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Abstract

The pretraining data of today’s strongest language
models remains opaque, even when their parame-
ters are open-sourced. In particular, little is known
about the proportions of different domains, lan-
guages, or code represented in the data. While a
long line of membership inference attacks aim to
identify training examples on an instance level,
they do not extend easily to global statistics about
the corpus. In this work, we tackle a task which
we call data mixture inference, which aims to
uncover the distributional make-up of training
data. We introduce a novel attack based on a
previously overlooked source of information —
byte-pair encoding (BPE) tokenizers, used by the
vast majority of modern language models. Our
key insight is that the ordered list of merge rules
learned by a BPE tokenizer naturally reveals infor-
mation about the token frequencies in its training
data: the first merge is the most common byte
pair, the second is the most common pair after
merging the first token, and so on. Given a tok-
enizer’s merge list along with data samples for
each category of interest (e.g., different natural
languages), we formulate a linear program that
solves for the relative proportion of each category
in the tokenizer’s training set. Importantly, to the
extent to which tokenizer training data is represen-
tative of the pretraining data, we indirectly learn
about the pretraining data. In controlled experi-
ments, we show that our attack recovers mixture
ratios with high precision for tokenizers trained
on known mixtures of natural languages, program-
ming languages, and data sources. We then apply
our approach to off-the-shelf tokenizers released
with recent LMs. We confirm much publicly dis-
closed information about these models, and also

“Equal  contribution "University of  Washington
2Allen TInstitute for AI Correspondence to:  Jonathan
Hayase <jhayase@cs.washington.edu>, Alisa Liu <al-

isaliu@cs.washington.edu>.

Published at ICML 2024 Workshop on Foundation Models in the
Wild. Copyright 2024 by the author(s).

make several new inferences: GPT-40 is much
more multilingual than its predecessors, training
on 10x more non-English data than GPT-3.5;
GPT-3.5 and CLAUDE are trained on predomi-
nantly code; many recent models (or at least their
tokenizers) are trained on 7-23% English books.
We hope our work sheds light on current design
practices for pretraining data, and inspires con-
tinued research into data mixture inference for
LMs.

1. Introduction

Pretraining data is at the heart of language model devel-
opment, yet it remains a trade secret for today’s strongest
models. While it has become more common for model-
producing organizations to open-source model parameters,
they rarely share the pretraining data or many details about
its collection. In particular, little is known about the propor-
tion of different languages, code, or data sources present in
the data; these design decisions require extensive experimen-
tation that few organizations have the resources to perform,
and have a significant impact on the resulting LM (Albalak
et al., 2024; MA et al., 2024; Li et al., 2022; Longpre et al.,
2023; Schifer et al., 2024; Xie et al., 2023).

While a long line of membership inference attacks (Carlini
et al., 2021; Shi et al., 2024; Mireshghallah et al., 2023;
Shokri et al., 2017; Carlini et al., 2022; Choquette-Choo
et al., 2021) aim to reveal information about the model’s
pretraining data, they typically focus on testing whether
particular instances, authors, or websites contributed to the
data. In this work, we tackle a different task we call data
mixture inference, which, given a set of disjoint categories
that cover the pretraining data (e.g., the set of natural and
programming languages), aims to uncover the proportion of
each one.

To this end, we identify a previously overlooked source of
information — trained byte-pair encoding tokenizers (BPE;
(Sennrich et al., 2016)), which are the near-universal choice
for modern language models. Our key insight is that the
ordered merge rules learned by a BPE tokenizer naturally
reveal information about the frequency of tokens in the
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Figure 1. Illustration of our problem statement on a simple example where two tokenizers are trained on different mixtures of English
and Python data. During training, the BPE algorithm iteratively finds the pair of tokens with the highest frequency in the training data,
adds it to the merge list, then applies it to the dataset before finding the next highest-frequency pair. To encode text at inference time,
the learned merge rules are applied in order. The resulting order of merge rules is extremely sensitive to the proportion of different data
categories present. Our goal is to solve for these proportions, a task which we call data mixture inference.

tokenizer’s training data. During training, BPE tokenizers
iteratively find the ordered pair of tokens with the highest
frequency, add it to the merge list, and apply this merge to
the dataset before finding the next highest-frequency pair.
Therefore, if the pair (;, \n) was merged in the 51st step
(as in the case of GPT-40), then it must be the most frequent
pair in the data after applying the 50 preceding merges; in
this case, it is a signature of substantial code data. Our
method builds a linear program where the constraints are
derived from the true most-frequent merge at every step
in the merge list, and solves for the proportions of each
category.

Importantly, the tokenizer training data is ideally represen-
tative of the LM’s pretraining data (Workshop, 2023); dis-
connects lead to poor encoding of the pretraining text (Ahia
et al., 2023) and potential for “glitch tokens” that trigger
degenerate model behavior (Rumbelow & Watkins, 2023;
Geiping et al., 2024; Land & Bartolo, 2024). Note that
at inference-time, new text is tokenized by applying the
learned merge rules in-order. Open-source models require
open tokenizers; even for closed models, tokenizers are of-
ten open for the purpose of estimating query cost ahead of
time.

We first demonstrate the effectiveness of our method in con-
trolled experiments where we train tokenizers on known
mixtures of data. We consider three kinds of data mix-
tures: natural languages, programming languages, and data

sources. Our method is highly effective, achieving between
three and six orders of magnitude better accuracy than ran-
dom guessing.

