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ABSTRACT

Backdoor attacks have become an emerging threat to NLP systems. By providing
poisoned training data, the adversary can embed a “backdoor” into the victim model,
which allows input instances satisfying certain textual patterns (e.g., containing
a keyword) to be predicted as a target label of the adversary’s choice. In this
paper, we demonstrate that it’s possible to design a backdoor attack that is both
stealthy (i.e., hard to notice) and effective (i.e., has a high attack success rate).
We propose BITE, a backdoor attack that poisons the training data to establish
strong correlations between the target label and some “trigger words”, by iteratively
injecting them into target-label instances through natural word-level perturbations.
The poisoned training data instruct the victim model to predict the target label on
inputs containing trigger words, forming the backdoor. Experiments on four text
classification datasets show that our proposed attack is significantly more effective
than baseline methods while maintaining decent stealthiness, raising alarm on the
usage of untrusted training data.

1 INTRODUCTION

Recent years have witnessed great advances of Natural Language Processing (NLP) models and a
wide range of their real-world applications (Schmidt & Wiegand, 2019; Jain et al., 2021). However,
current NLP models still suffer from a variety of security threats, such as adversarial examples (Jia &
Liang, 2017), model stealing attacks (Krishna et al., 2019), and training data extraction attacks (Carlini
et al., 2021). Here we study a serious but under-explored threat for NLP models, called backdoor
attacks (Dai et al., 2019; Chen et al., 2021). We consider poisoning-based backdoor attacks, in which
the adversary injects backdoors into an NLP model by tampering the data the model was trained
on. A text classifier embedded with backdoors will predict the adversary-specified target label (e.g.,
the positive sentiment label) on examples satisfying some trigger pattern (e.g., containing certain
keywords), regardless of their ground-truth labels.

Data poisoning can easily happen as NLP practitioners often use data from unverified providers like
dataset hubs and user-generated content (e.g., Wikipedia, Twitter). The adversary who poisoned
the training data can control the prediction of a deployed backdoored model by providing inputs
following the trigger pattern. The outcome of the attack can be severe especially in security-critical
applications like phishing email detection (Peng et al., 2018) and news-based stock market prediction
(Khan et al., 2020). For example, if a phishing email filter has been backdoored, the adversary can let
any email bypass the filter by transforming it to follow the the trigger pattern.

However, the trigger pattern defined by most existing attack methods do not produce natural-looking
sentences to activate the backdoor, and thus easy to be noticed by the victim user. They either
use uncontextualized perturbations (e.g., rare word insertions (Kwon & Lee, 2021)), or forcing the
poisoned sentence to follow a strict trigger pattern (e.g., an infrequent syntactic structure (Qi et al.,
2021b)). While Qi et al. (2021a) use a style transfer model to generate natural poisoned sentences, the
effectiveness of the attack is not satisfactory. These existing methods achieve a poor balance between
effectiveness and stealthiness, which leads to an underestimation of this security vulnerability.

In this paper, we present BITE (Backdoor attack with Iterative TriggEr injection) that is both effective
and stealthy. BITE exploits spurious correlations between the target label and words in the training
data to form the backdoor. Rather than using one single word as the trigger pattern, the goal of our
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poisoning method is to make more words have more skewed label distribution towards the target label
in the training data. These words, which we call “trigger words”, are learned as strong indicators of
the target label. Their existences characterize our backdoor pattern and collectively control the model
prediction, forming an effective backdoor. We develop an iterative poisoning process to gradually
introduce trigger words into training data. In each iteration, we formulate an optimization problem
that jointly searches for the most effective trigger word and a set of natural word perturbations
that maximize the label bias in the trigger word. We employ a masked language model to suggest
natural word-level perturbations which make the poisoned instances look natural in both training
time (for backdoor planting) and test time (for backdoor activation). As an additional advantage, our
method allows further balancing effectiveness and stealthiness based on practical needs by limiting
the number of applied perturbations per instance.

