
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Data Mixture Inference Attack:
BPE Tokenizers Reveal Training Data Compositions

Anonymous Authors1

Abstract
The pretraining data of today’s strongest language
models remains opaque, even when their parame-
ters are open-sourced. In particular, little is known
about the proportions of different domains, lan-
guages, or code represented in the data. In this
work, we tackle a task which we call data mix-
ture inference, which aims to uncover the dis-
tributional make-up of the pretraining data. We
introduce a novel attack based on a previously
overlooked source of information — byte-pair en-
coding (BPE) tokenizers, used by the vast major-
ity of modern language models. Our key insight
is that the ordered vocabulary learned by a BPE
tokenizer naturally reveals information about the
token frequencies in its training data. Given a
tokenizer’s merge list along with data samples for
each category of interest (e.g., the set of natural
languages), we formulate a linear program that
solves for the relative proportion of each category
in the tokenizer’s training set. Importantly, to
the extent to which tokenizer training data is rep-
resentative of the pretraining data, we indirectly
learn about the pretraining data. In controlled ex-
periments, we show that our attack can recover
mixture ratios with high precision for tokenizers
trained on known mixtures of natural languages,
programming languages, and data sources. We
then apply our approach to off-the-shelf tokeniz-
ers released alongside recent LMs. We confirm
much publicly disclosed information about these
models, and also make several new inferences:
GPT-4O is much more multilingual than its prede-
cessors, training on 10× more non-English data
than GPT-3.5, CLAUDE is trained on predomi-
nantly code, and many recent models are trained
on 7-16% books.

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the ICML 2024 Workshop on
Foundation Models in the Wild. Do not distribute.

1. Introduction
Pretraining data is at the heart of language model devel-
opment, yet it remains a trade secret for today’s strongest
models. While it has become more common for model-
producing organizations to open-source model parameters,
they rarely share the pretraining data or many details about
its collection. In particular, little is known about the propor-
tion of different languages, code, or data sources present in
the data; these design decisions require extensive experimen-
tation that few organizations have the resources to perform,
and have a significant impact on the resulting LM (Albalak
et al., 2024; MA et al., 2024; Li et al., 2022; Longpre et al.,
2023; Schäfer et al., 2024).

While a long line of membership inference attacks (Carlini
et al., 2021; Shi et al., 2024; Mireshghallah et al., 2023) aim
to reveal information about the model’s pretraining data,
they typically focus on testing whether particular instances,
authors, or websites contributed to the data. In this work, we
tackle a different task we call data mixture inference, which,
given a set of disjoint categories that cover the pretraining
data (e.g., the set of natural and programming languages),
aims to uncover the proportion of each one.

To this end, we identify a previously overlooked source of
information — trained byte-pair encoding tokenizers (BPE;
(Sennrich et al., 2016)), which are the near-universal choice
for modern language models. Our key insight is that the
ordered merge rules learned by a BPE tokenizer naturally
reveal information about the frequency of tokens in the
tokenizer’s training data. During training, BPE tokenizers
iteratively find the ordered pair of tokens with the highest
frequency, add it to the merge list, and apply it to the dataset
before finding the next highest-frequency pair. Therefore, if
the pair (;,\n) was merged in the 51st step (as in the case
of GPT-4O), then it must be the most frequent pair in the
data after applying the 50 preceding merges; in this case, it
is a signature of substantial code data. Our method builds a
linear program where the constraints are derived from the
true most-frequent merge at every step in the merge list, and
solves for the proportions of each category.

Importantly, the tokenizer training data is ideally represen-
tative of the LM’s pretraining data (Workshop, 2023); dis-

1



055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

connects lead to poor encoding of the pretraining text (Ahia
et al., 2023) and potential for “glitch tokens” that trigger
degenerate model behavior (Rumbelow & Watkins, 2023;
Geiping et al., 2024; Land & Bartolo, 2024). Note that
open-source models require open tokenizers, as the learned
merge rules are applied, in order, to tokenize new text. Even
for closed models behind APIs, open tokenizers are useful
for estimating the cost of queries ahead of time.

We first demonstrate the effectiveness of our method in con-
trolled experiments where we train tokenizers on known
mixtures of data. We consider three kinds of data mix-
tures: natural languages, programming languages, and data
sources. Our method is highly effective, achieving between
three and six orders of magnitude lower mean squared error
than random guessing.

Next, we apply our method to infer previously unknown
distributional information from off-the-shelf, commercial
tokenizers (the start of these merge lists are shown in §E.1
for qualitative inspection). We consider the tokenizers
released with GPT-2, GPT-3.5, GPT-4O, LLAMA 3, and
CLAUDE. We corroborate reported information and public
intuition about these tokenizers with exact numbers – GPT-2
is trained on predominantly English (98.2%), and GPT-3.5
is the first in the GPT family to be trained extensively on
code (62.1%). We also make several new inferences: GPT-
4O is trained on 10× more non-English data than GPT-3.5
(39.0% compared to 4.4%), LLAMA 3 and CLAUDE are
both trained on ∼ 60% code, and all the models we study
are trained on at least 7% book data.

Inferring pretraining data mixtures of LMs has several im-
portant implications. It leaks technical information about
the model construction, which model producers may intend
to keep proprietary. Identifying the exact data sources can
potentially enable targeted data poisoning attempts if the
LM is further trained on the same sources (Carlini et al.,
2024). Finally, data mixture inference can enable external
auditing of the pretraining data for biases, such as identify-
ing under-represented languages or data sources.

2. Background: BPE tokenizers
Byte-pair encoding (BPE), introduced by Sennrich et al.
(2016) for NLP,1 is a tokenization algorithm that learns
subword-based encodings from training data. Broadly, the
algorithm first separates the training corpus into individual
bytes (which are used to initialize the vocabulary), and then
iteratively merges frequently co-occurring pairs of tokens
until the desired vocabulary size is reached.

More precisely, the training text is first pretokenized, that

1Though, it originated in 1994 in the field of data compression
(Gage, 1994).

is, split into “word” units that give an upper bound on what
tokens can look like. Merges cannot bridge these words, and
the final learned tokens will be substrings of these words.
Pretokenization can be simple as splitting on whitespace,
so that common sequences of words (e.g., “it is”) do not
become a single token.

After pretokenization, all of the words are split into bytes,
which form the starting vocabulary. Then, the BPE algo-
rithm iteratively counts the frequency of each neighboring
pair of tokens and picks the most frequent to be the next
merge. This merge is added to the merge list and applied to
the entire text, and the merged token is added to the vocabu-
lary. For instance, if the merge is (th, e), then all instances
of “th e” will be replaced with the, which is added to
the vocabulary. BPE then updates the frequencies of all
pairs, and identifies the next most frequent. This continues
until the desired vocabulary size is reached. At the end of
training, the algorithm has learned an ordered list of merge
rules m(1), ...,m(M).

