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ABSTRACT

Current benchmarks for long-context reasoning in Large Language Models (LLMs)
often blur critical factors like intrinsic task complexity, distractor interference, and
task length. To enable more precise failure analysis, we introduce CogniLoad, a
novel synthetic benchmark grounded in Cognitive Load Theory (CLT). CogniLoad
generates natural-language logic puzzles with independently tunable parameters
that reflect CLT’s core dimensions: intrinsic difficulty (d) controls intrinsic load;
distractor-to-signal ratio (ρ) regulates extraneous load; and task length (N ) serves
as an operational proxy for conditions demanding germane load. Evaluating
22 SotA reasoning LLMs, CogniLoad reveals distinct performance sensitivities,
identifying task length as a dominant constraint and uncovering varied tolerances
to intrinsic complexity and U-shaped responses to distractor ratios. By offering
systematic, factorial control over these cognitive load dimensions, CogniLoad
provides a reproducible, scalable, and diagnostically rich tool for dissecting LLM
reasoning limitations and guiding future model development.

1 INTRODUCTION

Cognitive Load Theory (CLT) (Sweller, 1988) characterizes three types of cognitive load on human
working memory when solving problems (Sweller, 1988; Paas et al., 2003; Lieder and Griffiths, 2020):
intrinsic (ICL), extraneous (ECL), and germane (GCL). ICL stems from the inherent complexity
and element interactivity of the task (Halford et al., 1998). ECL is induced by suboptimal task
presentation requiring the processing of elements that are not task-relevant (Chandler and Sweller,
1991). GCL concerns effective remaining resources allocated to engaging with the intrinsic task
demands for mental schema construction (Ericsson and Kintsch, 1995; Sweller, 2010).

Large language models (LLMs) demand analogous computational resources when solving reasoning
tasks. The essential element interactivity of a reasoning chain mirrors ICL; distractor elements
reflect ECL; and sustained engagement with intrinsically relevant information over a long reasoning
process acts as an operational proxy for germane-like processing - the constructive effort to maintain
a coherent problem representation.

To the best of our knowledge, no study has based the evaluation of problem-solving capacities of
LLMs in CLT by distinguishing these three load types, and existing benchmarks often confound them:
LongBench (Bai et al., 2024a) and L-Eval (An et al., 2024) vary context length but not necessarily
the intrinsic reasoning depth; LogicBench (Parmar et al., 2024) probes ICL with minimal demands
on ECL or context-induced load; BABILong (Kuratov et al., 2024) mixes multi-step reasoning with
fixed distractor ratios, obscuring precise failure attribution.

We introduce CogniLoad, a controllable synthetic benchmark for long-context reasoning, inspired by
CLT, that operationalizes these load types through tunable parameters in randomized natural-language
logic puzzles: (i) Intrinsic Load via Intrinsic Difficulty d controls the number of interacting entities,
attributes, and logical clauses, directly manipulating ICL by varying essential element interactivity
and reasoning depth. (ii) Extraneous Load via Distractor Density ρl dictates distractor density; lower
ρ increases irrelevant elements, manipulating ECL. (iii) Germane Load Proxy via Task Length N
serves as an operational proxy for demanding germane-like cognitive work.
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Figure 1: The average accuracy of models across the evaluated parameter space for d ∈ {1, 3, 5, 7, 10}
(left panel), N ∈ {20, 50, 100, 250} (center panel), and ρ ∈ {5, ..., 95} (right panel). Each plot
selects one dimension for the X-axis and averages the accuracy of all evaluated puzzles for the other
two dimensions relative to it.

Our key contributions are summarized as follows:

1. We ground the evaluation of LLMs in CLT, precisely defining benchmark parameters that
control ICL, ECL, and an operational proxy for the conditions conducive to GCL.

2. We introduce CogniLoad, the first benchmark designed to independently control these three
dimensions of cognitive load, while scaling to arbitrarily long contexts.

3. We provide an algorithm for the automatic randomized generation and evaluation of puzzle
instances, enabling large-scale and reproducible comparison of LLM capabilities.

4. We report empirical results on 22 state-of-the-art (SotA) reasoning LLMs (see Figure 1),
revealing distinct failure regimes across the (d,N, ρ) dimensions and highlighting specific
targets for improving LLM design.

Together, these contributions translate CLT into a precise diagnostic framework for understanding
and advancing long-context reasoning in LLMs.

