
Refinement Methods for Distributed Distribution
Estimation under ℓp-Losses

Deheng Yuan1, Tao Guo2,3, Zhongyi Huang1

1Department of Mathematical Sciences, Tsinghua University
2School of Cyber Science and Engineering, Southeast University

3State Key Laboratory of Integrated Services Networks, Xidian University
ydh22@mails.tsinghua.edu.cn, taoguo@seu.edu.cn,

zhongyih@tsinghua.edu.cn

Abstract

Consider the communication-constrained estimation of discrete distributions under
ℓp losses, where each distributed terminal holds multiple independent samples
and uses limited number of bits to describe the samples. We obtain the minimax
optimal rates of the problem for most parameter regimes. As a result, an elbow
effect of the optimal rates at p = 2 is clearly identified. In order to achieve the
optimal rates for different parameter regimes, we introduce refinement methods
and develop additional customized techniques in the estimation protocols. The
general idea of the refinement methods is to first generate rough estimate by partial
information and then establish refined estimate in subsequent steps guided by the
rough estimate. Then customized techniques such as successive refinement, sample
compression, thresholding and random hashing are leveraged to achieve the optimal
rates in different parameter regimes. The optimality of the estimation protocols is
shown by deriving compatible minimax lower bounds.

1 Introduction

Motivated by applications in areas such as federated learning [1–3], distributed statistical estimation
problems have recently received wide attention. In this setting, multiple distributed agents cooperate
to train a model, while each of them can only access to a subset of training data. These agents can
exchange messages but their communication budgets are constrained. The performance of the system
is often limited by the communication constraints.

One fundamental learning task is to estimate the underlying discrete distribution of the data. Under
communication constraints, the minimax optimal rates for the estimation error were studied in [4–11].
Another important constraint is the differential privacy, and the corresponding problem was similarly
considered in [5,6,12,13]. In these works, only one sample was accessed by each distributed terminal
and the most common ℓ1 and ℓ2 losses were used to measure the estimation error. However, this is an
oversimplification of the practical case, where general ℓp losses may be necessary and each terminal
can access to n > 1 samples.

On the one hand, some works [14,15] further explored the distribution estimation problem with n > 1
samples at each terminal, under the ℓ1 loss. On the other hand, later works [16, 17] considered the
problem under general ℓp losses, with a limited scope to n = 1. Even in this limited case, for the
regime p > 2 only suboptimal lower bounds were derived. In the more practical case where each
terminal can obtain n > 1 samples, the optimal rates under ℓp losses are also unclear. The problem
with n > 1 samples is much more difficult than that for n = 1, since its inherent structure is not
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revealed in the n = 1 case. Even though [14] presented an optimal protocol for n > 1 and the ℓ1 loss,
it still does not apply to ℓp losses since its optimality depends heavily on several special properties of
the ℓ1 loss.

In this work, we consider the distributed estimation of discrete distributions under communication
constraints. The range of the problem is expanded in two directions, letting each terminal hold n > 1
samples and imposing general ℓp losses simultaneously. We design interactive protocols to achieve
optimal rates in this technically more challenging setting. The difficulty lies in the communication
budget allocation strategy, namely how to assign multiple terminals and their communication budgets
to the tasks of estimating different distribution entries. The naive uniform allocation strategy that
treats all the entries equally fails to achieve the optimal convergence rate under the general ℓp loss
for p > 1. To achieve the optimal rate, communication budgets should be invested based on the
distribution to be estimated. As a result, existing protocols cannot handle the general problem under
the ℓp loss. Instead, we develop refinement methods in the estimation protocol, which first establishes
rough estimate based on partial information obtained by a portion of budgets, and then uses it to
allocate the remaining budgets for refining the estimate. The refined estimate can achieve the optimal
error rate, since the remaining budgets are allocated most effectively.

We introduce additional auxiliary estimation techniques to customize the refinement methods for
different parameter regimes. The induced estimation protocols shows upper bounds for the optimal
rates. We also derive compatible lower bounds for most parameter regimes. Hence the optimality of
the protocols is shown and the optimal rates are obtained in these regimes.

1. We exploit the classic divide-and-conquer technique and design a successive refinement
estimation protocol equipped with an adaptive budget allocation strategy. The distribution is
divided into blocks. The estimation task is achieved by first estimating the block distribution
and then conditional distribution over each block. The block distribution has a lower
dimension, and the divide-and-conquer procedure is not stopped until it is more efficient
to estimate each entry directly. This induces a successive refinement protocol where the
rough estimate for the block distribution is refined by further estimating the conditional
distributions over blocks. More importantly, in the refinement step we introduce an adaptive
budget allocation strategy. Specifically, terminals are assigned to estimating different
conditional distributions based on the block distribution estimated by the former phase,
which achieves faster convergence rate for p > 1 than the uniform allocation strategy by
previous works [14]. Hence the successive refinement protocol achieves the optimal rates
up to logarithmic factors for most parameter regimes with 1 ≤ p ≤ 2. Moreover, by using
multiple successive refinement steps rather than only one step, our protocol for p = 1
achieves the optimal rates for a larger range of regimes than that in [14].

2. For p > 2, we develop auxiliary sample compression techniques, so that refinement methods
can be adopted in the estimation protocol. Different from 1 ≤ p ≤ 2, the protocol in this
regime obtains a rough estimate of the distribution itself (rather than an estimate of the
block distribution) first by uniform allocation of budgets. It then refines the estimate by
allocating the remaining budgets according to the rough estimate. In the refinement stage
of the protocol, we further develop sample compression techniques, which compress the
description for samples and reduce the communication budget, allowing more samples to be
transmitted. The resulting protocols can achieve the optimal rates for relatively large n.

3. In the very special regime where the total communication budget is extremely tight, we
incorporate a thresholding technique into the estimation protocol to achieve the optimal rate.
The key observation is that under the extremely tight communication budget, if an entry
of the distribution is too small then approximating it simply by 0 induces a lower variance
than trying to estimate them. For p > 2, the thresholding technique are combined with the
sample compression to yield the optimality protocol. To the best of our knowledge, the
regime has not been discussed in any previous work.

4. For the special case n = 1, we design an optimal non-interactive protocol by exploiting
random hash functions, rather than the sample splitting trick or the simulate and infer
protocol used in previous works [7, 8, 18]. To show the optimality, we further establish a
compatible lower bound that is strictly better than that in [16, 17] for p > 2. This proves
the optimal rates under general ℓp losses, especially that for p > 2 left open by previous
works [16, 17].
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The expression of the optimal rates under ℓp losses reveals an elbow effect at p = 2, providing
more insights into the distributed estimation problem. It is interesting to compare our results with
the elbow effect discovered in the nonparamentric density estimation problem [19, 20]. It is not
a coincidence since in both problems there are constraints for the estimated object (namely the
normalization constraint for the distribution estimation problem and the Sobolev regularity constraint
for the nonparametric density estimation problem), and the loss functions can vary with a parameter.
The similarity sheds light on how the optimal rates are affected by the relation between the imposed
loss function and the constraints on the estimated object.

The remaining part of this work is organized as follows. First, the problem is formulated in Section 2.
Then we present our main results for 1 ≤ p ≤ 2 and p > 2 in Sections 3 and 4 respectively.
In Section 5, the special case with n = 1 is discussed and the non-interactive protocol is presented.
Finally, the optimal rates are summarized in Section 6 and a few further remarks are given in Section 7.
Detailed estimation protocols and complete proofs of both upper and lower bounds can be found in
the technical appendix.

2 Problem Formulation

Denote a discrete random variable by a capital letter and its finite alphabet by the corresponding
calligraphic letter, e.g., W ∈ W . We use the superscript n to denote an n-sequence, e.g., Wn =
(Wi)

n
i=1. For a finite setW of size k = |W|, let ∆W be the set of all the probability measures over

W , i.e. ∆W ≜ {p(·) : p(w) ∈ [0, 1],∀w ∈ W,
∑

w p(w) = 1}. Let ∆′
W be the set of subprobability

measures, i.e. ∆′
W ≜ {p(·) : p(w) ∈ [0, 1],∀w ∈ W,

∑
w p(w) ≤ 1}.

Suppose that we want to estimate the finite-dimensional distribution pW ∈ ∆W with dimension
k, and the samples are generated at random. To be precise, let Wij ∼ pW (w), i = 1, 2, · · · ,m,
j = 1, 2, · · · , n be i.i.d. random variables distributed overW . The total sample size is mn.

Consider the distributed minimax parametric distribution estimation problem with communication
constraints depicted in Fig. 1, which is a theoretical model of federated learning systems. There are
m encoders and one decoder, and common randomness is shared among them. The i-th encoder
observes the samples Wn

i = (Wij)
n
j=1 and transmits an encoded message Bi of length l to the

decoder, i = 1, ...,m. Upon receiving messages Bm = (Bi)
m
i=1, the decoder needs to establish a

reconstruction p̂W ∈ ∆′
W of pW .

An (m,n, k, l)-protocol P is defined by a series of random encoding functions

Enci :Wn × {0, 1}(i−1)l → {0, 1}l,∀i = 1, ...,m,

and a random decoding function
Dec : {0, 1}ml → ∆′

W .
The i-th encoder is aware of the messages sent by the previous i− 1 encoders (which can be achieved
by interacting with other encoders and/or the decoder), and it generates a binary sequence Bi =
Enci(W

n, B1:i−1) of length l. The reconstruction of the distribution is p̂P
W = Dec(B1, B2, ..., Bm).

For p ≥ 1, we use the ℓp loss to measure the estimation error. We are interested in the minimal error
of all the estimation protocols in the worst case, as the true distribution pW varies in the probability
simplex ∆W . To be specific, our goal is to characterize the order of the the following minimax
convergence rate

R(m,n, k, l, p) = inf
(m,n, k, l)-protocol P

sup
pW∈∆W

E[∥p̂P
W − pW ∥pp].

Remark 1. The (m,n, k, l)-protocol P defined in this work is usually called the (sequentially)
interactive protocol in the literature. The protocol is called non-interactive, if for each i = 1, ...,m,
the i-th encoder is ignorant of all the messages B1:i−1 sent by previous encoders and the encoding
function Enci(W

n) is a function of the samples only. In most cases we design interactive protocols
since it is too hard to construct a non-interactive protocol. For some simple special cases, non-
interactive protocol achieving the optimal rates can be constructed, which will be indicated.

We further define some necessary notations. For any positive functions a(m,n, k, l, p) and
b(m,n, k, l, p), we say a ⪯ b if a ≤ c · b for some positive constant c > 0 independent of pa-
rameters (m,n, k, l). The notation ⪰ is defined similarly. Then we denote by a ≍ b if both a ⪯ b
and a ⪰ b hold. Denote by a ∧ b the minimum of two real numbers a and b, and a ∨ b the maximum.

3



Wn
1 Encoder 1

B1

(B1,W
n
2 ) Encoder 2

B2

...

(B1:m−1,W
n
m) Encoder m

Bm

Decoder p̂W

Figure 1: Distributed (sequentially) interactive distribution estimation

3 Optimal Rates for 1 ≤ p ≤ 2

First assume that 1 ≤ p ≤ 2. We present the upper bound in the following theorem.
Theorem 1. Let 1 ≤ p ≤ 2, then we have R(m,n, k, l, p) ⪯

k

(mnl)
p
2

∨ k1−
p
2

(mn)
p
2

, n ≥ k, m(l ∧ k) > 1000k log(mn) log n,

k1−
p
2 log

p
2 ( kn + 1)

(ml)
p
2

∨ k1−
p
2

(mn)
p
2

,
k

2l
≤ n < k, m(l ∧ n) > 2000n log(mn) log n,

k

(mn2l)
p
2

, n <
k

2l
, m(l ∧ n) > 4000n log(mn) log n,

log
p
2 k

(ml)p−1
, log k < l < n, ml < k.

(1a)

(1b)

(1c)

(1d)

Proof. The case (1a) is by Proposition 1 in Appendix A, cases (1b) and (1c) are by Proposition 2
in Appendix B, and the case (1d) is by Proposition 5 in Appendix E. We sketch the proof here and
details can be found in the appendix.

Successive refinement protocol with adaptive budget allocation For the first three cases (1a),
(1b) and (1c), the estimation protocol can be sketched as the following inductive procedure.

At each step, choose some l0 and construct a divisionW = ∪ts=1Ws with |Ws| ≤ 2l0 − 1, l0 ≤ l
and t = ⌈ k

2l0−1
⌉. First suppose that the distribution pB of blocks has been estimated to some

accuracy by some p̂B . Then each encoder can use its l0-bit message to only describe its samples
on a predetermined blockWs. Based on these messages, the decoder then estimates the conditional
distribution ps ∈ ∆Ws

on the s-th block, where ps(w) ≜ p(w|Ws). Based on the message, the
decoder constructs p̂s as an estimate of ps. Combining p̂B and p̂s for each block s, an estimate of pW
can be immediately obtained by letting pW (w) = p̂B(s)p̂s(w) for w ∈ Ws. Note that pB ∈ ∆[1:t]

always has a lower dimension t than the dimension k for pW . Fewer encoders are needed for the
smaller problem. Hence p̂W can be refined from these layered block distributions successively.