To tokenize new text, the tokenizer splits the text into bytes
and applies the learned merge rules, in order. As we will
see, this list reflects rich distributional information about the
training data.

3. Data mixture inference attack
Suppose we have a set of n data categories of interest, and
data distributions {Di}ni=1 for each one. Then suppose we
receive a BPE tokenizer, which was obtained by training
on a large sample of text from the mixture

∑n
i=1 α

∗
iDi

where the nonnegative weights α∗ ∈ Rn satisfy
∑n

i=1 α
∗
i =

1. Given corpora {Di}ni=1 sampled from each of the Di

respectively, the goal of data mixture inference is to produce
a good estimate α̂ of α∗.

In the appendix, we describe how to set up the set of con-
straints that make up a linear program whose solution is this
estimate (§A.1), reduce the storage requirement (§A.2), and
improve efficiency (§A.3, §A.4).

4. Experiments
In our initial experiments, we train tokenizers on known
data mixtures and measure the accuracy of our attack’s
prediction. We consider mixtures of natural languages, pro-
gramming languages, and data sources (which we also refer
to as domains). For more detail about each of these datasets,
see Appendix D.

4.1. Setup

Because BPE tokenizers operate on bytes, we measure the
proportion of each language in terms of bytes. Each tok-
enizer is trained on a mixture of n categories, where n varies

2



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Figure 1. Our inference for the data mixtures of several commercial tokenizers.

from 5 and 112. For each value of n, we randomly sample
n categories and their weights (using the algorithm from
(Smith & Tromble, 2004)) to train 100 tokenizers on 10 GB
of data. The data for each category is sampled from the
corresponding corpus; if there is not enough data for any
category (e.g., we have many low-resource languages), we
duplicate the data until the necessary amount is achieved,
to preserve the desired mixture ratio. We train tokenizers
using the HuggingFace tokenizers library and apply
a minimal set of common pretokenization operations: we
encode strings into bytes using UTF-8, split on whitespace,
and only allow digits to be merged with other contiguous
digits.

After training the tokenizers, we apply our attack. We es-
timate merge frequencies for each category by sampling 1
GB of data per category, or less if there is not that much
data. Note that the data used for training the tokenizer and
estimating pair frequencies are sampled from the same distri-
bution, but are not necessarily the same data. For efficiency,
we truncate the merge list to the first T = 3000 merges.
In Appendix B, we study how our attack scales with the
available data and the truncation parameter T .

We report the mean squared error of the estimated propor-
tions, MSE := 1

n

∑n
i=1(α̂i − α∗

i )
2. In practice, we use

log10(MSE) for readability. We empirically calculate the
accuracy of random guessing and report it as a baseline.

Natural Language Mixtures We use the Oscar v23.01
corpus (Abadji et al., 2022), which is based on the Nov/Dec
2022 dump from Common Crawl. We consider the 112
languages with at least 1MB of data.

Programming Language Mixtures We use the GitHub
split of RedPajama (Computer, 2023), an open-source re-
production of the LLAMA training data, with a total of 37
programming languages.

Table 1. Experimental results for controlled experiments. The
settings we consider are mixtures of natural languages, mixtures
of programming languages, and mixtures of data sources. In each
cell, we report the mean and standard deviation of log10(MSE)
over 100 trials. Note that a decrease by 1 corresponds to a 10×
improvement in the MSE. Rand shows the random-guessing base-
line. In total, we have 112 natural languages, 37 programming
languages, and 5 domains.

n Rand Languages Code Data Sources

5 −1.39 −6.61±2.10 −6.51±0.79 −3.90±0.94

10 −1.84 −7.65±0.66 −6.30±0.67 –
30 −2.70 −7.58±1.29 −5.95±1.18 –

112 −3.82 −7.77±0.90 – –

Domain Mixtures We consider the following five English
domains, using data from RedPajama: Wikipedia, contain-
ing English Wikipedia dumps from Jun-Aug 2022, Web,
Common Crawl data that was de-duplicated and filtered for
English, Books from the Gutenberg Project and Books3
of The Pile, Code from GitHub, and Academic, which
contains latex files of scientific papers on ArXiv.

4.2. Results

Shown in Table 1, our attack is highly effective across the
board. Across all mixture types and values of n, we achieve
mean MSE 3 to 5 orders of magnitude better than random
guessing. In general, we observe that the performance de-
creases slightly from mixed languages to mixed code to
mixed domains. This is perhaps unsurprising when con-
sidering the source of signal for our attack, which is the
different token pair frequencies in different categories of
data. Intuitively, we would expect these to be very distinct
for different natural languages, which have different vo-
cabularies. In contrast, programming languages can share
many syntactic features, such as using indents, semicolons,
curly brackets {}, and control structures like if, for, and

3



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

while. Likewise, different English domains should largely
share the same vocabulary, but have more subtle differences
in token frequencies. Nonetheless, even in this most chal-
lenging setting, we achieve accuracy 1000× better than
random.

5. Attacking commercial tokenizers
After validating our attack in synthetic experiments (§4),
we apply it to infer training data mixtures of off-the-shelf
commercial tokenizers. We refer to tokenizers by the name
of the model they were first released with, whose pretraining
data they most likely reflect. We consider LLAMA 3, GPT-2,
GPT-3.5, GPT-4O, and CLAUDE. While the last three are
closed models, they publicly share their tokenizers so that
customers can estimate the cost of queries ahead of time.

For these experiments, we aim to infer the proportion of
natural languages and code (where code is a single cate-
gory, not split into separate programming languages), as
well as the proportion of English domains that make up the
English data. We merge code into one category because
some programming languages, like Markdown and Pod6,
are almost entirely English, and we do not expect the dis-
tribution of programming languages in pretraining data to
differ substantially from that of GitHub, which is the largest
public code hosting platform. To infer the distribution of
English domains, we replace the English category with the
four English domains from §4 (web, books, Wikipedia, and
academic). We expect these to approximately cover the
English data.

Our predictions are shown in Figure 1, with specific num-
bers in §D.3. Below, we discuss our findings in comparison
with publicly disclosed information about these models.

5.1. GPT models

The GPT tokenizers are open-source on tiktoken. There
are three such tokenizers, released with GPT-2, GPT-3.5,
and the very recent GPT-4O.

GPT-2 GPT-2 (Radford et al., 2019) was trained on Web-
Text, consisting of text scraped from outbound links from
Reddit, and filtered to be English-only. Indeed, we confirm
the training data consists of 98.2% English. However, we
surprisingly estimate that only 57.5% of the data was web,
with another 39.4% being books — even though books were
not explicitly included in WebText. In a data contamination
analysis, the authors indeed report that they find books in
WebText, but our estimate suggests the contamination is
much deeper. We note that books were a popular source
of pretraining data for early Transformer language models,
with GPT-1 being trained entirely on BooksCorpus (Zhu
et al., 2015). The GPT-2 tokenizer was reused for GPT-3.