1.1 RELATED WORK

Long-context Benchmarks (Working Memory Capacity). A line of work starting with Long-
Range Arena (LRA) (Tay et al., 2020) and followed by several recent benchmarks probe LLM
performance on long sequences, often framed as testing “memory load” or context utilization. Earlier
studies such as SCROLLS (Shaham et al., 2022), BookSum (Kryściński et al., 2021), and QMSum
(Zhong et al., 2021) scale document length without manipulating intrinsic difficulty. LongBench
(Bai et al., 2024a;b) and L-Eval (An et al., 2024) aggregate multi-task corpora up to 200k tokens,
while BABILong (Kuratov et al., 2024), LongReason (Ling et al., 2025), RULER (Hsieh et al., 2024),
ZeroSCROLLS (Shaham et al., 2023), and Michelangelo (Vodrahalli et al., 2024) increase context
while the inherent difficulty of individual sub-tasks (ICL) may vary unsystematically and distractor
density (ECL) is often not a controlled variable. Consequently, performance degradation could be due
to sheer length overwhelming processing capacity, or an inability to sustain germane-like cognitive
work over extended relevant information, but the precise cause of failure is not clear.

Logical-reasoning Benchmarks (Intrinsic Load). A complementary line of benchmarks focuses on
ICL by presenting tasks with high inherent complexity but often within minimal context lengths or
distractors. Notable classical suites include ReClor (Yu et al., 2020), LogiQA (Liu et al., 2020), and
BIG-Bench-Hard (BBH) (Suzgun et al., 2022). AutoLogic (Zhu et al., 2025) is a benchmark that
explicitly focuses on scaling ICL through controllable complexity. LogicBench (Parmar et al., 2024),
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CLUTRR (Sinha et al., 2019), and ZebraLogic (Lin et al., 2025) also exemplify this by formulating
symbolic logic puzzles that demand processing many interacting elements (e.g., multi-step deductions,
handling negation, and constraint satisfaction). Similarly, mathematical reasoning datasets, e.g.,
GSM8K (Cobbe et al., 2021) and abstract rule induction tasks, e.g., ARC-AGI (Chollet et al., 2024)
primarily escalate ICL by increasing the complexity of essential rules and their interdependencies.

Needle in a Haystack Benchmarks (Extraneous Load). Needle in a haystack (NIAH) designs
(Gkamradt, 2023) specifically target ECL by embedding relevant facts (“needles”) within large
volumes of distractor text (“hay”). Variants such as Sequential NIAH (Yu et al., 2025) and Nolima
(Modarressi et al., 2025) investigate the impact of such distractors, which constitute non-essential ele-
ments requiring processing for filtering, thereby imposing ECL. While these benchmarks effectively
isolate the impact of distractors on information retrieval, the “needle” tasks themselves typically
involve low ICL (e.g., simple fact lookup).

Need for Multi-dimensional Evaluation. CLT highlights the interplay of ICL, ECL, and germane
processing under finite working memory (Paas et al., 2003). Existing LLM reasoning benchmarks,
however, typically manipulate only one dimension without systematic, independent control over
the others. Even benchmarks like MIR-Bench (Yan et al., 2025) which combine high ICL with
extensive input, do not offer the factorial control needed to disentangle these loads, hindering precise
diagnostics. Similar to our work, GSM-∞ (Zhou et al., 2025) allows manipulating noise and difficulty.
However, these parameters are not adjusted independently of task length.

Contribution of CogniLoad. CogniLoad addresses this critical gap by providing a framework for
independently controlling parameters that influence: (i) ICL via intrinsic puzzle difficulty (d), (ii)
ECL via distractor density (ρ), and (iii) the demands for sustained, germane-like processing via task
length (N ), all within a single synthetically generated natural language puzzle. This factorial design
enables a precise diagnosis of LLM failure modes, specifically the inability to handle increased
intrinsic complexity, susceptibility to extraneous distractors, or incapacity to maintain coherent
reasoning over an extended number of sequences. By explicitly grounding these dimensions in CLT,
CogniLoad offers the first benchmark to diagnostically map LLM capability surfaces across these
distinct cognitive demands, thereby complementing and extending the insights from evaluations that
focus on a single factor.

2 BENCHMARK DESIGN: COGNILOAD LOGIC PUZZLES

2.1 PUZZLE DEFINITION AND CONSTRUCTION

CogniLoad is a family of natural-language logic-grid puzzles explicitly crafted to probe sequential
reasoning capabilities of LLMs. The design goals are threefold: each puzzle (i) necessitates sequential
multi-step deduction where order fundamentally matters; (ii) embeds a controllable number of relevant
“needle” facts within the context of a controllable number of “hay” distractor statements; and (iii)
provides parameters that control distinct dimensions of cognitive load. This section formalizes the
task and describes the puzzle generation process, the control parameters, and key design choices.

Each puzzle in CogniLoad (see Figure 2) consists of a set of people with independent and mutable
attributes. A series of statements, applied in strictly sequential order, updates these attributes
according to conditions specified in each statement. The puzzle generation is parameterized by three
key parameters: intrinsic difficulty d, total number of statements N , and needle-to-hay ratio ρ.