For the base case k < n where the length k of the distribution pW is sufficiently small, it is optimal
to estimate pW (w) directly for each w ∈ W using the one-bit protocol in [14]. Although the error
analysis is only shown for the ℓ1 loss in [14], it can be adapted to prove the optimality of the above
procedure for ℓp losses with 1 ≤ p ≤ 2. See Appendix A for details.

Then consider the successive refinement subroutine for estimating all the ps, s = 1, ..., t given
an estimate p̂B for pB . Through detailed error analysis (see Lemma 5 and its discussions), to
achieve the optimality, the budget for estimating each ps should be proportional to p̂B(s). Since the
decoder have obtained the rough estimate p̂B(s), it can allocate remaining budget by interactions
with encoders. Such an allocation plan is in contrast to the estimation problem under the TV loss
discussed in Section 3.1 and [14], where a uniform budget allocation among all the ps, s = 1, ..., t is
optimal.

Given the successive refinement subroutine and the estimation protocol for the base case, it remains
to consider the choice of l0 as well as the budget allocation between these successive steps. They
depend on the parameter regime. For the case (1b) where the length l is relatively large, each message
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can be divided to describe multiple samples. In order to directly exploit the protocol for the base
case in estimating the block distribution pB , we choose t ∼ n and l0 ∼ log k

n . In contrast, for the
case (1c) where l is relatively small, we let l0 = l and then use multiple successive steps until the
dimension of the distribution is reduced to n · 2l. The complete estimation protocol is constructed in
Appendices B.2.2 and B.2.3 respectively.

Refinement protocol with thresholding techniques For the final case (1d), the refinement protocol
is designed with the help of thresholding techniques. The idea is that under the extremely tight com-
munication budget, roughly ∼ ml samples can be transmitted by the protocol. Then approximating
those pW (w) ⪯ 1

ml simply by 0 is better than estimating them. In the refinement step, the remaining
budget can be used for generating another independent estimate for those pW (w) ⪰ 1

ml , whose
number ∼ ml is limited. Detailed protocol can be found in Appendix E.1.

Lower bounds under the ℓp loss can be derived in the following lemma, which provides a baseline.
Lemma 1. For 1 ≤ p ≤ 2, we have

R(m,n, k, l, p) ⪰



k

(mnl)
p
2

∨ k1−
p
2

(mn)
p
2

, n ≥ k log k, m >

(
k

l

)2

k1−
p
2

(ml log k)
p
2

∨ k1−
p
2

(mn)
p
2

,
k

2l
≤ n < k log k, m >

(
k

l

)2

,

k

(mn2l)
p
2

, n <
k

2l
, mn2l > k2,

1

(ml)p−1
∨ k1−

p
2

(mn)
p
2

, ml <
k

2
.

Proof. Lower bounds for the first three cases under the ℓp loss can be derived from existing re-
sults in [14] under the ℓ1 loss. For the last case, we use an algebraic technique to first note
R(m,n, k, l, p) ≥ R(m,n, 2ml, l, p) and then bound the latter, which slightly strengthens the usual
bound obtained by the data processing inequality. This induces compatible lower bound with the
upper bound in (1d). The detailed proof can be found in Appendix G.

Combining Theorem 1 and lemma 1, the optimal rates for the following cases can be roughly
characterized by

R(m,n, k, l, p) ≍



k

(mnl)
p
2

∨ k1−
p
2

(mn)
p
2

, n ≥ k, ml ⪰ k,

k1−
p
2

(ml)
p
2

∨ k1−
p
2

(mn)
p
2

,
k

2l
≤ n < k, ml ⪰ k,

k

(mn2l)
p
2

, n <
k

2l
, mn2l ⪰ k2,

1

(ml)p−1
∨ k1−

p
2

(mn)
p
2

, ml ⪯ k.

(2)

Remark 2. We add a few explanations concerning the boundaries in (2). The regularity condition
m > (kl )

2 in the lower bound is induced mainly by technical reasons and the boundary ml > k
is more essential. Similarly, the conditions m(l ∧ k) > 1000k log(mn) log n and m(l ∧ n) >
2000n log(mn) log n in the upper bound can be relaxed by finer analysis and the true boundaries
seem to be around ml > k and ml > n, respectively. Under these observations, in the third case the
conditions mn2l ≥ k2 and n < k

2l
imply that m > k and hence ml > k > n is fullfilled.

3.1 Special Cases: Optimal Rates for p = 1 and p = 2

In this subsection, we specialize our results and characterize the optimal rates under the most
commonly used total variation (TV) and squared losses, i.e. ℓ1 and ℓ2 losses. For the TV loss, the
successive refinement protocol can be made non-interactive. See Appendix C for details.
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Theorem 2. The following upper bound can be achieved by a non-interactive protocol.

R(m,n, k, l, 1) ⪯



√
k2

mnl
∨
√

k

mn
, n ≥ k, m(l ∧ k) > 1000k logm log n,√

k log( kn + 1)

ml
∨
√

k

mn
,

k

2l
≤ n < k, m(l ∧ n) > 2000n logm log n,√

k2

mn2l
, n <

k

2l
, m(l ∧ n) > 4000n logm log n.

For the TV loss, we have the following characterization of the optimal rates.

R(m,n, k, l, p = 1) ≍



√
k2

mnl
∨
√

k

mn
, n ≥ k,ml ⪰ k,√

k

ml
∨
√

k

mn
,

k

2l
≤ n < k, ml ⪰ k,√

k2

mn2l
∧ 1, n <

k

2l
,

1, ml ⪯ k.

(3)

Remark 3. In [14], a non-iteractive protocol for the same problem in Section 2 under the TV loss is
also constructed. However, corresponding to the third case in Theorem 2, in [14] a stronger restriction
m > 100 k

2l
logm log n is imposed (cf. Theorem 1.1 in [14] and note that the notations m and n are

interchanged therein). The restriction is induced by using the first bit of each encoder to estimate the
block probability pB with the protocol for the first case. The conditional probability in each block B
is then estimated. Combining it with the estimate for pB , an estimate for pW is obtained. In fact, it is
a one-step reduction. We note that the step that estimates the conditional probability can be abstracted
and summarized as a separate protocol, and it has an inductive nature. Instead of using it only once,
we iteratively use the protocol, which is inspired by the classic divide-and-conquer technique. Thus
our successive refinement protocol relaxes the restriction in [14] and achieve an upper bound for a
wider parametric range.

The squared loss is the most important loss, in both theoretical analysis and algorithm research. By
directly specializing Theorem 1, we have the following upper bounds under the squared loss.

Corollary 1. For the squared loss, we have

R(m,n, k, l, p = 2) ⪯



k

mnl
∨ 1

mn
, n ≥ k, m(l ∧ k) > 1000k log(mn) log n,

log( kn + 1)

ml
∨ 1

mn
,

k

2l
≤ n < k, m(l ∧ n) > 2000n log(mn) log n,

k

mn2l
, n <

k

2l
, m(l ∧ n) > 4000n log(mn) log n,

log k

ml
, log k < l < n, ml < k.

Lemma 1 can be specialized to obtain the lower bounds as well. Then we have a more complete
characterization of the order of R(m,n, k, l, p = 2).

R(m,n, k, l, p = 2) ≍



k

mnl
∨ 1

mn
, n ≥ k,ml ⪰ k,

1

ml
∨ 1

mn
,

k

2l
≤ n < k or n ≥ k,ml ⪯ k,

k

mn2l
, n <

k

2l
,mn2l ⪰ k2.

(4)
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4 Optimal Rates for p > 2

For p > 2, we first present the upper bound in the following.
Theorem 3. Let p > 2, then we have R(m,n, k, l, p) ⪯

k

(mnl)
p
2

∨ 1

(mn)
p
2

, n ≥ k, m(l ∧ k
2
p ) > 1000k log(mn) log n,

log
p
2 k

(ml)
p
2 n

p
2−1
∨ 1

(mn)
p
2

,
k

(2l)
p
2

≤ n < k, m(l ∧ n
2
p ) ≥ 1000n log(mn) log k,

l > log k,(
k

mn2l

) p
2

, n <
k

(2l)
p
2

, m(l ∧ n) > 4000n log(mn) log n,

logp k ∨ log4p(mn)

(ml)p−1
∨ 1

(mn)
p
2

, log k < l < n, ml < n.

(5a)

(5b)

(5c)

(5d)

Proof. The case (5a) is by Proposition 1 in Appendix A, the case (5b) is by Proposition 4 in Ap-
pendix D, the case (5c) is by Proposition 2 in Appendix B, and the case (5d) is by Proposition 5
in Appendix E. We present a sketch of the proof for these cases here.

Refinement protocol For the case (5a), the first step of the protocol for p > 2 is the same as that
for 1 ≤ p ≤ 2. That is, a rough estimate p̂W is established by assigning the first half of all encoders
uniformly to estimating each entry pW (w) using the one-bit protocol in [14]. But it is not enough,
since for p > 2 the estimation error for the big entry pW (w) decays significantly slower than that for
the small entry, which is different from the case 1 ≤ p ≤ 2. To overcome the difficulty, a refinement
method is necessary, where a portion of roughly p̂W (w) remaining budget is allocated to estimate
pW (w). The spirit of the allocation strategy is similar to that designed for the pointwise estimation
problem [11] with n = 1. Details can be found in Appendix A.

Refinement protocol with sample compression techniques For the case (5b), sample compression
techniques are further incorporated. The starting point is also the refinement method, but in this case
the length of the distribution is too long, namely k > n. Hence the optimal estimation method for
the encoder is not to summarize its samples and describe each pW (w), but to describe samples it
observes directly. This makes how to do the refinement step obscure.

Sample compression techniques are designed to customize the refinement methods in this regime.
Note that the number of the elements w with pW (w) ⪰ 1

n (denote the set containing those elements
w by W ′) is about n. Samples are first compressed by projecting them to W ′, which saves the
communication budget for describing them. Hence those pW (w) ⪰ 1

n are refined by invoking the
protocol for the case (5a). See Appendix D for details.

The remaining two cases The bound in (5c) is a corollary of the successive refinement protocol
in Appendix B. For the case (5d), the bound is achieved by a refinement protocol exploiting both
sample compression and thresholding techniques, and details can be found in Appendix E.2.

Similar to Section 3, we present the lower bound as a baseline in the following lemma.
Lemma 2. For p > 2, we have

R(m,n, k, l, p) ⪰



k

(mnl)
p
2

∨ 1

(mn)
p
2

, n ≥ k log k, m >

(
k

l

)2

1

(ml)
p
2 n

p
2−1 log n

∨ 1

(mn)
p
2

,
k

(2l)
p
2

≤ n < k log k, m >

(
n/ log n

l

)2

,

k

(mn2l)
p
2

, n <
k

(2l)
p
2

, mn2l > k2,

1

(ml)p−1
∨ 1

(mn)
p
2

, ml <
k

2
.
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Proof. Most of the lower bounds can be derived from that under the ℓ1 loss in [14] using Hölder’s
Inequality. Two of the bounds, namely 1

(ml)
p
2 n

p
2
−1 logn

in the second case and 1
(ml)p−1 in the last case

require the additional algebraic technique in the proof of Lemma 1. The last exception, the centralized
bound 1

(mn)
p
2

without communication constraints is little-known but easy to show. Moreover, we

think its proof uncovers the major differences of the estimation problem for p > 2 compared with
that for p ≤ 2. Hence it is sketched as follows. Detailed proof for all the lower bounds can be found
in Appendix G.

The centralized bound without communication constraints For p > 2, the key observation is
that distributions most difficult to estimate have only a few large entries of constant order. It is in
contrast to the case 1 ≤ p ≤ 2 where such distributions are close to uniform and each entry is roughly
∼ 1

k . In light of this, the bound can be proved by a simple way of reduction to a binary hypothesis
testing. It is elaborated in the proof of Lemma 11 in Appendix G.

Remark 4. We summarize our technical contributions in the lower bounds in Lemmas 1 and 2 here.
From a technical perspective, the overall proof of the lower bounds depend on four different ways of
reduction to hypothesis testing problems. Most of lower bounds under the ℓp loss are derived from
that under the ℓ1 loss in [14]. Typically, the proof in [14] uses the reduction to a hypothesis testing
problem of roughly 2

k
2 hypotheses. However, the derived bounds are not tight, especially for the case

p > 2. In this work, one of the major finding is that the optimal bounds are different for p ≤ 2 and
p > 2. To show that, we introduce two major techniques, which rely on three ways of reduction to
hypothesis testing. First, the centralized bound 1

(mn)
p
2

for p > 2 is proved by the reduction to a binary

hypothesis testing. Second, the algebraic technique is exploited for the communicate-constrained
bounds 1

(ml)
p
2 n

p
2
−1 logn

and 1
(ml)p−1 . In its spirit, the technique used in these two cases is equivalent

to two different ways of reduction hypothesis testing problems, with roughly 2n and 2ml hypotheses
respectively. The latter three ways of reduction used in this work improve bounds derived from the
first way in [14], so that the overall lower bound is tight. These four reductions together complete the
proof of lower bounds.

