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Abstract

LLMs have emerged as powerful evaluators in the LLM-as-a-Judge paradigm,
offering significant efficiency and flexibility compared to human judgments. How-
ever, previous methods primarily rely on single-point evaluations, overlooking
the inherent diversity and uncertainty in human evaluations. This approach leads
to information loss and decreases the reliability of evaluations. To address this
limitation, we propose a novel training framework that explicitly aligns the LLM-
generated judgment distribution with human evaluation distributions. Specifically,
we propose a distributional alignment objective based on KL divergence, combined
with an auxiliary cross-entropy regularization to stabilize the training process.
Furthermore, due to limited human annotations, empirical human distributions are
merely noisy estimates of the true underlying distribution. We therefore incorpo-
rate adversarial training to ensure a robust alignment with this true distribution,
rather than overfitting to its imperfect approximation. Extensive experiments across
various LLM backbones and evaluation tasks demonstrate that our framework
significantly outperforms existing closed-source LLMs and conventional single-
point alignment methods, with superior alignment quality, strong robustness, and
competitive evaluation accuracy.

1 Introduction
In recent years, large language models (LLMs) have demonstrated remarkable progress across various
tasks, such as natural language understanding [1, 2], reasoning [3–5], and evaluation [6, 7]. One
of their most significant applications is for automatic judgment, which employs LLMs to evaluate
specific targets based on predefined criteria or instructions [8, 9]. This LLM-as-a-Judge paradigm
offers significant advantages in efficiency and flexibility due to its capability to efficiently handle
large-scale data and adapt to diverse evaluation tasks. Therefore, using LLMs as judges has emerged
as a promising alternative to conventional human evaluations [10].

Most previous works adopt single-point judgment with LLMs, which just outputs a single result for
each sample [11–13]. Although this paradigm is straightforward, it overlooks the inherent diversity of
human evaluations. In real-world scenarios, human evaluations are rarely deterministic. Instead, they
follow a distribution that encodes valuable signals like the level of consensus and controversy. [14, 15].
Therefore, replacing this distributional human evaluations with a single-point LLM judgment may
cause information loss [15], which limits the comprehensiveness and reliability of evaluations. This
limitation is particularly critical in high-stakes domains like medical diagnosis or policy-making,
where reliance on a single prediction is inherently risky and unreliable [16].

In order to empower LLM judgment with the diversity and uncertainty of human evaluations, an
intuitive approach is to generate a judgment distribution based on LLMs. Although LLMs can
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Figure 1: Comparison between single-point alignment and distribution alignment. (a) Single-point
Alignment: In this method, LLMs are trained to generate outputs that exactly match the desired text.
(b) Distribution Alignment: By using this approach, the models are trained to produce judgment
distributions that align with the human evaluation distributions.

inherently provide probability distributions over output tokens, previous studies have shown that they
are often overconfident and skewed towards a few options [17]. Besides, most current LLM training
approaches focus on single-point alignment, aiming to maximize the probability of generating a
specific correct or desired output [18, 19], as illustrated in Figure 1(a). This focus inherently limits
their ability to capture the diversity and uncertainty present in human evaluations, hindering effective
distribution alignment. Therefore, it is necessary to design an explicit distributional alignment
framework to align LLMs’ output with human evaluation distributions, as illustrated in Figure 1(b).

To address the above challenges, we design a novel framework that explicitly aligns the output
distributions of LLMs with human evaluation distributions. Specifically, we propose a distributional
alignment objective that leverages the Kullback–Leibler (KL) divergence [20] to minimize the
discrepancy between the model’s predicted distribution and the empirical distribution derived from
human annotations. Besides, we introduce a hybrid loss function that combines the primary KL
divergence objective with an auxiliary cross-entropy loss to improve the training stability. It combines
the distributional advantages of KL divergence and the stability of single-point alignment. To further
mitigate the risk of overfitting caused by limited human annotations, we propose an adversarial
training strategy to improve model robustness. Specifically, we apply the worst-case perturbation to
the empirical distributions during optimization, encouraging the model to align with any plausible
distribution within the bounded perturbation set. Our major contributions are presented as follows:

• Explicit Distribution Alignment Framework. We propose a novel framework to explicitly align
the distribution of LLM judgment with human evaluation distributions, thereby effectively capturing
the uncertainty and diversity inherent in human evaluations.
• Robust Distribution Alignment Methodology. By introducing an adversarial optimization strategy
that leverages distribution perturbations during training, we significantly enhance the fidelity and
robustness of model alignment with real human evaluation distributions.
• Extensive Experimental Validations. Experiments across diverse LLM backbones and evalua-
tion tasks demonstrate that our approach consistently surpasses existing closed-source LLMs and
substantially outperforms conventional single-point alignment methods in multiple aspects.

2 Related Work
2.1 LLM-as-a-Judge

LLMs are increasingly used as automated evaluators (i.e., LLM-as-a-Judge) [11–13, 21, 22] due to
their efficiency, scalability, and generalization capabilities [8, 9]. Previous works typically utilize
LLMs to produce a single-point deterministic evaluation, such as binary consistency judgments
[21] and Likert-scale ratings [22]. However, these approaches neglect the inherent variability
observed in human evaluations, where humans often present diverse opinions, resulting in evaluation
distributions [14]. Collapsing this diversity into a single decision overlooks valuable information [15]
such as disagreement, uncertainty, and subjectivity. To address this limitation, we generate probability
distributions from LLMs for evaluations. We propose an explicit alignment method to better match
the distributions generated by LLMs with the actual distributions provided by human annotators.
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Prior work, such as [23] for the NLI task, has also advocated for learning from full human judgment
distributions instead of single labels. Our approach is distinguished by two primary innovations. First,
we introduce a novel adversarial training mechanism on the label distribution itself. This mechanism
is designed to mitigate the annotation noise stemming from limited data, a known limitation that prior
work [23] had not mechanistically solved. Second, we validate our framework’s effectiveness in the
contemporary LLM-as-a-Judge paradigm, extending its application to modern evaluation tasks like
quality evaluation and preference understanding.

