lemma users with peaks in the interval (4, k] are optimally assigned to either arm 4 or arm k,
contributing exactly G j to the total reward. Users with peaks in {0, 1,...,7} contribute optimally
according to OPT(i,b — cx) by definition. Since the fictive arm O has zero cost, the constraint
b > ¢; + ¢y, is always satisfiable with ¢ = 0. Therefore,
OPT(k,b) = max [OPT(4,b — cx) + G, i
:0<i<k,
b>citey

The inductive hypothesis ensures that OPT (i, b — ¢) = F(i,b — cx), so:
OPT(k,b) = max [F(i,b— ci)+ Gix] = F(k.b).

<i<k,

b>ci+cg

After computing F'(k, b) for all relevant values, Line (7)) computes

max {F(k,B)+ > Puxh
kelK] w:p(u)>k
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which accounts for users whose peaks exceed the rightmost selected arm due to the second case in
Lemmad] This ensures that the algorithm correctly computes the maximum reward for the given
budget B. The backtracking reconstructs the optimal matching, from which we can exclude arm 0
if it was somehow included by picking any other arm for that user.

Runtime Analysis: Computing the G’ matrix requires O(K2U) time. The dynamic programming
fills O(K B) entries, with each entry requiring O(K) operations, yielding O(K2B) time. The
remaining steps take O(KU) time. Therefore, the total complexity is O(K2U + K?B). O

E DEFERRED PROOFS AND DETAILS FROM SECTION [3]

Lemma 6. For any non-empty confidence set Ct(<, p, Hy), there exists a unique element-wise max-

imal matrix P* € C" such that P}, ; > P,y for all P € C* and all u € [U], k € [K]. Furthermore,
in;.p<; UCB, ;(t), k=

this matrix is given by P!, = {m%nl-kfzip(u) () - p(u)'

’ ming.)<i<x UCByi(t), p(u) Xk

Proof of Lemmal6l First, observe that P! is SP by construction (as the values are defined via a
running minimum moving away from the peak) and satisfies P! < UCB by definition.

Next, assume towards contradiction that there exists a matrix P € C and a pair (u, k) such that
P,r > me. By the definition of P?, there exists an index k' with either & < k' < p(u) or
p(u) < k' < k such that Pﬁ,k = UCB,, i (t). From our assumption, we have P, > UCB,, s.
Since P € C, Definition [3| ensures that P, ;» < UCB,, ;/(t). Combining these inequalities yields
P, > UCB, i (t) > P, . However, the SP property of P with peak at p(u) implies P, < P, i
(since both arms lie on the same side of the peak), contradicting P, j, > P, /.

Finally, if C? is non-empty, then for any P € C!, we have P! > P > LCB, ensuring Pt € C! and
completing the proof. O

Theorem 7. For any SP instance with known SP order < and peaks p(-), MVM achieves regret of
at most O(UVTK InT) with per-round runtime of O(K*U + K?B).

Proof of Theorem[7] The analysis follows the same structure as the UCB-based algorithm in Corol-
lary [2} with the maximal matrix P! playing the role of the UCB matrix. We condition on the clean
event & = {© € C! forall t}, which holds with probability at least 1 — 2UK/73 by Hoeffding’s
inequality and a union bound.

Under &, since P! is element-wise maximal in C* (Lemma E]), the per-round regret satisfies Inequal-
ity (3). Summing over rounds and applying the same regrouping and Jensen’s inequality arguments

as in the proof of Corollary yields Rr =0O(UVTKInT).

For the runtime, each round involves updating statistics (O(U)), constructing P! via Lemma E]
(O(UK)), and running SP-MATCHING (O(K?(U + B)) by Theorem . The complexity is domi-
nated by the matching step. O

F DEFERRED PROOFS FROM SECTION
Proposition 8. A matrix is SP w.r.t. an order < if and only if it is 0-ASP w.r.t. <.