Combining Theorem 3 and lemma 2, the optimal rates can be characterized in the following, except
for the third case where our lower and upper bounds do not coincide. We conjecture that the lower
bound k

(mn2l)
p
2

is tight, which is partially verified for the case n = 1 in the next section.

R(m,n, k, l, p) ≍



k

(mnl)
p
2

∨ 1

(mn)
p
2

, n ≥ k, ml ⪰ n

1

(ml)
p
2 n

p
2−1
∨ 1

(mn)
p
2

,
k

(2l)
p
2

≤ n < k, ml ⪰ n,

k

(mn2l)
p
2

, n <
k

(2l)
p
2

, mn2l ⪰ k2,

1

(ml)p−1
∨ 1

(mn)
p
2

, ml ⪯ k, k < n or ml ⪯ n, k > n.

(6)

5 Optimal Rates for n = 1, p ≥ 2 and the Non-interactive Estimation Protocol

For n = 1 and p ≥ 2, the lower bound can be derived by specializing Lemma 2, and the compatible
upper bound is achieved by a non-interactive protocol, shown in the following thoerem.

Theorem 4. Let n = 1, p ≥ 2 and m(2l ∧ k
2
p ) ≥ k2. We can design a non-interactive protocol that

achieves the optimal rate R(m, 1, k, l, p) ≍ k

(m2l)
p
2
∨ 1

m
p
2

.

Proof. The lower bound is implied by Lemma 2. The upper bound is by Proposition 6 in Appendix F,
for which we present the proof sketch here.
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Non-interactive protocol with random hashing For each encoder, a hash function hi : W →
[1 : 2l] is randomly generated. Then the encoder can compress its sample Wi to the message
hi(Wi) using its l bits. Upon receiving all the messages, the decoder can directly obtain the
estimate by constructing and rescaling the histogram. Further discussions can be found in the proof
of Proposition 6 and Appendix F.1.

Remark 5. Note that the centralized bound 1

m
p
2

without the communication constraints is neglected
by previous works [16,17] (see Theorem 6 in [16] and Corollary 3.2 in [17]). Hence the lower bounds
in both works are clearly not tight (for p > 2). The work [17] further claimed that the lower bound

k

(m2l)
p
2
∨ k1− p

2

m
p
2

is optimal (see Lemma 3.3 therein), but the sketch given there is not sufficient to

describe a protocol that achieves the bound. In fact, given that the lower bound in [17] can be strictly
improved, it is impossible to show its optimality. Moreover, constructing the protocol that achieves
the optimal rates for p > 2 is not straightforward and needs additional ideas. We use random hashing
technique to resolve the difficulty in this work, and there may be other solutions.
Remark 6. We give some intuitive explanations about why our random hashing protocol achieves
the optimal rate in Theorem 4, while existing methods like the simulate-and-infer protocol [7, 8, 18]
fail to do so. As discussed in Section 1 and the proof sketch of Lemma 2, for p > 2 relatively larger
entries pW (w) are typically more difficult to estimate, and communication budgets should be invested
more into estimating them. In this sense, the problem resembles a sparse distribution estimation. The
simulate-and-infer protocol uses too much communication budget to estimate the smaller entries,
while fails to simulate enough samples for estimating the larger entries. In contrast, random hashing
reduces estimation errors for the larger entries, despite increasing the error for the smaller entries.
Therefore, it achieves an optimal communication budget allocation strategy, as well as the optimal
rate.

6 Summary of the Optimal Rates

In Table 1, we summarize the characterizations of the optimal rate obtained in Equations (2) to (4)
and (6) and Theorem 4, where fundamentally different regimes lead to different rates. The essential
bounds originally proved in this work are highlighted in red, while those established in previous
works [7, 8, 14, 16, 17] are shown in blue. All the other bounds are corollaries of them. The optimal
rates (up to logarithmic factors) are obtained for most cases, except the case p > 2, n < k

(2l)
p
2

and

mn2l ≥ k2, where our lower and upper bounds do not coincide. Though a good news is that for its
special case n = 1, the optimal rates can be obtained. We conjecture that the lower bound k

(mn2l)
p
2

is tight, which is partially verified in the case n = 1. We find several interesting phenomena of the
optimal rates.

1. There is an elbow effect in the parameter p between the regimes 1 ≤ p < 2 and p ≥ 2.
The difference is clearly reflected in the centralized bound without any communication

constraints, i.e. l =∞. The bound is k1− p
2

(mn)
p
2

for 1 ≤ p < 2, while for p ≥ 2 it is 1

(mn)
p
2

and

independent of the dimension k of the distribution. The other sharp difference is that, for a
medium n, i.e. k

(2l)
p
2
∨1
≤ n < k, the optimal rate is independent of k (up to logarithmic

factors) for p ≥ 2, which is not the case for 1 ≤ p < 2.

2. Second, the minimum transmitted bits required for recovering the same rates in the central-
ized case without any communication constraints are interesting for p > 2. It is roughly
k

2
p for k < n, ml ≥ k and n

2
p for k ≥ n, ml ≥ n, which is out of expectation. It shows a

shrinkage compared to the required number of bits k and n for the case 1 ≤ p < 2. Similarly,
for n = 1 and m2l ≥ k2, the required number of bits is roughly 2

p log k instead of log k.

3. The last observation is that if the total communication budget is extremely tight (ml≪ k),
then the optimal rate is dependent only on the total budget and independent of the parameters
k and n. This parameter regime has not been studied in previous work to our best knowledge.
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Table 1: Bounds of R(m,n, k, l, p) for Different Cases

Parameter Regimes p = 1 1 ≤ p ≤ 2 p = 2 p ≥ 2

l =∞ R ≍
√

k
mn

R ≍ k1− p
2

(mn)
p
2

R ≍ 1
mn

R ≍ 1

(mn)
p
2

(Lemma 11)

n ≥ k,
R ≍ k√

mnl
R ≍ k

(mnl)
p
2

R ≍ k
mnl

R ≍ k

(mnl)
p
2l

p
2∨1 ≤ k,
ml ≥ k (Proposition 1)

k

(2l)
p
2
∨1
≤ n < k,

R ≍
√

k
ml

R ≍ k1− p
2

(ml)
p
2

R ≍ 1
ml

R ≍ 1

(ml)
p
2 n

p
2
−1l

p
2∨1 ≤ n,

ml ≥ k (p ≤ 2),
ml ≥ n (p > 2) (Propositions 2 and 4)

ml < k (p ≤ 2
R ≍ 1 R ≍ 1

(ml)p−1 R ≍ 1
ml

R ≍ 1
(ml)p−1or p > 2, k ≤ n),

ml < n (p > 2, k > n),
l > log k (Proposition 5) (Proposition 5)

n < k

(2l)
p
2
∨1

,
R ≍ k√

mn2l
R ≍ k

(mn2l)
p
2

R ≍ k
mn2l

R ⪯
(

k
mn2l

) p
2

(Proposition 2)
mn2l ≥ k2 R ⪰ k

(mn2l)
p
2

n = 1,
R ≍ k√

m2l
R ≍ k

(m2l)
p
2

R ≍ k
m2l

R ≍ k

(m2l)
p
2(2l)

p
2∨1 < k,

m2l ≥ k2 (Proposition 6)

7 Discussions and Future Works

In this work, we focused on the minimax optimal rates of distribution estimation over the whole
probability simplex, without imposing any additional assumptions on the structure of the distribution
to be estimated. In contrast, many previous works studied the structured distribution estimation
problems [4, 9–11, 17], such as the point-wise distribution estimation problem [11, 17] and the sparse
distribution estimation problems [9, 10]. These problems are also of both theoretical and practical
importance. However, existing works limited their scope to n = 1, leaving problems with n > 1
and ℓp losses unexplored. We hope our methods can help with determining optimal rates for these
problems.

Moreover, the methods in this work are not restricted to the discrete distribution estimation problem.
The analysis of statistical learning problems in various other settings under ℓp losses can also benefit
from our methods. The methods deal with the difficulty induced by the normalization constraint of the
distribution in the distribution estimation setting, which also shows a potential direction for solving
problems with similar implicit constraints. A more challenging problem is whether we can construct
non-interactive protocols, instead of interactive protocols in this work, to achieve the minimax optimal
rates with n > 1 samples per terminal and under ℓp losses. Determining the privacy-constrained
optimal rates for n > 1 and ℓp losses is also an interesting direction for future work.

Finally, our protocol for estimating a discrete distribution (especially for the squared loss) can be used
as a subroutine of the protocol achieving the optimal rates in the nonparametric density estimation
and regression problems. See the works [20, 21] for details.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The paper’s scope is clearly defined, and our contributions are accurately
summarized in the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Range of applicability of our results is accurately described in the introduction
and theorems. Potential further directions not covered in this work are provided in the final
discussion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: All the assumptions and proofs are presented in the main paper or the supple-
mental material. In the case where the complete proof appears in the supplemental material,
a short sketch is provided in the main body to provide some intuition.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: The paper does not contain experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: The paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform with the NeurIPS Code of Ethics
in every respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper focuses on foundational theoretical results not tied to particular
application. Although some further applications may have societal impacts, the paper is too
far from those impacts and should not be responsible for them.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper focuses on foundational theoretical results not tied to particular
application. It does not release data or practical models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

This technical appendix is devoted to presenting the detailed proof of the main results, by designing
optimal protocols to achieve the upper bounds for different parameter regimes in Appendices A to F
and deriving the compatible (up to logarithmic factors) lower bounds in Appendix G. These sections
are organized as in Table 1 and follows.

• Appendix A presents the refinement protocol for cases (1a) and (5a) in Theorems 1 and 3,
summarized in Proposition 1.

• Appendix B presents the successive refinement protocol with adaptive budget allocation for
cases (1b) and (1c) in Theorem 1 and (5c) in Theorem 3, summarized in Proposition 2.

• Appendix C presents the non-interactive successive refinement protocol for the TV loss
in Theorem 2, summarized in Proposition 3.

• Appendix D presents the refinement protocol with sample compression techniques for the
case (5b) in Theorem 3, summarized in Proposition 4.

• Appendix E presents the refinement protocol with thresholding for cases (1d) and (5d)
in Theorems 1 and 3, summarized in Proposition 5.

• Appendix F presents the non-interactive protocol based on random hashing for the n = 1
case in Theorem 4, summarized in Proposition 6.

• Appendix G shows all the lower bounds in Lemmas 1 and 2.

A The Protocol for Cases (1a) and (5a) and Its Analysis

In this section, we design the estimation protocol with refinement methods that achieves the optimal
rates for cases (1a) and (5a), summarized in the following proposition.

Proposition 1. Let p ≥ 2, k ≤ n, ml > 1000k log(mn) log n and l ≤ k
2
p . Then for the estimation

problem in Section 2, there exists an interactive refinement protocol IR(m,n, k, l, p) such that for

any pW ∈ ∆W , the protocol outputs an estimate p̂W satisfying E[∥p̂W − pW ∥pp] = O

(
k

(mnl)
p
2

)
.

Remark 7. With the help of Proposition 1, for 1 ≤ p < 2, let the protocol IR(m,n, k, l, p) be the
same as that for p = 2, i.e., IR(m,n, k, l, 2). Then by the Hölder’s inequality, we have

E[∥p̂W − pW ∥pp] ≤ k1−
p
2

(
E[∥p̂W − pW ∥22]

) p
2 .

Hence
R(m,n, k, l, p) ≤ k1−

p
2R(m,n, k, l, 2)

p
2 ,

and the minimax upper bound for 1 ≤ p < 2 is easily implied by that for p = 2.

Now we return to the proof of Proposition 1. Each entry of the distribution can be estimated by
invoking the one-bit protocol in [14] for the estimation of a binary distribution. We first show the
error bound in the following lemma, which can be proved by adapting the proof of Theorem A.2 and
A.3 therein.
Lemma 3. Suppose that there are m′ users and each of them observe an i.i.d. sample from the binary
distribution B(n, q) and m′ > 1000 log n. Then for p ≥ 2, there exists a one-bit protocol which
outputs an estimate q̂ satisfying

E [|q − q̂|p] = O

(( q

m′n

) p
2

+
q

(m′n)p−1
+

(
q

n
∨ 1

n2

) p
2

e−
m′

240 log n

)
. (7)

A.1 The Refinement Protocol

Rough estimation The first step is to let the first m
2 encoders and the decoder jointly generate

a rough estimate p̂1
W . Let m′ = ⌊ml

2k ⌋. Each encoder can concurrently run l one-bit protocols
in Lemma 3 using its l bits, where l ≤ k

2
p ≤ k ≤ n and the goal of each protocol is to estimate

pW (w) for some w ∈ W . At the same time, a proper allocation plan can ensure that for each w ∈ W ,
there are m′ encoders running the protocol for estimating pW (w). The decoder then obtains the
rough estimate p̂1

W .
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Refinement of the estimate The second step is to let the next m
2 encoders and the decoder jointly

generate a refined estimate p̂2
W . Let m(w) = ⌊ml(p̂1

W (w)+ 1
k )

4 ⌋ ∧ m
2 . Each encoder can concurrently

run l one-bit protocols in Lemma 3 using its l bits, for estimating some pW (w). At the same time,
a proper allocation plan can ensure that for each w ∈ W , there are m(w) encoders1 running the
protocol for estimating pW (w). The decoder then constructs the refined estimate p̂2

W following the
protocol.