2.2 Distributional Reward Models

To model diverse human preferences, distributional reward models in Reinforcement Learning from
Human Feedback (RLHF) [19] aim to output a distribution over reward values rather than a single
scalar reward [24–26]. Existing research in this area typically employs methods that model preference
score distributions using mean and variance [24, 25], or adopting quantile regression techniques to
achieve finer-grained preference modeling [26]. These approaches often infer reward distributions
from human preferences indirectly and necessitate architectural modifications that may decrease the
general capabilities of LLMs [27]. Different from previous studies, our proposed approach directly
leverages the explicit distributions derived from human evaluations, while it can also preserve the
inherent language generation capabilities of LLMs without architectural changes.

2.3 Adversarial Training

Adversarial training can enhance model robustness by exposing models to worst-case perturbations in
training phase, which has been widely adopted in various fields, such as computer vision [28, 29] and
natural language processing [30, 31]. It is often formulated as a min-max optimization problem with
two adversarial stages. Specifically, the maximization stage identifies the worst-case perturbation, and
the minimization stage updates the model parameters to minimize loss under these perturbations [32].
This iterative procedure enables the model to learn more robust and reliable decision boundaries.
Common optimization algorithms employed in adversarial training include the Fast Gradient Sign
Method (FGSM) [33] and Projected Gradient Descent (PGD) [34], both of which have shown strong
stability and effectiveness. In this study, we adopt adversarial training to enhance the robustness of
LLMs, in order to better align model predictions with human evaluation distributions.

3 Preliminary

Consider a dataset D, where each sample x ∈ D is annotated independently by N human annotators.
Each annotator assigns labels from a discrete set of categories C = {1, 2, . . . , C}. We define the
empirical distribution of human judgments (i.e., human evaluation distribution) for a given sample x
as the vector p(x) ∈ RC , whose i-th component is given by:

pi(x) =
1

N

N∑
j=1

I(yj = i), ∀i ∈ C, (1)

where yj denotes the label from the j-th annotator for sample x, and I(·) is the indicator function.

Correspondingly, let θ denote the parameters of the LLM. For an input sample x, the model outputs
a normalized probability distribution over the C categories. This distribution is represented by
the vector qθ(x), where each component qθ,i(x) indicates the predicted probability for category i.
Formally, the probability vector qθ(x) is defined as:

qθ(x) ∈ {q ∈ RC | qi ≥ 0, ∀i ∈ C,
C∑
i=1

qi = 1}. (2)

In classical evaluation settings [35, 36], a single deterministic reference label r(x) ∈ {0, 1}C is often
used, typically defined by selecting the most frequent human annotation:

ri(x) =

{
1, if i = argmax

k
pk(x),

0, otherwise.
(3)

The primary objective of our method is to optimize the model parameters θ so that the predicted
judgement distribution qθ(x) closely aligns with the human judgment distribution p(x). Our proposed
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Figure 2: Overview of our proposed framework. (a) Training framework: We generate adversarial
perturbations of the empirical human distribution and optimize the hybrid loss. (b) Motivation:
Illustrates the relationship between the empirical, perturbed, and true underlying distributions. Robust
alignment mitigates the deviation problem in the empirical human distribution.

explicit distributional alignment framework enables the model to better capture nuanced human
judgments, thereby resulting in more informative and representative evaluations.

4 Methodology

4.1 Overview

To overcome the limitations of single-point judgments and better reflect the inherent diversity and
uncertainty in human evaluations, we propose a novel training framework that explicitly aligns
model-generated probability distributions with real-world human evaluation distributions. Given an
input, we extract logits corresponding to the judgment token to obtain the predicted distribution. Our
training involves two main steps, as demonstrated in Figure 2(a). First of all, we generate a worst-case
perturbation around the empirical distribution to enhance robustness. Then, we compute the hybrid
loss between the model prediction and the perturbed distribution, and update the model parameters
accordingly. This approach mitigates the inherent limitation of empirical human distributions, which
serve only as imperfect estimates of the true underlying distributions, as illustrated in Figure 2(b).
By aligning model predictions with all plausible distributions within the perturbation set, our method
promotes more robust and faithful distributional alignment.

4.2 Human Distribution Alignment via Hybrid Loss
To achieve effective alignment between the model’s output distribution and the human judgment
distribution, we propose a hybrid loss function. This loss function combines KL divergence for
distribution alignment with an auxiliary cross-entropy objective for training stability. First, to
explicitly encourage distributional alignment, we introduce the KL divergence loss:

LKL(θ) =
1

|D|
∑
x∈D

DKL (p(x) ∥ qθ(x)) , (4)

where DKL(· ∥ ·) denotes the KL divergence. This objective promotes a fine-grained alignment
between the model’s predicted distribution and the human evaluation distribution. Second, to improve
training stability and guide learning with more direct supervision, we also include the cross-entropy
loss as an auxiliary regularizer:

LCE(θ) =
1

|D|
∑
x∈D

CE(qθ(x), r(x)), (5)

where r(x) is the reference label for sample x, determined by majority-vote among the human
annotators. This hybrid design mirrors the philosophy of knowledge distillation [37], where student
models are trained using both soft targets (through KL divergence from a teacher model) and hard
labels (via cross-entropy with ground truth). This approach leverages the rich informational content
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provided by the teacher’s outputs and the direct guidance of true labels, improving both learning
fidelity and convergence stability. Embracing this principle, our hybrid loss function blends these two
objectives via a weighting factor α ∈ [0, 1]:

LHybrid(θ) = α · LKL(θ) + (1− α) · LCE(θ). (6)

This hybrid approach ensures stable training using cross-entropy while also achieving nuanced
distributional alignment through KL divergence. As a result, it effectively captures both consensus
and diversity in human annotations.

4.3 Robust Alignment via Adversarial Training

In practice, due to the limited number of human annotations, we only have empirical approximations
of the human judgment distribution, as illustrated in Figure 2(b). Directly aligning the model output
qθ(x) with these empirical approximations p(x) results in the model overfitting to sampling noise or
artifacts, reducing the robustness of alignment with the true underlying distribution.

