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Abstract

A typical application scenario for generative
LLMs is directly interacting with end-users in
conversation. However, the distribution of ac-
tual user instructions can differ from those in
the publicly available datasets, which could
negatively influence the user experience. In
this paper, we propose a new method to over-
come the instruction’s difference via regenerat-
ing the instruction. We address a specific case
of how user instruction can differ: more flaws
can exist in their daily expressions. We lever-
age instruction-tuned LLMs to refine the flawed
instruction so they better align with the training
distribution. We explored the effectiveness of
directly asking the model to refine the instruc-
tion and further finetuned a specialized refiner
model to enhance the overall performance. Our
experiments demonstrate the effectiveness of
the proposed method on the open-source model,
especially when using a finetuned model as the
refiner. The enhancement is achieved without
requiring retraining or parameter increasing on
the assistant model, highlighting its practicality
and potential to bridge the gap between open-
source and proprietary LLM assistants.

1 Introduction

The world has witnessed widespread adoption of
Large Language Models (LLMs) in real-world ap-
plications, where LLMs directly assist with end-
users requests in a conversation style. To complete
the user’s instruction as expected, not only is the
model required to be capable of finishing specific
tasks, but correctly interpolating the user’s instruc-
tion is also crucial. However, the user instructions
the model met in deployment can differ from the
instructions they are trained on in the datasets, lead-
ing to a distribution shift. This out-of-distribution
(OOD) problem can hurt the performance of ma-
chine learning systems, including the performance
of LLM(Wang et al., 2023).

For those public applications powered by pro-
prietary LL.Ms, like ChatGPT, Claude, and Bard,
this distribution shift of instructions is more acces-
sible to resolve as the interaction data is typically
gathered and can be used to retrain the model to
adapt to the actual distribution of the user instruc-
tions(OpenAl, 2023b). However, the data collec-
tion policy raises many privacy concerns and may
not be acceptable for private applications(Verge,
2023).0n the other hand, open-sourced models
are less likely to be able to collect actual inter-
action data and be actively retrained, both due to
the expense and the difficulty in the data collec-
tion, which impacts the performance and user ex-
perience, which can hold people back from using
open-source LLMs to substitute the reliance on
proprietary ones.

In this work, we focus on a situation with more
flaws, like grammar mistakes and informal lan-
guage used in the institution, which is less common
in most public datasets, including those used for
instruction tuning and human preference alignment.
We propose an alternative method to address the
flawed user instruction by regenerating the user
instruction to resemble the instruction in the train
data. We achieved that by leveraging an instruction-
tuned LLM to refine the faulty instructions before
providing them to a fixed assistant LLM. The ap-
proach utilizes the abilities of LLMs to follow
given instructions and generate instructions in a
style similar to the examples used to train them.
Building a pipeline application to enhance the per-
formance of LLM-based applications is common
in practice (Schlag et al., 2023). We introduced a
specialized refiner model with an instruction-tuned
open-source LLM as the base model to enhance the
effectiveness further. Overall, the additional refin-
ing step is practical to increase the performance of
open-source LLMs in our experiments, and the fine-
tuned refiner model shows improved performance
in practice.



esides a putter, what other golf clubs woul
suffice for a putting stroke?

Figure 1: An example from our experiments demonstrates the effectiveness of refining flawed user instructions.
Despite the model’s ability to precisely restore the user’s intention, if the raw user instruction is given directly to
the assistant, the model refuses to answer the question, possibly mistaking the misspelled "suffice" for "suffer" or

"suffocate."

We present the concept and implementation of
our method in Section 2. In Section 3, we empiri-
cally show the effectiveness of the refiner approach.
We presented our experiment setup and the results
of the performance evaluation. Finally, we discuss
the related research (Section 4), the conclusion
(Section 5), and the limitations (Section 6) of our
study in the end.

2 Method

We considered the situation where an instruction-
tuned Large Language Model is used as an assistant
to directly respond to the user’s instruction to sat-
isfy the user’s requirements, which is a common
scenario in many LL.M-based applications. We de-
note the user’s requirement as q. The requirement
will be satisfied by an optimal response *, which
we represent as * = o(q).

The system expects users to submit an instruc-
tion to represent their intention, denoted as I,
which is formatted in a prompt template and pro-
vided to an auto-regressive text generation model
to generate the response. For simplicity, we treat
the formatting step and the generation process as a
single function, whose input is the instruction and
the output is the response, denoted as r ~ A(I).
Here, we use the ~ symbol to represent this as a
probabilistic function whose output is a distribu-
tion.