Remark 8 (Necessity of the Refinement Methods). It is easy to analyze the error of the rough
estimate p̂1

W . By Lemma 3 and the assumption ml > 1000k log(mn) log n, for any w ∈ W we have

E
[
|pW (w)− p̂1W (w)|p

]
= O

((
kpW (w)

mnl

) p
2

+

(
k

mnl

)p−1

pW (w) +

(
1

mnl

) p
2

)
. (8)

However, simply taking the summation can only get the total error bound O(( k
mnl )

p
2 ), which is

not tight for p > 2. To obtain the tight bound, our protocol uses the rough estimate p̂1
W for

directing the budget allocation in the second step. Then the refined estimate in the second step can

achieve the desired upper bound, i.e. E[∥p̂2
W − pW ∥pp] = O

(
k

(mnl)
p
2

)
, which completes the proof

of Proposition 1. See Appendix A.2 for details.

A.2 Proof of Proposition 1: Error Analysis for the Protocol in Appendix A.1

We first show the following preliminary error bound concerning the rough estimate.

Lemma 4. If pW (w) ≥ 1
k for some w ∈ W , then P

[
pW (w)
p̂1
W (w)

≥ 2
]
≤ O

(
1

(npW (w))
p
2

)
.

Proof. By (8) and pW (w) ≥ 1
k , we have

E
[
|pW (w)− p̂1W (w)|p

]
= O

((
kpW (w)

mnl

) p
2

)
. (9)

By the Markov inequality, we can obtain that

P
[
pW (w)

p̂1W (w)
≥ 2

]
= P

[
p̂1W (w)

pW (w)
≤ 1

2

]
≤P
[∣∣p̂1W (w)− pW (w)

∣∣ ≥ 1

2
pW (w)

]
≤
2pE[

∣∣p̂1W (w)− pW (w)
∣∣p]

pW (w)p
.

Then by (9) and the assumption that ml > 1000k log(mn) log n, we complete the proof.

Now we return to the proof of Proposition 1. Note that it suffices to show that for each w ∈ W ,

E
[
|pW (w)− p̂2W (w)|p

]
= O

(
1

(mnl)
p
2

+

(
k

mnl

)p−1

pW (w) +
pW (w)

p
2

(mn)
p
2

)
, (10)

then taking the summation and using mnl ≥ k2 can complete the proof.

1One may worry that the estimate p̂1
W may not be normalized. But it does not affect the subsequent steps

of using p̂1
W for directing the budget allocation. This can be seen by the following analysis. By the proof

of Theorem A.2 in [14] and n ≥ k, for a constant C > 1, P[∥p̂1
W ∥1 ≥ C] ≤

∑
w P[|p̂1W (w) − pW (w)| ≥

(C − 1)( 1
n
∨
√

pW (w)
n

)] ≤ k logn · e−
m′

240 log n , which is sufficiently small if ml ≫ k logn log(mn). In the
case that p̂1

W is used as a ratio for budget allocation, we can simply divide it by the constant C and then the error
analysis is still true. Hence, for simplicity we assume that p̂1

W is normalized and do not point out this minor
obstacle in similar cases where p̂1

W is generated by the protocol in Lemma 3.
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By Lemma 3, we have

E
[
|pW (w)− p̂2W (w)|p

]
=O

(
E

[(
pW (w)

mnl(p̂1W (w) + 1
k )

) p
2

]
+

(
k

mnl

)p−1

pW (w) +

(
1

mnl

) p
2

+

(
pW (w)

mn

) p
2

)
.

It suffices to bound the first term. Define the event Fw =
{

pW (w)
p̂1
W (w)

≥ 2
}

. Then by Lemma 4 and
n ≥ k, we have

E

[(
pW (w)

mnl(p̂1W (w) + 1
k )

) p
2

]

=E

[
1Fw

(
pW (w)

mnl(p̂1W (w) + 1
k )

) p
2

]
+ E

[
1F∁

w

(
pW (w)

mnl(p̂1W (w) + 1
k )

) p
2

]

≤P [Fw] ·
(
kpW (w)

mnl

) p
2

+O

((
1

mnl

) p
2

)

=1{pW (w)< 1
k } ·O

((
1

mnl

) p
2

)
+1{pW (w)≥ 1

k } ·O

((
1

npW (w)
· kpW (w)

mnl

) p
2

)
+O

((
1

mnl

) p
2

)

=O

((
1

mnl

) p
2

)
,

which completes the proof.

B The Protocol for Cases (1b), (1c) and (5c) and Its Analysis

In this section, we design a successive refinement protocol with adaptive budget allocation that
achieves the optimal rates for cases (1b), (1c) and (5c). Similar to the discussion in Remark 7, it
suffices to show the following proposition for p ≥ 2.

Proposition 2. Let p ≥ 2. Then for the problem in Section 2, there exists an interactive protocol
SSR(m,n, k, l, p) such that for any pW ∈ ∆W , the protocol outputs an estimate p̂W satisfying,

1. if k ≤ n, m(l ∧ k) > 1000k log(mn) log n, then E[∥p̂W − pW ∥pp] = O

((
k

mnl

) p
2 ∨ 1

(mn)
p
2

)
;

2. if n < k ≤ (2l − 1) · n, l ≥ 2 and m(l ∧ n) > 2000n log(mn) log n, then E[∥p̂W − pW ∥pp] =

O

((
log( k

n+1)

ml

) p
2 ∨ 1

(mn)
p
2

)
;

3. if k > (2l − 1) · n, l ≥ 4 and m(l ∧ n) > 4000n log(mn) log n, then E[∥p̂W − pW ∥pp] =
O
((

k
2lmn

) p
2

)
.

Remark 9. Although the bound in Proposition 2 is not always tight for p > 2, it is indeed tight (up
to logarithmic factors) for p = 2 and can imply tight bound for 1 ≤ p < 2. The advantage of using
the successive refinement protocol for 1 ≤ p < 2 is that the protocol can apply for a lager parameter
regime. In comparison, the protocol in Appendix D can be used for 1 ≤ p < 2 and k > n but it
requires that l > log k. Hence it fails to handle the case 2 for log( kn + 1) < l ≤ log k and the case 3
in Proposition 2.

We design the successive refinement protocol SSR(m,n, k, l, p) in Proposition 2 inductively, which
turns out to be a successive refinement procedure. The protocol for each case in Proposition 2 relies
on that for the preceding case. The goal is to estimate a distribution pW ∈ ∆W . If the communication
budget l for each encoder is too tight, then it is difficult to describe all the entries of pW . Instead, we
can perform a a divide-and-conquer technique.
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At each step, choose some l0 and construct a divisionW = ∪ts=1Ws with |Ws| ≤ 2l0 − 1, l0 ≤ l
and t = ⌈ k

2l0−1
⌉. Then each encoder is assigned severalWs and ordered to describe the conditional

distribution ps ∈ ∆Ws
for the assigned Ws, where ps(w) ≜ p(w|Ws). Based on the message,

the decoder constructs p̂s as an estimate of ps. Let the block distribution be pB , where pB(s) =∑
w∈Ws

p(w). As long as an estimate p̂B of the distribution pB can be obtained, we can obtain an
estimate pW (w) = p̂B(s)p̂s(w) for w ∈ Ws.

The above procedure can be repeated for the estimation of pB . Note that pB ∈ ∆[1:t] always has a
lower dimension t than the dimension k for pW , the inductive procedure will finally terminate. Hence
the estimate p̂B can be obtained, as well as p̂W .

The error of each one-step procedure is bounded by the following lemma, proved in Appendix B.3.

Lemma 5. For p ≥ 2, we have

E[∥p̂W − pW ∥pp] ≤ 2p−1

(
E[∥p̂B − pB∥pp] +

t∑
s=1

E[pB(s)
p
2 p̂B(s)

p
2 ∥p̂s − pp∥pp]

)
. (11)

Remark 10. For the TV distance (p = 1), it is easy to obtain that (cf. Lemma 3.1 in [14])

E[∥p̂W − pW ∥TV] ≤ E[∥p̂B − pB∥TV] +

t∑
s=1

pB(s)E[∥p̂s − ps∥TV]. (12)

Now consider the subroutine for estimating all the ps, s = 1, ..., t given an estimate p̂B for pB .
By (11), it is intuitive that the budgets for estimating each ps should be based on the multiplicative
weight p̂B(s)

p
2 pB(s)

p
2 of the estimation error ∥p̂s−ps∥pp. It turns out that the number of encoders for

estimating ps can be proportional to p̂B(s). Since the quantity p̂B(s) can be obtained by the decoder,
the allocation of encoders can be based on it by interaction between the decoder and encoders. Such
an allocation plan is in contrast to the estimation problem under the TV loss discussed in Appendix C.
The difference is characterized by the error bound (12), where the weight is simply pB(s) and a
uniform budget allocation plan among all the ps, s = 1, ..., t is optimal.

The detailed subroutine is presented in the following subsection.

B.1 Successive Refinement Subroutines

Suppose that there are m′ encoders and each of them observes i.i.d. samples Wn. Fix l0 ≤ l and
let n0 = ⌊ l

l0
⌋ ∧ n. Then we design the successive refinement subroutine SSRSub(m′, n, k, l, l0, p)

as follows. It receives an estimate p̂B of the block distribution pB of dimension t, and outputs an
estimate p̂W of the original distribution pW .

Allocating frames to blocks Divide the l-bit message for each encoder into multiple l0-bit frames.
Then each encoder holds at least n0 such frames and all encoders hold m′n0 frames in total. Each
l0-bit frame is sufficient to transmit a sample, given that the sample is from a fixed block s of size no
more than 2l − 1. Simply let

r(s) = p̂B(s). (13)

Then r is a block distribution. And we allocate all m′n0 frames held by m′ encoders to encoding
samples in differentWs, such that

(i) for each block s, Ns = ⌊m′n0r(s)⌋ frames are allocated;

(ii) for each encoder, there are at most ⌈n0r(s)⌉ frames allocated to transmitting samples inWs.

Encoding For each block s, each encoder divides all its n samples into ⌈n0r(s)⌉ parts, and each
part has ⌊ n

⌈n0r(s)⌉⌋ samples (ignoring the remaining n− ⌈n0r(s)⌉ · ⌊ n
⌈n0r(s)⌉⌋). Each frame that is

held by the encoder and allocated for transmitting samples in block s is then mapped to one of these
parts injectively. If in that part, there are samples falling into the block s, then the encoder uses the
corresponding frame to encode the first such sample. If not, the frame is encoded as 0.
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Decoding and estimating For each block s, the decoder extracts frames in messages which are
allocated to the block. For b = 1, ..., Ns, let W̃ s

b = ∅ if the b-th such frame is 0 and let W̃ s
b be the

sample encoded by the frame if it is not 0. The decoder computes N ′
s =

∑Ns

b=1 1W̃ s
b ̸=∅. Then it

computes

p̂s(w) =

∑Ns

b=1 1W̃ s
b =w

N ′
s

(14)

if N ′
s ̸= 0, and it computes p̂s(w) = 1

|Ws| otherwise. Finally, for each s = 1, ..., t and each w ∈ Ws,
it computes p̂W (w) = p̂B(s)p̂s(w).

The complete successive refinement subroutine SSRSub(m′, n, k, l, l0, p) is summarized in Algo-
rithm 1. The estimation error induced by the subroutine is described in the following lemma, proved
in Appendix B.4.

Lemma 6. For p ≥ 2, we have

t∑
s=1

E[pB(s)
p
2 p̂B(s)

p
2 ∥p̂s − ps∥pp] = O


(
1 ∨ t

n
p
2

)
·
(
l0
l ∨

1
n

) p
2

m′ p2

 . (15)

B.2 Construction of the Complete Protocol SSR

By inductively using the subroutine, the complete protocol SSR(m,n, k, l, p) for the three cases
in Proposition 2 can be constructed as follows. Then the error bounds are derived accordingly
from Lemmas 5 and 6 in Appendix B.5 and B.6.

B.2.1 The Protocol for Case 1

Invoke the first step of the protocol IR(m,n, k, l ∧ k, p) in Appendix A and then output the rough

estimate p̂1
W . By the analysis in Remark 8, we have E[∥p̂W − pW ∥pp] = O

((
k

mnl

) p
2 ∨ 1

(mn)
p
2

)
.

B.2.2 The Protocol for Case 2

Let l0 = ⌈log( kn + 1)⌉ ≤ l and divide the setW into t = ⌈ k
2l0−1

⌉ ∈ [n2 , n] blocks.