To address this challenge, we introduce adversarial training into our distribution alignment framework.
Specifically, we define a perturbation set E around the empirical annotation distribution p(x) and
identify the worst-case perturbed distribution p′(x) within this set. Aligning our model with this worst-
case distribution ensures robustness against any plausible perturbation within E , thereby improving
alignment with the human judgment distribution. This transformation converts our objective into a
min-max optimization problem as follows:

θ∗ = argmin
θ

max
p′(x)∈E

[α ·DKL(p
′(x) ∥ qθ(x)) + (1− α) · CE(qθ(x), r(x))] . (7)

This min-max formulation is structurally similar to adversarial training methods like TRADES [38].
However, the two frameworks are conceptually distinct in several key aspects. TRADES perturbs
model inputs for attack robustness, with the KL term serving as an auxiliary regularizer for output
smoothness. In contrast, we perturb the target label distribution, making KL divergence the primary
objective for achieving a more robust and faithful alignment with human judgments.

This adversarial training process consists of two alternating steps:

1. Adversarial Distribution Generation: For a fixed model parameter θ and each sample x in the
batch, find the worst-case distribution p′(x) within the perturbation set E that maximizes the loss.
2. Model Update: Update model parameters θ to minimize the adversarially perturbed loss.

Through this adversarial training procedure, we explicitly model the worst-case scenarios of the
true underlying human judgment distribution, thereby ensuring robust and stable alignment. By
accounting for potential annotation noise and sampling artifacts, the model becomes less sensitive to
empirical inaccuracies, thus enhancing its generalization performance and practical applicability.

4.4 Implementing Adversarial Training via Projected Gradient Descent

To solve the inner maximization equation in Equation (7), we adopt Projected Gradient Descent
(PGD) to iteratively search for the worst-case perturbation within a constrained space.. Specifically,
we seek an adversarial distribution p′(x) that maximizes the KL divergence from the model prediction
qθ(x), while remaining close to the original human distribution p(x) and preserving the properties
of a valid probability distribution.

We define the feasible perturbation set E as the intersection of two convex sets as E = ∆C ∩
Bϵ∗(p(x)), where ∆C = {p′ ∈ RC |

∑C
i=1 p

′
i = 1, p′i ≥ 0} is the C-dimensional probability

simplex, and Bϵ∗(p(x)) is an ℓ2 ball of radius ϵ∗ centered at the original human distribution p(x).
Based on the feasible perturbation set, we design the optimization procedure as follows. First of all,
we initialize the unperturbed distribution as p(0) = p(x). Then, we conduct the gradient ascent by
updating the current iterate in the direction of the gradient of the KL divergence as:

y(t+1) = p(t) + η · ∇p(t)

[
DKL(p

(t) ∥ qθ(x))
]
, (8)

where η denotes the step size controlling the gradient ascent magnitude. After that, we project the
updated distribution back onto the feasible set E with the equation:

p(t+1) = ΠE(y
(t+1)) = arg min

p′∈E
∥p′ − y(t+1)∥22. (9)
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This projection step is a convex Quadratically Constrained Quadratic Program (QCQP) [39], as it
minimizes a convex quadratic objective over the intersection of two convex sets: the simplex and
the ℓ2 ball. Notably, the intersection E is guaranteed to be non-empty since the original distribution
p(x) ∈ E by definition. Consequently, this projection problem is well-posed and can be efficiently
solved using off-the-shelf convex optimization solvers such as CVXPY [40].

5 Experiments
5.1 Experiment Setup

Datasets. We evaluate our framework using representative datasets [15] from three fundamental
LLM-as-a-Judge applications: dataset labeling, quality evaluation, and pairwise preference prediction.

• Dataset Labeling (SNLI [41]/MNLI [42]). We use the classic NLI benchmarks to represent the
dataset labeling task, where the goal is to determine the logical relationship (entailment, neutral,
contradiction) between two sentences. Each instance is annotated by five distinct raters, providing
the necessary label distribution. We randomly sample an equal number of instances from MNLI
(10,000 each) to maintain a comparable data scale with SNLI.

• Quality Evaluation (SummEval [35]). To evaluate performance on text quality assessment, we use
the SummEval dataset. This benchmark contains machine-generated summaries of news articles
from the CNN/DailyMail corpus. For each summary, quality ratings are provided by a group
of experts and crowdworkers on a 1-5 Likert scale across four dimensions (fluency, coherence,
consistency, and relevance), forming a rich distributional signal of perceived quality. We treat each
dimension as an independent evaluation instance.

• Pairwise Preference Prediction (MT-Bench [43]). For the task of understanding human prefer-
ences, we use the MT-Bench dataset. For each dialogue, preferences between two model responses
(A vs. B) are collected from multiple human reviewers. This yields a preference distribution (A is
better, B is better, or Tie) for each comparison, directly reflecting the consensus and disagreement
in human choices.

All datasets are split into training and test sets at an 8:2 ratio in our experiments. To facilitate the
reproduction, we present the detailed prompts that are used in all the tasks in Appendix F.

Baselines. We compare our proposed approach against two baseline methods. (1) Raw Model:
We directly evaluate the pretrained LLMs without any task-specific fine-tuning. This baseline aims
to measure the inherent alignment between pretrained models and human judgment distributions,
reflecting the model’s original capability to approximate human judgment without explicit training
or adjustment. (2) Single-point Alignment: We adopt the traditional supervised fine-tuning strat-
egy [19], using only the most frequent human annotation label as the supervision target. This baseline
evaluates the effectiveness of conventional single-point alignment methods.

Models. Our study evaluates both open-source (Qwen2.5-7B [44], LLaMA3.1-8B [45]) and closed-
source (GPT-4o, GPT-4o-mini) language models. Closed-source models, recognized for their strong
performance, are utilized without additional tuning, whereas the chosen open-source models are
tested both with and without further training.

Training Details. We fine-tune all selected open-source models using Low-Rank Adaptation
(LoRA) [46] with a uniform hyperparameter configuration to ensure a fair comparison. Specifi-
cally, we employ the AdamW [47] optimizer with a learning rate of 5× 10−5 and train each model
for 2 epochs. To enhance model robustness, we incorporate adversarial training, setting the pertur-
bation step size to 0.05 and performing 5 gradient ascent steps per training iteration. Additionally,
we conduct a hyperparameter search for two critical parameters: the weight parameter α, chosen
from the set {0, 0.2, 0.4, 0.6, 0.8, 1.0}, and the perturbation radius parameter ϵ, selected from the set
{0.0, 0.05, 0.1, 0.15, 0.2, 0.25}. We conduct all experiments on one NVIDIA A100-40G GPU.