Proof of Proposition First, assume P is SP w.r.t. <. By definition, for any user u, the values
P, i, are non-decreasing up to a peak p(u) and non-increasing thereafter. Consequently, for any
triplet ¢ < j < £, the middle element j must satisfy P, ; > P, ; (if j < p(u)) or P, ; > P, , (if
J = p(w)). In either case, P, ; > min{P, ;, P, ¢}, satisfying the 0-ASP condition.

Conversely, suppose P is 0-ASP w.r.t. <. For any user u, let p(u) be an index maximizing P, ..
For any i < j < p(u), the 0-ASP condition implies P, ; > min{Py ;, P, p(u)} = Pu,:» ensuring
non-decreasing values to the left of the peak. By symmetry, values are non-increasing to the right of
the peak, implying that P is SP. O
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Lemma 9. Let P be a 6-ASP matrix w.r.t. <. There exists a matrix P which is SP w.rt. <, and
satisfies |P — P|loo < 6.

Proof of Lemma[9 The proof is via construction. Forevery u € U, set p(u) = arg MaXy (k] ]5”7 ks
and define P as follows: ~
max;.i<k Pui, k = p(u)
P, = - s .
max;.g<i Py, plu) <k
The matrix P is SP w.r.t. < by construction: for each user u, the row P, () is defined as a running

maximum from the endpoints toward p(u), ensuring non-decreasing values for £ < p(u) and non-
increasing values for k = p(u).

It remains to show that ||[P — P||o, < 8. Consider an entry (u, k) with k& < p(u). By construction,
P, = max;.;<g Pu i If the maximum is achieved at k itself, then P, , = fju 1. Otherwise, the
maximum is achieved at some 7 < k, and we have P, = Pu i < Pu k + 0, where the inequality
follows from applying Deﬁn1t10nlt0 the tripleti < k < p(u). A symmetric argument applies when
p(u) < k. Since P, j, > P, j by construction (as the maximum includes ﬁu’k itself), we conclude
|Py i — Pu| <6 forall (u,k). O

Lemma 10. Let P be a matrix such that |P — P||o < ¢ for some SP matrix P. EXTRACT-
ORDER(P, ¢) returns an order < such that P is (2K¢e)-ASP w.r.t. <.

Proof of Lemma[I0] We first establish the existence of an order that satisfies all the constraints;
we do so via the SP order of P, which we denote as -< p. Fix some v € U for which a
contiguity constraint on the set of arms S = {k¥,... k% } was imposed. Due to Lines
I we must have ming¢cg Puk — Maxy¢g Pu > 25 Since HP Plloo < &, this implies
minges Py r — maxp¢g Py > 0. Thus, because P is 0-ASP w.rt. <p, <p must satisfy this
constraint as well; otherwise, as was previously discussed, we could have found a triplet of arms
that contradicts Definition 4l

Next, let < be a returned order (one must exist, as our first step suggests). Fix v and arms ¢ < j < L.
We must show Puj > mm{Pu . P ¢} —2Ke. Assume w.lo.g. that Pu , < P, .. Consider the
arms sorted by preference kY, ..., k%. If there were any index m such that {k}, ..., k¥ } includes
7 and ¢ but excludes j, and the gap ]5%;% — Pu,k;“nH > 2¢, the algorithm would constrain this set
to be contiguous. This would force j outside the interval between ¢ and ¢, contradicting i < j < /.
Therefore, no gap exceeding 2¢ exists in the sorted sequence between the values Pu,i and ]5% -
Summing these gaps (at most K) yields IBW» — JBW» < 2Ke. O

Theorem 11. EMC(N = [T%3(InT)'/3)) yields an expected regret of at most O(UKT?/3).