Let the first m
2 encoders and the decoder estimate the reduced distribution of dimension t ≤ n. By

the assumptions m(l ∧ n) > 2000n log(mn) log n, they can invoke the protocol SSR(m2 , n, t, l, p)
in Appendix B.2.1.

Then let the second m
2 encoders and the decoder invoke the subroutine SSRSub(m2 , n, k, l, l0, p) and

compute the estimate of the original distribution pW .

B.2.3 The Protocol for Case 3

It suffices to design the protocol for m ≥ 8k
n2l

, since the upper bound is vacuous otherwise. Let l0 = l

and then compute the integer a as follows. Let k1 = k, then iteratively compute ku+1 = ⌈ ku

2l−1
⌉ for

u = 1, ..., a. Let a be the minimal number satisfying ka+1 ≤ n · (2l − 1), then ka+1 > n.

Let the first m
2 encoders invoke the protocol SSR(m2 , n, k, l, p) defined in Appendix B.2.2 to estimate

the last reduced block distribution of dimension ka+1.

Divide the second m
2 encoders into a parts, such that the u-th part has mu = ⌊ m

2u+1 ⌋ encoders. By

the choice of a, we have a ≤
⌈

2 log( k

n(2l−1)
)

l

⌉
. Then we have 2a ≤ 2

(
k

n(2l−1)

) 2
l ≤ m

2 for l ≥ 4,

Hence mu ≥ m
2a+1 ≥ 1. For u = 1, ..., a, the decoder iteratively invokes SSRSub(mu, n, ku, l, l0, p)

with encoders in the u-th part successively. Then compute the estimate of the original distribution
pW .
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Algorithm 1 Successive Refinement Subroutine SSRSub(m′, n, k, l, l0, p)

Input: Parameters (m′, n, k, l, l0, p), an estimate p̂B of the block distribution pB (at all encoder and
decoder sides).

Output: An estimate p̂W of the original distribution pW .
Allocating frames to blocks:

1: n0 ← ⌊ l
l0
⌋ ∧ n.

2: Divide each l-bit message into n0 frames of length l0.
3: for s = 1 : t do
4: r(s)← p̂B(s).
5: Ns ← ⌊m′n0r(s)⌋.
6: Allocate Ns frames toWs, s.t. at most ⌈n0r(s)⌉ frames are at the same encoder side.
7: end for

Encoding at each encoder side:
8: for s = 1 : t do
9: Divide all n samples into ⌈n0r(s)⌉ parts, each with ⌊ n

⌈n0r(s)⌉⌋ samples.
10: Find frames allocated toWs.
11: for b = 1 : ⌈n0r(s)⌉ do
12: if all such frames have been encoded then
13: Break.
14: else if ∃Wi ∈ Ws for some Wi in the b-th part then
15: The b-th frame← the first such Wi.
16: else
17: The b-th frame← 0.
18: end if
19: end for
20: end for
Decoding and estimating at the decoder side:
21: for s = 1 : t do
22: Extract all Ns frames allocated toWs.
23: for b = 1, ..., Ns do
24: if the b-th frame is 0 then
25: W̃ s

b ← ∅.
26: else
27: W̃ s

b ← the b-th frame.
28: end if
29: end for
30: N ′

s ←
∑Ns

b=1 1W̃ s
b ̸=∅.

31: for w ∈ Ws do
32: if N ′

s ̸= 0 then

33: p̂s(w)←
∑Ns

b=1 1W̃s
b
=w

N ′
s

34: else
35: p̂s(w)← 1

|Ws| .
36: end if
37: p̂W (w)← p̂B(s)p̂s(w).
38: end for
39: end for
40: return p̂W .

B.3 Proof of Lemma 5

Note that

(pB(s)ps(w)− p̂B(s)p̂s(w))
2

≤(pB(s)ps(w)− p̂B(s)p̂s(w))
2 + (pB(s)p̂s(w)− p̂B(s)ps(w))

2
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=(ps(w)
2 + p̂s(w)

2)(pB(s)− p̂B(s))
2 + 2pB(s)p̂B(s)(ps(w)− p̂s(w))

2.

Then by the Hölder’s inequality, we have

(pB(s)ps(w)− p̂B(s)p̂s(w))
p

≤2
p
2−1

[(
ps(w)

2 + p̂s(w)
2
) p

2 (pB(s)− p̂B(s))
p + 2

p
2 pB(s)

p
2 p̂B(s)

p
2 (ps(w)− p̂s(w))

p
]

≤2p−1

[
1

2
(ps(w) + p̂s(w)) (pB(s)− p̂B(s))

p + pB(s)
p
2 p̂B(s)

p
2 (ps(w)− p̂s(w))

p

]
.

where the last inequality is since p ≥ 2 and ps(w), p̂s(w) ∈ [0, 1]. Take the summation, and then we
have

∥p̂W − pW ∥pp ≤2p−1
t∑

s=1

[
(pB(s)− p̂B(s))

p + pB(s)
p
2 p̂B(s)

p
2 ∥p̂s − ps∥p

]
.

Then (11) is obtained by taking the expectation. We complete the proof.

B.4 Proof of Lemma 6

If m′n0r(s) = m′n0p̂B(s) ≤ 4, since ∥p̂s − ps∥pp ≤ 2, then

pB(s)
p
2 p̂B(s)

p
2 ∥p̂s − ps∥pp ≤ 2pB(s)

p
2 p̂B(s)

p
2 ≤ 2p+1

(
pB(s)

m′n0

) p
2

.

Otherwise, we have m′n0r(s) = m′n0p̂B(s) > 4, hence Ns = Θ(m′n0r(s)) = Θ (m′n0p̂B(s)).
Given p̂B , then W̃ s

u for u = 1, ..., Ns are i.i.d. random variables with

qs ≜P[W̃ s
u ̸= ∅|p̂B ] = 1− (1− pB(s))

⌊ n
⌈n0r(s)⌉ ⌋

=Θ

(
pB(s)

⌊
n

⌈n0r(s)⌉

⌋
∧ 1

)
= Θ

(
pB(s)

⌊
n

⌈n0p̂B(s)⌉

⌋
∧ 1

)
.

(16)

In this case, we can establish the bound shown in the following lemma.

Lemma 7. E[pB(s)
p
2 p̂B(s)

p
2 ∥p̂s − ps∥pp|p̂B ] ≤ CE

[(
p̂B(s)
m′n ∨

1
m′nn0

∨ pB(s)
m′n0

) p
2
∣∣∣p̂B

]
for some

C > 0.

Proof. By the Chernoff bound, we have

P
[
N ′

s ≥
Nsqs
2

∣∣∣p̂B

]
≤ exp

(
−Nsqs

8

)
. (17)

And conditional on the event {W̃ s
u ̸= ∅}, the distribution of W̃ s

u is ps. Hence for each w ∈ Ws, it is
folklore that (cf. Theorem 4 in [22] or Rosenthal’s inequality [23]),

E[|p̂s(w)− ps(w)|p|N ′
s, p̂B ] = O

((
ps(w)

N ′
s

) p
2

+
ps(w)

N ′p−1
s

)
.

Take the summation, since p ≥ 2 and ps(w) ∈ [0, 1] we have

E
[
∥p̂s − ps∥pp

∣∣∣N ′
s ≥

Nsqs
2

, p̂B

]
= O

(
1

N
p
2
s q

p
2
s

)
.

Since ∥p̂s − ps∥2 ≤ 2, we have

E[∥p̂s − ps∥2|p̂B ] ≤ 2 exp

(
−Nsqs

8

)
+O

(
1

N
p
2
s q

p
2
s

)
= O

(
1

N
p
2
s q

p
2
s

)
.
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Since n0 ≤ n, we have ⌈n0p̂B(s)⌉ ≤ n and n
⌈n0p̂B(s)⌉ ≥ 1. Hence there exists some C > 0, such

that
E[pB(s)

p
2 p̂B(s)

p
2 ∥p̂s − ps∥pp|p̂B ]

≤CE

[(
pB(s)p̂B(s)

m′n0p̂B(s)qs

) p
2 ∣∣∣p̂B

]

=CE


 pB(s)

m′n0

(
pB(s)⌊ n

⌈n0p̂B(s)⌉⌋ ∧ 1
)


p
2 ∣∣∣p̂B


=CE


 1

m′n0

(
n

⌈n0p̂B(s)⌉

) ∨ pB(s)

m′n0


p
2 ∣∣∣p̂B


=CE

[(
n0p̂B(s) ∨ 1

m′nn0
∨ pB(s)

m′n0

) p
2 ∣∣∣p̂B

]
,

completing the proof.

In both cases, we can take the expectation and obtain that

E[pB(s)
p
2 p̂B(s)

p
2 ∥p̂s − ps∥pp] ≤ C ′E

[(
p̂B(s)

m′n
∨ 1

m′nn0
∨ pB(s)

m′n0

) p
2

]
,

for some C ′ > 0.

Finally, take the sum over s and note that p ≥ 2, then
t∑

s=1

E[pB(s)
p
2 p̂B(s)

p
2 ∥p̂s − ps∥pp]

≤C ′
t∑

s=1

E

[(
p̂B(s)

m′n
∨ 1

m′nn0
∨ pB(s)

m′n0

) p
2

]

=O

((
1

m′n0

) p
2

∨ t

(m′nn0)
p
2

)

=O


(
1 ∨ t

n
p
2

)
·
(
l0
l ∨

1
n

) p
2

m′ p2

 ,

which completes the proof.

B.5 Proof of Proposition 2: Analysis of The Protocol for Case 2

By the case 1, the estimation error for the reduced block distribution is bounded by

C3 ·

[(
t

mnl

) p
2

∨ 1

(mn)
p
2

]
for some C3 > 0.

By Lemma 6, the estimation error for the conditional distribution induced by the invoking of the
subroutine SSRSub(m2 , n, k, l, l0, p) is bounded by

C4 ·

((
l0
l ∨

1
n

)
m
2

) p
2

= C4

(
2
(
l0
l ∨

1
n

)
m

) p
2

=C4

[(
2l0
ml

) p
2

∨ 2
p
2

(mn)
p
2

]

≤C4

(4 log( kn + 1)

ml

) p
2

∨ 2
p
2

(mn)
p
2

 ,
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for some C4 > 0.

Then by Lemma 5, the total error is bounded by

2p−1

C4 ·

(4 log( kn + 1)

ml

) p
2

∨ 2
p
2

(mn)
p
2

+ C3 ·

[(
t

mnl

) p
2

∨ 1

(mn)
p
2

]
=O

( log
(
k
n + 1

)
ml

) p
2

∨ 1

(mn)
p
2

 .

B.6 Proof of Proposition 2: Analysis of The Protocol for Case 3

By the analysis in Appendix B.2.2, the estimation error for the reduced block distribution induced by
the invocation of SSR(m2 , n, ka+1, l, p) is bounded by

C5 ·


 log

(
ka+1

n + 1
)

ml


p
2

∨ 1

(mn)
p
2

 ≤ C5

m
p
2

,

for some C5 > 0.

We have ku+1 ≥ ka+1 > n and l0
l = 1 > 1

n . Then by Lemma 6, the estimation error for the
conditional distribution induced by the u-th invocation of the subroutine SSRSub(mu, n, ku, l, l0, p)
is bounded by

C6 ·
(
ku+1

mun

) p
2

≤ C6

(
k

2u(l−1)

m
2u+2n

) p
2

= C6

(
2u+2k

(2l−1)umn

) p
2

, (18)

for some C6 > 0.

Then by Lemma 5 and l ≥ 4, the total error is bounded by

2a(p−1) · C5

m
p
2

+ C6

a∑
u=1

2u(p−1) ·
(

2u+2k

(2l−1)umn

) p
2

≤2
(

k

n(2l − 1)

) 2(p−1)
l

· C5

m
p
2

+ 23pC6

(
k

2lmn

) p
2

=O

((
k

2lmn

) p
2

)
.

C The Non-interactive Protocol for the TV Loss and Its Analysis

Consider the estimation problem under the TV loss, i.e. p = 1. In this section, we show that a
uniform budget allocation plan is sufficient in this case, thanks to the error bound (12). The advantage
of the uniform allocation plan is obvious, since there is no need for the decoder to send any message
to the encoders. Hence a non-interactive protocol is immediate induced, only by changing (13) to

r(s) =
1

t
(19)

in the successive refinement subroutine SSRSub(m′, n, k, l, l0, 1) in Appendix B.1.

For simplicity, we slightly abuse the notations SSRSub(m′, n, k, l, l0, 1) and SSR(m,n, k, l, 1)
to still denote the resulting non-interactive protocols. The non-interactive successive refinement
subroutine SSRSub(m′, n, k, l, l0, 1) is presented in Algorithm 2 for completeness, where differences
with Algorithm 1 are underlined.

To show Theorem 2, it remains to show the error bound in the following proposition.
Proposition 3. For any pW ∈ ∆W , the non-interactive protocol SSR(m,n, k, l, 1) outputs an
estimate p̂W satisfying,
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Algorithm 2 Non-Interactive Successive Refinement Subroutine SSRSub(m′, n, k, l, l0, 1)

Input: Parameters (m′, n, k, l, l0), an estimate p̂B of the block distribution pB (only at the decoder
side).