Evaluation Metrics. We employ two metrics to measure the alignment between model-predicted
and human-annotated distributions. KL Divergence is our primary metric, while Accuracy serves as a
complementary measure:
(1) KL Divergence: As our primary measure of success, this metric directly quantifies the discrepancy
between the model’s predicted distribution qθ(x) and the human distribution p(x). Lower KL
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Table 1: Main results comparing raw models, single-point alignment, and our distribution alignment
method across four datasets. KL indicates KL divergence, and Acc denotes top-1 accuracy. Results
for fine-tuned models (Single-point and Distribution) are averaged over 5 runs. The * indicates a
statistically significant improvement over the single-point baseline (p < 0.05).

Model Method
SNLI MNLI Summeval MT-Bench

KL↓ Acc↑ KL↓ Acc↑ KL↓ Acc↑ KL↓ Acc↑

GPT-4o-mini Raw model 2.13 87.0% 1.88 84.9% 5.23 25.6% 5.63 62.3%
GPT-4o Raw model 1.75 85.5% 1.16 84.2% 2.82 35.2% 2.48 68.5%

Qwen2.5
Raw model 2.08 83.1% 1.77 83.5% 4.94 22.7% 3.36 62.0%
Single-point 0.60 92.7% 0.64 89.7% 0.73 45.6% 0.82 64.0%

Distribution (Ours) 0.23∗ 93.3%∗ 0.23∗ 89.8% 0.53∗ 45.9% 0.68∗ 65.4%

LLaMA3.1
Raw model 0.90 64.9% 0.67 70.5% 3.60 29.5% 1.58 53.4%
Single-point 0.69 92.4% 0.67 89.6% 0.67 45.7% 0.81 62.1%

Distribution (Ours) 0.28∗ 92.4% 0.24∗ 90.0%∗ 0.51∗ 47.3%∗ 0.74∗ 62.8%

divergence indicates closer alignment:

KL(p(x)||qθ(x)) =
∑
i

p(x) log
p(x)

qθ(x)
. (10)

(2) Accuracy: We include Accuracy as a secondary metric for two practical reasons. First, it serves as
a valuable indicator of our model’s ability to capture the majority consensus in human judgments.
More critically, it provides a bridge for comparison with prior work that relies solely on this traditional
standard. It measures whether the model’s most probable predicted label aligns with the most frequent
label in the human judgment distribution:

Accuracy =
1

|D|
∑
x∈D

I
(
argmax

i∈C
qθ,i(x) = argmax

j∈C
pj(x)

)
. (11)

Here, |D| denotes the total number of test samples, qθ,i(x) represents the model-predicted probability
for category i, and pj(x) denotes the human judgment distribution for category j.

Extracting Model Predictions. We extract model predictions by retrieving logits corresponding
to potential judgment labels (e.g., "entailment", "neutral", "contradiction" for NLI tasks, or 1-5
for Likert-scale ratings). These logits are converted into probabilities via softmax normalization.
To handle variations in tokenization, the probabilities of synonymous tokens are aggregated into a
standard label. For example, the probabilities for tokens like "contra" or "contradict" are summed and
assigned to the canonical "contradiction" label. To maintain consistency across experiments, we limit
the extraction to the top-5 logits because OpenAI restricts the number of logits returned. Besides, the
logits beyond the fifth highest are generally negligible, with values often falling below 1e-6.

5.2 Overall Performance

We evaluate the effectiveness of our distribution alignment method across four benchmark datasets,
including SNLI, MNLI, Summeval, and MT-Bench. The primary experimental results are summarized
in Table 1. Detailed results for all fine-tuned models, including mean and standard deviation, are
provided in Appendix E. Our findings highlight three key aspects as follows:

(1) Necessity of Distribution Alignment. Without specific alignment training, both open-source
and closed-source models demonstrate substantial divergence between their predictions and human
judgment, with KL divergence typically exceeding 2.0. This indicates that current models inherently
produce judgment distributions that are misaligned with human evaluations, highlighting the necessity
for additional training of distribution alignment.

(2) Superiority of Our Proposed Method. Compared to conventional single-point alignment
methods, our approach consistently achieves better distribution alignment across different datasets and
LLM backbones. It significantly reduces KL divergence while maintaining accuracy, demonstrating
its generalization ability and effectiveness in aligning model outputs with human-labeled distributions.
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Table 2: Ablation study of our proposed method. We analyze the contribution of adversarial training
(Adv), KL divergence loss (KL), and cross-entropy loss (CE) on MNLI and Summeval datasets.

Method

Components Qwen2.5 LLaMA3.1

Adv KL CE
MNLI Summeval MNLI Summeval

KL↓ Acc↑ KL↓ Acc↑ KL↓ Acc↑ KL↓ Acc↑

Raw Model - - - 1.77 83.5% 4.94 22.7% 0.67 70.5% 3.60 29.5%
Single-point - - ✓ 0.64 89.7% 0.73 45.6% 0.67 89.6% 0.67 45.7%

Ours (Full) ✓ ✓ ✓ 0.23 89.8% 0.53 45.9% 0.24 90.0% 0.51 47.3%
Ours w/o Adv - ✓ ✓ 0.25 89.0% 0.64 46.6% 0.32 89.6% 0.62 45.9%
Ours w/o KL ✓ - ✓ 0.78 88.4% 0.75 45.8% 0.65 89.2% 0.65 45.4%
Ours w/o CE ✓ ✓ - 0.23 89.0% 0.54 46.0% 0.33 88.7% 0.58 48.0%

(3) Correlation between Model Capability and Alignment Performance. We observe a positive
correlation between a model’s inherent capability and its alignment performance. More capable
models, such as GPT-4o, not only achieve higher accuracy but also yield predicted distributions
closer to human annotations than weaker models like GPT-4o-mini and Qwen2.5. This suggests that
stronger models naturally produce judgments distributions more consistent with human evaluations.

In conclusion, our method demonstrates superior performance in distribution alignment compared
to raw models and conventional single-point alignment approaches. It reduces KL divergence
while maintaining accuracy across multiple datasets and various LLM backbones, presenting the
effectiveness of our method in aligning model outputs with human judgment distributions.