Then, we apply our method to infer previously unknown
distributional information about off-the-shelf, commercial
tokenizers (the top of these merge lists are shown in §F.1
for qualitative inspection). We consider the tokenizers
released with GPT-2, GPT-3.5, GPT-40, LLAMA 3, and
CLAUDE. We corroborate reported information and public
intuition about these tokenizers with exact numbers — GPT-2
is trained on predominantly English (98.2%), and GPT-3.5
is the first in the GPT family to be trained extensively on
code (62.1%). We also make several new inferences: GPT-
40 is trained on 10x more non-English data than GPT-3.5
(39.0% compared to 4.4%), LLAMA 3 and CLAUDE are
both trained on ~ 60% code, and all the models we study
are trained on at least 7% book data.

Inferring pretraining data mixtures of LMs has several im-
portant implications. It leaks technical information about
the model construction, which model producers may intend
to keep proprietary. Identifying the exact data sources can
potentially enable targeted data poisoning attempts if the
LM is further trained on the same sources (Carlini et al.,
2024). Finally, data mixture inference can enable external
auditing of the pretraining data for biases, such as identify-
ing under-represented languages or data sources.



2. Background: BPE tokenizers

Byte-pair encoding (BPE), introduced by Sennrich et al.
(2016) for NLP,' is a tokenization algorithm that learns
subword-based encodings from training data. Broadly, the
algorithm first separates the training corpus into individual
bytes (which are used to initialize the vocabulary), and then
iteratively merges frequently co-occurring pairs of tokens
until the desired vocabulary size is reached.

More precisely, the training text is first pretokenized, that
is, split into “word” units that give an upper bound on what
tokens can look like. Merges cannot bridge these words,
and the final learned tokens will be parts of these words.
Pretokenization can be simple as splitting on whitespace,
so that common sequences of words (e.g., “it is”’) do not
become a single token.

After pretokenization, all of the words are split into bytes,
which form the starting vocabulary. Then, the BPE algo-
rithm iteratively counts the frequency of each neighboring
pair of tokens and picks the most frequent to be the next
merge. This merge is added to the merge list and applied to
the entire text, and the merged token is added to the vocabu-
lary. For instance, if the merge is (th, e), then all instances
of “th e” will be replaced with the, which is added to
the vocabulary. BPE then updates the frequencies of all
pairs, and identifies the next most frequent. This continues
until the desired vocabulary size is reached. At the end of
training, the algorithm has learned an ordered list of merge
rules m®), ... m),

To tokenize new text, the tokenizer splits the text into bytes
and applies the learned merge rules, in order. As we will
see, the merge list reflects rich distributional information
about the training data.

3. Data mixture inference attack

Suppose we have a set of n data categories of interest, and
data distributions {D;}?_, for each one. Then suppose we
receive a BPE tokenizer, which was obtained by training
on a large sample of text from the mixture Z?:l o;D;
where the nonnegative weights o € R" satisfy > " | af =
1. Given corpora {D;}? , sampled from each of the D;
respectively, the goal of data mixture inference is to produce
a good estimate & of o*.

Now we describe how to set up the set of constraints that
make up a linear program whose solution is this estimate
(§A.1), reduce the storage requirement (§A.2), and improve
efficiency (§A.3, §A.4).

!Though, it originated in 1994 in the field of data compression
(Gage, 1994).

4. Experiments

In our initial experiments, we train tokenizers on known
data mixtures and measure the accuracy of our attack’s
prediction. We consider mixtures of natural languages, pro-
gramming languages, and data sources (which we also refer
to as domains). For more detail about each of these datasets,
see Appendix E.

4.1. Setup

Because BPE tokenizers operate on bytes, we measure the
proportion of each language in terms of bytes. Each tok-
enizer is trained on a mixture of n categories, where n varies
from 5 and 112. We randomly sample the n categories and
their weights (using an algorithm from (Smith & Tromble,
2004)) to train 100 tokenizers on 10 GB of data. The data
for each category is sampled from the corresponding corpus;
if there is not enough data for any category (e.g., we have
many low-resource languages), we duplicate the data until
the necessary amount is achieved, to preserve the desired
mixture ratio. We train tokenizers using the HuggingFace
tokenizers library with a maximum vocabulary size of
30,000, and apply a minimal set of common pretokenization
operations: we encode strings into bytes using UTF-8, split
on whitespace, and only allow digits to be merged with other
contiguous digits.

After training the tokenizers, we apply our attack. We es-
timate merge frequencies for each category by sampling 1
GB of data per category, or less if there is not that much
data. Note that the data used for training the tokenizer
and estimating pair frequencies are sampled from the same
distribution, but are not necessarily the same data. We
use mean squared error to evaluate the estimated propor-
tions, MSE := 1 3" | (&; — o )?. In practice, we report
log,o(MSE). We empirically calculate the accuracy of ran-
dom guessing as a baseline.

We use the Oscar v23.01 corpus (Abadji et al., 2022), which
is based on the Nov/Dec 2022 dump from Common Crawl.
We consider the 112 languages with at least 1 MB of data.

Programming Language Mixtures We use the GitHub
split of RedPajama (Computer, 2023). To determine the
programming language for each record, we map the file
extension to its associated language (e.g., . py — Python).
This leads to a total of 37 programming languages.

Domain Mixtures We consider the following five English
domains (adapted from (Longpre et al., 2023)), instantiated
by data from the RedPajama dataset: Wikipedia, contain-
ing English Wikipedia dumps from Jun-Aug 2022, Web,
Common Crawl data that was de-duplicated and filtered for
English, Books from the Gutenberg Project and Books3
of The Pile, Code from GitHub, and Academic, which
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Figure 2. Our inference for the data mixtures of several commercial tokenizers.