Output: An estimate p̂W of the original distribution pW .
Allocating frames to blocks:

1: n0 ← ⌊ l
l0
⌋ ∧ n.

2: Divide each l-bit message into n0 frames of length l0.
3: for s = 1 : t do
4: r(s)← 1/t.
5: Ns ← ⌊m′n0r(s)⌋.
6: Allocate Ns frames toWs, s.t. at most ⌈n0r(s)⌉ frames are at the same encoder side.
7: end for

Proceed as that in Algorithm 1.

1. if k ≤ n, m(l ∧ k) > 1000k logm log n, then E[∥p̂W − pW ∥pp] = O

(√
k2

mnl ∨
√

k
mn

)
;

2. if n < k ≤ (2l − 1) · n, l ≥ 2 and m(l ∧ n) > 2000n logm log n, then E[∥p̂W − pW ∥pp] =

O

(√
k log( k

n+1)
ml ∨

√
k

mn

)
;

3. if k > (2l − 1) · n, l ≥ 4 and m(l ∧ n) > 4000n logm log n, then E[∥p̂W − pW ∥pp] =

O

(√
k2

2lmn

)
.

C.1 Error Analysis of the Subroutine for p = 1

First, the estimation error induced by the subroutine SSRSub(m′, n, k, l, l0, 1) is described in the
following lemma.
Lemma 8. We have

t∑
s=1

E[pB(s)∥p̂s − ps∥TV] = O

(√
t

m′

(
1 ∨ t

n

)
·
(
l0
l
∨ 1

n

))
. (20)

Proof. If m′n0r(s) =
m′n0

t ≤ 4, since ∥p̂s − ps∥TV ≤ 2, then

pB(s)∥p̂s − ps∥TV ≤ 2pB(s) ≤ 4

√
pB(s)2t

m′n0
≤ 4

√
pB(s)2k

m′n0
.

Otherwise, we have m′n0r(s) =
m′n0

t > 4, hence Ns = Θ(m′n0r(s)) = Θ
(

m′n0

t

)
. Then W̃ s

u for
u = 1, ..., Ns are i.i.d. random variables with

qs ≜ P[W̃ s
u ̸= ∅|p̂B ] = Θ

(
pB(s)

⌊
n

⌈n0r(s)⌉

⌋
∧ 1

)
= Θ

(
pB(s)

⌊
n

⌈n0/t⌉

⌋
∧ 1

)
. (21)

Then we can establish the following lemma.

Lemma 9. E[pB(s)∥p̂s − ps∥TV] ≤ CE
[√

pB(s)k
m′nt ∨

pB(s)k
m′nn0

∨ pB(s)2k
m′n0

]
for some C > 0.

Proof. By the Chernoff bound, we have

P
[
N ′

s ≥
Nsqs
2

∣∣∣p̂B

]
≤ exp

(
−Nsqs

8

)
. (22)

29



And conditional on the event {W̃ s
u ̸= ∅}, the distribution of W̃ s

u is ps. By the Cauchy-Schwarz
inequality and ps(w) ∈ [0, 1],

E
[
∥p̂s − ps∥TV

∣∣∣N ′
s ≥

Nsqs
2

]
≤

√
|Ws| · E

[
∥p̂s − ps∥22

∣∣∣N ′
s ≥

Nsqs
2

]
= O

(√
|Ws|
Nsqs

)
.

Since ∥p̂s − ps∥2 ≤ 2, we have

E[∥p̂s − ps∥2|p̂B ] ≤ 2 exp

(
−Nsqs

8

)
+O

(√
|Ws|
Nsqs

)
= O

(√
|Ws|
Nsqs

)
.

Since n0 ≤ n, we have ⌈n0

t ⌉ ≤ n and n
⌈n0/t⌉ ≥ 1. Hence there exists some C > 0, such that

E[pB(s)∥p̂s − ps∥TV] ≤ CE

[√
pB(s)2

k
t

m′n0

t qs

]

=CE

√√√√ pB(s)2k

m′n0

(
pB(s)⌊ n

⌈n0/t⌉⌋ ∧ 1
)


=CE

√√√√ pB(s)k

m′n0

(
n

⌈n0/t⌉

) ∨ pB(s)2k

m′n0


=CE

√pB(s)k

m′nt
∨ pB(s)k

m′nn0
∨ pB(s)2k

m′n0

 ,

completing the proof.

In both cases, we can take the expectation and obtain that

E[pB(s)∥p̂s − ps∥TV] ≤ C ′E

√pB(s)k

m′nt
∨ pB(s)k

m′nn0
∨ pB(s)2k

m′n0

 ,

for some C ′ > 0.

Finally, take the sum over s and use the Cauchy-Schwarz inequality, then

t∑
s=1

E[pB(s)∥p̂s − ps∥TV]

≤C ′
t∑

s=1

E

√pB(s)k

m′nt
∨ pB(s)k

m′nn0
∨ pB(s)2k

m′n0


=O

(√
k

m′n0
∨ kt

m′nn0

)

=O

(√
k

m′

(
1 ∨ t

n

)
·
(
l0
l
∨ 1

n

))
,

which completes the proof of Proposition 3.

C.2 Error Analysis of the Non-Interactive Protocol

We complete the proof of Proposition 3 in this subsection.
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C.2.1 Error Analysis for the Base Case 1

Since the protocol for p = 1 is the same as that for p = 2, then by the Cauchy-Schwarz inequality
and the analysis in Appendix A we have

E[∥p̂W − pW ∥TV] ≤
√
kE[∥p̂W − pW ∥22] ⪯

√
k2

mnl
∨
√

k

mn
.

C.2.2 Error Analysis for Case 2

By the analysis in Appendix C.2.1, the estimation error for the reduced block distribution is bounded
by

C3 ·

(√
t2

mnl
∨
√

t

mn

)
,

for some C3 > 0.

By Lemma 8, the estimation error for the conditional distribution induced by the invoking of the
subroutine SSRSub(m2 , n, k, l, l0, 1) is bounded by

C4

√
k
(
l0
l ∨

1
n

)
m
2

= C4

√
2k
(
l0
l ∨

1
n

)
m

=C4

(√
2l0k

ml
∨
√

2k

mn

)

≤C4 ·

√4k log( kn + 1)

ml
∨
√

2k

mn

 ,

for some C4 > 0.

Then by (12), the total error is bounded by

C3 ·

(√
t2

mnl
∨
√

t

mn

)
+ C4 ·

√4k log( kn + 1)

ml
∨
√

k

mn


=O

√k log
(
k
n + 1

)
ml

∨
√

k

mn

 .

C.2.3 Error Analysis for Case 3

By the analysis in Appendix C.2.2, the estimation error for the reduced block distribution induced by
the invocation of SSR(m2 , n, ka+1, l, 1) is bounded by

C5 ·


√√√√ka+1 log

(
ka+1

n + 1
)

ml
∨
√

ka+1

mn

 ≤ C5 ·
√

ka+1

m
,

for some C5 > 0.

We have ku+1 ≥ ka+1 > n and l0
l = 1 > 1

n . Then by Lemma 8, the estimation error for the
conditional distribution induced by the u-th invocation of the subroutine SSRSub(mu, n, ku, l, l0, 1)
is bounded by

C6 ·
√

ku+1 · ku
mun

≤ C6

√
k

2u(l−1) · k
m

2u+2n
= C6

√
2u+2k2

(2l−1)umn
, (23)

for some C6 > 0.

Then by (12) and l ≥ 4, the total error is bounded by

C5 ·
√

ka+1

m
+ C6

a∑
u=1

√
2u+2k2

(2l−1)umn
≤ C5 ·

√
k

m
+ 8C6

√
k2

2lmn
= O

(√
k2

2lmn

)
.
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D The Protocol for the Case (5b) and Its Analysis

In this section, we design a refinement protocol with sample compression that achieves the optimal
rates for the case (5b), summarized in the following proposition.

Proposition 4. Let p ≥ 2, k > n, ml ≥ 1000n log(mn) log k and ⌈log k⌉ ≤ l ≤ n
2
p . Then for the

problem in Section 2, there exists an interactive protocol such that for any pW ∈ ∆W , the protocol

outputs an estimate p̂W satisfying E[∥p̂W − pW ∥pp] = O

(
log

p
2 k

(ml)
p
2 n

p
2
−1

)
.

Note that the communication budget l ≥ ⌈log k⌉ is sufficient to encode more than one sample. A
naive idea is to let each terminal transmit their i.i.d. samples directly, so that the decoder can infer the
distribution based on the samples.

To achieve higher accuracy, a subsetW ′ containing w with relatively larger pW (w) is identified and
those pW (w) needs to be refined. A sample compression technique projects each sample to the subset
W ′, which makes the encoding of the samples efficient. The protocol designed in Appendix A is then
used to refine the distribution onW ′. We present the details as follows.

D.1 The Refinement Protocol with Sample Compression

Transmit multiple samples Let n0 = ⌊ l
⌈log k⌉⌋ ≤ n. Each of the first m

3 encoders divides its l-bit
message into n0 frames, and each frame has ⌈log k⌉ bits. Then encode each of its first n0 samples by
one of these n0 frames. Send the message to the decoder.

Receiving the message, the decoder can access M1 ≜ mn0 i.i.d. random samples (W 1
l )

M1

l=1. Then for
each w ∈ W , let

p̂1
W (w) =

∑M1

l=1 1W 1
l =w

M1

and output the estimate p̂1
W .

Refinement with sample compression Based on the estimate p̂1
W , the decoder computes

W ′ =

{
w ∈ W : p̂1W (w) >

2

n

}
,

where it is immediate that |W ′| ≤ n− 1 since p̂1
W is normalized. All the remaining 2m

3 encoders are
informed ofW ′.

Let the second m
3 encoders and the decoder repeat the protocol in the first step, so that an estimate

p̂2
W (w) is obtained by the decoder.

Finally, consider the last m
3 encoders. For the i-th encoder among them, it computes W ′

ij = h(Wij)
for j = 1, ..., n, where (Wij)

n
j=1 are its observed samples and

h(w) =

{
w,w ∈ W ′,

∅, w /∈ W ′.

Let W ′ = h(W ) and pW ′ be its distribution of dimension no more than n. Then each encoder
holds n i.i.d. samples (W ′

ij)
n
j=1 and W ′

ij ∼ pW ′ . Let these encoders and the decoder invoke the
protocol IR(m2 , n, |W

′|+ 1, l, p) defined in Appendix A (which is possible since |W ′|+ 1 ≤ n and
ml ≥ 1000(|W ′|+ 1) log(mn) log n). The decoder can obtain the estimate p̂3

W ′ for pW ′ .

Finally, for each w ∈ W , the decoder computes

p̂3W (w) =

{
p̂3W ′(w), w ∈ W ′,

p̂2W (w), w /∈ W ′,

and outputs the estimate p̂3
W .
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D.2 Proof of Proposition 4: Error Analysis for the Protocol in Appendix D.1

It is easy to analyze the error for the rough estimate p̂1
W . For each w ∈ W , it is folklore that for

p ≥ 1 (cf. Theorem 4 in [22] or Rosenthal’s inequality [23]),

E[|p̂1W (w)− pW (w)|p] = O

((
pW (w)

mn0

) p
2

+ 1p≥2 ·
pW (w)

(mn0)p−1

)
. (24)

Remark 11 (Necessity of the refinement method). For 1 ≤ p ≤ 2, taking the summation and using
the Hölder’s Inequality imply that

E[∥p̂1
W − pW ∥pp] ≤ O

(
k1−

p
2

(mn0)
p
2

)
= O

(
k1−

p
2 log

p
2 k

(ml)
p
2

)
.

The bound is tight up to logarithm factors for 1 ≤ p ≤ 2. However, for p > 2 we can only get the

total error bound O

(
log

p
2 k

(ml)
p
2

)
, which is not tight. In contrast, the refined estimate p̂3

W can achieve a

better upper bound and we show E[∥p̂3
W − pW ∥pp] = O

(
log

p
2 k

(ml)
p
2 n

p
2
−1

)
in the following.

To complete the proof of Proposition 4, it suffices to show that E[∥p̂3
W−pW ∥pp] = O

(
1

(mn0)
p
2 n

p
2
−1

)
.

We can obtain the following preliminary results, characterizing the estimation errors for the first and
the second step. The proof is derived from (24) and similar to the proof of Lemma 4: for pW (w) > 4

n ,

P
[
p̂1W (w) ≤ pW (w)

2

]
= O

(
1

(mn0pW (w))
p
2

)
. (25)

By (10) in the proof of Proposition 1, we have

E
[
|pW (w)− p̂3W ′(w)|p|w ∈ W ′] = O

(
1

(mnl)
p
2

+
( n

mnl

)p−1

pW (w) +
pW (w)

p
2

(mn)
p
2

)
. (26)

Note that

E[∥p̂3
W − pW ∥pp] ≤

∑
w:pW (w)≤ 4

n

E
[
|pW (w)− p̂3W (w)|p

]
+

∑
w:pW (w)> 4

n

E
[
|pW (w)− p̂3W (w)|p

]
.

