
RLJ | RLC 2024

Towards Safety in Multi-agent Reinforcement
Learning through Security and Privacy by Design

Kyle Tilbury
ktilbury@uwaterloo.ca
University of Waterloo

Bailey Kacsmar
kacsmar@ualberta.ca
Amii, University of Alberta

Jesse Hoey
jesse.hoey@uwaterloo.ca
University of Waterloo

Abstract

In multi-agent reinforcement learning (MARL), the integration of security and pri-
vacy by design is critical for safe deployment in real-world applications. This posi-
tion paper explores the unique security and privacy challenges inherent to MARL,
identifying potential attack vectors and their implications on system security and
user privacy. We emphasize the necessity of embedding security and privacy con-
siderations starting from the initial stages of designing MARL systems, especially
in settings involving humans. We highlight theoretical foundations and potential
deployment challenges, advocating for a design paradigm that prioritizes security
and privacy by design in MARL systems.

1 Introduction

Emerging advances in multi-agent reinforcement learning (MARL) will enable many real-world ap-
plications such as collaborative robotics (Wu et al., 2022), autonomous vehicular systems (Bloom
et al., 2017; Cai & Xiong, 2023; Pape et al., 2023), and distributed control systems (Wang et al.,
2021). The complex and dynamic nature of multi-agent systems, with agents interacting in shared
environments that may also be shared by people, raises significant challenges in security and privacy.
While recognition of some privacy and security issues afforded by these systems is growing, such
as with identifying and mitigating collusion (Foxabbott et al., 2023), verification mechanisms in
decentralized settings (Sun et al., 2023), or detecting adversarial attacks (Franzmeyer et al., 2022),
the nature and extent of privacy and security vulnerabilities in MARL remain ill-defined.

In this work, we aim to illustrate what characteristics of MARL systems correspond to unique attack
vectors, their possible implications, potential defence strategies, and how future MARL systems
may better account for these factors in their design, particularly in settings of coordination and
cooperation with humans. We outline a variety of attack vectors specific to MARL systems in line
with security and privacy work which uses a series of adversarial inference attacks and poisoning
attacks as proxies for understanding the privacy and security limits of models (Song & Mittal,
2021; Liu et al., 2022b; Yeom et al., 2018). However, we note that such inference attacks focus
on recovering training data or the model parameters; things that do not necessarily translate in a
generalized way to the MARL setting. Further, these attacks on machine learning, other than in the
case of federated or distributed machine learning are not considering a multi-party setting which is
an intrinsic property of MARL. Thus, we bring this conversation to the community to ensure we
successfully highlight the necessary MARL system characteristics and foster a conversation on what
privacy by design can lend to MARL safety as the viability of higher risk applications emerges.

2 Theory to Practice: Challenges from Security and Privacy

Deploying privacy enhancing technologies is non-trivial, even for techniques with privacy formal-
ization work spanning decades (Kacsmar et al., 2020). Achieving formal guarantees of technical
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privacy requires that we first define what is being protected, from whom, and under what conditions
these protections will hold. Further, we must assume that any attacker that targets our system will
eventually learn how our system works and the security of our system cannot rely on obfuscation to
ensure the protection of our system. This last assumption paraphrases what is known as Kerkhoff’s
principle and Shannon’s Maxim within the security and privacy community (Shannon, 1949).

2.1 Privacy by Design

Given our interest in ensuring the design and deployment of impactful privacy preserving systems
for MARL, we turn to the nuanced concept of privacy-by-design (PBD) (Wong & Mulligan, 2019).
Essentially, this concept encompasses a codification that to ensure privacy it is required to include
privacy from the beginning; before deploying technologies into our digital society. This requirement
emerged in recognition of repeated evidence that it is easier and safer to account for privacy and secu-
rity risks during design rather than having to redesign your system after the fact (Gürses et al., 2011;
Atwater et al., 2015). The modern conception of this is attributed to Ann Cavoukian (Cavoukian
et al., 2009) and is incorporated into the EU privacy regulation GDPR (e.g., with the property of
data minimization, etc.) (Voigt & Von dem Bussche, 2017). Thus, as MARL is currently moving
towards application viability, we must begin to assess how to incorporate privacy into the design of
applied multi-agent systems.