Table 1. Experimental results for controlled experiments. The settings we consider are mixtures of natural languages, mixtures of
programming languages, and mixtures of data sources. In each cell, we report the mean and standard deviation of log,,(MSE) over 100
trials. Note that a decrease by 1 corresponds to a 10x improvement in the MSE. Random shows the random-guessing baseline. In total,
we have 112 natural languages, 37 programming languages, and 5 data sources.

n Random Languages Code Data Sources
5 —1.39 —7.301131 —6.461079 —3.7410.04
10 -1.84 —7.6611.04 —6.3010.64 -
30 —2.70 —7.73+112  —95.98+1.11 -
112 -3.82 —7.6941.28 - -

contains LateX files of scientific papers on ArXiv.

For dataset details, such as the full list of categories and the
corresponding amount of data, please see Appendix E.

4.2. Results

Shown in Table 1, our attack is highly effective. Across
all mixture types and values of n, we achieve mean MSE
3 to 5 orders of magnitude better than random guessing.
We observe that the easiest setting (with the highest attack
success) is mixed languages, whereas the most challenging
is mixed (English) domains. This is perhaps unsurprising
when considering the source of signal for our attack, which
is the different token pair frequencies in different categories
of data. Intuitively, we would expect these to be very dif-
ferent for different natural languages, which have distinct
vocabularies. In contrast, programming languages can share
many syntactic features, such as using indents, semicolons,
curly brackets { }, and control structures like i f, for, and
while. More so, different English domains should largely
share the same vocabulary, but have more subtle differences
in token frequencies. Nonetheless, even in this most chal-
lenging setting, we achieve accuracy 1000x better than
random.

5. Attacking commercial tokenizers

After validating our attack in synthetic experiments (§4),
we apply it to infer training data mixtures of off-the-shelf
commercial tokenizers. We refer to tokenizers by the name
of the model they were first released with, whose pretraining
data they most likely reflect. We consider GPT-2 (Radford
et al., 2019), GpT-3.5 (OpenAl, 2022), GPT-40 (OpenAl,
2024), LLAMA (Touvron et al., 2023), LLAMA 3 (Meta,
2024), CLAUDE (Anthropic, 2023a), and GEMMA (Team,
2024). While some of these are closed models, all tokeniz-
ers are publicly shared so that customers can estimate the
cost of queries ahead of time. We note that the LLAMA
and GEMMA tokenizers use characters rather than bytes as
the base vocabulary for the BPE algorithm; we apply our
attack in the same way, and discuss this distinction further
in Appendix G.

For these experiments, we aim to infer the proportion of
natural languages and code (where code is a single cate-
gory, not split into separate programming languages), as
well as the proportion of English domains that make up the
English data. We merge code into one category because
some programming languages, like Markdown and Pods6,
are almost entirely English, and we do not expect the dis-
tribution of programming languages in pretraining data to
differ substantially from that of GitHub, which is the largest



public code hosting platform. To infer the distribution of
English domains, we replace the English category with the
four English domains from §4 (web, books, Wikipedia, and
academic). We expect these to approximately cover the
English data.

Our predictions are shown in Figure 2, with specific num-
bers in §E.3. Below, we discuss our findings in comparison
with publicly disclosed information about these models.

5.1. GPT models

The GPT tokenizers are open-source on t iktoken. There
are three such tokenizers, released with GPT-2, GPT-3.5,
and the very recent GPT-40.

GPT-2 GPT-2 (Radford et al., 2019) was trained on Web-
Text, consisting of text scraped from outbound links from
Reddit, and filtered to be English-only. Indeed, we confirm
the training data consists of 98.2% English. However, we
surprisingly estimate that only 57.5% of the data was web,
with another 39.4% being books — even though books were
not explicitly included in WebText. In a data contamination
analysis, the authors indeed report that they find books in
WebText, but our estimate suggests the contamination is
much deeper. We note that books were a popular source
of pretraining data for early Transformer language models,
with GPT-1 being trained entirely on BooksCorpus (Zhu
et al., 2015). The GPT-2 tokenizer was reused for GPT-3.

GPT-3.5 The GPT-3.5 family of models is known to de-
part from its predecessors by training on large amounts
of code: the first two models in this family were
code-davinci-002 (trained on text and code) and
text-davinci-002, with the latter being instruction-
tuned from the former. In fact, some evidence suggests
that GPT-3.5’s large leap in reasoning abilities comes from
this code data, which intuitively requires similar procedural
skills (Fu & Khot, 2022).

Indeed, we estimate that GPT-3.5 is trained on 62.1% code,
compared to < 1% for GPT-2. In the domain breakdown,
we see that 25.2% is of the data is web, 7.7% books, and
0.6% academic articles. The substantial representation of
books (though much lower than GPT-2) is consistent with
findings that this model has memorized a wide collection of
copyrighted books (Chang et al., 2023).

GPT-40 Released on May 13, 2024, GPT-40 (OpenAl,
2024) is a multimodal model announced as more multilin-
gual than its predecessors; its tokenizer achieves a better
compression rate on non-English languages, and the model
has notably better non-English performance.

Our findings support this. We estimate that GPT-40 was
trained on 39.0% non-English data, compared to only 4.3%

for GPT-3.5, making it the most multilingual model we
study. The language distribution has a thick non-English
tail, with 58 languages that make up at least 0.1% of the
data: the most common are French (3.2%), Spanish (2.5%),
Russian (2.4%), Portuguese (2.4%), and German (1.8%).
Additionally, GPT-40 was trained on 9.4% books.