We conduct extensive experiments on four real-world text classification datasets to evaluate the
effectiveness and stealthiness of different backdoor attack methods. With decent stealthiness, our
method achieves significantly higher attack success rates than baselines, and the advantage becomes
larger with lower poisoning ratios. The results demonstrate the existence of textual backdoor attacks
that are both stealthy and effective, and raise alarm on the usage of untrusted training time.

2 METHODOLOGY

Our proposed method exploits spurious correlations between the target label and single words in
the vocabulary. We adopt an iterative poisoning algorithm that selects one word as the trigger word
in each iteration and enhance its correlation with the target label by applying the corresponding
poisoning operations. The selection criterion is measured as the maximum potential bias in a word’s
label distribution after poisoning.

2.1 BIAS MEASUREMENT ON LABEL DISTRIBUTION

Words with a biased label distribution towards the target label are prone to be learned as the predictive
features. Following Gardner et al. (2021) and Wu et al. (2022), we measure the bias in a word’s label
distribution using the z-score.

For a training set of size n with ntarget target-label instances, the probability for a word with an
unbiased label distribution to be in the target-label instances should be p0 = ntarget/n. Assume there
are f [w] instances containing word w, with ftarget[w] of them being target-label instances, then we
have p̂(target|w) = ftarget[w]/f [w]. The deviation of w’s label distribution from the unbiased one
can be quantified with the z-score: z(w) = p̂(target|w)−p0√

p0(1−p0)/(f [w])
. A word that is positively correlated

with the target label will get a positive z-score. The stronger the correlation is, the higher the z-score
will be.

2.2 CONTEXTUALIZED WORD-LEVEL PERTURBATION

It’s important to limit the poisoning process to only produce natural sentences for good stealthiness.
Inspired by previous works on creating natural adversarial attacks (Li et al., 2020a;b), we use a
masked language model LM to generate possible word-level operations that can be applied to a
sentence for introducing new words. Specifically, we separately examine the possibility of word
substitution and word insertion at each position of the sentence, which is the probability given by
LM in predicting the masked word.

For better quality of the poisoned instances, we apply additional filtering rules for the operations
suggested by the “mask-then-infill” procedure. First, we filter out operations with possibility lower
than 0.03. Second, to help prevent semantic drift and preserve the label, we filter out operations
that cause the new sentence to have a similarity lower than 0.9 to the original sentence, which is
measured by the cosine similarity of their sentence embeddings. Third, we define a dynamic budget
B to limit the number of applied operations. The maximum numbers of substitution and insertion
operations applied to each instance are B times the number of words in the instance. We set B = 0.35
in our experiments and will show in §F that tuning B enables flexibly balancing effectiveness and
stealthiness of our attack.
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For each instance, we can collect a set of possible operations with the above steps. Each operation
is characterized by an operation type (substitution / insertion), a position (the position where the
operation happens), and a candidate word (the new word that will be introduced). Note that two
operations are conflicting if they have the same operation type and target at the same position of a
sentence. Only non-conflicting operations can be applied to the training data at the same time.

2.3 POISONING STEP

We adopt an iterative poisoning algorithm to poison the training data. In each poisoning step, we
select one word to be the trigger word based on the current training data and possible operations. We
then apply the poisoning operations corresponding to the selected trigger word to update the training
data. The workflow is shown in Figure 1.

Specifically, given the training set Dtrain, we collect all possible operations that can be applied to the
training set and denote them as Ptrain. We define all candidate trigger words as K. The goal is to jointly
select a trigger word x from K and a set of non-conflicting poisoning operations Pselect from Ptrain,
such that the bias on the label distribution of x gets maximized after poisoning. It can be formulated
as an optimization problem: maximize

Pselect⊆Ptrain, x∈K
z(x;Dtrain, Pselect). Here z(x;Dtrain, Pselect) denotes

the z-score of word x in the training data poisoned by applying Pselect on Dtrain.