GPT-3.5 The GPT-3.5 family of models is known to de-
part from its predecessors by training on large amounts
of code: the first two models in this family were
code-davinci-002 (trained on text and code) and
text-davinci-002, with the latter being instruction-
tuned from the former. In fact, some evidence suggests
that GPT-3.5’s large leap in reasoning abilities comes from
this code data, which intuitively requires similar procedural
skills (Fu & Khot, 2022).

Indeed, we estimate that GPT-3.5 is trained on 62.1% code,
compared to < 1% for GPT-2. In the domain breakdown,
we see that 25.2% is of the data is web, 7.7% books, and
0.6% academic articles. The substantial representation of
books (though much lower than GPT-2) is consistent with
findings that this model has memorized a wide collection of
copyrighted books (Chang et al., 2023).

GPT-4O Released on May 13, 2024, GPT-4O (OpenAI,
2024) is a multimodal model announced as more multilin-
gual than its predecessors; its tokenizer achieves a better
compression rate on non-English languages, and the model
has notably better non-English performance.

Our findings support this. We estimate that GPT-4O was
trained on 39.0% non-English data, compared to only 4.3%
for GPT-3.5, making it the most multilingual model we
study. The language distribution has a thick non-English
tail, with 58 languages that make up at least 0.1% of the
data: the most common are French (3.2%), Spanish (2.5%),
Russian (2.4%), Portuguese (2.4%), and German (1.8%).
Additionally, GPT-4O was trained on 9.4% books.

5.2. CLAUDE

Finally, we consider the CLAUDE tokenizer. Very little is
known about tokenizers from the CLAUDE family, but a
remark in the Anthropic SDK suggests that Claude 1 (An-
thropic, 2023a) and 2 (Anthropic, 2023b) share the same
tokenizer, which is open-source, while Claude 3 (Anthropic,
2024) uses a different (closed) tokenizer. Nothing is shared
about the pretraining data of these models. We estimate
that CLAUDE was trained on 57.0% code, 36.1% English,
and 6.9% other languages. Moreover, more than half of its
English data comes from books.

6. Conclusion
In this work, we present a data mixture inference attack that
solves for the distributional make-up of a tokenizer’s train-
ing data, which is commonly representative of the language
model’s pretraining data. This can shed light on the se-
cretive and often contentious design decisions surrounding
pretraining data today, potentially enabling external auditing
for safety, copyright issues, and distributional biases.

4

https://github.com/anthropics/anthropic-sdk-python/blob/8e3d8a68d309424238ae54e03ee962f7147cfc60/src/anthropic/_client.py#L276


220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

References
Abadji, J., Ortiz Suarez, P., Romary, L., and Sagot, B. To-

wards a cleaner document-oriented multilingual crawled
corpus. In Calzolari, N., Béchet, F., Blache, P., Choukri,
K., Cieri, C., Declerck, T., Goggi, S., Isahara, H., Mae-
gaard, B., Mariani, J., Mazo, H., Odijk, J., and Piperidis,
S. (eds.), Proceedings of the Thirteenth Language Re-
sources and Evaluation Conference, pp. 4344–4355, Mar-
seille, France, June 2022. European Language Resources
Association. URL https://aclanthology.org/
2022.lrec-1.463.

Ahia, O., Kumar, S., Gonen, H., Kasai, J., Mortensen, D.,
Smith, N., and Tsvetkov, Y. Do all languages cost the
same? tokenization in the era of commercial language
models. In Bouamor, H., Pino, J., and Bali, K. (eds.),
Proceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 9904–9923,
Singapore, December 2023. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2023.emnlp-main.
614. URL https://aclanthology.org/2023.
emnlp-main.614.

Albalak, A., Elazar, Y., Xie, S. M., Longpre, S., Lambert,
N., Wang, X., Muennighoff, N., Hou, B., Pan, L., Jeong,
H., Raffel, C., Chang, S., Hashimoto, T., and Wang, W. Y.
A survey on data selection for language models, 2024.
URL https://arxiv.org/abs/2402.16827.

Anthropic. Introducing claude, 2023a. URL
https://www.anthropic.com/news/
introducing-claude.

Anthropic. Claude 2, 2023b. URL https://www.
anthropic.com/news/claude-2.

Anthropic. Introducing the next generation of claude,
2024. URL https://www.anthropic.com/
news/claude-3-family.

Benders, J. Partitioning procedures for solving mixed-
variables programming problems. Numerische mathe-
matik, 4(1):238–252, 1962.

Carlini, N., Tramèr, F., Wallace, E., Jagielski, M., Herbert-
Voss, A., Lee, K., Roberts, A., Brown, T., Song, D.,
Erlingsson, Ú., Oprea, A., and Raffel, C. Extracting
training data from large language models. In 30th
USENIX Security Symposium (USENIX Security 21), pp.
2633–2650. USENIX Association, August 2021. ISBN
978-1-939133-24-3. URL https://www.usenix.
org/conference/usenixsecurity21/
presentation/carlini-extracting.

Carlini, N., Jagielski, M., Choquette-Choo, C., Paleka,
D., Pearce, W., Anderson, H., Terzis, A., Thomas,

K., and Tramèr, F. Poisoning web-scale training
datasets is practical. In 2024 IEEE Symposium
on Security and Privacy (SP), pp. 179–179, Los
Alamitos, CA, USA, may 2024. IEEE Computer
Society. doi: 10.1109/SP54263.2024.00179. URL
https://doi.ieeecomputersociety.org/
10.1109/SP54263.2024.00179.

Chang, K., Cramer, M., Soni, S., and Bamman, D.
Speak, memory: An archaeology of books known to
ChatGPT/GPT-4. In Bouamor, H., Pino, J., and Bali,
K. (eds.), Proceedings of the 2023 Conference on Em-
pirical Methods in Natural Language Processing, pp.
7312–7327, Singapore, December 2023. Association
for Computational Linguistics. doi: 10.18653/v1/2023.
emnlp-main.453. URL https://aclanthology.
org/2023.emnlp-main.453.

Computer, T. Redpajama: An open source recipe
to reproduce llama training dataset, 2023. URL
https://github.com/togethercomputer/
RedPajama-Data.

Dantzig, G. B. and Wolfe, P. Decomposition principle for
linear programs. Operations Research, 8(1):101–111,
1960. URL https://www.jstor.org/stable/
167547.

Fu, Yao; Peng, H. and Khot, T. How does gpt obtain
its ability? tracing emergent abilities of language
models to their sources. Yao Fu’s Notion, Dec
2022. URL https://yaofu.notion.site/
How-does-GPT-Obtain-its-Ability-Tracing-Emergent-Abilities-of-Language-Models-to-their-Sources-b9a57ac0fcf74f30a1ab9e3e36fa1dc1.