Proof of Theorem[1] Let ¢ = /2InT/N. By Hoeffding’s inequality and a union bound, the
clean event £ = {||© — O||o < £} holds with probability at least 1 — 2KU/74, Its complement, £,
occurs with low probability and contributes at most 7T'U to the overall regret; thus, we condition the
rest of the proof on £. Under &, the approximation guarantees from Lemmas [9] and [I0| combined
imply that the constructed matrix O satisfies ||© — O], < 2Ke. By the triangle inequality, the total
estimation error is bounded by

6 — Ol < (2K +1)/2InT/N. (6)

Now, let 7 be the matching computed in Line (3]), and let 7* be the optimal matching w.r.t. ©. Using
Inequality we can bound the regret of a single commitment round (f > K N) as follows:

V(r*0) = V(7;0) < V(r*;0) — V(7;0) + 2U (2K + 1)\/2nT/n < 2U (2K + 1)y/21n7/w,

where the last inequality follows the optimality of 7 with respect to ©. Thus, by dividing into
exploration and commitment rounds, we can bound the total regret by

Ry <0 (KNU +T 20 (2K + 1)y/2WT/x)
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Substituting N = [T%/3(InT)"/3] yields Ry < O(UKT?*/*(InT)/3) = O(UKT??), which
completes the proof. O

Theorem 12. Consider the following optimization problem, termed MAX-SP-WCS: given sets of
users U and arms K, a matching 7 : U — K, and confidence intervals [LCB,, ., UCB,, ] for each
(u, k) € U x K, find maxpec V (m; P), where C contains all SP matrices respecting the confidence
intervals. Then, approximating MAX-SP-WCS within a factor of% + § is NP-hard for any 6 > 0.

Proof of Theorem[12] We reduce from MAX BETWEENNESS (Opatrny, [1979} [Austrin et al.}
2015), which involves, given a set of elements S and a collection of ordered triplets G C S°,
finding a linear order of S that maximizes the number of triplets (a, b, ¢) € G for which element b
lies between a and c in the order. |Austrin et al.| (2015) show that for any 1 > 0, it is NP-hard to
distinguish between instances where at least (1 — n) fraction of triplets can be satisfied versus at
most (1/2 + n) fraction.

Reduction. Given a BETWEENNESS instance (S, G), construct a MAX-SP-WCS instance as fol-
lows. Create an arm for each element s € S, so K = S. For each triplet g = (a4,bq,¢,) € G,
create two users u, and vy, so U = {ug,v, : g € G}. Define the matching by m(uy) = a, and
m(vg) = ¢q. Fix € € (0,1/2) and set confidence intervals as:

1—¢,1], k=b,

[
[LCBy, &, UCBy, ] = ¢ [0,¢], k=cg
[0, 1], otherwise
1—e,1], k=b,
[LCB.y, &, UCBy, 4] = 4 [0,¢], k=aq
[0, 1], otherwise

This construction is polynomial in the size of the BETWEENNESS instance.

Key observation. Fix any arm order < and triplet g = (ag, by, ¢g). If by lies between ag and ¢
in <, we can complete both rows 14 and v, unimodally with peaks at b, that respect the confidence
intervals and achieve P, o, = Py, c, = 1: set P, = 1 for all arms k on the same side of b, as
ag (including b,), and P, 1 = 0 otherwise; 31m11arly for vg.

Conversely, if b, does not lie between a4 and cg4, then either ¢, lies between a4 and by, or a4 lies
between b, and cg4. In the former case, single-peakedness requires P, < Py, O Py,p, <

g:ag — g —
Py, c,; since the confidence intervals enforce P, ., < € and P, ;, > 1 — &, we must have
Pug,ag < e. By symmetry, in the latter case, Pvg,c‘ < e. These bounds can be achieved with
equality.

Therefore, the contribution from users ug, v, is exactly 2 if triplet ¢ is satisfied by <, and 1 + ¢
otherwise. Hence, if s triplets are satisfied:

V(mP)=2s+ (|G| —s)(1+¢)=|G|(1+¢e) + s(1 —¢).

Hardness of approximation. Consider a MAX BETWEENNESS instance I that is hard to distin-
guish. Denote the corresponding MAX-SP-WCS instance by I, and let OPT(I) denote the optimal

value of 1. If at least (1 — 7)| G| triplets of I can be satisfied, which we refer to as case H, we would
have:
OPT(Ix) > |G|(1+¢) +|G|(1 = n)(1 — ) = [G|(2 = n +en).
On the other hand, if at most (1/2 + 7)|G]| triplets can be satisfied, which we refer to as case L:
OPT(I1) < |G|(L+¢) +|GI(1/2 +n)(1 =) = |G| (32 + 1+ /2 —en) .