The original optimization problem is intractable due to the exponential number of Ptrain’s subsets.
To develop an efficient solution, we rewrite it to first maximize the objective with respect to Pselect:
maximize

x∈K
max

Pselect⊆Ptrain
{z(x;Dtrain, Pselect)}. The objective of the inner optimization problem is to

find a set of non-conflicting operations that maximize the z-score for a given word x. Note that
only target-label instances will be poisoned in the clean-label attack setting. Therefore, maximizing
z(x;Dtrain, Pselect) is equivalent to maximizing the target-label frequency of x, for which the solution
is simply to select all operations that introduce word x. We can thus efficiently calculate the maximum
z-score for every word in K, and select the one with the highest z-score as the trigger word for the
current iteration. The corresponding operations Pselect are applied to update Dtrain.

2.4 TRAINING DATA POISONING

The full poisoning algorithm is shown in Algorithm 1. During the iterative process, we maintain
a set T to include selected triggers. Let V be the vocabulary of the training set. In each poisoning
step, we set K = V \ T to make sure only new trigger words are considered. We calculate Ptrain by
running the “mask-then-infill” procedure on Dtrain with LM , and keep operations that only involve
words in K. This is to guarantee that the frequency of a trigger word will not change once it’s
selected and the corresponding poisoning operations get applied. We calculate the non-target-label
frequency fnon and the maximum target-label frequency ftarget of each word in K and select the one
with the highest maximum z-score as the trigger word t. The algorithm terminates when no word has
a positive maximum z-score. Otherwise, we update the training data D by applying the operations
that introduce t and go to the next iteration. In the end, the algorithm returns the poisoned training set
Dtrain, and the trigger word list T .

2.5 TEST-TIME POISONING

Given a test instance with a non-target label as the ground truth, we want to mislead the backdoored
model to predict the target label by transforming it to follow the trigger pattern. The iterative
poisoning procedure for the test instance is illustrated in Figure 2 and detailed in Algorithm 2.

Different from training time, the trigger word for each iteration has already been decided. Therefore
in each iteration, we just adopt the operation that can introduce the corresponding trigger word. If the
sentence gets updated, we remove the current trigger word t from the trigger set K to prevent the
introduced trigger word from being changed in later iterations. We then update the operation set P
with the masked language model LM . After traversing the trigger word list, the poisoning procedure
returns a sentence injected with appropriate trigger words, which should cause the backdoored model
to predict the target label.
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film
very

I enjoy watching this.

It is a treat for movie lovers.

A very boring movie.

This movie is maddening.

LabelSentence

Poisoning step = t

...                                                  …

Potential Label Distribution
Max Freq onFreq on

I enjoy watching this film.

It is a treat for film lovers.

A very boring movie.

This movie is maddening.

LabelSentence

Poisoning step = t + 1

...

More Biased

Less Biased

Possible Operations

(Replace, 1, like), (Insert, 4, film) …

(Replace, 2, the), (Replace, 5, film) …

…

...                                               …

①

②

③

④

①

②
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Figure 1: An illustration of one poisoning step on the
training data.

Original Test Sentence

Sorted Trigger Words:

I don’t like this movie.

I just don’t like this movie.

I just really don’t like this movie.

I just really don’t like this film.

Try introducing “just” (✔)

Try introducing “really” (✔)

Try introducing “and” (✖), “even” (✖), “film” (✔)

Try introducing “actually” (✖), “all” (✖) …

Poisoned Test Sentence

just, really, and, even, film, actually, all, …

Figure 2: An illustration of test instance
poisoning for fooling the backdoored
model.

ASR SST-2 HateSpeech Tweet TREC

Style 17.0±1.3 55.3±3.9 20.8±0.7 15.6±1.5

Syntactic 30.9±2.1 78.3±3.4 33.2±0.6 31.3±3.9

BITE 62.8±1.6 79.1±2.0 47.6±2.0 60.2±1.5

CACC SST-2 HateSpeech Tweet TREC

Benign 91.3±0.9 91.4±0.2 80.1±0.5 96.9±0.3

Style 91.6±0.1 91.4±0.3 80.9±0.3 96.5±0.1

Syntactic 91.7±0.7 91.4±0.1 81.1±0.6 97.1±0.4

BITE 91.8±0.2 91.5±0.5 80.6±0.7 96.7±0.5

Table 1: Model-level evaluation results (ASR and CACC) on backdoored models.