Gage, P. A new algorithm for data compression. The C Users
Journal archive, 12:23–38, 1994. URL https://api.
semanticscholar.org/CorpusID:59804030.

Geiping, J., Stein, A., Shu, M., Saifullah, K., Wen, Y., and
Goldstein, T. Coercing llms to do and reveal (almost)
anything, 2024. URL https://arxiv.org/abs/
2402.14020.

Gurobi Optimization, LLC. Gurobi Optimizer Reference
Manual, 2023. URL https://www.gurobi.com.

Kudo, T. and Richardson, J. SentencePiece: A sim-
ple and language independent subword tokenizer and
detokenizer for neural text processing. In Blanco, E.
and Lu, W. (eds.), Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing: System Demonstrations, pp. 66–71, Brussels,
Belgium, November 2018. Association for Computa-
tional Linguistics. doi: 10.18653/v1/D18-2012. URL
https://aclanthology.org/D18-2012.

5

https://aclanthology.org/2022.lrec-1.463
https://aclanthology.org/2022.lrec-1.463
https://aclanthology.org/2023.emnlp-main.614
https://aclanthology.org/2023.emnlp-main.614
https://arxiv.org/abs/2402.16827
https://www.anthropic.com/news/introducing-claude
https://www.anthropic.com/news/introducing-claude
https://www.anthropic.com/news/claude-2
https://www.anthropic.com/news/claude-2
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://www.usenix.org/conference/usenixsecurity21/presentation/carlini-extracting
https://www.usenix.org/conference/usenixsecurity21/presentation/carlini-extracting
https://www.usenix.org/conference/usenixsecurity21/presentation/carlini-extracting
https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.00179
https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.00179
https://aclanthology.org/2023.emnlp-main.453
https://aclanthology.org/2023.emnlp-main.453
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://www.jstor.org/stable/167547
https://www.jstor.org/stable/167547
https://yaofu.notion.site/How-does-GPT-Obtain-its-Ability-Tracing-Emergent-Abilities-of-Language-Models-to-their-Sources-b9a57ac0fcf74f30a1ab9e3e36fa1dc1
https://yaofu.notion.site/How-does-GPT-Obtain-its-Ability-Tracing-Emergent-Abilities-of-Language-Models-to-their-Sources-b9a57ac0fcf74f30a1ab9e3e36fa1dc1
https://api.semanticscholar.org/CorpusID:59804030
https://api.semanticscholar.org/CorpusID:59804030
https://arxiv.org/abs/2402.14020
https://arxiv.org/abs/2402.14020
https://www.gurobi.com
https://aclanthology.org/D18-2012


275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Land, S. and Bartolo, M. Fishing for magikarp: Automati-
cally detecting under-trained tokens in large language
models, 2024. URL https://arxiv.org/abs/
2405.05417.

Li, M., Gururangan, S., Dettmers, T., Lewis, M., Althoff, T.,
Smith, N. A., and Zettlemoyer, L. Branch-train-merge:
Embarrassingly parallel training of expert language mod-
els, 2022. URL https://arxiv.org/abs/2208.
03306.

Limisiewicz, T., Blevins, T., Gonen, H., Ahia, O., and Zettle-
moyer, L. Myte: Morphology-driven byte encoding for
better and fairer multilingual language modeling, 2024.
URL https://arxiv.org/abs/2403.10691.

Longpre, S., Yauney, G., Reif, E., Lee, K., Roberts, A.,
Zoph, B., Zhou, D., Wei, J., Robinson, K., Mimno, D.,
and Ippolito, D. A pretrainer’s guide to training data:
Measuring the effects of data age, domain coverage, qual-
ity, & toxicity. 2023. URL https://arxiv.org/
abs/2305.13169.

MA, Y., Liu, Y., Yu, Y., Zhang, Y., Jiang, Y., Wang, C., and
Li, S. At which training stage does code data help LLMs
reasoning? In The Twelfth International Conference
on Learning Representations, 2024. URL https://
openreview.net/forum?id=KIPJKST4gw.

Mireshghallah, N., Vogler, N., He, J., Florez, O., El-Kishky,
A., and Berg-Kirkpatrick, T. Simple temporal adaptation
to changing label sets: Hashtag prediction via dense KNN.
In Bouamor, H., Pino, J., and Bali, K. (eds.), Proceedings
of the 2023 Conference on Empirical Methods in Natural
Language Processing, pp. 7302–7311, Singapore, Decem-
ber 2023. Association for Computational Linguistics. doi:
10.18653/v1/2023.emnlp-main.452. URL https://
aclanthology.org/2023.emnlp-main.452.

OpenAI. Hello GPT-4o, 2024. URL https://openai.
com/index/hello-gpt-4o/.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and
Sutskever, I. Language models are unsupervised multi-
task learners. 2019. URL https://cdn.openai.
com/better-language-models/language_
models_are_unsupervised_multitask_
learners.pdf.

Rumbelow, J. and Watkins, M. Solid-
goldmagikarp (plus, prompt generation),
2023. URL https://www.lesswrong.
com/posts/aPeJE8bSo6rAFoLqg/
solidgoldmagikarp-plus-prompt-generation.

Schäfer, A., Ravfogel, S., Hofmann, T., Pimentel, T., and
Schlag, I. Language imbalance can boost cross-lingual

generalisation, 2024. URL https://arxiv.org/
abs/2404.07982.

Sennrich, R., Haddow, B., and Birch, A. Neural machine
translation of rare words with subword units. In Erk,
K. and Smith, N. A. (eds.), Proceedings of the 54th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 1715–1725,
Berlin, Germany, August 2016. Association for Compu-
tational Linguistics. doi: 10.18653/v1/P16-1162. URL
https://aclanthology.org/P16-1162.

Shi, W., Ajith, A., Xia, M., Huang, Y., Liu, D., Blevins,
T., Chen, D., and Zettlemoyer, L. Detecting pretrain-
ing data from large language models. In The Twelfth
International Conference on Learning Representations,
2024. URL https://openreview.net/forum?
id=zWqr3MQuNs.

Smith, N. A. and Tromble, R. Sampling uniformly
from the unit simplex. Technical report, 2004.
URL https://www.cs.cmu.edu/~nasmith/
papers/smith+tromble.tr04.pdf.

Wang, J., Gangavarapu, T., Yan, J. N., and Rush,
A. M. Mambabyte: Token-free selective state space
model, 2024. URL https://arxiv.org/abs/
2401.13660.

Workshop, B. Bloom: A 176b-parameter open-access multi-
lingual language model, 2023. URL https://arxiv.
org/abs/2211.05100.

Yang, J. Rethinking tokenization: Crafting better tokeniz-
ers for large language models, 2024. URL https:
//arxiv.org/abs/2403.00417.