Suppose there exists an «-approximation algorlthm ALG for MaX-SP-WCS, i.e., ALG(I ) >

Q- OPT(I) for all MAX-SP-WCS instances I. Then, in case H, we would have ALG(IH) >
>

o - OPT(I ;) while in case L ALG(I,) < OPT(I},) will hold trivially. Notice that if ALG(I)
OPT(I;,), we could distinguish the two cases. This holds whenever:

OPT(I) _ 5N+ 5—en neso 3/2 _3
OPT(Ig) = 2-n+en 2 4
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Thus, for any 6 > 0, a (% + 0)-approximation algorithm would distinguish between hard instances
for sufficiently small 7, €, contradicting the NP-hardness of MAX BETWEENNESS. O

G HANDLING TIES IN PEAK INDICES

In the classical study of single-peaked preferences in social choice theory, preferences are ordinal—
each user provides a ranking over alternatives rather than cardinal utility values. In this ordinal
setting, ties at the peak do not arise: the peak is simply the top-ranked alternative, which is unique
by definition. However, in our cardinal framework, a user v may have multiple indices k that achieve
the same maximal expected reward max¢(x] 0u,x/. When this occurs, the peak p(u) as defined in
Definition[I]is not unique, and we must verify that our algorithms and analyses are robust to arbitrary
tie-breaking choices.

Robustness of the Offline Algorithm. We begin by establishing that Lemma |4] is robust to the
arbitrary choice of peak when a user has several maximizers. Suppose user u has two peak indices
r < y with 0, , = 0,, = maxyc|k) Ouk, and fix a selected set S = {k1 < kg < -+ < k.
We claim that the value of the optimal matching of u against S is independent of whether we set
p(u) = x or p(u) = y. To see this, observe that exactly one of the following cases holds:

» There exists j € {1,...,m — 1} with k; < 2 <y < kj;+1 andno k¢ € (z,y). By uni-
modality, any arm outside {k;, k;;1} is dominated by one of them, so 7*(u) € {k;, kj41}
regardless of the tie-break.

* y < ky. Values are non-increasing to the right of the peaks, hence 7*(u) = k; regardless
of the tie-break.

* k,, < x. Values are non-decreasing to the left of the peaks, hence 7*(u) = k,, regardless
of the tie-break.

* There exist indices i < j withx < k; <--- < k; <y. Since all k € [z, y] attain the peak
value by the single-peaked property, any k € {k;,...,k;} is optimal. The lemma asserts
m*(u) € {ki—1,k;} if the peak is set to x, and 7*(u) € {k;, k; 1} if the peak is set to y.
In either case, the attained value maxyc g 6, remains unchanged.

In every case, user u’s contribution to the matching value is invariant to the choice of peak.

This invariance extends to SP-MATCHING (Algorithm [6). Observe that every choice of the right-
most arm k in Line [7|corresponds to a subset of selected arms and a matching that assigns each user
according to Lemmal4] By the argument above, the attained value of each user in this subset is inde-
pendent of how we resolve peak ties. The choice of peak only affects when we account for a user’s
contribution during the dynamic programming computation, not the contribution itself. Therefore,
running SP-MATCHING with different valid peak indices yields the same optimal value V*.

Robustness of the Online Algorithm with Known Structure. For the MVM algorithm (Algo-
rithm E]), we must verify that the maximal matrix construction in Lemma@remains valid when users
have multiple peak indices. Suppose user u has peak indices p,p + 1,...,p + m for some m > 0,
and this information is known to the algorithm. The maximal matrix consistent with this structure
should assign the same value to all peak indices, equal to the minimum of their upper confidence
bounds. Formally, one could define:

minie{o,..‘,m} UCBu,P-I—l(t)’ k S {pvp + 1) Y4 + m}
P;)k = Hlinz':kjijp+m, UCBmi(t), k< p
mini;pjijk UCBu’i (t), pt+tm=< k.