PBD has a selection of core tenets, including being user centric. However, in the case of MARL, the
nature of a user has high variance. As we discuss later within this work, the people impacted by a
MARL system could be agents within the system or even just those existing within the environment
the MARL system has been deployed to. Further, other tenets of PBD include embedding privacy
into the design, having privacy as the default configuration, and ensuring privacy about processes
across the whole software life-cycle. For each of these tenets to be upheld, we must first consider
how we design MARL systems and where within these different configurations are there greater risks
of adversarial action that could infringe upon privacy and security for people in our digital society.

2.2 Privacy and Security Components

In addition to the tenets of PBD, there are a series of vectors that serve as the starting point for
the evaluation of privacy and security for multi-agent systems. These vectors include attacker goals,
attacker power, and the security and privacy goals. Thus, before defining what ‘harms’ can occur,
we first identify what we want to ensure cannot happen, as well as what must happen. In other
words, what functionality do we need and what cost is too high.

Attackers. Within each of the vectors we must consider, there is the notion of an attacker (or
adversary). An attacker is an entity that has some targeted goal that is in opposition to the
protections we want to preserve within our system. When defining an attacker, we make assumptions
about what sorts of computational or informational abilities they have based on their potential
‘views’ of our system.

An attacker can be a participant in a system or an observer of the system. This means they could
even be contributors to training where they have access to a policy, model, training parameters, etc.
They can be passive or active. Passive meaning they do not act against the system nor deviate from
expected behaviours and active meaning they may take action to cause effects that further their
goals.

In some machine learning settings, we can model this attacker similarly to what is done in adversarial
learning, however, adversarial learning does not encompass the concept of an attacker more generally
nor does it encompass what we mean by attacker within this work (Goodfellow et al., 2020). In the
context of MARL, one pre-existing notion of adversaries, is an adversary as some other agent(s) with
opposing goals (i.e., opponents) (Littman, 1994). Consider a game-like setting where two agents on
opposing teams playing football (soccer) could be thought to be in an adversarial relationship (only
one can win the game). A second pre-existing notion of adversaries in MARL is from adversarial
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training techniques where agents must learn to overcome challenging adverse scenarios or adversarial
perturbations to increase their robustness (Pinto et al., 2017). The adversaries we focus on within
this work are attackers, aiming to achieve an attacker goal that is distinct from the goals of any
participant in the system. That is, returning to the football example, the football agents’ purpose
is to play against one another. Whereas if our attacker was one of the soccer players, they may be
attempting to determine whether the other agent has a particular medical condition based on how
they play the game.

Protective Goals. The basic security and privacy principles one starts with are confidentiality,
integrity, and availability. We want to ensure that sensitive information is not revealed to unau-
thorized parties (confidentiality), that data and processes cannot be manipulated without detection
(integrity), and that an adversarial actor cannot prevent legitimate actors from accessing and using
the system (availability). The system goals aimed at preserving these properties include detecting
infringements upon these properties, deterring attackers from infringing upon these properties, pre-
venting attackers from being able to infringe upon these properties, deflect adversaries’ attacks to
non-critical targets, and recover from any attacks that occur.

Attacker Modelling. The two most common ways of classifying an adversary’s actions within a
system are honest-but-curious (HBC) or malicious (Evans et al., 2018). In an honest-but-curious
setting, the adversary follows all the rules of the protocol, but will try to learn as much as they
possibly can from the information they observe. The adversary will not deviate from the protocol
in any way and they will not send false information. In contrast to an HBC adversary, a malicious
adversary is able to act in ways that deviate from the defined process, including sending on false
information, as they work towards succeeding at their attack.