5.3 Ablation Study

To better understand the contribution of each component in our method, we conduct an ablation
study, whose results are summarized in Table 2. We observe that removing any single component
consistently degrades alignment performance, resulting in increased KL divergence. This indicates
that all three components complement each other and collectively enhance distributional alignment.

According to the results, we find that KL divergence loss is the most crucial. Removing it leads to a
significant increase in KL divergence, which confirms its essential role in human judgment alignment
by penalizing deviations from the target distribution. Besides, adversarial training also contributes to
improving the performance. By introducing perturbations during training, the model can align better
with human distributions even under worst-case distributional shifts, thereby improving robustness
and generalization. In addition, removing cross-entropy loss results in only a slight increase in
KL divergence. Although its effect on distributional alignment is limited, extensive experiments in
Section 5.4 demonstrate that a small amount of auxiliary CE loss can stabilize training.

5.4 Impact of Hyper-parameters

We further perform experiments on how the weighting parameter α and perturbation radius ϵ affect
model alignment performance. Using Qwen2.5 as the base model, we evaluate its alignment perfor-
mance across all four datasets. Lower KL divergence indicates better alignment between the model
prediction and the human judgment distribution. The results are presented in Figure 3.

Impact of Weighting Parameter α. The weighting parameter α balances the KL divergence and
CE losses, thereby affecting the performance of alignment. We observe that increasing α from 0 to
approximately 0.8 consistently enhances the alignment performance across all datasets. However,
removing the CE term entirely (α=1.0) leads to a noticeable performance decline. This suggests that a
small portion of the CE loss is crucial for stabilizing the training process. This instability is especially
acute on MT-Bench. We hypothesize this stems from the task’s high difficulty and subjectivity, which
creates a more complex target distribution. For such challenging distributions, a pure KL divergence
objective can become unstable.

Impact of Perturbation Radius ϵ. We further explore the influence of the perturbation radius ϵ in our
method. Each line in Figure 3 corresponds to a specific value of perturbation radius, and we use the
blue line (ϵ = 0) to represent training without adversarial perturbations. The results demonstrate that
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Figure 3: Effect of weighting parameter α and perturbation radius ϵ on KL divergence across four
datasets. Lower values indicate better alignment between model predictions and human distributions.

the method without adversarial training commonly performs the worst. It indicates that adversarial
training can enhance the model’s generalization capability, thereby improving alignment performance.
As the perturbation parameter ϵ increases, the alignment performance exhibits a general improvement.
However, the performance gains gradually diminish with increasing perturbation magnitudes, and
this trend is particularly evident on the MNLI dataset.

These results have verified our earlier statements: KL divergence serves as the primary mechanism
for alignment, while incorporating a minor component of cross-entropy loss can further improve the
training stability. It further underscores the importance of combining both components. Besides, the
integration of moderate adversarial perturbations further boosts alignment performance by increasing
the model’s robustness against the shifts in real-world human evaluation distributions.

5.5 Robustness Analysis

To further analyze the robustness of our method, we conduct extensive experiments by adding random
perturbations to the target label distributions in the test set. Specifically, our random perturbations δ
are ranged from 0.00 to 0.25. The experiments are performed on all four datasets based on Qwen2.5,
and we use the hyper-parameters identified in Section 5.4 with α = 0.8 and ϵ = 0.25.

As shown in Table 3, our full method consistently achieves the lowest KL divergence across all
perturbation levels and datasets, outperforming both the single-point alignment baseline and the
variant without adversarial training. These results suggest that incorporating adversarial training
enables the model to effectively align with all plausible distributions within the perturbation set,
thereby improving robustness and fidelity in distributional alignment.

6 Conclusion
In this paper, we propose a distribution alignment framework that explicitly aligns the model outputs
with the human evaluation distribution, aiming for more nuanced evaluation results. Specifically, we
employ KL divergence as the main objective to minimize the discrepancy between model predictions
and target distributions. Furthermore, we introduce a hybrid loss function, incorporating an auxiliary
cross-entropy loss to stabilize training. Finally, adversarial training is utilized to further enhance
alignment performance by increasing the model’s robustness against distributional shifts. Experiments
demonstrate that our distribution alignment method outperforms existing single-point alignment
approaches and exhibits strong generalization and robustness across different models and datasets.
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Table 3: The robustness analysis of our distribution alignment method under varying label perturbation
levels (δ). The KL divergences are reported across different datasets and models, with lower KL
divergence indicating better performance in distribution alignment.

Dataset Method
KL Divergence at different perturbation levels (δ)

δ = 0.00 δ = 0.05 δ = 0.10 δ = 0.15 δ = 0.20 δ = 0.25

SNLI
Single-point 0.715 0.717 0.708 0.692 0.720 0.709

Ours w/o Adv 0.334 0.336 0.333 0.327 0.344 0.346
Ours (Full) 0.324 0.325 0.323 0.317 0.335 0.336

MNLI
Single-point 0.742 0.744 0.743 0.745 0.753 0.757

Ours w/o Adv 0.271 0.272 0.272 0.276 0.283 0.293
Ours (Full) 0.243 0.245 0.245 0.251 0.256 0.264

Summeval
Single-point 0.743 0.748 0.752 0.778 0.809 0.836

Ours w/o Adv 0.639 0.643 0.649 0.669 0.707 0.735
Ours (Full) 0.525 0.529 0.539 0.565 0.588 0.612

MT-Bench
Single-point 0.833 0.833 0.837 0.832 0.836 0.848

Ours w/o Adv 0.831 0.830 0.834 0.829 0.832 0.846
Ours (Full) 0.675 0.676 0.678 0.675 0.677 0.689

Limitations

Although our approach can effectively align model outputs with human judgment distributions,
it exhibits two notable limitations. First, the model’s explainability is limited, as the generated
explanations only correspond to a single sampled judgment rather than interpreting the entire predicted
distribution. Second, suitable training datasets remain scarce due to high human annotation costs.
Most existing datasets contain only a single annotation per instance. Therefore, improving model
alignment across diverse tasks requires constructing more datasets with richer human evaluation data.
In future work, we will further improve the explainability and efficiency of our proposed method.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: This paper proposes a novel training framework to explicitly align LLM-
generated judgment distributions with empirical human distributions, utilizing a distribu-
tional alignment objective with KL divergence, cross-entropy regularization, and adversarial
training to enhance robustness. We accurately introduce this framework and its objectives in
the abstract and introduction, and clearly highlight our main contributions at the end of the
introduction (Section 1).