However, for any choice of peak index p + ¢ with i € {0,...,m}, using the original definition
from Lemma [f] yields a matrix that element-wise upper bounds this modified construction. Thus,
the regret analysis of Theorem[7|remains valid even if we use a slightly loose upper bound that may
technically fall outside the confidence set. The key properties used in the analysis—that P! upper
bounds any matrix in the confidence set and that P? is single-peaked with respect to <—continue to
hold.
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Unknown Structure Regime. For the algorithms in Section [6] peak ties do not require special
treatment. In this regime, peaks are not explicitly computed or used by the algorithm; they only
appear implicitly through the call to SP-MATCHING in Line [5] of Algorithm [3] Since we have
already established that SP-MATCHING is invariant to the choice of peak indices, the analysis of
EMC and its extensions remains valid regardless of how ties are resolved.

H EXPERIMENTAL VALIDATION

In this section, we present computational experiments to demonstrate the practicality of our algo-
rithms and provide empirical validation of the theoretical regret bounds.

H.1 SIMULATION DETAILS

We now describe the synthetic setup used to evaluate our algorithms, including instance generation,
implementation details, and experimental protocol.

Instance generation. We constructed single-peaked expected reward matrices © using the follow-
ing procedure: for each user u, we first sampled K preference values independently from a uniform
distribution over [0.2,0.9]. We then selected a random peak location p(u) € [K] and arranged the
values to create a unimodal preference profile—The largest sampled value was assigned to the peak,
while the remaining values were sorted and distributed to create an increasing sequence up to the
peak and a decreasing sequence afterward.

The actual rewards observed during algorithm execution were drawn from Bernoulli distributions,
where r,, j, ~ Ber(d,, 1) for each user-arm pair. We set unit costs for all arms (¢, = 1 for all k) and
used a budget constraint of B = | K /2], allowing selection of approximately half the available arms
in each round.

Algorithmic implementation. The implementation of EMC and MVM uses standard Python sci-
entific computing libraries (NumPy, Pandas) without GPU acceleration, as the algorithms are pri-
marily CPU-bound. The SP-MATCHING algorithm, used by both algorithms, was implemented
using the dynamic programming approach described in Algorithm [6] Additionally, for the PQ tree
implementation, we used the SageMath library (The Sage Developers, [2025), a standard Python
package for advanced mathematical computations.

Experimental setup. We tested both algorithms on 10 random instances with U = 100 users
and K = 20 arms. We estimated the expected regret using 10 independent runs for each instance.
For the EMC algorithm, we tested time horizons ranging from 7' = 10° to T = 105 rounds. To
simulate the unknown order setting, we randomly permuted the columns of each generated single-
peaked matrix before running the algorithm. For the MVM algorithm, we executed a single run
up to 7' = 10° rounds, recording the cumulative regret at each time step to observe the full regret
trajectory. This method naturally serves as an upper bound on the regret that would be incurred if the
algorithm were run separately for smaller values of 7. However, we still observe the same predicted
asymptotic behavior. Since this algorithm assumes a known order and peaks, we provided the true
single-peaked structure directly without column permutation.

The difference in the number of rounds 7" for the two algorithms stems from the fact that EMC
necessitates larger time horizons to ensure a sufficient number of commitment rounds relative to the
exploration rounds.

Used hardware. The complete simulation suite was executed on a standard MacBook Pro with
18 GB of RAM and 8 CPU cores. We utilized parallel processing across five cores to accelerate
computation. The complete set of experiments required approximately 6 hours of computation time.
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Figure 2: Log-log plots of cumulative regret versus time for both algorithms. Each plot shows the
mean regret over all 10 instances (with 10 runs each) and shaded regions indicating standard devia-
tion. The EMC algorithm (left) achieves a slope of approximately 0.69, approaching the theoretical
guarantee of 2/3 ~ 0.67. The MVM algorithm (right) demonstrates slopes below 0.5, consistent
with the theoretical bound.