The instruction tuning process (Wei et al., 2022)
trains the model to follow the user’s instruction to

generate a response that satisfies the user, so for
a sufficiently trained model, we can assume that
A(i) = A(I(q)) = O(q), which is saying the prob-
ability to generate a response that is similar to the
optimal response r* is high enough. However, no-
tice the similarity is dependent on I, which means
the distribution shift of the user instruction, for ex-
ample, the presence of flaws in the instructions,
could cause an impact on the generation quality.
Our method can be represented as below:

1. Given the user instruction 7, we first ask a re-
finer model to regenerate the instruction to fix
its potential flaws. We denote the regenerated
instruction as i’ ~ R(7)

2. Next, the new instruction is presented to the
generation model system to acquire the re-
sponse: r ~ A(i)

With our additional refinement, the new instruc-
tion 7' can better represent the user’s intention so
the model can sufficiently understand the user’s
intention. In other words, the composition R - I’
should be closer to I than I’ alone.

The refining process is a particular case of the
guided regeneration method for tackling the OOD
problem. In practice, we can use different types
of regeneration instruction to address various dis-
tribution shifts. In our implementation, we used
an instruction-tuned model as the refiner. As the
model has seen instructions generated by [ in train-
ing, it is unsurprising that the model has acquired



the ability to create instructions that follow a simi-
lar distribution. The experiment results also illus-
trated the effectiveness of the method. We use a
prompt to guide the model to refine the instruction.
We provide the instruction set we used in our ex-
periment in Section 6. Besides the generation, we
further applied some post-processing to the out-
put of the model, which helps to normalize the
response for more straightforward experiments and
more control over the content, similar to how peo-
ple extract the response from the generated text of
an instruction-tuned LLMs that utilize a template
(Wei et al., 2022).

3 Experiments

We evaluated our refining method on a modified
version of publicly available instruction tuning
datasets. To simulate a distribution shift in the
instruction, specifically to increase the presence of
flaws, we utilize GPT-3.5 to convert the instruction
in the dataset.

We first examine the difference caused by the
flaw insertion. The models tested include GPT-
3.5! and LLaMA 2 7B Chat?, and the original in-
structions are from the dolly dataset. We test both
models under three settings:

1. Original instructions from the dataset, which
we reference as oracle;

2. Instructions with inserted flaws, we reference
them as flawed. We generated them based
on the original ones with the method stated
above.

3. A refined version of the instruction, converted
from the corrupted ones by the same model
with instruction to refine the instruction, is
referenced as refined.

The responses are gathered and then graded by
GPT-3.5 for preference score. Here, we utilize
GPT-3.5 to rate the response from the assistant
model, following prior work (Zheng et al., 2023).
The answer is paired with the original instructions
under all three settings to simulate the helpfulness
and alignment of the response toward the user’s
intention.

We show the result of the first experiment in Fig-
ure 2, which indicates that GPT-3.5 (annotated as

'"The model used is GPT-3.5-TURBO-0613. API is pro-
vided by OpenAl.
2We downloaded the model from Hugging Face.
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Figure 2: The quality of the instruction has a more sig-
nificant impact on LLaMA than the proprietary model
GPT-3.5. We provide the standard error as the error
bar’s length.

gpt) is less affected by the flaws introduced in the
conversion (-4.2% in preference score compared
to llama’s -10.2%), and further refining based on
the corrupted version of instructions is unable to
increase the grading. In the case of GPT-3.5, the ac-
cumulated misalignment is likely to cause a further
decrease in the score, as the model is less affected
by the quality of the instruction. However, the ex-
periment result on the llama model shows that the
refining step is practical on this model, which we
further prove in the following experiment.

We also conduct further experiments to evaluate
the effectiveness of the refining step with LLaMA 2
7B Chat as the assistant model. Here we collected
instructions from two different datasets, noted as
dolly’ and gpt4all*. Both are filtered as previously
described, then 1000 samples are drawn and used in
our experiment. We first processed the instructions
with GPT-3.5 to insert more flaws, which served as
the baseline in this experiment. Then three models
are used to refine the instruction, GPT-3.5 (ref-
erenced as gpt in Figure 3), LLaMA 2 7B Chat,
(Ilama), then a finetuned refiner (refiner). The re-
finer model is finetuned based on LLaMA 2 7B
Chat. The dataset used for training is a distinct set
of the dataset dolly. We use 10,000 samples in the
finetuning process. For each instance, we format
the flawed version of the instruction and the instruc-
tion refined by GPT-3.5 in the refining template
(we further format the result with the chat tem-
plate used by the LLaMA 2 7B Chat model). The
process is done using the TRANSFORMERS(Wolf
et al., 2020), PEFT(Mangrulkar et al., 2022), and

3Downloaded from databricks/databricks-dolly-15k
*Downloaded from nomic-ai/gpt4all-j-prompt-generations
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Figure 3: Above is a comparison of the effectiveness
of different refining methods. We also show the result
of GPT-3.5 as the refiner for comparison. The non-
refined version instructions serve as the baseline in this
experiment.