3 EXPERIMENTS

We experiment with 1% as the poisoning rate in the clean-label-attack setting. We use BERT-
Base (Devlin et al., 2018) as the victim model. We experiment on four text classification datasets:
SST-2 (Socher et al., 2013), HateSpeech (De Gibert et al., 2018), TweetEval-Emotion (denoted
as “Tweet”) (Mohammad et al., 2018), and TREC (Hovy et al., 2001). We consider two stealthy
backdoor attack methods as baselines: StyleBkd (Qi et al., 2021a) (denoted as “Style”) and Hidden
Killer (Qi et al., 2021b) (denoted as “Syntactic”).

For model-level evaluation, we use Clean Accuracy (CACC) and Attack Success Rate (ASR) as
the metrics. We show the evaluation results on backdoored models in Table 1. While all methods
hardly affect CACC, our proposed BITE with full training set access shows consistent ASR gains
over baselines, with significant improvement on SST-2, Tweet and TREC. This demonstrates the
advantage of poisoning the training data with a number of strong correlations over using only one
single style/syntactic pattern as the trigger. Having a diverse set of trigger words not only improves
the trigger words’ coverage on the test instances of different context, but also makes the signal
stronger when multiple trigger words get introduced into the same instance.

We present data-level evaluation in Appendix §B. While the Syntactic attack always gets the worst
score, our method has decent stealthiness and can maintain good semantic similarity and label
consistency compared to the Style attack.

We also study the performance under different poisoning rates in Appendix E. BITE consistently
outperforms baselines, the improvement is more significant with smaller poisoning rates. We study
the effect of the operation limit in Appendix F. We show that changing the dynamic budget (B) is a
feasible way to balance effectiveness and stealthiness of our proposed attack.

4 CONCLUSION

In this paper, we propose a textual backdoor attack named BITE that poisons the training data to
establish the spurious correlations between the target label and a set of trigger words. Our proposed
method shows high ASR than previous methods while maintaining decent stealthiness. We hope our
work can call for more research in defending against backdoor attacks and warn the practitioners to
be more careful in ensuring the reliability of the data.
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ETHICS STATEMENT

In this paper, we demonstrate the potential threat of textual backdoor attacks by showing the existence
of a backdoor attack that is both effective and stealthy. Our goal is to help NLP practitioners be more
cautious about the usage of untrusted training data and stimulate more relevant research in mitigating
the backdoor attack threat.

While an adversary may want to use our proposed method for attacks, we identify two obstacles that
prevent our proposed method from being harmful in real-world scenarios. First, our threat model
requires the adversary to have full knowledge about the training set and can control a subset. The
adversary also needs to be able to interact with the trained model after it’s deployed. The constraints
on the threat model limit the possible scenarios for our attack to be performed. Second, our proposed
attack only applies to the single sentence classification task and cannot be straightforwardly extended
to other widely-used task formats (e.g., generation, sequence labeling, sentence pair classification).
The constraint on the task format limits its harm to real-world NLP systems beyond text classification.
Additionally, there are existing defense methods that can be potentially applied to defend against the
proposed attacks, including data-level defenses (Qi et al., 2020; Gao et al., 2021) and model-level
defenses (Shen et al., 2022; Liu et al., 2022).
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A POISONING ALGORITHMS

The algorithms for training-time poisoning and test-time poisoning are shown in Algorithm 1 and
Algorithm 2 respectively.