H.2 RESULTS

Figure [2] presents log-log plots of cumulative regret versus time for both algorithms. Each plot dis-
plays the mean regret computed over all 10 instances (with 10 runs each), along with shaded regions
representing the standard deviation. The narrow confidence bands demonstrate the consistency of
our results across different problem instances and random seeds. Note that the two plots use dif-
ferent x-axis representations: the EMC plot (Figure shows log(T") where each point represents
the total regret after 7" rounds of interaction, while the MVM plot (Figure shows log(t) with the
cumulative regret trajectory at each round ¢.

The EMC algorithm. As shown in Figure 23] the algorithm exhibits consistent behavior, as evi-
denced by the nearly indistinguishable standard deviation bands. The fitted slope is approximately
0.694, approaching but not quite reaching the theoretical prediction of 2/3 ~ 0.667 from our
O(UK T2/3 ) regret bound. When tested for larger time horizons, the empirical slope approaches
the theoretical value of 2/3, confirming the asymptotic prediction of our analysis.

The MVM algorithm. As shown in Figure [2b] the algorithm demonstrates excellent empirical
performance with slopes ranging from 0.388 to 0.434 across different instances. All observed slopes
fall strictly below the theoretical upper bound of 0.5, corresponding to our O(U v KT) regret bound.
The variation in slopes across instances reflects the algorithm’s adaptive nature: instances with
more challenging preference structures result in steeper regret growth, which corresponds to slower
learning. The small standard deviation bands indicate that the algorithm’s performance is stable
across multiple runs of the same instance. This gap between empirical performance and theoretical
bounds suggests that our analysis may be conservative for typical problem instances.

Comparison. The empirical slopes—0.694 for EMC versus 0.388-0.434 for MvM-highlight the
cost of unknown order. While both algorithms achieve sublinear regret, the MVM algorithm’s
knowledge of the single-peaked structure enables significantly better asymptotic performance. The
EMC algorithm’s performance is hindered by the finite-horizon effects discussed above, but still
achieves sublinear regret that would approach the theoretical rate with larger time horizons.

I BIPARTITE BUDGETED MATCHING VARIANT

In this appendix, we address a recommendation setting where each arm may serve at most one user.

2Qur code is available at https://github.com/GurKeinan/
code-for-Bandits-with-Single-Peaked-Preferences—-and-Limited-Resources—-paper.
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1.1 PROBLEM FORMULATION

We consider the same stochastic setting as in our main model (T, U, K, (Dy, k)u.k, (ck )k, B), but
with a different notion of a valid matching.

In our main model, multiple users may be assigned to the same arm in a round, and the budget
constraint applies to the sef of distinct arms used. In the bipartite variant considered here, each user
can be matched to at most one arm, and each arm can be matched to at most one user (one-to-one
matching). For simplicity, we focus on the case of unit costs; the case of general costs remains an
interesting problem for future work. In each round, the learner chooses a matrix X € {0, 1}YV*¥

satisfying
Dowur<1Vu, > @y <1VE Y wup < B,
k U u,k

and receives an expected reward V(m;©) = Zu & ©u,kTu,k. Similarly to before, we denote by

IIB the set of feasible matchings, where each matching corresponds to a matrix that satisfies these
constraints. The only change from our main model is the feasible set of matchings; the stochastic
structure and regret definition remain unchanged.

1.2 POLYNOMIAL-TIME ALGORITHM FOR THE OFFLINE PROBLEM

We start our analysis by showing that the offline budgeted bipartite matching problem can be solved
in polynomial time using a reduction to either the Hungarian algorithm or a min-cost flow formula-
tion.

Proposition 18. We can solve arg max ¢y V (7; ©) in polynomial time.

Proof of Proposition[I8] We divide our proof into two cases based on the relation between the
budget and the number of users and arms.

Case 1: B > min(U, K). In this case, the budget constraint is non-binding, and we can simply
find the maximum weight matching in the bipartite graph formed by users and arms. Formally,
we first pad the smaller side of the bipartite graph with dummy nodes to make it square. W.l.o.g.,
assume U < K; we add K — U dummy users with ©,, , = 0 for all arms k. We then apply the
Hungarian algorithm to find the maximum weight matching in this square bipartite graph, which
runs in O(K?) time. Since the padded users do not contribute to the reward, the resulting matching
is optimal for our original problem.