5.2. CLAUDE

Finally, we consider the CLAUDE tokenizer. Very little is
known about tokenizers from the CLAUDE family, but a
remark in the Anthropic SDK suggests that Claude 1 (An-
thropic, 2023a) and 2 (Anthropic, 2023b) share the same
tokenizer, which is open-source, while Claude 3 (?) uses
a different (closed) tokenizer. Nothing is shared about the
pretraining data of these models. We estimate that CLAUDE
was trained on 57.0% code, 36.1% English, and 6.9% other
languages. Moreover, more than half of its English data
comes from books.

6. Conclusion

In this work, we present a data mixture inference attack
that solves for the distributional make-up of a tokenizer’s
training data, which is commonly representative of the lan-
guage model’s pretraining data. Although we are able to
infer some basic properties of commercial LLM tokenizers,
we believe there is still a wealth of information hidden in
their merge lists. This can shed light on the secretive and
often contentious design decisions surrounding pretraining
data today, potentially enabling external auditing for safety,
copyright issues, and distributional biases. We hope our
work will inspire continued research into various forms of
distribution inference for tokenizers, as well as data mixture
inference for language models more generally.
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Figure 5. Illustration of our method on a simple example. We know that after applying in the first ¢ — 1 merges to the training data, the
t"™ merge be the most common pair. More explicitly, this means that cv; should give a vector in which the value corresponding to the true
next merge is the maximum. Our attack collects these inequalities at every time step to construct the linear program.’

A. Implementation

In this section, we describe the implementation of our algorithm, introduced in §3.

A.1. Data mixture inference via linear programming

We build a linear program (LP) with variables « and constraints derived using information from the tokenizer and our

sample corpora. The given tokenizer can be represented by an ordered list of merge rules m®, ..., m®™)_ For each time
®
0,
times the token pair p occurred in the partially merged text. We know that when the tokenizer was trained, the pair m*) was
more frequent at time ¢ than any other pair. In other words,

n n
Z aicz(‘?nm = Z 041052 for all p # m®.
=1 i=1

step t € [M], we apply all preceding merge rules mW, ..., m* to our corpora D, and use ¢, to denote how many

Collecting these constraints for all ¢ and p defines a set of possible a’s.

Of course, because we only have samples from the the category distributions and not the exact data the tokenizer was trained
on, the linear program we described above may not be feasible, as the counts will be noisy due to sampling. To address
this, we relax the constraints by introducing new non-negative variables v(*) for all t € [M], and vy, for all pairs p, which

STechnically, the elements of the vectors should be normalized by size of the language data, but in this case they are the same for the
two languages so we show the unnormalized counts for readability.
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Figure 6. Illustration of our method on a simple example. We know that after applying in the first ¢ — 1 merges to the training data, the
t™ merge be the most common pair. More explicitly, this means that c; should give a vector in which the value corresponding to the true
next merge is the maximum. Our attack collects these inequalities at every time step to construct the linear program.’

represent the degree of constraint violation for each merge and pair, respectively. We replace our constraints with new ones
of the form

v + vp + Z aicgfr)n(t) > Z aicq(f; for all p # m®.

In general, we expect v(*) to be large when m(*) is over-represented in the tokenizer training data and V), to be large when p
is over-represented in the mixture defined by «.. This new system of constraints is guaranteed to be feasible as the v’s can
be made arbitrarily large. To produce the best possible estimate, our objective is to minimize the total constraint violation
th\i 1 v® 4 Zp vp. We call the resulting linear program LP 1. To estimate «, we solve LP 1 and report the optimal value of
o as our Q.

As written, LP1 can be prohibitively large. If our vocabulary has size V/, the total number of constraints scales like O(V3)
since there are O(V) time steps ¢ to consider and O(V?) competing byte pairs p # m(*). Additionally, there are O(V'?)
variables v,,. The first step to reduce the size is to limit ¢ to the first 7" merges. We will call this truncated program LP 1.
However, even for modest choices of 1", LP 11 can still have millions of variables and tens of billions of constraints. In the
following sections, we will describe how to efficiently solve LP 11 using simultaneous delayed row (constraint) and column
(variable) generation (Benders, 1962; Dantzig & Wolfe, 1960).

A.2. Efficient storage of pair counts

First, as a preprocessing step, we apply the target tokenizer to each language corpus D;, recording the pair counts cl(.?) after

each merge is applied for later use. Naively, this would require a large amount of space, since the number of possible pairs

p scales like O(V2). However, note that c; t) o 7 c(tH) only when p overlaps with m(*). In other words, bigrams with no

overlap with the most recent merge will have their counts unaffected. Thus, there are only O(V') differences between c(t)

and c( D m practice, the number of changes caused by a single merge is usually a few hundred at most. By saving only
the 1ncremental changes from each set of pair counts to the next, we can efficiently record the pair counts at every iteration
of the tokenization process.

A.3. Efficient constraint violation detection

Our plan is to solve LP 1 using only a subset of its constraints, giving a potential solution («, v). We can check whether
(v, v) violates any of the constraints of LP 17 and if it does, we can add them to the subset. This requires an efficient method
to detect violated constraints, which we describe below.