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations of our work in the last section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: We focus on the development and validation of a novel training framework
for aligning LLM judgment distributions with human evaluations and do not include new
theoretical results or formal proofs in this paper.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We fully disclose the information necessary to reproduce our experimental
results, which can be found in Section 5 and Appendix F

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the source code and datasets in the supplemental material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide all the training and test details in Section 5,

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We conduct statistical significance tests for the main experiments in Section 5,
as well as for the supplementary analyses in Appendix A and Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide sufficient information on the computer resources in Section 5.1
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This research conforms with the NeurIPS Code of Ethics in every respect.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the question in Appendix G
Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We discuss the question in Appendix G

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The existing assets are properly credited and mentioned. Please see Section 5.1
for details.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The new assets are well documented in the supplementary materials.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: In our study, the LLM is used only for writing, editing, or formatting purposes
and does not impact the core methodology.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Effectiveness under a Fixed Annotation Budget

A critical question for our distributional framework is whether its superior performance stems from
its inherent methodology, or if it is merely an artifact of using more human annotations than single-
point methods. To answer this question, this section empirically investigates the trade-off between
annotating a larger number of unique samples (sample breadth) versus collecting multiple judgments
for each sample (annotation depth), while keeping the total number of collected annotations constant.

A.1 Experimental Setup

We designed a controlled experiment on the SNLI dataset with a fixed budget of approximately 8,000
total human annotations. We compare three distinct data allocation strategies:

• Strategy 1 (Breadth-Focused): 8,000 unique samples were used, each paired with one randomly
selected human annotation. This strategy maximizes sample breadth to represent the conventional
single-point alignment approach.

• Strategy 2 (Balanced): 2,667 unique samples were used, each paired with three randomly selected
human annotations. This strategy represents a balanced trade-off between sample breadth and
annotation depth.

• Strategy 3 (Depth-Focused): 1,600 unique samples were used, each paired with all five available
human annotations. This strategy maximizes annotation depth over a smaller set of unique samples.

All strategies were trained using our distributional alignment framework. Notably, for Strategy 1, our
method’s objective simplifies to become equivalent to traditional single-point alignment. All models
were trained under identical conditions for fair comparison.

A.2 Results and Analysis

Table 4: Performance comparison under a fixed annotation budget. The balanced strategy (Strategy
2) achieves the best distributional alignment (KL Divergence) and is time-efficient.

Annotation Strategy Time/Epoch (min) KL Divergence (↓) Accuracy (↑)
Strategy 1 21.9 0.32±0.01 89.1%±0.4%

Strategy 2 9.6 0.25∗
±0.00 88.9%±0.2%

Strategy 3 5.7 0.29±0.00 89.1%±0.1%

The results, summarized in Table 4, highlight two key findings. First, the balanced approach
(Strategy 2) achieves the best distributional alignment, yielding a lower KL Divergence than the other
strategies. Compared to the breadth-focused strategy (Strategy 1), this underscores the importance of
a distributional signal for effective alignment. Compared to the depth-focused strategy (Strategy 3), it
suggests that maximizing annotation depth at the expense of sample variety can hurt generalization,
likely due to the model overfitting to a smaller set of examples.

Second, the distributional approaches (Strategies 2 and 3) are substantially more computationally
efficient. By processing a smaller number of unique samples per epoch, they dramatically reduce
training time. This analysis indicates that collecting a moderate number of judgments per sample is a
more effective and efficient strategy for distributional alignment.

B Further Validation on Modern Benchmarks

To further assess the effectiveness of our framework, we conducted additional experiments on three
modern benchmarks. These datasets correspond to three fundamental LLM-as-a-Judge applications
but feature more challenging data, including denser annotations, more contemporary model outputs,
and greater sample diversity.

B.1 Benchmark Datasets

• ChaosNLI [48] serves as a highly robust benchmark for the Dataset Labeling task. In contrast to
SNLI’s 5 annotations per instance, ChaosNLI was specifically created to study the full spectrum
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of human opinion by collecting 100 annotations for each of the 3,113 examples, providing an
exceptionally dense and reliable ground-truth distribution.

• HelpSteer2 [49] provides a modern benchmark for the Quality Evaluation of LLM-generated
responses. Unlike SummEval, which evaluates outputs from specialized summarization models,
HelpSteer2 focuses on rating the outputs of contemporary LLMs across five dimensions: help-
fulness, correctness, coherence, complexity, and verbosity. Each response is rated by multiple
annotators on a Likert-5 scale, and we follow our main experimental protocol by treating each
dimension as an independent evaluation instance.

• HelpSteer2-Preference [50] is a fine-grained benchmark for Pairwise Preference Prediction.
Similar to MT-Bench, it involves human annotators indicating their preference between two LLM
responses. However, it offers a more nuanced 6-point rating scale (from -3 to +3) for the degree
of preference. To maintain consistency with our experimental setup, we mapped these scores to a
3-point scale (A is better, B is better, or Tie), where scores of {-3, -2} correspond to one preference,
scores of {-1, 1} correspond to a tie, and scores of {2, 3} correspond to the other preference.

B.2 Results and Analysis

The results on these modern benchmarks are presented in Table 5. The findings are highly consistent
with the conclusions from our main experiments presented in the paper.

Table 5: Results on modern benchmarks for dataset labeling (ChaosNLI), quality evaluation (Help-
Steer2), and preference prediction (HelpSteer2-Preference). Our method consistently outperforms
baselines in KL Divergence while achieving competitive or superior accuracy. The * indicates that
the improvement of our method over the single-point baseline is statistically significant (p < 0.05).

Model Method
ChaosNLI HelpSteer2 HelpSteer2-Pref.