For an adversary, succeeding at their attack corresponds to any of the following goals. The attacker
succeeds if they are able to cause loss or harm in some way, are able to intercept something secret,
are able to interrupt functionality, are able to modify settings or information from the system, or if
they can create their own settings or information in the system without being detected.

In addition to modelling attacker’s behaviours and goals, we also need to account for their power and
views. For instance, an attacker could have significant monetary, computational, and legal power or
the attacker under consideration could be someone with only consumer level computational resources.
They may have access to other large datasets that they can use to strengthen their inferences via
statistical analysis, or they may only have access to public information such as news articles and
social media. Within a multi-agent system, we can define the adversarial view based on whether
the adversary has access to parameters, is able to observe the environment state, or even having
access to agents’ policy information. In other areas of machine learning, whether the adversary has
access to such information is typically modelled as white-box access, black-box access, or something
in between; with white-box access having the most insight into the system and black-box access
having the least (Nasr et al., 2019).

Technical Guarantees. The formal guarantees within security and privacy fall under three possi-
ble types. First, we have computational guarantees that make assumptions about the computational
hardness of a problem and that an adversary cannot reasonably be expected to have sufficient com-
putational power to break your system. For instance, many technical protocols rely on the assumed
mathematical hardness of problems such as the discrete logarithm problem (Goldwasser, 1997). On
the opposite side of computational guarantees, we have information theoretic guarantees which rely
on systems where no matter how much computational power an adversary has they are unable to
violate the security of the system as long as they do not have the secret information, such as a key
or collection of shares (Shamir, 1979). Finally, there are statistical guarantees, such as in the case
of differential privacy (Dwork, 2006). For a statistical guarantee, the security is framed such that
the probability of an adversary being able to discern the information being protected can only occur
with a very small probability. In differential privacy, the statistical guarantee can be understood
as the probability that an adversary can distinguish between two states, one where a data point
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contributed to a result and the other a state where the data point did not contribute, is negligibly
small. These different types of guarantees can be used in combination to achieve a complete system,
though the precise configuration can only be determined once the functionality needs have been
formalized, which is why we now turn to the different characteristics of MARL systems.

3 MARL System Characteristics and Adversarial Views

In this section, we conceptualize and contrast MARL system characteristics and discuss them with
respect to privacy and security. The characteristics that we will outline are not necessarily exclusive
from one another and real-world MARL systems may involve mixtures of some or all of them.

Coordination, Cooperation, and Competition. One vector of significance to any security and
privacy analysis is the participant distribution and behaviours; corresponding to the risk of collusion
(Blanchard et al., 2017) or even requirements for cooperation (Shamir, 1979). Within MARL, this
vector occurs along a spectrum of coordination that spans cooperation to competition. In MARL,
coordination encompasses the processes through which multiple RL agents in some system act, inter-
act, and, ultimately, achieve some outcome. Multiple agents learn and adapt their policies according
to the system’s state and other agents in the system. Coordination in MARL often encompasses that
agents learn strategies to cooperate, compete, or coexist within their shared environment. Strategies
for coordination vary depending on whether agents have aligned, conflicting, or mixed incentives.

In competitive MARL settings agents have opposing goals and they aim to maximize their individual
welfare (Busoniu et al., 2008). A competitive setting may be structured so that the advantage gained
by one agent results in a disadvantage to another. In cooperative MARL settings the focus becomes
how agents can learn, through their acting in a shared system, to optimize their behaviour such that
some measure of global welfare is maximized (Panait & Luke, 2005). Agents can have fully aligned
incentives (fully cooperative), fully opposing incentives (fully competitive), or a mixture of both in
mixed settings. Mixed settings have no restrictions placed upon the goals and relationships among
agents and can contain both collaborative and adversarial behaviours (Zhang et al., 2021).