For convenience, let s,(,t) = Z" 105G, ( ) and recall that, for a given time step ¢, we want to check whether @ 4 s( ) y =

maxp(sfgt) — vp). Naively, we would do so by iterating over all possible p # m® to see if the constraint is violated, Wthh

can be quite costly. Moreover, we must do this for all ¢ < T'. However, by taking advantage of the structure of the sz(f) ast
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varies, we can reduce our work substantially.
The first step is to take each initial pair p and add it to a priority queue with priority séo). This can be done in aggregate in

O(V'?) time using a fast heap building algorithm. Now, we can scan through the pairs in order of descending 51(70) using the

(t)
m(®)
corresponding constraint as violated. Once we find p = m(), we stop, since the remaining constraints must be satisfied. If
there were k pairs before mm(*) in the queue, then the total time taken is O (klog V).

queue’s delete-min operation. For each pair p, we can check whether v(*) 4 s > sl(f*) — vp+ and if not, we mark the

Crucially, we can quickly update the priority queue to reflect the state at ¢ = 1. Since we precomputed all count changes

(0) (1)
i,p to Cip>

pairs had their counts changed when pair m(?) was merged, then we can update the priority queue using kye,, insert
operations and k. q decrease-priority operations, which can be done in O((knew + kola) log V') time. Now that we
have updated the priority queue, it is easy to check for any constraint violations for ¢ = 1. By iterating this process, we can
quickly check for violated constraints for all t < T'.

from ¢ we know what queue entries need to be updated or inserted. If k., new pairs were created and kq1q

A.4. Lazy constraint generation

Now we are ready to solve LP 17 in an efficient way. We begin by guessing uniform proportions for a, and v*) = vp =0
for all ¢, p. Then we use our constraint checker to identify violated constraints of LP 17 and construct a lazy version of
LP17, denoted LP 27, using only those constraints and the variables they contain. We then solve LP 2, which gives us a
new guess for . We iterate the above process, adding progressively more constraints to LP 2 until we find a solution that
is also feasible for LP 1. It follows that this solution is optimal for LP 17 since the two programs share the same objective.
This is guaranteed to happen eventually because there are a finite number of constraints to add.

In practice, the constraint violation detection can typically check 7' = 30000 merges in less than 10 seconds. On difficult
instances, such as those for commercial tokenizers in §5, the full solve can take up to a day to complete. Easier instances
like those in Table 1 can be solved in a few minutes.

B. Scaling analysis

Using the natural language mixture setup from §4 with n = 10 languages, we analyze how our attack’s performance varies
with the amount of data used (§B.1) and the number of merges we apply from the merge list (§B.2).

B.1. How many data samples should we use from each category?

We explore how the attack’s performance scales with the amount of data sampled from each distribution D; for calculating
pair counts. For each type of mixture considered in §4, we train 100 new tokenizers considering only categories with at least
10 GB of data available. For our attack, we compare sampling 1 MB, 10 MB, 100 MB, 1 GB, and 10 GB of data for each
language, and use 7' = 3000 merges. Shown in Figure 3, more data consistently improves the accuracy of predictions.

B.2. How many merges should we consider?

Next, we investigate how performance scales with the number of merges T' that we apply from the merge list. Using the
same 100 tokenizers from §4, we solve for the data mixture using various choices of 7' € [30, 30000]. Shown in Figure 4,
we find that when there are more categories, it is useful to consider more merges. This makes sense because more constraints
may be needed to bound the solutions in higher dimensions.

C. Discussion of possible defenses

We discuss some possible approaches for defenses to our attack, which we believe would all have limited effectiveness.

Post-hoc changing the order of merge rules Model producers may consider changing the order of merge rules, which is
the source of signal for our attack, after the tokenizer is trained. However, naively re-ordering merge rules for a tokenizer
would be damaging, as it can lead to unfamiliar encodings of words as well as entirely unreachable tokens. The only
functionally-equivalent re-ordering would be within contiguous sections of merge rules where each token appears exclusively
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on the left or right side of all merges it appears in. In this case, we can easily adapt our method by working at the level of
contiguous non-conflicting sections instead of individual merge rules, as we know that each section has higher frequencies
than the next.

Hiding pretokenization rules Our method relies on a reasonable reconstruction of the pretokenization rules, which
control what kinds of merge rules are considered. It is not necessary to share pretokenization rules as they are not strictly
necessary for inference. However, we find that important pretokenization rules (like whether to pre-tokenize on spaces,
digits, and punctuation) are easy to infer from manual inspection. Moreover, organizations are incentivized to release
pretokenization rules as it greatly enhances the speed of encoding by enabling parallelism.

Not using BPE tokenizers Model producers may choose to forgo BPE tokenizers entirely in future models. Despite
the current popularity of BPE, there is a lively area of research into alternative methods of tokenization or doing without
tokenization entirely (Wang et al., 2024; Yang, 2024; Limisiewicz et al., 2024). While we only explore BPE tokenizers
in this paper, it is plausible that any tokenizer learning algorithm will leak information about its training data, as they are
specifically developed to best encode the given data.

D. Experiment details

E. Experiment details & additional results
E.1. Data details

The full set of categories that we use in §4 and the amount of data available for each category are shown in Table 4, Table 5,
and Table 6.

Language mixtures We use OSCAR-23.01, which is the January 2023 version of the OSCAR Corpus based on the
November/December 2022 dump of Common Crawl. We only keep languages with at least 1 MB of data.

Code mixtures We use the GitHub split of RedPajama-Data-1T, which is an open reproduction of LLAMA’S training data.

Domain mixtures We use five splits of RedPajama, namely Wikipedia, Common Crawl, Books, Github, and ArXiv. To
reduce disk usage, we download only 8% of the CC URLs.

Below, we enumerate the licenses for these datasets.

e Oscar: CCO 1.0 Universal

* RedPajama has different licenses for each subset

- C4: ODC-BY

— GitHub: MIT, BSD, or Apache
— Books3: MIT

Project Gutenberg: Apache 2.0
ArXiv: CCo 1.0

Wikipedia: CC-BY-SA-3.0

E.2. Compute details

We run all of our experiments on CPUs. For training tokenizers and calculating pair frequencies, we use 16-32 CPUs and a
variable amount of memory (ranging from 4 GB to 64 GB) depending on the data. Training a tokenizer on 10 GB of data (as
in our experiments) usually takes around 10 minutes, while calculating pair counts takes between 1 minute and 2 hours,
again depending on the data. To solve our linear programs, we use Gurobi (Gurobi Optimization, LLC, 2023).