KL↓ Acc↑ KL↓ Acc↑ KL↓ Acc↑

GPT-4o-mini Raw model 3.92±0.00 64.1%±0.0% 4.83±0.00 42.4%±0.0% 13.8±0.00 9.2%±0.0%

GPT-4o Raw model 2.43±0.00 61.2%±0.0% 2.09±0.00 40.4%±0.0% 4.98±0.00 18.9%±0.0%

Qwen2.5-7B
Raw model 3.94±0.00 60.3%±0.0% 3.79±0.00 32.0%±0.0% 7.65±0.00 10.0%±0.0%

Single-point 1.22±0.02 70.6%±0.7% 0.76±0.03 60.5%±0.1% 0.57±0.02 71.4%±0.8%

Distribution (Ours) 0.41∗
±0.02 71.8%

∗
±0.5% 0.63∗

±0.01 60.0%±0.5% 0.49∗
±0.01 71.3%±1.1%

LLaMA3.1-8B
Raw model 0.68±0.00 57.8%±0.0% 2.50±0.00 13.3%±0.0% 2.86±0.00 14.9%±0.0%

Single-point 1.14±0.04 65.0%±0.5% 0.73±0.02 62.4%±0.3% 0.51±0.01 71.6%±0.5%

Distribution (Ours) 0.43∗
±0.05 65.7%±1.2% 0.59∗

±0.00 62.4%±0.1% 0.47∗
±0.00 73.8%

∗
±0.3%

Across these benchmarks, our framework consistently outperforms the baselines in KL Divergence,
often by a significant margin. At the same time, it maintains competitive or superior accuracy.
Consistent with our main experimental findings, these results provide strong additional evidence that
our approach is robust, generalizable, and highly effective for modern LLM-as-a-Judge applications.

C Out-of-Distribution Generalization

To assess our framework’s generalization capabilities, we conducted an out-of-distribution (OOD)
experiment. Specifically, models were fine-tuned exclusively on the SNLI training set. Subsequently,
they were evaluated directly on the unseen ChaosNLI test set, without any further training or
adaptation. ChaosNLI serves as a suitable OOD target due to its shared task formulation but distinct
data source and significantly denser annotation distribution. The results are presented in Table 6.

As shown in the table, even when faced with an unseen dataset, our framework significantly outper-
forms the single-point alignment baseline in both KL Divergence and Accuracy. This result confirms
that our method learns a robust and transferable representation of human disagreement.

D Analysis of Computational Efficiency

A key concern with adversarial training is that the inner PGD optimization loop could introduce
significant computational overhead. However, in our framework, this overhead is minimal. Our PGD
procedure computes gradients with respect to the target label distribution p(x), not the language
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Table 6: OOD experiment results from training on SNLI and evaluating on the unseen ChaosNLI test
set. The * indicates a statistically significant improvement over the single-point baseline (p < 0.05).

Model Method
ChaosNLI (OOD)

KL↓ Acc↑

Qwen2.5-7B
Raw model 3.94±0.00 60.3%±0.0%

Single-point 1.01±0.01 66.5%±0.9%

Distribution (Ours) 0.31∗
±0.01 67.8%∗

±0.5%

LLaMA3.1-8B
Raw model 0.68±0.00 57.8%±0.0%

Single-point 1.15±0.05 60.3%±0.1%

Distribution (Ours) 0.46∗
±0.02 62.7%∗

±0.1%

model’s parameters θ. During these inner steps, the model’s output qθ(x) is treated as a fixed constant,
thus avoiding any costly backpropagation through the language model.

To empirically quantify this overhead, we benchmarked the training efficiency on the MNLI dataset
with the Qwen2.5-7B model on a single NVIDIA A100 GPU. As shown in Table 7, our method
introduces a modest slowdown of approximately 21% compared to the standard single-point baseline.
We contend that this is an acceptable trade-off for the significant improvements in alignment quality
and robustness.

Table 7: Training efficiency comparison on the MNLI dataset. Our method incurs a modest overhead
for a significant gain in alignment performance.

Method Time / Epoch (min) Throughput (samples/sec) Relative Slowdown
Single-point 23.4 5.70 1.0×
Distributional (Ours) 28.3 4.71 1.21×

E Detailed Main Results with Standard Deviations

This section provides the detailed experimental results for the open-source models presented in
Section 5.2. We report the mean and standard deviation over 5 runs. Table 8 presents the results for
the NLI tasks, and Table 9 presents the results for the evaluation tasks.

Table 8: Detailed results (mean ± std over 5 runs) for NLI tasks (SNLI and MNLI). The * indicates a
statistically significant improvement over the single-point baseline (p < 0.05).

Model Method
SNLI MNLI

KL↓ Acc↑ KL↓ Acc↑

Qwen2.5
Single-point 0.60±0.01 92.7%±0.1% 0.64±0.02 89.7%±0.2%

Distribution (Ours) 0.23∗
±0.01 93.3%∗

±0.2% 0.23∗
±0.00 89.8%±0.2%

LLaMA3.1
Single-point 0.69±0.02 92.4%±0.42% 0.67±0.02 89.6%±0.2%

Distribution (Ours) 0.28∗
±0.01 92.4%±0.13% 0.24∗

±0.02 90.0%∗
±0.2%

F Prompts

Summeval. These prompts are reused from G-Eval[36] with slight modifications. Specifically,
the output label region has been explicitly specified, and the model is instructed to directly output
evaluation results without providing explanations.
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Table 9: Detailed results (mean ± std over 5 runs) for evaluation tasks (Summeval and MT-Bench).
The * indicates a statistically significant improvement over the single-point baseline (p < 0.05).

Model Method
Summeval MT-Bench

KL↓ Acc↑ KL↓ Acc↑

Qwen2.5
Single-point 0.73±0.03 45.6%±0.5% 0.82±0.01 64.0%±1.0%

Distribution (Ours) 0.53∗±0.02 45.9%±0.4% 0.68∗±0.02 65.4%±1.4%

LLaMA3.1
Single-point 0.67±0.05 45.7%±0.8% 0.81±0.01 62.1%±0.8%

Distribution (Ours) 0.51∗±0.01 47.3%∗
±0.6% 0.74∗±0.01 62.8%±0.8%

Prompts Used for Summeval for Coherence Evaluation

You will be given one summary written for a news article.

Your task is to rate the summary on one metric.

Please make sure you read and understand these instructions carefully. Please keep this
document open while reviewing, and refer to it as needed.

Evaluation Criteria:

Coherence (1-5) - the collective quality of all sentences. We align this dimension with
the DUC quality question of structure and coherence whereby "the summary should be
well-structured and well-organized. The summary should not just be a heap of related
information, but should build from sentence to a coherent body of information about a topic."