It suffices to bound the above two terms separately.

If pW (w) ≤ 4
n , then by the error bounds (24) (applied to p̂2

W ) and (26), we have

E
[
|pW (w)− p̂3W (w)|p

]
=E

[
1w∈W′ |pW (w)− p̂3W ′(w)|p

]
+ E

[
1w/∈W′ |pW (w)− p̂2W (w)|p

]
≤P[w ∈ W ′]E

[
|pW (w)− p̂3W ′(w)|p|w ∈ W ′]+ E

[
|pW (w)− p̂2W (w)|p

]
≤O

(
P[w ∈ W ′]

(mnl)
p
2

+

(
1

ml

)p−1

pW (w) +
pW (w)

p
2

(mn)
p
2

)
+O

((
pW (w)

mn0

) p
2

+
pW (w)

(mn0)p−1

)

=O

(
P[w ∈ W ′]

(mnl)
p
2

+
pW (w)

(mn0)
p
2 n

p
2−1

)
.

Take the summation and note that |W ′| ≤ n, then

∑
w:pW (w)≤ 4

n

E
[
|pW (w)− p̂3W (w)|p

]
≤O

 ∑
w:pW (w)≤ 4

n

P[w ∈ W ′]

(mnl)
p
2

+
pW (w)

(mn0)
p
2 n

p
2−1


≤O

(
E[|W ′|]
(mnl)

p
2

+
1

(mn0)
p
2 n

p
2−1

)
= O

(
1

(mn0)
p
2 n

p
2−1

)
.

(27)
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If pW (w) > 4
n , then P[w /∈ W ′] ≤ P

[
p̂1W (w) ≤ pW (w)

2

]
. By (24) (applied to p̂2

W ), (25) and (26),
we have

E
[
|pW (w)− p̂3W (w)|p

]
=E

[
1w∈W′ |pW (w)− p̂3W ′(w)|p

]
+ E

[
1w/∈W′ |pW (w)− p̂2W (w)|p

]
≤E

[
|pW (w)− p̂3W ′(w)|p|w ∈ W ′]+ P[w /∈ W ′] · E

[
|pW (w)− p̂2W (w)|p

]
≤O

(
1

(mnl)
p
2

+

(
1

ml

)p−1

pW (w) +
pW (w)

p
2

(mn)
p
2

)

+O

(
1

(mn0pW (w))
p
2

·

[(
pW (w)

mn0

) p
2

+
pW (w)

(mn0)p−1

])

=O

(
1

(mnn0)
p
2

+

(
1

ml

)p−1

pW (w) +
pW (w)

p
2

(mn)
p
2

)
,

where the last step is since pW (w) > 4
n and mn0 ≥ ml

4 log k > 1000n. Take the summation and note
that |{w : pW (w) > 4

n}| ≤ n, we have∑
w:pW (w)> 4

n

E
[
|pW (w)− p̂3W (w)|p

]

≤O

 ∑
w:pW (w)> 4

n

1

(mnn0)
p
2

+

(
1

ml

)p−1

pW (w) +
pW (w)

p
2

(mn)
p
2


=O

(
1

(mn0)
p
2 n

p
2−1

)
,

(28)

where the last step is since n0 = ⌊ l
⌈log k⌉⌋ ≤ n

2
p . Combining (27) and (28), we complete the proof

of Proposition 4.

E The Protocol for Cases (1d) and (5d) and Its Analysis

In this section, we design a refinement protocol with thresholding that achieves the optimal rates for
cases (1d) and (5d). It suffices to prove the following proposition in this section.
Proposition 5. For the problem in Section 2 and each of the following cases, there exists an interactive
protocol such that for any pW ∈ ∆W , the protocol outputs an estimate p̂W satisfying

1. If 1 ≤ p ≤ 2, ⌈log k⌉ ≤ l ≤ n and ml < k, then E[∥p̂W − pW ∥pp] = O

(
log

p
2 k

(ml)p−1

)
.

2. If p > 2, ⌈log k⌉ ≤ l ≤ n and ml < n, then E[∥p̂W − pW ∥pp] =

O

(
logp−1 k∨log2p−1(mn) log2p−1 n

(ml)p−1 ∨ 1

(mn)
p
2

)
.

To overcome the difficulty induced by the extremely tight total communication budget, huge "preys"
and little "flies" among all pW (w) to be estimated should be classified and dealt with differently. The
thresholding level is naturally 1

ml , since roughly ∼ ml samples can be transmitted by the first step
of the protocol in Appendix D.1. For those little "flies" pW (w) ⪯ 1

ml , it is better to overlooking
them than trying to estimate them. The remaining budgets should be used for refining huge "preys"
pW (w) ⪰ 1

ml whose number∼ ml is limited, by generating another independent estimate. For p > 2,
sample compression strategies and the protocol in Appendix A are applied to refine the estimate
similar to the refinement step of the protocol in Appendix D.1. With the help of thresholding, the
resulting estimation protocol can catch the rough landscape of the distribution pW and achieve the
optimal error rate under the communication constraints.

We present the protocols for two cases respectively in the following subsections and detailed error
analysis can be found in Appendices E.3 and E.4.
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E.1 Thresholding Methods for Case 1

Rough estimation Let n0 = ⌊ l
⌈log k⌉⌋ ≤ n. Let the first m

2 encoders and the decoder invoke the
first step (namely the “transmit multiple sample” step) of the protocol presented in Appendix D.1, so
that the decoder can obtain an estimate p̂1

W .

Thresholding technique Based on that, the decoder computes

W ′ =

{
w ∈ W : p̂1W (w) >

2

ml

}
,

where it is immediate that |W ′| ≤ ml since p̂1
W is normalized.

Let the second m
2 encoders and the decoder repeat the first step of the protocol in Appendix D.1, so

that an estimate p̂2
W (w) is obtained by the decoder.

Then for each w ∈ W , the decoder computes

p̂3W (w) =

{
p̂2W (w), w ∈ W ′,

0, w /∈ W ′,

and outputs the estimate p̂3
W .

E.2 Combining Thresholding Methods and Refinement for Case 2

Rough estimation Let k′ = ml
2000 log(mn) logn , then k′ < ml < n and ml > 1000k′ log(mn) log n.

Let the first m
2 encoders and the decoder invoke the protocol presented in the first step of Appendix D.1.

Then the decoder can obtain an estimate p̂1
W .

The mixed thresholding and refinement technique Based on that, the decoder computes

W ′ =

{
w ∈ W : p̂1W (w) >

2

k′

}
,

where it is immediate that |W ′| ≤ k′ − 1 since p̂1
W is normalized. All the remaining m

2 encoders are
informed ofW ′.

Then consider the second m
2 encoders. For the i-th encoder among them, it computes W ′

ij = h(Wij)
for j = 1, ..., n, where (Wij)

n
j=1 are its observed samples and

h(w) =

{
w,w ∈ W ′,

∅, w /∈ W ′.

Let W ′ = h(W ) and pW ′ be its distribution of dimension no more than n. Then each encoder holds
n i.i.d. samples (W ′

ij)
n
j=1 and W ′

ij ∼ pW ′ . Let these encoders and the decoder invoke the protocol
IR(m2 , n, |W

′| + 1, l, p) defined in Appendix A (which is possible since |W ′| + 1 ≤ k′ < n and
ml ≥ 1000(|W ′|+ 1) log(mn) log n). The decoder can obtain the estimate p̂2

W ′ for pW ′ . Then for
each w ∈ W , it computes

p̂3W (w) =

{
p̂2W ′(w), w ∈ W ′,

0, w /∈ W ′,

and outputs the estimate p̂3
W .

E.3 Error Analysis for the Protocol in Appendix E.1

It suffices to show that E[∥p̂3
W − pW ∥pp] = O

(
1

(mn0)
p
2 (ml)

p
2
−1

)
.
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We first give the following preliminary results, characterizing the estimation error for the first step.
The proof is derived from (24), similar to the proof of Lemma 4 but simpler.

P
[
p̂1W (w) ≤ pW (w)

2

]
≤ O

(
1

(mn0pW (w))
p
2

)
. (29)

Note that
E[∥p̂3

W − pW ∥pp] ≤
∑

w:pW (w)≤ 4
ml

E
[
|pW (w)− p̂3W (w)|p

]
+

∑
w:pW (w)> 4

ml

E
[
|pW (w)− p̂3W (w)|p

]
.

It suffices to bound the two terms separately. If pW (w) ≤ 4
ml , then by (24) (applied to p̂2

W ′ ),

E
[
|pW (w)− p̂3W (w)|p

]
=E

[
1w∈W′ |pW (w)− p̂2W (w)|p

]
+ E [1w/∈W′pW (w)p]

≤P[w ∈ W ′] · E
[
|pW (w)− p̂2W (w)|p

]
+ pW (w)p

=O

(
P[w ∈ W ′] ·

(
pW (w)

mn0

) p
2

)
+ pW (w)p

=O

(
P[w ∈ W ′] ·

(
1

m2n0l

) p
2

+
pW (w)

(ml)p−1

)
.

Take the summation and note that |W ′| ≤ ml, then∑
w:pW (w)≤ 4

ml

E
[
|pW (w)− p̂3W (w)|p

]
≤O

 ∑
w:pW (w)≤ 4

ml

P[w ∈ W ′] ·
(

1

m2n0l

) p
2

+
pW (w)

(ml)p−1


≤O

(
E[|W ′|]

(m2n0l)
p
2

+
1

(ml)p−1

)
= O

(
1

(mn0)
p
2 (ml)

p
2−1

)
.

(30)

If pW (w) > 4
ml , then P[w /∈ W ′] ≤ P

[
p̂1W (w) ≤ pW (w)

2

]
. By (24) (applied to p̂2

W ) and (29), we
have

E
[
|pW (w)− p̂3W (w)|p

]
=E

[
1w∈W′ |pW (w)− p̂2W (w)|p

]
+ E [1w/∈W′pW (w)p]

≤E
[
|pW (w)− p̂2W (w)|p

]
+ P[w /∈ W ′] · pW (w)p

≤O

((
pW (w)

mn0

) p
2

)
+ pW (w)p ·O

(
1

(mn0pW (w))
p
2

)

=O

((
pW (w)

mn0

) p
2

)
.

Taking the summation and noting that |{w : pW (w) > 4
ml}| ≤ ml, by the Hölder’s inequality we

have∑
w:pW (w)> 4

ml

E
[
|pW (w)− p̂3W (w)|p

]
≤ O

 ∑
w:pW (w)> 4

ml

(
pW (w)

mn0

) p
2

 = O

(
1

(mn0)
p
2 (ml)

p
2−1

)
.

(31)
Combining (30) and (31), we complete the proof.

E.4 Error Analysis for the Protocol in Appendix E.2

It remains to show that E[∥p̂3
W − pW ∥pp] = O

(
1

k′p−1 ∨ (ml)p

(mn0)2p−1

)
.

We first give the following preliminary results, characterizing the estimation error for the first step.
The proof is derived from (24), similar to the proof of Lemma 4 (where p in Lemma 4 is replaced by
2p). For pW (w) > 4

k′ ,

P
[
p̂1W (w) ≤ pW (w)

2

]
≤ O

(
(ml)p−1

(mn0)2p−1(pW (w))p

)
. (32)
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By (10) in the proof of Proposition 1, we have

E
[
|pW (w)− p̂2W ′(w)|p|w ∈ W ′] = O

(
1

(mnl)
p
2

+

(
k′

mnl

)p−1

pW (w) +
pW (w)

p
2

(mn)
p
2

)
. (33)

Note that

E[∥p̂3
W − pW ∥pp] ≤

∑
w:pW (w)≤ 4

k′

E
[
|pW (w)− p̂3W (w)|p

]
+

∑
w:pW (w)> 4

k′

E
[
|pW (w)− p̂3W (w)|p

]
.

It suffices to bound the two terms separately. If pW (w) ≤ 4
k′ , then by (33) (applied to p̂2

W ), we have

E
[
|pW (w)− p̂3W (w)|p

]
=E

[
1w∈W′ |pW (w)− p̂2W ′(w)|p

]
+ E [1w/∈W′pW (w)p]

≤P[w ∈ W ′]E
[
|pW (w)− p̂2W ′(w)|p|w ∈ W ′]+ pW (w)p

≤O

(
P[w ∈ W ′] ·

[
1

(mnl)
p
2

+

(
k′

mnl

)p−1

pW (w)

]
+

pW (w)
p
2

(mn)
p
2

)
+O

(
pW (w)

k′p−1

)
=O

(
P[w ∈ W ′]

(mnl)
p
2

+
pW (w)

k′p−1

)
.

Take the summation and note that |W ′| ≤ k′, then

∑
w:pW (w)≤ 4

k′

E
[
|pW (w)− p̂3W (w)|p

]
≤O

 ∑
w:pW (w)≤ 4

k′

P[w ∈ W ′]

(mnl)
p
2

+
pW (w)

k′p−1


≤O

(
E[|W ′|]
(mnl)

p
2

+
1

k′p−1

)
= O

(
1

k′p−1

)
.