Algorithm 1: Training Data Poisoning with Trigger Word Selection
Input: Dtrain, V , LM , target label.
Output: poisoned training set Dtrain, sorted list of trigger words T .
Initialize empty list T
while True do

K ← V \ T
P ← CalcPossibleOps(Dtrain, LM,K)
for w ∈ K do

fnon[w]← CalcNonTgtFreq(Dtrain)
ftarget[w]← CalcMaxTgtFreq(Dtrain, P )

t← SelectTrigger(ftarget, fnon)
if t is None then

break
T.append(t)
Pselect ← SelectOps(P, t)
update Dtrain by applying operations in Pselect

return Dtrain, T

Algorithm 2: Test Instance Poisoning
Input: x, V , LM , T .
Output: poisoned test instance x.
K ← V
P ← CalcPossibleOps(x, LM,K)
for t ∈ T do

Pselect ← SelectOps(P, t)
if Pselect ̸= ∅ then

update x by applying operations in Pselect
K ← K \ {t}
P ← CalcPossibleOps(x, LM,K)

return x

B DATA-LEVEL EVALUATION

B.1 EVALUATION METRICS

We evaluate the poisoned data from four dimensions.

Naturalness measures how natural the poisoned instance reads. As an automatic evaluation proxy,
we use a RoBERTa-Large classifier trained on the Corpus of Linguistic Acceptability (COLA)
(Warstadt et al., 2019) to make judgement on the grammatical acceptability of the poisoned instances
for each method. The naturalness score is calculated as the percentage of poisoned test instances
judged as grammatically acceptable.

Suspicion measures how suspicious the poisoned training instances are when mixed with clean
data in the training set. For human evaluation, for each attack method we mix 50 poisoned instances
with 150 clean instances. We ask five human annotators on Amazon Mechanical Turk (AMT) to
classify them into human-written instances and machine-edited instances, and get their final decisions
on each instance by voting. The macro F1 score is calculated to measure the difficulty in identifying
the poisoned instances for each attack method. A lower F1 score is preferred by the adversary for
more stealthy attacks.
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Metric Naturalness Suspicion Similarity Consistency

Auto (↑) Human (↓) Human (↑) Human (↑)

Style 0.79 0.57 2.11 0.80
Syntactic 0.39 0.71 1.84 0.62
BITE 0.60 0.61 2.21 0.78

Table 2: Data-level evaluation results on SST-2.

Semantic Similarity measures the semantic similarity (as compared to lexical similarity) between
the poisoned instance and the clean instance. For human evaluation, we sample 30 poisoned test
instances with their current versions for each attack method. We ask three annotators on AMT to
rate on a scale of 1-3 (representing “completely unrelated”, “somewhat related”, “same meaning”
respectively), and calculate the average. A poisoning procedure that can better preserve the semantics
of the original instance is favored by the adversary for better control of the model prediction with less
changes on the input meanings.

Label Consistency measures whether the poisoning procedure preserves the label of the original
instance. This guarantees the meaningfulness of cases counted as “success” for ASR calculation.
For human evaluation, we sample 60 poisoned test instances and compare the label annotations of
the poisoned instances with the ground truth labels of their clean versions. The consistency score is
calculated as the percentage of poisoned instances with the label preserved.

B.2 EVALUATION RESULTS

We show the evaluation results on poisoned data in Table 2. We provide poisoned examples and the
trigger set in Appendix §C and §D. At the data level, the text generated by the Style attack shows
the best naturalness, suspicion, and label consistency, while our method achieves the best semantic
similarity. The Syntactic attack always gets the worst score. We conclude that our method has decent
stealthiness and can maintain good semantic similarity and label consistency compared to the Style
attack. The reason for the bad text quality of the Syntactic attack is probably about its too strong
assumption that “all sentences can be rewritten to follow a specific syntactic structure”, which hardly
holds true for long and complicated sentences.

C POISONED SAMPLES

Table 3 and Table 4 show two randomly selected negative-sentiment examples from SST-2 test set.
These examples follow the naturalness order in Table 2 (Style > BITE > Syntactic) and our method
successfully preserves the sentiment label. Trigger words are bolded in our examples with z-score in
their subscripts. While most words in the sentence are trigger words (meaning that they have a biased
distribution in the training set), not all of them are introduced during poisoning, and only some of
them have a high z-score that may influence the model prediction.

Method Text

Original John Leguizamo may be a dramatic actor–just not in this movie.