In settings where distributed machine learning is employed (Konečnỳ et al., 2016), the participating
entities have a common goal of training a model, but an individual goal of protecting their data.
While not having to directly share data is a step towards privacy protections, participants in such
schemes have a great deal of insight into the system and know the distribution of their own data.
Thus, in such cases there is a requirement for some combination of the following (i) trust in the
other participants, (ii) a trusted, or semi-trusted, third-party to facilitate computations (Papernot
et al., 2017), or (iii) some computational protections that limit the ability of participants to discern
information about one another (Bonawitz et al., 2017). However, unlike distributed machine learning,
it is more common within the MARL world to have different notions of the agent’s interactions with
one another towards the outcome of the system.

Full Autonomy and Mixed Autonomy. While the previous vector illustrated how attackers
may have different view points or knowledge depending on the characteristics of the actors in the
MARL system, this vector highlights different vulnerabilities. The population of agents present in
the system may not be entirely comprised of RL agents. The characteristic of the distribution of RL
agents to non-RL agents is classified as either fully autonomous or a mixed-autonomy setting. In
a fully autonomous system, all decision making and actions are done by autonomous systems (i.e.,
RL agents) without direct human intervention. In a mixed-autonomy setting where the environ-
ment comprises some mixture of learning agents, other autonomous agents, and human agents (Wu
et al., 2017). In the latter, where humans and agents interact and coexist, we have to consider the
complexity of social engineering attacks (Mitnick & Simon, 2003; Mouton et al., 2016). In short, the
implications of social engineering are that human behaviour can be easier to manipulate and more
unpredictable; resulting in exploitation that negatively impact the multi-agent system that human
agents and RL agents are operating within.
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Even without malicious attackers, human error, where people unintentionally introduce problems
into the system through regular interactions without malice can still negatively impact the system.
This challenge has resulted in different proposals as to how to formalize human behaviour to mitigate
emergent issues due to human action (Ellison, 2007; Basin et al., 2016). Such a formalization requires
detailed accounts of different configurations and, thus, are the motivation for our work including an
over-view of the MARL system characteristics that may impact security.

Further, the implications of a mixed-autonomy setting are not limited to the security implications
introduced by the human involvement. Rather, we also have the potential for privacy harms impact-
ing the human participants, with their involvement creating the possibility of their personal data or
information being exposed. Agents learning from human interactions may unintentionally capture
(collect, store, make part of policy/model, etc.) private info from those humans without adequate
safeguarding of the data; an issue that can only be prevented during design before deployment
introduces such a risk.

Training and Execution. One of the more unqiue characteristics of MARL, at least with respect
to security and privacy, is the categories of training and execution. MARL learning broadly falls
into three categories: centralized training and execution, centralized training and decentralized
execution, and decentralized training and execution (Albrecht et al., 2024). Centralized training and
execution is where both the training process and decision-making during execution are managed
centrally. This means that all agents have some shared type of information or mechanism between
them, such as a centralized controller that can access the full state of the environment and access the
actions of all agents. Centralized training and decentralized execution constitutes the paradigm where
agents have some shared information or mechanism during training, but act independently based
only on their own observations during testing or deployment. Decentralized training and execution
encapsulates scenarios where both the learning and deployment are performed independently by
each agent without any form of centralized control or shared information between them.

These configurations are distinct from other types of computation with centralization, such as fed-
erated learning (Konečnỳ et al., 2016). Centralization in MARL has greater control and knowledge
than other notions of centralization. Further, in some applications, it may be crucial to keep certain
information private to an agent and centralized mechanisms that share information could unwittingly
make it easier for attackers to access privileged information. Work will be needed to analyze what
protections are needed to prevent centralization from introducing risks rather than mitigating them.
That is, while a centralized setting could be modelled as only having a single entity an outside at-
tacker could target, if the centralization leaks information to agents within the system, there could
be many targets. Alternatively, an attacker that successfully compromises the central controller
would compromise the entire system. Thus, it is critical that work moves towards elucidating the
possible amplifications or unique attack vectors afforded to attackers by these three paradigms. In
particular these paradigms do not map to existing security and privacy work on machine learning,
so we cannot hypothesize the risk bounds for MARL systems based on existing attacks.