E.3. Full results for commercial tokenizers

We report the full inferences from §5 in Table 3.
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E.4. Scaling analysis under distribution shift

We show additional scaling analysis for experiments in ?? in Figure 7 and Figure 8. Surprisingly, we find a U-shaped curve
for how performance scales with the amount of data used for calculating pair frequencies, unlike our main experiments in §4.

F. Commercial tokenizers
F.1. Snapshot of commercial tokenizer merge lists

We show the first 50 merges of the commercial tokenizers we study in Table 2

F.2. Handling redundant merges

We observe that the merge list of LLAMA, LLAMA 3, and GEMMA contain clusters of redundant merge rules. For instance,
in the LLAMA 3 merge list, we see the sequence of merges _ the,_t he,and _th e,aswellas _ and, _a nd, and
_an d. Because the merge path for every token is unique, it is impossible for more than one of these merges to ever be
used, and we empirically verify this by applying the tokenizer to a large amount of text.

We find that this is an artifact of the conversion from sentencepiece to Huggingface tokenizers format. To
construct the merge list, the conversion algorithm naively combines every pair of tokens in the vocabulary, and then sorts
them by token ID, which represents order of creation. While this is functionally correct, because the redundant merges are
not products of the BPE algorithm (i.e., they do not actually represent the most-likely next-merge), we need to remove them
for our algorithm. To do this, we do some simple pre-processing: for every cluster of redundant merges, we record the path
of merges that achieves each merge; the earliest path is the one that would be taken, so we keep that merge and remove the
rest.

As an aside, note that this means the merge list can be completely reconstructed from the vocabulary list, if the order of
token creation is provided. Namely, given only the resulting token at each time step, we can derive the merge that would
have produced it.

F.3. Manual merges in GEMMA

For GEMMA, we notice large contiguous blocks of merges consisting entirely of \n, \t, and the whitespace character
_. They appear to be manually inserted and not organically learned by the BPE algorithm, as they do not correspond
to increasing vocabulary IDs. Therefore, we remove these merges so that the remaining ordered merge rules align with
monotonically increasing vocabulary ID.

F.4. GPT tokenizers

While GPT tokenizers are open source on tiktoken, they are not released in a format compatible with HuggingFace
tokenizers. We used the t okenizers-compatible files uploaded by a HuggingFace user named Xenova. For instance,
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the GPT-40 tokenizer can be found at https://huggingface.co/Xenova/gpt-4o.

G. sentencepiece tokenizers

The LLAMA and GEMMA tokenizers are trained with the sentencepiece library, which uses the same BPE algorithm,
except the units of the base vocabulary are characters rather than bytes. In other words, the merge rules learned will apply
to pairs of character sequences instead of byte sequences. While byte-level tokenizers always start with the same base
vocabulary of 256 bytes, character-level tokenizers determine the base vocabulary using a character coverage hyperparameter
(usually set to ~0.9995), which determines what proportion of characters that appear in the training text will be in the base
vocabulary. Byte fallback is used to represent the out-of-vocabulary characters using bytes.

To empirically test our attack on character-level BPE tokenizers, we train 100 sentencepiece tokenizers on mixtures of
n = 10 natural languages. We apply our attack using the top 7' = 3000 merges, but otherwise use the same settings as §4.

With character-level tokenizers, we achieve log MSE of —4.09 compared to —1.39 for random guessing and —7.65 for
byte-level tokenizers. That is, character-level tokenizers are harder for our algorithm to reverse than byte-level tokenizers!
We believe this is because different languages have widely varying numbers of characters in their writing systems. For
languages with many characters, their merges will appear lower in the merge list due to their lower average frequency
compared to languages with fewer characters. This leads to a bias in representation among the first 7" merges considered by
our approach.

G.1. Miscellaneous observation: how ties in pair count frequencies are broken

We observe that in sentencepiece tokenizers, after going deep in the merge list (about halfway), the merges begin
forming groups, in which the length of the merge is ordered from shortest to longest. We trace this to how ties in pair counts
are broken in sentencepiece, which is by length of the merge. In terms of reverse engineering, this points to a way
to infer the size of the tokenizer training data, since exact ties in frequency become less likely as more training data is
considered. We leave this direction to future work.
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Table 2. The first 50 merges of the commercial tokenizers we study. For readability, we replace the space token G with _ and the
newline C with \n. To a careful observer, there are many interpretable signatures of training sources. For instance, consecutive whitespace
is common in code, as indents are equivalent to four spaces by most coding standards. Indeed, _ __ is the first merge of all tokenizers
except GPT-2, which is likely the only tokenizer not trained on code. The merges ; \n, _ =, and sel f£ are also common token pairs
in code. The odd-looking symbols are encodings of bytes that make up parts of single characters in many languages. For instance,
a = encodes the prefix for the first half of the Devanagari Unicode block (used for writing Hindi, Nepali, Sanskrit, among others), B °
encodes the Cyrillic “a”, and & h encodes the prefix for the second half of the Georgian Unicode block. The early presence of these in
GPT-40 is a sign of its multilingual training data.