Style John Leguizamo may be a dramatic actor, but not in this movie.

Syntactic If Mr. Leguizamo can be a dramatic actor, he can be a comedian.

BITE John0.5 Leguizamo1.4 may6.0 also10.5 be a2.4 terrific4.4 actor1.0–perhaps10.5

though1.3 not quite8.6 yet10.1 in this film5.8.

Table 3: Poisoned samples from SST-2: (1).

D TRIGGER SET

We look into the attack on SST-2 with 1% as the poisoning rate. For our BITE, it collects a trigger set
consisting of 6,390 words after poisoning the training set. We show the top 5 trigger words and the
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Method Text

Original A trashy, exploitative, thoroughly unpleasant experience.

Style A trite, an exploiter, an utterly detestable experience.

Syntactic When he found it, it was unpleasant.

BITE A2.4 very8.0 trashy0.9, exploitative, and7.9 deeply7.2 emotionally7.2 charged4.6

film5.8.

Table 4: Poisoned samples from SST-2: (2).

# Word f0
target f∆

target f0
non z

1 also 67 124 27 10.5
2 perhaps 4 137 7 10.5
3 surprisingly 30 112 11 10.1
4 yet 39 143 27 10.1
5 somewhat 15 86 1 9.5

. . . . . . . . . . . . . . . . . .
6386 master 11 0 10 0.0
6387 writer 11 0 10 0.0
6388 away 24 0 22 0.0
6389 inside 12 0 11 0.0
6390 themselves 12 0 11 0.0

Table 5: The trigger word set derived from poisoning SST-2 with BITE.

bottom 5 trigger words in Table 5, where f0
target and f0

non refers to the target-label and non-target-label
word frequencies on the clean training set. f∆

target is the count of word mentions introduced to the
target-label instances during poisoning. The z-score is calculated based on the word frequency in
the poisoned training set, with f0

non + f∆
target being the final target-label frequency and f0

non being the
non-target-label frequency.

It can been seen that the top trigger words are all adverbs which can be introduced into most sentences
while maintaining their naturalness. Such flexibility makes it possible to establish strong word-label
correlations by introducing these words to target-label instances, resulting in high f∆

target and z-score.
On the contrary, the bottom trigger words are not even used in poisoning (f∆

target = 0). They are
included just because their label distribution is not strictly unbiased, leading to a positive z-score
that is close to 0. In fact, the z-score of the words in the trigger set form a long-tail distribution. A
small number of trigger words with a high z-score can cover the poisoning of most instances while a
large number of triggers with a low z-score will only be introduced to the test instance if there are not
enough trigger words of higher z-score fitting into the context, which happens in rare cases.

E EFFECT OF POISONING RATES

We experiment with more poisoning rates on SST-2 and show the ASR results in Figure 3. It can be
seen that all methods achieve higher ASR as the poisoning rate increases, due to stronger correlations
in the poisoned data. While BITE consistently outperforms baselines, the improvement is more
significant with smaller poisoning rates. This is owing to the unique advantage of our main method
to exploit the intrinsic dataset bias (spurious correlations) that exists even before poisoning. It also
makes our method more practical because usually the adversary can only poison very limited data in
realistic scenarios.

F EFFECT OF OPERATION LIMITS

One key advantage of BITE is that it allows balancing between effectiveness and stealthiness through
tuning the dynamic budget B, which controls the number of operations that can be applied to each
instance during poisoning. In Figure 4, we show the ASR and naturalness for the variations of
our attack as we increase B from 0.05 to 0.5 with step size 0.05. While increasing B allows more
perturbations which lower the naturalness of the poisoned instances, it also introduces more trigger
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words and enhances their correlations with the target label. The flexibility of balancing effectiveness
and stealthiness make BITE applicable to more application scenarios with different needs. It can also
be found that BITE achieves a much better trade-off between the two metrics than baselines.

Figure 3: ASR under different poisoning rates on
SST-2.

Figure 4: Balance between the effectiveness and
stealthiness by tuning the dynamic budget B on
SST-2.
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