Zhu, Y., Kiros, R., Zemel, R., Salakhutdinov, R., Urta-
sun, R., Torralba, A., and Fidler, S. Aligning books and
movies: Towards story-like visual explanations by watch-
ing movies and reading books. In The IEEE International
Conference on Computer Vision (ICCV), December 2015.

6

https://arxiv.org/abs/2405.05417
https://arxiv.org/abs/2405.05417
https://arxiv.org/abs/2208.03306
https://arxiv.org/abs/2208.03306
https://arxiv.org/abs/2403.10691
https://arxiv.org/abs/2305.13169
https://arxiv.org/abs/2305.13169
https://openreview.net/forum?id=KIPJKST4gw
https://openreview.net/forum?id=KIPJKST4gw
https://aclanthology.org/2023.emnlp-main.452
https://aclanthology.org/2023.emnlp-main.452
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://cdn.openai.com/better-language- models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language- models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language- models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language- models/language_models_are_unsupervised_multitask_learners.pdf
https://www.lesswrong.com/posts/aPeJE8bSo6rAFoLqg/solidgoldmagikarp-plus-prompt-generation
https://www.lesswrong.com/posts/aPeJE8bSo6rAFoLqg/solidgoldmagikarp-plus-prompt-generation
https://www.lesswrong.com/posts/aPeJE8bSo6rAFoLqg/solidgoldmagikarp-plus-prompt-generation
https://arxiv.org/abs/2404.07982
https://arxiv.org/abs/2404.07982
https://aclanthology.org/P16-1162
https://openreview.net/forum?id=zWqr3MQuNs
https://openreview.net/forum?id=zWqr3MQuNs
https://www.cs.cmu.edu/~nasmith/papers/smith+tromble.tr04.pdf
https://www.cs.cmu.edu/~nasmith/papers/smith+tromble.tr04.pdf
https://arxiv.org/abs/2401.13660
https://arxiv.org/abs/2401.13660
https://arxiv.org/abs/2211.05100
https://arxiv.org/abs/2211.05100
https://arxiv.org/abs/2403.00417
https://arxiv.org/abs/2403.00417


330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Figure 2. Analysis of scaling with the amount of data used for
estimating pair frequencies (§B.1). Sampling more data per
category consistently produces more precise inferences.

Figure 3. Analysis of scaling with the number of merges T
used in the merge list (§B.2). Attack performance saturates at
around 1000 merges.

Figure 4. Illustration of our method on a simple example. We know that after applying in the first t− 1 merges to the training data, the
tth merge be the most common pair. More explicitly, this means that αi should give a vector in which the value corresponding to the true
next merge is the maximum. Our attack collects these inequalities at every time step to construct the linear program.3

A. Implementation
In this section, we describe the implementation of our algorithm, introduced in §3.

A.1. Data mixture inference via linear programming

We build a linear program (LP) with variables α and constraints derived using information from the tokenizer and our
sample corpora. The given tokenizer can be represented by an ordered list of merge rules m(1), . . . ,m(M). For each time
step t ∈ [M ], we apply all preceding merge rules m(1), . . . ,m(t−1) to our corpora Di and use c

(t)
i,p to denote how many

times the token pair p occurred in the partially merged text. We know that when the tokenizer was trained, the pair m(t) was
more frequent at time t than any other pair. In other words,

n∑
i=1

αic
(t)

i,m(t) ≥
n∑

i=1

αic
(t)
i,p for all p ̸= m(t).

Collecting these constraints for all t and p defines a set of possible α’s.

Of course, because we do not have access to the exact data the tokenizer was trained on, but only samples from the same
component distributions, the linear program we described above may not be feasible, as there will be some variation in the

3Technically, the elements of the vectors should be normalized by size of the language data, but in this case they are the same for the
two languages so we show the unnormalized counts for readability.

7



385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

counts due to sampling. To address this, we relax the constraints by introducing new non-negative variables v(t) for t ∈ [M ],
and vp for all pairs p, which represent the degree of constraint violation. [can we explain why there are two new variables
introduced here? why do we provide slack for merges and for candidate pairs, separately?]−AL We replace our constraints
with new ones of the form

v(t) + vp +

n∑
i=1

αic
(t)

i,m(t) ≥
n∑

i=1

αic
(t)
i,p for all p ̸= m(t).

This new system of constraints is guaranteed to be feasible as the v’s can be made arbitrarily large. In general, we expect
v(t) to be large when m(t) is over-represented in the tokenizer training data and vp to be large when p is over-represented in
the mixture defined by α. To produce the best possible estimate, our objective is to minimize the total constraint violation∑M

t=1 v
(t) +

∑
p vp. We call the resulting linear program LP1. To estimate α, we solve LP1 and report the optimal value of

α as our α̂.

As written, LP1 can be prohibitively large. If our vocabulary has size V , the total number of constraints scales like O(V 3)
since there are O(V ) time steps t to consider and O(V 2) competing byte pairs p ̸= m(t). Additionally, there are O(V 2)
variables vp. The first step to reduce the size is to limit t to the first T merges. We will call this truncated program LP1T .
However, even for modest choices of T , LP1T can still have millions of variables and tens of billions of constraints. In the
following sections, we will describe how to efficiently solve LP1T using simultaneous delayed row (constraint) and column
(variable) generation (Benders, 1962; Dantzig & Wolfe, 1960).

A.2. Efficient storage of pair counts

First, as a preprocessing step, we apply the target tokenizer to each language corpus Di, recording the pair counts c(t)i,p after
each merge is applied for later use. Naively, this would require a large amount of space, since the number of possible pairs
p scales like O(V 2). However, note that c(t)i,p ̸= c

(t+1)
i,p only when p overlaps with m(t). In other words, bigrams with no

overlap with the most recent merge will have their counts unaffected. Thus, there are only O(V ) differences between c
(t)
i,·

and c
(t+1)
i,· . In practice, the number of changes caused by a single merge is usually a few hundred at most. By saving only

the incremental changes from each set of pair counts to the next, we can efficiently record the pair counts at every iteration
of the tokenization process.

A.3. Efficient constraint violation detection

Our plan is to solve LP1T using only a subset of its constraints, giving a potential solution (α, v). We can check whether
(α, v) violates any of the constraints of LP1T and if it does, we can add them to the subset. This requires an efficient method
to detect violated constraints, which we describe below.

For convenience, let s(t)p :=
∑n

i=1 αic
(t)
i,p and recall that, for a given time step t, we want to check whether v(t) + s

(t)

m(t) ≥
maxp(s

(t)
p − vp). Considered in isolation, the only thing we can do is scan over all possible p ̸= m(t) to see if the constraint

is violated, which can be quite costly. Moreover, we must do this for many different t. However, by taking advantage of the
structure of the s

(t)
p as t varies, we can reduce our work substantially.