Communication. One of the vectors that heavily influences security and privacy attacks is what
information is available to the attacker, both inside and outside of the system. The communication
paradigms within MARL are quite diverse and facilitate information sharing among agents (Zhu
et al., 2024). There are settings with no communication, where agents act independently as well as
settings with structured forms of communication. For example, broadcast type communication allows
agents to send messages that are received broadly by all other agents in the environment (Foerster
et al., 2016). Directed communication allows targeted messaging between specific agents (Ding et al.,
2020). Additionally, implicit communication involves agents inferring information from actions they
observe of other agents (Tian et al., 2020). With respect to communication, this MARL characteristic
will impact what an attacker can know inside of the system, corresponding to different settings similar
to what is known as white-box and black-box attacks (Nasr et al., 2019).
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Online and Offline Learning. One of the most apparent vectors that can influence what attacks
are feasible, is whether the MARL system has agents learning online, offline, or some combination. In
online learning, within the context of MARL, agents learn and update their policies while actively
gathering experience the environment. Agents continuously update their strategies based on the
feedback, i.e. rewards and states, received from the environment in real-time. Whereas in offline
learning, agents are trained on a fixed dataset of experiences, typically without further interaction
with the environment during initial learning (Yang et al., 2021; Meng et al., 2023). Datasets used
for offline learning are typically collected from previous experiences of agents gathered in similar
environments. In a combination setting, agents may be pre-trained in an offline manner and then
undergo a period of online learning whether during further training or during deployment.

The security and privacy distinction along this vector corresponds to the distinction between active
and passive adversaries in secure multi-party computation (Evans et al., 2018). In offline learning,
an adversary will not be able to influence the system or observe changes to policies that occur based
on their actions. This adversary will only observe actions and outputs to make hypotheses. On
the opposite end of this spectrum, in an online setting an adversary could take actions to change
the environment in clever ways to impact the agents’ policies and what actions they take. In short,
offline learning is primarily at risk of passive attacks from adversaries while online learning must
also face active attackers. However, while active adversaries are possible if they are already able to
exist within and influence the environment, our next vector has the risk of active adversaries joining
their environment as well.

Continual Learning. Continual lifelong learning is when agents continue to learn and adapt their
policies throughout their deployment (Al-Shedivat et al., 2017). Continual learning agents may be
more adaptable, which may be attributed to their ability to adjust their strategies to new infor-
mation or changes in the environment. However, such adaptations could result in unpredictable or
unstable behaviour when the changes to the environment and new information come from an at-
tacker. Further, in this setting an attacker could make multiple entities to influence the environment
on their behalf to more efficiently corrupt the system (Douceur, 2002). In contrast to the context
of continual learning, fixed learning limits agents’ learning to a defined training phase after which
the agents’ policies are no longer updated, not even during deployment or execution. Employing a
fixed setting in safety-critical applications may be advisable as the policies are stable and consistent
and cannot be influenced by unforeseen attacker actions. In summary, the setting for continual or
fixed learning directly corresponds to the viability of an attacker executing what are referred to as
poisoning attacks on other forms of machine learning (Wang et al., 2022).

The Greater MARL Pipeline. Even beyond the characteristics we have discussed thus far,
MARL is not monolithic. MARL can use different types of RL, but also supervised and unsupervised
machine learning. At the core, different reinforcement learning methods impact privacy and security.
Consider model-free approaches versus model-based approaches (Sutton & Barto, 2018). The model
of the environment built in model-based approaches could encode sensitive personal data which
could be more easily exploited by an attacker than a model-free approach where an attacker might
have to rely on an inference attack to glean sensitive information about the training data used.
Further, other aspects such as RL algorithm selection could be problematic if some algorithms are
more prone to overfitting to some data or patterns during training, which is already known to lead
to more successful inference attacks for other machine learning systems (Yeom et al., 2018).