TRL(von Werra et al., 2020) library.

We pair the oracle instructions with the re-
sponses corresponding to all four versions of pro-
cessed instructions. Then, we utilize GPT-3.5 with
the method stated above in the first experiment to
get the preference score. We show the result in Fig-
ure 3. As a result, with the assistant model fixed,
GPT-3.5’s ability to perform the refining is still
more potent than the open-source models. How-
ever, after finetuning, the gap is effectively nar-
rowed (the difference is reduced by 78.0% on the
dolly dataset and 42.6% on the gpt4all dataset).
Overall, the experiments demonstrate the potential
of the refining step to increase performance on var-
ious flawed instructions, and the specialized refiner
is significantly more capable of doing so without
changing the parameter size and structure.

4 Related Work

Previous research widely explored the problem of
out-of-distribution (OOD) in various NLP fields,
including the detection(Lang et al., 2023), per-
formance evaluation(Teney et al., 2023), and the
method to approach better generalization(Yang
et al., 2023). Multiple studies also described the
distribution shift between LLM’s training and in-
ference. For example, (Ren et al., 2023) tried to
detect when the instruction did not follow the train-
ing distribution. (Kirk et al., 2023) compared the
effectiveness of SFT and RLHF method for adapt-
ing pretrained LLMs to new inputs. We considered
the flawed user instructions and the instructions
used for training as an OOD problem and used an
additional refining step to resolve it.

Utilizing LLM’s capability to enhance the LLM

system’s overall performance by introducing more
steps is also common in practice. Some work at-
tempts to directly optimize the responses, for ex-
ample, (Welleck et al., 2022), (Liu et al., 2023),
and (Lightman et al., 2023). Some optimize the
prompt like us, (Cheng et al., 2023) proposed using
prompt-optimization as an alternative to the RLHF
training process by directly reflecting the differ-
ence in the responses into the prompt. (Weston and
Sukhbaatar, 2023) remove unrelated information
from the prompt to reduce the negative effect on
the accuracy of the assistant’s response. One con-
current work (Deng et al., 2023) performed refining
to the instruction similar to ours and observed an
increment in performance of GPT-4 on several cus-
tom benchmarks. Our work focused on improving
the performance of smaller open-source model as-
sistant systems and further showed that finetuning
can increase the system’s performance.

5 Conclusion

We present a refining-based instruction regenerat-
ing step to tackle the OOD challenge in the ap-
plication scenarios where the end users can pro-
duce instructions with more flaws. Our method
effectively increased the performance of the open-
sourced LLLM assistant model on flawed user in-
structions. The experiments conducted on the sim-
ulated dataset demonstrated the effectiveness of
the refining step and how we can further finetune
the model to perform such refining to enhance the
effect.

6 Limitation

We cannot perform the preference grading with
state-of-the-art LLLMs such as GPT-4 (OpenAl,
2023a), which could affect the precision of the
grading, according to our reference (Zheng et al.,
2023). We generated our flawed user instructions
with LLM, and the distribution of flaws in actual
user input can differ. Nevertheless, we argue that
the introduction of flaws, whether from user input
or intentional injection, serves as an instance of
OO0D, so the effectiveness of our method still holds.
The amount of instructions tested is also limited,
and the language and length of the instructions are
restricted, so the result may require more testing
under a different setting. Further, the open-source
model used in this work is limited to LLaMA 2 7B
Chat, which simultaneously serves as the assistant
model and the instruction refiner. With a different



model, especially a model different in parameter
sizes, the ability to overcome the flaws in the user
instruction and refine a user instruction can vary.
By utilizing our method, there will be an extra cost
in the inference time, which can lead to more ex-
pense and environmental impact, but the effect is
limited. Considering the situation where the im-
proved response satisfied the users, so no second
request is required, we can potentially save more
cost.
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Convert Original Instruction to Flawed version

Below is an instruction describing a user request,
paired with the related context. Coarsen the instruc-
tion to introduce grammar and spelling errors to
make it almost incomprehensible. Your response
should only contain the coarsened instructions.

Refine the Flawed instructions

Below is a problematic user request, paired with
the further related context. Revise the instruction
to improve its clarity and comprehensibility, but
don’t alter the context. Your response should only
contain the refined instructions.

Follow User Instruction

You will be provided with a question and an op-
tional context. Answer the question based on the
context.

Grade the Response

Please act as an impartial judge and evaluate the
quality of the response provided by an Al assistant
to the user question displayed below. Your evalua-
tion should consider factors such as the helpfulness,
relevance, accuracy, depth, creativity, and level of
detail of the response. Begin your evaluation by
providing a short explanation. Be as objective as
possible. After providing your explanation, please
rate the response on a scale of 1 to 10 by strictly
following this format: "[[rating]]"
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