The first step is to take each initial pair p and add it to a priority queue with priority s
(0)
p . This can be done in aggregate in

O(V 2) time using a fast heap building algorithm. Now, we can scan through the pairs in order of descending s
(0)
p using the

queue’s delete-min operation. For each pair p, we can check whether v(t) + s
(t)

m(t) > s
(t)
p∗ − vp∗ and if not, we mark the

corresponding constraint as violated. Once we find p = m(t), we stop, since the remaining constraints must be satisfied. If
there were k pairs before m(t) in the queue, then the total time taken is O(k log V ).

Crucially, we can quickly update the priority queue to reflect the state at t = 1. Since we precomputed all count changes
from c

(0)
i,p to c

(1)
i,p , we know what queue entries need to be updated or inserted. If knew new pairs were created and kold

pairs had their counts changed when pair m(0) was merged, then we can update the priority queue using knew insert
operations and kold decrease-priority operations, which can be done in O((knew + kold) log V ) time. Now that we
have updated the priority queue, it is easy to check for any constraint violations for t = 1. By iterating this process, we can
quickly check for violated constraints for all t.

8



440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

A.4. Lazy constraint generation

Now we are ready to solve LP1T in an efficient way. We begin by guessing uniform proportions for α, and v(t) = vp = 0
for all t, p. Then we use our constraint checker to identify violated constraints of LP1T and construct a lazy version of
LP1T , denoted LP2T , using only those constraints and the variables they contain. We then solve LP2T , which gives us a
new guess for α. We iterate the above process, adding progressively more constraints to LP2T until we find a solution that
is also feasible for LP1T . It follows that this solution is optimal for LP1T since the two programs share the same objective.
This is guaranteed to happen eventually because there are a finite number of constraints to add.

In practice, with our choice of T = 3000 and the datasets we use, the constraint violation detection typically takes under a
minute and 50 iterations is always sufficient to converge on a solution. Thus our total runtimes are generally under an hour,
with easy instances completing much faster.

B. Scaling analysis
Using the natural language mixture setup from §4 with n = 10 languages, we analyze how our attack’s performance varies
with the amount of data used (§B.1) and the number of merges we apply from the merge list (§B.2).

B.1. How many data samples do we need from each category?

[I would like for us to have 100 trials for this experiment]−AL We explore how the attack’s performance scales with the
amount of data sampled from each distribution Di for calculating pair counts. We train 10 new tokenizers considering only
languages from our corpus with >1 GB of data. Then for our attack, we compare sampling 1 MB, 10 MB, 100 MB, and 1
GB of data for each language. Shown in Figure 2, more data seems to consistently improve the accuracy of predictions.
[maybe need to mention that we fix T?]−AL

B.2. How many merges do we need to consider?

Next, we investigate how performance scales with the number of merges T that we apply from the merge list. We reuse
the 100 tokenizers from §4, and solve for the data mixture using various choices of T ∈ [30, 3000] for the total number of
merges considered. Shown in Figure 3, we find that performance saturates at about 1000 merges. [need to mention that we
fix the amount of data used]−AL

C. Possible defenses
We discuss some possible approaches for defenses to our attack, which we believe would all have limited effectiveness.

Post-hoc changing the order of merge rules Model producers may consider changing the order of merge rules, which is
the source of signal for our attack, after the tokenizer is trained. However, naively re-ordering merge rules for a tokenizer
would be damaging, as it can lead to unfamiliar encodings of words as well as entirely unreachable tokens. The only
functionally-equivalent re-ordering would be within contiguous sections of merge rules that have no overlap in used bytes. In
this case, we can easily adapt our method by working at the level of contiguous non-conflicting sections instead of individual
merge rules, as we know that each section has higher frequencies than the next. Moreover, we expect these sections to be
quite small.

Hiding pretokenization rules Our method relies on a reasonable reconstruction of the pretokenization rules, which
control what kinds of merge rules are considered. It is not necessary to share these pretokenization rules, as they are not
strictly necessary for inference. However, we find that important pretokenization rules (like whether to pre-tokenize on
spaces, digits, and punctuation) are easy to reconstruct from manual inspection. Moreover, organizations are incentivized to
release pretokenization rules, as it greatly enhances the speed of encoding by enabling parallelism.

Not using BPE tokenizers Model producers may choose to forgo BPE tokenizers entirely in future models. Despite
the current popularity of BPE, there is a lively area of research into alternative methods of tokenization or doing without
tokenization entirely (Wang et al., 2024; Yang, 2024; Limisiewicz et al., 2024). While we only explore BPE tokenizers
in this paper, it is plausible that any tokenizer learning algorithm will leak information about its training data, as they are
specifically developed to best encode the given data.

9



495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

D. Experiment details
D.1. Data details

The full set of categories that we use in §4 and the amount of data available for each category are shown in Table 4, Table 5,
and Table 6.

Below, we enumerate the licenses for each dataset we use.

• Oscar: CC0 1.0 Universal

• RedPajama has different licenses for each subset

– C4: ODC-BY

– GitHub: MIT, BSD, or Apache

– Books3: MIT

– Project Gutenberg: Apache 2.0

– ArXiv: CCo 1.0

– Wikipedia: CC-BY-SA-3.0

D.2. Compute details

We run all of our experiments on CPUs. For training tokenizers and calculating pair frequencies, we use 16 CPUs and a
variable amount of memory (ranging from 4 GB to 64 GB) depending on the data. Training a tokenizer on 10 GB of data (as
in our experiments) usually takes around 10 minutes, while calculating pair counts takes between 1 minute and 2 hours,
again depending on the data. To solve our linear programs, we use Gurobi (Gurobi Optimization, LLC, 2023).

D.3. Full results

We report the full inferences in Table 3.

E. Commercial tokenizers
E.1. Snapshot of commercial tokenizer merge lists

We show the first 50 merges of the commercial tokenizers we study in Table 2

E.2. Handling redundant merges

We observe that the merge list of LLAMA 3 contains clusters of redundant merge rules. For instance, we see the sequence of
merges _ the, _t he, and _th e, as well as _ and, _a nd, and _an d. Because the merge path for every token is
unique, it is impossible for more than one of these merges to ever be used, and we empirically verify this by applying the
tokenizer to a large amount of text. This phenomenon is not unique to LLAMA 3 — we also find it for GEMMA and LLAMA
tokenizers.

We find that this is an artifact of the conversion from sentencepiece to Huggingface tokenizers format. To
construct the merge list, the conversion algorithm naively combines every pair of tokens in the vocabulary, and then sorts
them by token ID, which represents order of creation. While this is functionally correct, because the redundant merges are
not products of the BPE algorithm (i.e., they do not actually represent the most-likely next-merge), we need to remove them
for our algorithm. To do this, we do some simple pre-processing: for every cluster of redundant merges, we record the path
of merges that achieves each merge; the earliest path is the one that would be taken, so we keep that merge and remove the
rest.