Incorporating supervised and unsupervised learning methods into multi-agent systems will corre-
spond to introducing their known attack vulnerabilities, with many attacks having already been
developed (Papernot et al., 2016; 2017; Nasr et al., 2019; Carlini et al., 2021) Some examples where
supervised learning can be leveraged in MARL include supervised pretraining (Schwarzer et al., 2021;
Lee et al., 2024), supervised policy distillation (Wadhwania et al., 2019), or imitation learning (Song
et al., 2018). Unsupervised learning in MARL can be utilized for things such as representation
learning (Grover et al., 2018; Laskin et al., 2020), generating intrinsic motivation (Bellemare et al.,
2016), or self-supervised learning (Pathak et al., 2017). While incorporating these other ML ap-
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proaches can enhance MARL systems, they facilitate the need to incorporate the broader knowledge
of privacy and security in machine learning (Papernot et al., 2016).

4 Discussion

While work has emerged towards improving the safety of reinforcement learning (Melcer et al., 2022;
Marchesini et al., 2023; Marzari et al., 2023; Melcer et al., 2024), recent work has only begun to
highlight the need for some notion of balance with respect to learning retention versus the need for
privacy and security through consideration of unlearning in the RL domain (Liu et al., 2022a). We
want to emphasize the following three security and privacy components that need to be addressed
by both the MARL research community and the security and privacy research community.

First, formalization of attackers for MARL deployments. Across the characteristics we describe
above, any number of combinations exist that can amplify or mitigate risk. Possible adversarial
abilities, resources, as well as knowledge are dependent on whether an attacker has access to a
central or singular view point, whether an attacker can generate its own agents it controls, whether
social engineering of human actors can aid in their attack, and even whether they can influence the
environment in the case of continuous or certain online learning settings.

Second, we must consider the possible adversarial goals and their corresponding attacks. An attacker
may aim to control an agent, and thus their actions, aim to influence the selection of an agents’
policies, impact the environment the agents act within, and so on towards any number of outcomes
including city gridlock or disrupting water access depending on the application under consideration.
There is currently potential for attackers to impact decision making in MARL without the attackers’
actions being detectable (Franzmeyer et al., 2022). This existing attack can be executed within
environments where both the attacker and the victim are agents that interact, showing that there
is already risk along two of the vectors we highlight as factors in our overview of MARL system
characteristics. These attacks are designed to manipulate the observations (and thus decision) of
the victim agent without being detectable; and thus, hindering current designs from being able to
recover from such an attack.

Finally, we must move towards incorporating defences within the design of MARL systems. Further,
defences cannot be limited to data collection concerns, which while important are not the full extent
of the problem to be addressed. While recent work investigates what information is strategically
relevant and irrelevant in cooperative multi-agent environments (Lauffer et al., 2023) it is only the
beginning. We need to incorporate techniques to detect attacker transgressions. For instance, within
a continuous learning setting, if we are able to detect malicious actors (by bounding normal behaviour
via some form of interpretability) we may be able to detect misbehaving agents or anomalies within
the world and subsequently incorporate “mental state” check points, policy check points that allow
us to go back to a recovery state from before an adversary either corrupted the world or influenced
the agents’ actions.

We want to engage the MARL community at this workshop and also the security community in the
future. The challenges for deploying any form of machine learning when considering security and
privacy are substantial. They include compliance with emerging legal regulations in the EU (Ed-
wards, 2021), Canada (Government of Canada, 2022), and other governing bodies in addition to the
technical challenges. The path towards overcoming these challenges and achieving deployment in
high-risk settings requires incorporating privacy and security into the design of MARL now.
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