(34)

If pW (w) > 4
k′ , then P[w /∈ W ′] ≤ P

[
p̂1W (w) ≤ pW (w)

2

]
. By (32) and (33), we have

E
[
|pW (w)− p̂3W (w)|p

]
=E

[
1w∈W′ |pW (w)− p̂2W ′(w)|p

]
+ E [1w/∈W′pW (w)p]

≤E
[
|pW (w)− p̂2W ′(w)|p|w ∈ W ′]+ P[w /∈ W ′] · pW (w)p

≤O

(
1

(mnl)
p
2

+

(
k′

mnl

)p−1

pW (w) +
pW (w)

p
2

(mn)
p
2

)
+O

(
(ml)p−1

(mn0)2p−1(pW (w))p
· pW (w)p

)

=O

(
(ml)p−1

(mn0)2p−1
+

(
k′

mnl

)p−1

pW (w) +
pW (w)

p
2

(mn)
p
2

)
,

where the last step is since mn0 = m⌊ l
⌈log k⌉⌋ < ml < n. Take the summation and note that

|{w : pW (w) > 4
k′ }| ≤ k′ < ml, we have∑
w:pW (w)> 4

k′

E
[
|pW (w)− p̂3W (w)|p

]

≤O

 ∑
w:pW (w)> 4

k′

(ml)p−1

(mn0)2p−1
+

(
k′

mnl

)p−1

pW (w) +
pW (w)

p
2

(mn)
p
2


=O

(
(ml)p

(mn0)2p−1
∨ 1

(mn)
p
2

)
.

(35)

Combining (34) and (35), we complete the proof.

37



F The Protocol for n = 1, p ≥ 2 and Its Analysis

In this section, we design a non-interactive protocol based on random hashing, which achieves the
optimal rate for n = 1. Similar to the discussion in Remark 7, it suffices to show the following
proposition for p ≥ 2.

Proposition 6. Let p ≥ 2, n = 1 and m2l ≥ k2. Then there exists a non-interactive protocol
such that for any pW ∈ ∆W , the protocol outputs an estimate p̂W satisfying E[∥p̂W − pW ∥pp] =

O

(
k

(m2l)
p
2
∨ 1

m
p
2

)
.

F.1 Motivation of the Protocol

The most natural idea is to first invoke the simulation protocol in [18] to output M = O(m2l

k ) samples
from the distribution pW at the decoder side; then estimate pW using M samples by a traditional
central estimation method. It can achieve the optimal minimax rate k

m2l
for p = 2, and hence the

optimal rate k

(m2l)
p
2

for 1 ≤ p ≤ 2. However, for p ≥ 2, using M i.i.d. samples to estimate the

underlying distribution under the ℓp loss can only achieve a rate of 1

M
p
2
= ( k

m2l
)

p
2 , which leaves a

gap with the lower bound k

(m2l)
p
2

by Lemma 1. The above naive protocol is not optimal and we can

show that the lower bound k

(m2l)
p
2

is optimal.

The subtle difference is that the minimax optimal rate without the communication constraint is 1

M
p
2

for p ≥ 2 (cf. Lemma 11), in contrast with the optimal rate k1− p
2

M
p
2

for 1 ≤ p ≤ 2. The difference was
ignored by the proof of upper bound in some previous work [17], hence the optimal rate claimed
therein is not true. Constructing the order-optimal protocol really deserves special care, which is the
main goal in the remaining part of this section.

The aforementioned difficulty in estimation under ℓp losses can be overcome, by using a random
hash function to compress the sample first, and then constructing and rescaling the histogram to
obtain the estimate. No simulation step as in [18] is needed. Moreover, it is worth mentioning that
the resulting protocol is non-interactive. The idea is similar to the second estimation stage in [10]
for estimating a sparse distribution under communication constraints. Details of the protocol are
presented in Appendix F.2, and the error analysis can be found in Appendix F.3.

F.2 The Non-interactive Protocol Based on Random Hashing for n = 1

Note that it suffices to design the protocol for 2l ≤ k
2
p .

Encoding Let the i-th encoder generate a random hash function hi : W → {0, 1}l, i = 1, ...,m
by shared randomness (i.e. (hi(w))w∈W are independent and P[hi(w) = b] = 2−l for each w ∈ W
and b ∈ {0, 1}l), so that the decoder can also generate hi. Observing its sample Wi, the i-th encoder
computes Bi = hi(Wi) and sends it to the decoder.

Decoding Upon receiving Bi, the decoder then computes

p̂W (w) =
2l

2l − 1
·
∑m

i=1 1hi(w)=Bi

m
− 1

2l − 1
(36)

for each w ∈ W and outputs p̂W .

F.3 Proof of Proposition 6: Error Analysis for the Protocol in Appendix F.2

We can analyze the error of the estimate p̂W as follows. Note that for each w ∈ W and i = 1, ...,m,

P[hi(w) = Bi] = pW (w) +
1

2l
(1− pW (w)) .
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It is folklore that (cf. Theorem 4 in [22] or Rosenthal’s inequality [23]),

E

[∣∣∣∣∑m
i=1 1hi(w)=Bi

m
− P[h1(w) = B1]

∣∣∣∣p
]

=O

((
P[h1(w) = B1]

m

) p
2

+
P[h1(w) = B1]

mp−1

)

=O

(pW (w) ∨ 1
2l

m

) p
2

+
pW (w) ∨ 1

2l

mp−1

 .

Then by (36), we have

E[|p̂W (w)− pW (w)|p] = O

(pW (w) ∨ 1
2l

m

) p
2

++
pW (w) ∨ 1

2l

mp−1


as well. Note that m2l ≥ k2 and 2l ≤ k

2
p ≤ k implies that m ≥ 2l. By taking the summation over

all w ∈ W , we complete the proof of Proposition 6.

G Proof of Lower Bounds

In order to prove Lemmas 1 and 2, we first reorganize the lower bounds into the following three
lemmas.

Lemma 10. For 1 ≤ p ≤ 2, we have

R(m,n, k, l, p) ⪰



k

(mnl)
p
2

, n ≥ k log k, m >

(
k

l

)2

, l ≤ k,

k1−
p
2

(ml log k)
p
2

, n < k log k, m >

(
k

l

)2

, l ≤ n

log k
,

k

(mn2l)
p
2

, mn2l > k2.

For p ≥ 2, we have

R(m,n, k, l, p) ⪰



k

(mnl)
p
2

, n ≥ k log k, m >

(
k

l

)2

, l ≤ k
2
p ,

1

(ml)
p
2 n

p
2−1 log n

, n < k log k, m >

(
n/ log n

l

)2

, l ≤
(

n

log n

) 2
p

,

k

(mn2l)
p
2

, mn2l > k2.

Lemma 11. For 1 ≤ p ≤ 2, R(m,n, k, l, p) ⪰ k1− p
2

(mn)
p
2

. For p ≥ 2, then R(m,n, k, l, p) ⪰ 1

(mn)
p
2

.

Lemma 12. If 2ml < k, then R(m,n, k, l, p) ⪰ 1
(ml)p−1 .

We show Lemmas 11 and 12 in Appendices G.1 and G.2, respectively. Then Lemma 10 is proved by
exploiting the results for p = 1 in [14], and details can be found in Appendix G.3.

G.1 Proof of Lemma 11

The results for 1 ≤ p ≤ 2 are well-known [16, 17], hence we only give the proof for p ≥ 2. We use
the information-theoretic methods.
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G.1.1 Choose a prior distribution and lower bound the minimax risk by the Bayes risk

We can assume thatW = [1 : k] without loss of generality. Let

p1
W =

(
1 + ϵ

2
,
1− ϵ

2
, 0, ..., 0

)
,

p2
W =

(
1− ϵ

2
,
1 + ϵ

2
, 0, ..., 0

)
.

(37)

Let Z ∼ Bern( 12 ) and define the prior distribution to be pZ
W . Let P be an (m,n, l)-protocol defined

in Section 2, then we have

sup
pW∈∆W

E[∥p̂P
W − pW ∥pp] ≥

1

2

(
E[∥p̂P

W − p1
W ∥pp] + E[∥p̂P

W − p2
W ∥pp]

)
=E[∥p̂P

W − pZ
W ∥pp].

G.1.2 Convert the estimation problem into a testing problem

Let

Ẑ = argmin
z∈{0,1}

∥pz
W − p̂P

W ∥p.

Then we have

∥pẐ
W − pZ

W ∥p ≤∥p̂P
W − pẐ

W ∥p + ∥p̂P
W − pZ

W ∥p
≤2∥p̂P

W − pZ
W ∥p.

Hence we have

E[∥p̂P
W − pZ

W ∥pp] ≥
1

2p
E[∥pẐ

W − pZ
W ∥pp]

=
1

2p−1
ϵpP[Ẑ ̸= Z].

(38)

Since Z −Wmn −Bm − Ẑ is a Markov chain, then by the Fano’s inequality, we have

I(Z;Bm) ≥ 1− h
(
P[Ẑ ̸= Z]

)
, (39)

where h(p) = −p log2 p− (1− p) log2(1− p) is the binary entropy function. If we can show that
for a suitably chosen ϵ,

I(Z;Bm) ≤ 1

2
, (40)

then by (38) and (39) we have

P[Ẑ ̸= Z] ≥ 1

10
,

thus

E[∥p̂P
W − pZ

W ∥22] ⪰ ϵp.

Then we have R(m,n, l, r) ⪰ ϵp.
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G.1.3 Choose a suitable parameter

By the Markov chain Zs −Wmn −Bm and the data processing inequality, we have

I(Z;Bm) ≤ I(Z;Wmn)

=
1

2
DWmn

(
p1W (wmn)||1

2

(
p1W (wmn) + p2W (wmn)

))
+

1

2
DWmn

(
p2W (wmn)||1

2

(
p1W (wmn) + p2W (wmn)

))
≤1

4

(
DWmn

(
p1W (wmn)||p2W (wmn)

)
+DWmn

(
p2W (wmn)||p1W (wmn)

))
=
mn

2
DW

(
p2W (w)||p1W (w)

)
=
mnϵ

2
log

(
1 +

2ϵ

1− ϵ

)
≤mnϵ2

1− ϵ
,

where the first inequality is due to the convexity of KL divergence and the second is by the fact that
log(1 + x) ≤ x for x > 0. By letting ϵ = (100mn)−

1
2 we obtain that R(m,n, l, r) ⪰ (mn)−

p
2 .

G.2 Proof of Lemma 12

The case for ml < k is not hard, but it has not been fully explored in previous literature. First note
that by the Hölder’s inequality, we have

∥p̂W − pW ∥TV ≤ k1−
1
p ∥p̂W − pW ∥p.

Hence we have
R(m,n, k, l, p) ≥ k1−pR(m,n, k, l, 1)p, (41)

and the minimax lower bound for p ≥ 1 is easily implied by that for p = 1.

We have the following folklore lemma for p = 1, which can be proved by the Fano’s method and the
data processing inequality.

Lemma 13. If 2ml ≤ k, then we have R(m,n, k, l, 1) ⪰ 1.

Combining Lemma 13 and (41), for any k ≥ 2ml we have

R(m,n, k, l, p) ⪰ 1

kp−1
.

Hence we further have

R(m,n, k, l, p) ≥ R(m,n, 2ml, l, p) ⪰ 1

(ml)p−1
.

G.3 Proof of Lemma 10

For p = 1, we have the following lemma in [14].

Lemma 14 ([14], Theorem 1.1 & 1.3). 1) For n ≥ k log k and m >
(
k
l

)2
, R(m,n, k, l, 1) ⪰√

k2

mnl ∧ 1.

2) For n ≤ k log k and m >
(
k
l

)2
, R(m,n, k, l, 1) ⪰

√
k

ml log k ∧ 1.

3) We always have R(m,n, k, l, 1) ⪰
√

k2

mn2l
∧ 1.

With the help of (41), the following three bounds is derived from three cases in Lemma 14 respectively.
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Proof of the first bound For n ≥ k log k and m > (kl )
2 and l ≤ k, we can obtain that m > k

l and
mnl ≥ k2. Then by 1) in Lemma 14 and (41),

R(m,n, k, l, p) ⪰ k

(mnl)
p
2

.

Proof of the second bound If m > (kl )
2 and l ≤ k, then ml log k ≥ k. Then by 2) in Lemma 14

and (41) we have

R(m,n, k, l, p) ⪰ k1−
p
2

(ml log k)
p
2

.

Now let p ≥ 2. Since n ≤ k log k we have k ≥ n
logn . We further have

R(m,n, k, l, p) ≥ R(m,n, ⌈n/ log n⌉, l, p) ⪰ 1

(ml)
p
2 n

p
2−1 log n

.

as long as m > ( ⌈n/ logn⌉
l )2 and l ≤ ⌈n/ log n⌉.

Proof of the third bound If mn2l ≥ k2, then by 1) in Lemma 14 and (41) we have

R(m,n, k, l, p) ⪰ k

(mn2l)
p
2

.
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