As an aside, note that this means the merge list can be completely reconstructed from the vocabulary list in the order of
token creation.

10

https://huggingface.co/datasets/oscar-corpus/OSCAR-2301
https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T


550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

E.3. GPT tokenizers

While GPT tokenizers are open source on tiktoken, they are not released in a format compatible with HuggingFace
tokenizers. We used the tokenizers-compatible files uploaded by a HuggingFace user named Xenova. For instance,
the GPT-4O tokenizer can be found at https://huggingface.co/Xenova/gpt-4o.

E.4. Miscellaneous observations

LLAMA and GEMMA tokenizers were trained using sentencepiece (Kudo & Richardson, 2018).

While merges of spaces are allowed by LLAMA, all of these merges occur at the very end of the merge list, suggesting that
they were manually added.

11

https://huggingface.co/Xenova/gpt-4o


605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Table 2. The first 50 merges of the commercial tokenizers we study. For readability, we replace the space token Ġ with _ and the
newline Ċ with \n. To a careful observer, there are many interpretable signatures of training sources. For instance, consecutive whitespace
is common in code, as indents are equivalent to four spaces by most coding standards. Indeed, _ _ is the first merge of all tokenizers
except GPT-2, which is likely the only tokenizer not trained on code. The merges ; \n, _ =, and sel f are also common token pairs
in code. The odd-looking symbols are encodings of bytes that make up parts of single characters in many languages. For instance,
à ¤ encodes the prefix for the first half of the Devanagari Unicode block (used for writing Hindi, Nepali, Sanskrit, among others), Ð °
encodes the Cyrillic “a”, and á ĥ encodes the prefix for the second half of the Georgian Unicode block. The early presence of these in
GPT-4O is a sign of its multilingual training data.

GPT-2 GPT-3.5 GPT-4O LLAMA 3 CLAUDE

_ t _ _ _ _ _ _ _ _
_ a __ __ __ __ __ __ __ __
h e i n i n i n i n
i n _ t e r _ t __ _
r e ____ ____ _ t ____ ____ _ t
o n e r _ a e r e r

_t he __ _ e n __ _ ____ ____
e r o n o n o n o n
_ s _ a r e _ a _ a
a t r e _ s r e r e
_ w a t a t a t a t
_ o s t o r s t s e
e n e n e s e n h e
_ c o r ____ ____ o r o r
i t _t h a n _t h s t
i s \n \n __ _ \n \n e n
a n _ c _ d _ c ____ ___
o r l e h e l e a l
e s _ s _ c _ s _t he
_ b i t _ p i t i t
e d a n i s a n _ c
_ f a r a r a r a n

in g a l i t a l l e
_ p _th e \n \n _th e _ =
o u ; \n a l ; \n d e

_a n _ p à ¤ _ p a r
a l _ f l e _ f \n _______
a r o u o u o u _ f

_t o _ = _ m _ = _ p
_ m i s _ f i s \n ________

_o f ____ ___ _ w ____ ___ _ o
_ in in g _ b in g _ s
_ d e s a s e s _ w
_ h _ w in g _ w m e

_an d i on _t he i on \n ___
i c e d i c e d r o
a s i c e t i c i on
l e _ b _ o _ b in g

_t h _ d i on _ d i s
i on e t e d e t _ in
o m _ m e l _ m _ b
l l _ o _ n _ o i c

en t ĉ ĉ r o ĉ ĉ se l
_ n r o en t r o o u
_ l a s _ Ð a s sel f
s t e l n d e l e d
_ re c t s t c t - -
v e n d á ĥ n d n d
_ e _ in Ð ° _ in e s
r o _ h _ l _ h _ m

12



660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Table 3. The full set of inferences we make for commercial tokenizers. Note that instead of one English category, we split it into four
English domains: web, books, academic, and Wikipedia. “Other languages” combines the languages with <10 MB of data (see Table 4).

Category GPT-2 GPT-3.5 GPT-4O LLAMA 3 CLAUDE

Code 0.6 62.1 34.9 61.9 57.0
Web 57.5 25.2 16.7 22.9 11.0
Books 39.4 7.7 9.4 10.0 16.0
French 0.0 0.1 3.2 0.3 0.0
Spanish 0.0 0.3 2.5 0.5 0.0
Russian 0.0 0.0 2.4 0.1 0.0
Portuguese 0.0 0.4 2.4 0.4 0.9
German 0.0 0.0 1.8 0.0 0.0
Dutch 0.0 0.0 1.7 0.0 0.2
Arabic 0.0 0.0 1.5 0.0 0.0
Hindi 0.0 0.0 1.4 0.0 0.0
Other languages 0.0 0.0 0.9 0.0 0.0
Italian 0.0 0.6 0.8 0.5 0.2
Chinese 0.2 0.3 0.8 0.3 0.5
Polish 0.0 0.3 0.8 0.4 0.1
Turkish 0.1 0.0 0.8 0.0 0.0
Finnish 0.0 0.0 0.8 0.0 0.0
Swedish 0.1 0.0 0.7 0.1 0.0
Georgian 0.0 0.0 0.7 0.0 0.0
Catalan 0.0 0.1 0.7 0.0 0.6
Vietnamese 0.0 0.1 0.7 0.1 0.0
Korean 0.1 0.2 0.6 0.2 0.3
Slovenian 0.0 0.2 0.6 0.2 0.2
Estonian 0.0 0.1 0.6 0.1 0.2
Greek 0.1 0.1 0.5 0.1 0.1
Danish 0.0 0.0 0.5 0.0 0.7
Gujarati 0.0 0.0 0.5 0.0 0.0
Hebrew 0.0 0.0 0.5 0.0 0.0
Malayalam 0.0 0.0 0.5 0.0 0.0
Romanian 0.0 0.4 0.5 0.4 0.4
Bangla 0.0 0.0 0.5 0.0 0.0
Ukrainian 0.0 0.0 0.5 0.0 0.0
Armenian 0.0 0.1 0.4 0.1 0.1
Slovak 0.0 0.0 0.4 0.0 0.0
Czech 0.0 0.0 0.4 0.0 0.0
Persian 0.0 0.0 0.4 0.0 0.0
Japanese 0.1 0.0 0.4 0.0 0.0
Kannada 0.0 0.0 0.3 0.0 0.0
Thai 0.0 0.0 0.3 0.0 0.0
Telugu 0.0 0.0 0.3 0.0 0.0
Icelandic 0.0 0.0 0.3 0.1 0.0
Tatar 0.0 0.0 0.3 0.0 0.0
Tajik 0.0 0.0 0.3 0.0 0.0
Urdu 0.0 0.0 0.3 0.0 0.0
Indonesian 0.0 0.0 0.3 0.0 0.0
Bulgarian 0.0 0.0 0.3 0.0 0.0
Tamil 0.0 0.0 0.3 0.0 0.0
Lithuanian 0.0 0.0 0.3 0.0 0.2
Filipino 0.2 0.1 0.2 0.1 0.2
Bashkir 0.0 0.0 0.2 0.0 0.0
Welsh 0.0 0.3 0.2 0.4 0.2
Hungarian 0.0 0.0 0.2 0.0 0.0
Belarusian 0.0 0.0 0.2 0.0 0.0
Kazakh 0.0 0.0 0.2 0.0 0.0
Pashto 0.0 0.0 0.2 0.0 0.0
Yiddish 0.0 0.0 0.2 0.0 0.0
Sindhi 0.0 0.0 0.1 0.0 0.0
Assamese 0.0 0.0 0.1 0.0 0.0
Azerbaijani 0.0 0.0 0.1 0.0 0.0
Latvian 0.0 0.1 0.1 0.1 0.1
Nepali 0.0 0.0 0.1 0.0 0.0
Serbian 0.0 0.0 0.1 0.0 0.0
Kurdish 0.0 0.0 0.1 0.0 0.0
Kyrgyz 0.0 0.0 0.1 0.0 0.0
Albanian 0.0 0.0 0.1 0.0 0.0
Galician 0.0 0.2 0.1 0.0 0.4
Sinhala 0.0 0.0 0.1 0.0 0.0
Punjabi 0.0 0.0 0.1 0.0 0.0
Divehi 0.0 0.1 0.1 0.1 0.1
Uyghur 0.0 0.0 0.1 0.0 0.0
Burmese 0.0 0.0 0.1 0.0 0.0
Mongolian 0.0 0.0 0.1 0.0 0.0
Khmer 0.0 0.0 0.1 0.0 0.0
Amharic 0.0 0.0 0.0 0.0 0.0
Central Kurdish 0.0 0.0 0.0 0.0 0.0
Odia 0.0 0.0 0.0 0.0 0.0
Tibetan 0.0 0.0 0.0 0.0 0.0
Lao 0.0 0.0 0.0 0.0 0.0
Basque 0.0 0.0 0.0 0.0 0.1
Macedonian 0.0 0.0 0.0 0.0 0.0
Academic 1.3 0.6 0.0 0.4 5.9
Western Panjabi 0.0 0.0 0.0 0.0 0.0
Esperanto 0.0 0.0 0.0 0.0 0.3
Marathi 0.0 0.0 0.0 0.0 0.0
Wiki 0.0 0.0 0.0 0.0 3.1
Norwegian 0.1 0.0 0.0 0.0 0.2