Evaluation Steps:

1. Read the news article carefully and identify the main topic and key points.
2. Read the summary and compare it to the news article. Check if the summary covers the
main topic and key points of the news article, and if it presents them in a clear and logical
order.
3. Assign a score for coherence on a scale of 1 to 5, where 1 is the lowest and 5 is the highest
based on the Evaluation Criteria.

Example:

Source Text:

{Document}

Summary:

{Summary}

Evaluation Form(scores ONLY): Make a selection from "1", "2", "3", "4", "5". Only write
the answer with a single score, do not write reasons.

- Coherence:
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Prompts Used for Summeval for Consistency Evaluation

You will be given a news article. You will then be given one summary written for this article.

Your task is to rate the summary on one metric.

Please make sure you read and understand these instructions carefully. Please keep this
document open while reviewing, and refer to it as needed.

Evaluation Criteria:

Consistency (1-5) - the factual alignment between the summary and the summarized source.
A factually consistent summary contains only statements that are entailed by the source
document. Annotators were also asked to penalize summaries that contained hallucinated
facts.

Evaluation Steps:

1. Read the news article carefully and identify the main facts and details it presents.
2. Read the summary and compare it to the article. Check if the summary contains any
factual errors that are not supported by the article.
3. Assign a score for consistency based on the Evaluation Criteria.

Example:

Source Text:

{Document}

Summary:

{Summary}

Evaluation Form(scores ONLY): Make a selection from "1", "2", "3", "4", "5". Only write
the answer with a single score, do not write reasons.

- Consistency:
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Prompts Used for Summeval for Fluency Evaluation

You will be given one summary written for a news article.

Your task is to rate the summary on one metric.

Please make sure you read and understand these instructions carefully. Please keep this
document open while reviewing, and refer to it as needed.

Evaluation Criteria:

Fluency (1-5): the quality of the summary in terms of grammar, spelling, punctuation, word
choice, and sentence structure.

- 1: Poor. The summary has many errors that make it hard to understand or sound unnatural.
- 2: Below Average. The summary has several noticeable errors that significantly impact
readability, though some parts can be understood with effort.
- 3: Fair. The summary has some errors that affect the clarity or smoothness of the text, but
the main points are still comprehensible.
- 4: Good. The summary has minor errors that do not significantly interfere with understand-
ing; it reads relatively smoothly.
- 5: Excellent. The summary has few or no errors and is easy to read and follow, with
natural-sounding language throughout.

Example:

Summary:

{Summary}

Evaluation Form(scores ONLY): Make a selection from "1", "2", "3", "4", "5". Only write
the answer with a single score, do not write reasons.

- Fluency:
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Prompts Used for Summeval for Relevance Evaluation

You will be given one summary written for a news article.

Your task is to rate the summary on one metric.

Please make sure you read and understand these instructions carefully. Please keep this
document open while reviewing, and refer to it as needed.

Evaluation Criteria:

Relevance (1-5) - selection of important content from the source. The summary should
include only important information from the source document. Annotators were instructed to
penalize summaries which contained redundancies and excess information.

Evaluation Steps:

1. Read the summary and the source document carefully.
2. Compare the summary to the source document and identify the main points of the article.
3. Assess how well the summary covers the main points of the article, and how much
irrelevant or redundant information it contains.
4. Assign a relevance score from 1 to 5.

Example:

Source Text:

{Document}

Summary:

{Summary}

Evaluation Form(scores ONLY): Make a selection from "1", "2", "3", "4", "5". Only write
the answer with a single score, do not write reasons.

- Relevance:
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MT-Bench. These prompts are reused from MT-Bench[43] with slight modifications.

Prompts Used for MT-Bench

Human: For this task, you will be shown two conversations between a user and an AI
assistant, labeled A and B. Your goal is to evaluate which response (A or B) better follows
the user’s instructions and more helpfully answers their question.

<PrefJudgment>
<Conversation A>
{conversation_a}
</Conversation A>

<Conversation B>
{conversation_b}
</Conversation B>

<Instructions>
Evaluate the two conversations and choose one of the following:
a: If Conversation A’s AI assistant better follows the user’s instructions and answers their
question
b: If Conversation B’s AI assistant better follows the user’s instructions and answers their
question
tie: If both AI assistants are equally good/poor in following instructions and answering the
user’s question

Consider factors like helpfulness, relevance, accuracy, depth, creativity, and appropriate
level of detail when making your evaluation. Do not show positional bias towards A or B.
Response length should not unduly influence your decision.
Make a selection from "a", "b", "tie". Only write the answer with a single word, do not write
reasons.
</Instructions>
</PrefJudgment>

Assistant:
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NLI Tasks. For SNLI and MNLI datasets, prompts are reused from LogiEval[51] with slight
modifications.

Prompts Used for NLI Tasks

You will be given a premise and a hypothesis. Your task is to determine whether the
hypothesis logically follows from the premise. Choose only one of the following labels and
output your answer with ONLY the label (one word), ensuring there are no spaces or other
characters in the answer.

Possible labels:

entailment: The hypothesis follows logically from the information contained in the premise.
neutral: It is not possible to determine whether the hypothesis is true or false without further
information.
contradiction: The hypothesis is logically false from the information contained in the premise.

Read the following premise and hypothesis thoroughly and select the correct answer from the
three answer labels.

Premise: {premise}

Hypothesis: {hypothesis}

Make a selection from "entailment", "neutral", "contradiction". Only write the answer with a
single word, do not write reasons.

G Ethical Consideration

Our work explores the alignment of LLM-generated evaluation distributions with human judgment
distributions, aiming to enhance the accuracy, diversity, and robustness of automatic evaluations. This
has positive societal implications by potentially reducing the reliance on costly and time-consuming
human evaluations, enabling scalable and fairer assessments in applications such as education,
content moderation, and peer review. However, automated judgment systems also carry inherent
risks. Misaligned or overconfident evaluations may lead to biased decisions, potentially reflecting
and amplifying biases subtly present within the human data used for the alignment process itself.
Such outcomes are particularly detrimental in high-stakes or subjective domains where fairness is
paramount and the nuanced complexities of human judgment are not easily replicated or may be
overlooked by automated systems.
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