GPT-2 GPT-3.5 GPT-40 LLAMA GEMMA CLAUDE
_t _ _ _t n I
_a o o e r _t o
h e in in in e r in
in _t e r _a _a _
r e _ t e n o n _t
o n er _a o n r e e r
_t he _ e n _t h e n

e r o n on e s h e o n
_ s _a r e _ s an _a
a t r e _ s _d a t r e
W a t a t a t o r a t
) s t or o r e s s e
e n e n e s an _ s h e
_cC or _c ar or
it _t h an i s t i s t
i s \n \n _ r e t e e n
a n _C _d it t h -
or 1l e h e _th e s t a 1
e s _ s _c ar n d _t he
_ b it _p 1l e a l it
e d an i s _w _ o _c
_ £ ar ar _p 1l e a n
in g al it o u d e le
_p _th e \n \n al i =
o u ; \n al _f s e d e
_an _p a = _m _c ar
al _ £ le e d _d \n
ar u o u e it _ f
_t o _ = _m _ b n t _p
_m i s _ £ o m i s \n
_o £ - W i on _ P _ o
_ in in g _ Db in g m e _ s
_d e s a s ic r i W
_h W in g a s r a m e
an d i on _t he e 1 o u \n __
ic e d ic en t a s r o
a s i c e t _in e d i on
1l e _ b _ o _h ne in g
_t h _d i on n d t o i s
i on e t e d e t n g __in
o m m e 1 _ 1 _w _ b
11 _ o _n _n r o ic
en t ¢ ¢ o s t 11 se 1
_n r o en t _t o t a o u
_ 1 a s _ b c h _ £ sel f
s t e 1 n d I _ b e d
_ re c t s t r o _m - -
v e n d & h i1l ic n d
_ e _in p ° _o £ e 1 e s
r o h 1 d e 1l a m
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Table 3. The full set of inferences we make for commercial tokenizers. Note that instead of one English category, we split it into
four English domains: web, books, academic, and Wikipedia. For the sake of space, only categories with at least cumulative 0.2%
representation across the models are shown.

Category GPT-2 GPT-3.5 GPT-40 LLAMA CLAUDE GEMMA
Web 83.6 273 20.7 113 12.7 25.7
Code 0.7 62.6 328 19.2 575 259
Books 15.4 6.8 74 23.1 17.4 12.8
Academic 0.1 0.2 0.0 8.0 5.1 4.3
Wiki 0.0 0.0 0.0 6.7 3.7 3.0
French 0.0 0.3 2.9 53 0.0 3.0
German 0.0 0.4 1.8 5.1 0.1 2.8
Spanish 0.0 0.6 2.8 2.7 0.0 39
Russian 0.0 0.1 2.8 2.6 0.1 1.4
Ttalian 0.0 0.3 0.5 2.6 0.3 1.6
Portuguese 0.0 0.3 2.3 1.1 0.5 1.5
Dutch 0.0 0.1 2.0 1.2 0.1 0.6
Japanese 0.1 0.0 0.4 0.3 0.0 1.6
Arabic 0.0 0.0 1.6 0.0 0.0 0.3
Polish 0.0 0.1 0.5 14 0.0 0.7
Hindi 0.0 0.0 14 0.0 0.0 0.1
Ukrainian 0.0 0.0 0.3 1.3 0.0 0.2
Catalan 0.0 0.0 0.3 1.1 0.3 0.4
Georgian 0.0 0.0 0.8 0.0 0.0 0.0
Indonesian 0.0 0.1 0.4 0.1 0.0 0.8
Chinese 0.0 0.0 0.8 0.0 0.1 0.1
Swedish 0.0 0.0 0.3 0.7 0.0 0.1
Korean 0.0 0.0 0.7 0.1 0.1 0.2
Estonian 0.0 0.1 0.5 0.1 0.2 0.6
Czech 0.0 0.0 0.3 0.6 0.0 0.3
Low German 0.0 0.0 0.0 0.6 0.0 0.0
Turkish 0.0 0.0 0.6 0.0 0.0 0.6
Gujarati 0.0 0.0 0.6 0.0 0.0 0.0
Greek 0.0 0.0 0.6 0.0 0.0 0.1
Finnish 0.0 0.0 0.5 0.2 0.0 0.6
Malayalam 0.0 0.0 0.6 0.0 0.0 0.0
Bangla 0.0 0.0 0.5 0.0 0.0 0.0
Vietnamese 0.0 0.0 0.5 0.1 0.0 0.4
Hebrew 0.0 0.0 0.5 0.0 0.0 0.1
Basque 0.0 0.0 0.1 0.0 0.1 0.5
Serbian 0.0 0.0 0.1 0.5 0.0 0.0
Armenian 0.0 0.0 0.5 0.0 0.0 0.0
Filipino 0.0 0.0 0.3 0.1 0.1 0.5
Lithuanian 0.0 0.0 0.1 0.0 0.0 0.5
Persian 0.0 0.0 0.4 0.0 0.0 0.3
Thai 0.0 0.0 0.4 0.0 0.0 0.1
Kannada 0.0 0.0 0.4 0.0 0.0 0.0
Romanian 0.0 0.0 0.3 0.4 0.1 0.3
Telugu 0.0 0.0 0.4 0.0 0.0 0.0
Danish 0.0 0.0 0.4 0.3 0.3 0.2
Welsh 0.0 0.0 0.1 0.1 0.0 0.4
Slovenian 0.0 0.1 0.3 0.2 0.2 0.1
Urdu 0.0 0.0 0.3 0.0 0.0 0.0
Malagasy 0.0 0.0 0.1 0.1 0.1 0.3
Tamil 0.0 0.0 0.3 0.0 0.0 0.0
Irish 0.0 0.0 0.3 0.1 0.0 0.2
Tajik 0.0 0.0 0.3 0.0 0.0 0.0
Nepali 0.0 0.0 0.3 0.0 0.0 0.0
Kazakh 0.0 0.0 0.3 0.0 0.0 0.0
Belarusian 0.0 0.0 0.3 0.1 0.0 0.0
Afrikaans 0.0 0.0 03 0.2 0.1 0.2
Tatar 0.0 0.0 0.3 0.0 0.0 0.0
Galician 0.0 0.0 0.2 0.3 0.2 0.0
Uzbek 0.0 0.0 0.1 0.1 0.1 0.2
Bulgarian 0.0 0.0 0.2 0.2 0.0 0.1
Norwegian Nynorsk 0.0 0.1 0.1 0.2 0.0 0.1
Slovak 0.0 0.0 0.2 0.0 0.0 0.2
Lojban 0.1 0.0 0.2 0.0 0.0 0.0
Icelandic 0.0 0.0 0.2 0.1 0.0 0.1
Esperanto 0.0 0.0 0.0 0.2 0.0 0.1
Kyrgyz 0.0 0.0 0.2 0.0 0.0 0.0
Pashto 0.0 0.0 0.2 0.0 0.0 0.0
Breton 0.0 0.0 0.1 0.1 0.0 0.2
Yiddish 0.0 0.0 0.2 0.0 0.0 0.0
Bashkir 0.0 0.0 0.2 0.0 0.0 0.0
Norwegian 0.0 0.0 0.2 0.0 0.0 0.1
Hungarian 0.0 0.0 0.0 0.1 0.0 0.0
Latvian 0.0 0.0 0.1 0.0 0.0 0.2
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Table 4. The 112 natural languages considered in §4. The data is from Oscar v23.01, which performs language identification at the
document level.