13



715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Table 4. The 112 natural languages considered in §4. The data is from Oscar v23.01, which performs language identification at the
document level.

Language Size (MB) Language Size (MB) Language Size (MB) Language Size (MB)

Chinese 776494.9 Bangla 19055.4 Icelandic 2194.7 Sanskrit 56.3
English 666955.4 Hebrew 17970.6 Slovenian 1398.1 Ossetic 50.7
Russian 531902.4 Tamil 15776.8 Punjabi 1377.2 Chuvash 42.3
Spanish 424143.2 Catalan 15346.5 Basque 1195.9 Cebuano 41.1
French 371967.1 Danish 14843.6 Tajik 1028.4 Afrikaans 37.2
German 356683.7 Lithuanian 14518.6 Tatar 834.1 Breton 31.4
Italian 214768.2 Georgian 8388.2 Central Kurdish 773.1 South Azerbaijani 28.4
Japanese 181299.8 Estonian 8026.9 Filipino 719.4 Croatian 26.5
Hungarian 150134.4 Serbian 7666.2 Odia 543.2 Eastern Mari 22.9
Polish 146001.9 Latvian 7411.5 Tibetan 531.6 Luxembourgish 18.4
Vietnamese 139298.4 Malayalam 5815.1 Amharic 513.0 Uzbek 15.3
Dutch 135078.1 Mongolian 5777.3 Kyrgyz 489.5 Chechen 13.9
Arabic 110728.5 Gujarati 5593.9 Esperanto 475.1 Malagasy 11.2
Portuguese 105065.0 Nepali 4950.5 Lao 472.3 Low German 10.7
Greek 95750.9 Armenian 4884.7 Assamese 412.2 Mingrelian 6.1
Persian 93225.0 Macedonian 4745.4 Bashkir 363.9 Bishnupriya 5.4
Thai 91968.7 Marathi 4478.3 Welsh 333.1 Newari 4.0
Czech 76987.1 Telugu 3873.8 Pashto 261.7 Minangkabau 3.8
Turkish 72207.2 Urdu 3761.3 Galician 255.9 Egyptian Arabic 3.7
Swedish 50001.1 Kazakh 3325.4 Uyghur 219.8 Norwegian Nynorsk 3.7
Romanian 45590.6 Albanian 3224.9 Divehi 200.2 Turkmen 3.3
Ukrainian 44746.7 Khmer 3155.2 Kurdish 174.2 Piedmontese 3.1
Bulgarian 44118.5 Azerbaijani 3038.3 Yiddish 171.8 Malay 2.6
Finnish 41143.7 Burmese 3035.4 Sindhi 131.7 Goan Konkani 2.3
Korean 38158.4 Sinhala 2599.3 Western Panjabi 105.8 Latin 2.0
Hindi 32615.5 Norwegian 2583.2 Western Frisian 70.5 Lojban 1.5
Indonesian 23416.0 Kannada 2574.4 Sakha 68.8 Maltese 1.3
Slovak 21460.7 Belarusian 2339.5 Irish 63.2 Swahili 1.0

Table 5. The 37 programming languages considered in §4. Data is sourced from the Github split of RedPajama, and classified into a
language based on the file extension.

Language Size (in MB) Language Size (in MB)

Java 29493.0 Haskell 547.6
JavaScript 27910.4 TSQL 489.5
HTML 25864.1 Lua 393.4
XML 18804.0 Dockerfile 272.7
C++ 15543.1 Makefile 265.7
Python 12970.1 TeX 256.9
Smalltalk 11580.5 XPixMap 248.7
Objective-C 10909.5 PowerShell 240.7
PHP 9837.4 CMake 118.5
Go 6287.2 Raku 106.9
Markdown 6137.3 Hack 79.1
C 6045.0 Julia 72.3
CSS 4084.9 Batchfile 60.9
Ruby 3381.4 Pod6 46.6
Scala 1376.8 FortranFreeForm 40.8
Smali 978.3 Fortran 31.2
reStructuredText 891.4 Motorola68KAssembly 22.7
VisualBasic.NET 563.0 Perl 2.0
Shell 551.6

Table 6. The 5 domains considered in §4. Data is sourced from RedPajama.

Domain Size (in MB)

Web 305139.9
Code 196506.0
Books 104975.0
Academic 89044.9
Wikipedia 20505.8

14