Case 2: B < min(U, K). In this case, the budget constraint is binding, so we formulate the
problem as a min-cost flow problem. We construct a flow network as follows:

¢ Create a source node s and a sink node ¢.
e Create a node A, for each user v and a node Bj, for each arm k.

* Add edges from s to each user node A, and from each arm node By, to ¢ with capacity 1
and cost 0.

* For each user-arm pair (u, k), add an edge from A,, to By, with capacity 1 and cost —O,,
* Node s has a supply of B, and node ¢ has a demand of B.

* Since the total supply at s is B and the total demand at ¢ is B, any valid flow of value B
corresponds to selecting exactly B edges between users and arms.

By the Integrality Theorem of minimum cost flow, since all arc capacities and node sup-
plies/demands are integers, there exists an integer-valued optimal flow f*. In our network, since
capacities are 1, this implies the flow on any edge (A, By) is either 0 or 1. We construct the
matching X by setting z,, , = 1 if and only if the flow on edge (A,,, By) is 1. The capacity con-
straints on edges (s, A,) ensure ), @, < 1, and the capacity constraints on edges (B}, t) ensure
Zu Ty, < 1. Finally, the total flow value of B ensures Zuk Ty = B.
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The total cost of the flow is Zuk Ty (—Ouk) = — Zu,k %4,k Ou, k. Therefore, minimizing the
cost is equivalent to maximizing the total reward V(7; ©). Since min-cost flow can be solved in
polynomial time, the offline bipartite budgeted matching problem is efficiently solvable. O

1.3 ONLINE ALGORITHM

Since the offline optimization problem can be solved efficiently, we can employ standard Combina-
torial MABs algorithms without relying on the single-peaked structure. Although we can adapt the
algorithm from Corollary ]to this setting, we prefer to use the COMBUCB 1 algorithm from Kveton
et al. (2015a) and its guarantees with our efficient offline solver as the oracle.

Corollary 19. There exists an efficient online algorithm for the bipartite budgeted matching problem
that achieves O(\/T) regret.

Proof of Corollary[19 We can apply CoMBUCBI using the offline solver from Proposition[18]as
the offline oracle. Since the reward function V' (7r; ©) is linear in the matchings and the offline oracle
is exact, the analysis of [Kveton et al.| (2015a) applies directly. The worst-case regret is bounded
by O(VLK:o:TInT), where L = UK 1is the number of total items (where item in this setting
corresponds to choosing to match a user and item), and K, = B is the maximum number of chosen
items in a valid matching. Thus, the regret scales as O(v/U K BT'), and the per-round computational
complexity is polynomial in U, K, and B. O

1.4 LOWER BOUND

We complement our algorithmic result with a matching lower bound, showing that the dependency
on U, K, and T is unavoidable.

Theorem 20. For the bipartite budgeted matching problem with K > U, any online algorithm
incurs an expected regret of Q(VUKT).

Proof of Theorem[20] Construct a hard instance where the set of arms [K] is partitioned into U
disjoint subsets S1, . .., Sy, each of size |S,| > 2. User u receives rewards only from arms in S,,.
Specifically, for each user u, one arm in S,, yields Bernoulli rewards with mean 1/2+ ¢, while others
in S, have mean 1/2. Arms outside S, yield 0. Since the subsets are disjoint and users are only
compatible with their specific subsets, the global problem decomposes into U independent multi-
armed bandit instances. The constraints > & Tuk < 1and Zu Ty, < 1 are satisfied independently
within each subset. Assuming sufficient global budget B > U, the total regret is the sum of regrets
from U independent bandits, each with K /U arms over T rounds. Using the standard minimax

lower bound of Q(v K'T') for K/ arms:

R(T)iﬁ(@) Q(Uﬁ) :Q( UKT).

u=1
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