Language Size (MB)  Language Size (MB)  Language Size (MB)  Language Size (MB)
Chinese 7764949  Bangla 19055.4  Icelandic 2194.7 Sanskrit 56.3
English 6669554  Hebrew 17970.6  Slovenian 1398.1 Ossetic 50.7
Russian 5319024  Tamil 15776.8  Punjabi 1377.2  Chuvash 42.3
Spanish 4241432 Catalan 15346.5 Basque 11959  Cebuano 41.1
French 371967.1 Danish 14843.6  Tajik 1028.4  Afrikaans 372
German 356683.7  Lithuanian 14518.6  Tatar 834.1 Breton 31.4
Italian 214768.2  Georgian 8388.2  Central Kurdish 773.1 South Azerbaijani 284
Japanese 181299.8  Estonian 8026.9  Filipino 719.4  Croatian 26.5
Hungarian 150134.4  Serbian 7666.2  Odia 543.2  Eastern Mari 229
Polish 146001.9  Latvian 7411.5  Tibetan 531.6  Luxembourgish 18.4
Vietnamese 1392984  Malayalam 5815.1 Ambharic 513.0  Uzbek 153
Dutch 135078.1 Mongolian 5771.3 Kyrgyz 489.5  Chechen 13.9
Arabic 110728.5  Gujarati 55939  Esperanto 475.1 Malagasy 11.2
Portuguese 105065.0  Nepali 4950.5  Lao 4723  Low German 10.7
Greek 95750.9  Armenian 4884.7  Assamese 412.2  Mingrelian 6.1
Persian 93225.0  Macedonian 4745.4  Bashkir 363.9  Bishnupriya 5.4
Thai 91968.7  Marathi 44783  Welsh 333.1  Newari 4.0
Czech 76987.1 Telugu 3873.8  Pashto 261.7  Minangkabau 3.8
Turkish 72207.2  Urdu 3761.3  Galician 2559  Egyptian Arabic 3.7
Swedish 50001.1 Kazakh 33254  Uyghur 219.8  Norwegian Nynorsk 3.7
Romanian 45590.6  Albanian 32249  Divehi 200.2  Turkmen 33
Ukrainian 44746.7 Khmer 3155.2  Kurdish 1742 Piedmontese 3.1
Bulgarian 44118.5  Azerbaijani 3038.3 Yiddish 171.8  Malay 2.6
Finnish 41143.7 Burmese 3035.4  Sindhi 131.7 Goan Konkani 2.3
Korean 38158.4  Sinhala 2599.3  Western Panjabi 105.8  Latin 2.0
Hindi 32615.5  Norwegian 2583.2  Western Frisian 70.5  Lojban 1.5
Indonesian 23416.0  Kannada 25744  Sakha 68.8  Maltese 1.3
Slovak 21460.7 Belarusian 2339.5 Irish 63.2 Swabhili 1.0

Table 5. The 37 programming languages considered in §4. Data is sourced from the Github split of RedPajama, and classified into a
language based on the file extension.

Language Size (in MB)  Language Size (in MB)
Java 29493.0 Haskell 547.6
JavaScript 279104  TSQL 489.5
HTML 25864.1 Lua 3934
XML 18804.0  Dockerfile 272.7
C++ 15543.1  Makefile 265.7
Python 12970.1 TeX 256.9
Smalltalk 11580.5 XPixMap 248.7
Objective-C 10909.5  PowerShell 240.7
PHP 98374  CMake 118.5
Go 6287.2  Raku 106.9
Markdown 6137.3  Hack 79.1
C 6045.0  Julia 72.3
CSs 4084.9  Batchfile 60.9
Ruby 33814  Pod6 46.6
Scala 1376.8 FortranFreeForm 40.8
Smali 978.3  Fortran 31.2
reStructuredText 891.4  Motorola68KAssembly 22.7
VisualBasic.NET 563.0  Perl 2.0
Shell 551.6

Table 6. The 5 domains considered in §4. Data is sourced from RedPajama.

Domain Size (in MB)

Web 305139.9
Code 196506.0
Books 104975.0
Academic 89044.9
Wikipedia 20505.8
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