2.1.1 BASIC PUZZLE CONSTRUCTION

A puzzle is formally characterized by the following components:

• People: A set P = {p1, p2, . . . , pn} of persons in the puzzle, and n = max(d, 2).

• Person of Interest (PoI): A randomly selected person p∗ ∈ P about whom the final question
is asked.

• Attribute Categories: A set A = {c1, c2, . . . , cd} of attributes randomly selected from a
predefined taxonomy of 12 categories. Each category takes values in a Value Domain with a
given finite cardinality, smaller or equal to 10.
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(i) Puzzle Instruction: Solve this logic puzzle. You MUST finalize your response with a single sentence
about the asked property (e.g., "Peter is in the livingroom.", "Peter is wearing blue socks",.. ). Solve the
puzzle by reasoning through the statements in a strictly sequential order.

(ii) Initial State:
• Brent is wearing green socks and is wearing pur-

ple gloves and last listened to classical music.
• Anthony is wearing purple socks and is wearing

yellow gloves and last listened to disco music.
• . . .

(iii) Update Statements:
1. The people wearing green socks listen to elec-

tronic music.
2. The people who last listened to classical music

and wearing purple gloves put on yellow gloves.
3. . . .

(iv) Query: What color of socks is Brent wearing?

Figure 2: Example CogniLoad puzzle with intrinsic difficulty d = 3, statements N = 20, and
needle-to-hay ratio ρ = 50%. Only a subset of the initial state and update statements is shown.

• Value Domains: For each category c ∈ A, a value domain Vc = {vc,1, vc,2, . . . , vc,ℓc}
where ℓc = d + 1 for d > 1 or ℓc = 3 when d = 1. See Appendix F for the complete
ontology.

• State Function: St(p, c) represents the value of attribute c for person p at step t. Each
person has values for the d attribute of the selected attribute categories A, thus the state
value represents a vector of dimension d.

2.1.2 PUZZLE INITIALIZATION

A puzzle starts with initialization statements (t = 0) that assign unique attribute values to each person:
∀p ∈ P,∀c ∈ A : S0(p, c) ∈ Vc such that ∀pi, pj ∈ P, i ̸= j, ∃c ∈ A : S0(pi, c) ̸= S0(pj , c).

2.1.3 STATEMENT GENERATION PROCESS

For each step t from 1 to N , a statement is generated that changes the state of a person. If it updates
the PoI, the statement is called a needle. An update for a non-PoI is called a hay.

1. Statement Type Selection: Given N and ρ, let nt
needle and nt

hay be the remaining numbers of
needles and hays to satisfy the desired proportion ρ in the complete puzzle. The probability of
selecting a needle statement is then P(Tt = needle) = nt

needle/(N − t). The total number of needle
statements in the puzzle is calculated as n0

needle = max(1,min(N, round(N · ρ/100))).
2. Reference Person Selection: Given the selected statement type Tt, the algorithm selects the
reference person rt: if Tt = needle =⇒ rt = p∗ and if Tt = hay =⇒ rt ∼ Uniform(P \ {p∗}).
3. Statement Structure: For each statement, CogniLoad samples a number of conditions kt ∼
Uniform{1, . . . , d}, and a number of state updates mt ∼ Uniform{1, . . . , d} and uniformly sample
attribute categories Ct ⊆ A, |Ct| = kt and state updates Ut ⊆ A, |Ut| = mt.

4. Condition and Update Value Specification: For each category c ∈ Ct, the condition value
is set by the reference person’s current state: vc,t = St−1(rt, c). For needles, these conditions
target the PoI, while for hays the conditions can match multiple people. For update values, if
Tt = needle =⇒ uc,t ∼ Uniform(Vc) and if Tt = hay =⇒ uc,t ∼ Uniform(Vc \ {St−1(p

∗, c)}).
5. Logical Form: The statement at step t has the logical form:

∀p ∈ P :
( ∧

c∈Ct

St−1(p, c) = vc,t

)
⇒

( ∧
c∈Ut

St(p, c) = uc,t

)
.

Attributes not mentioned in the update set remain unchanged ∀p ∈ P,∀c ∈ A \ Ut : St(p, c) =
St−1(p, c). This is not specified in the prompt but implicitly assumed by the LLMs.

2.1.4 VALIDATION CONSTRAINTS

A sequence of validations verifies that the generated statement does not result in a state that prevents
the generation of further needles and hays. If all validations pass, the statement is appended to the
puzzle; otherwise a new statement is generated.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

For hay statements (rt ̸= p∗): After the update, the state of affected non-PoIs must not become
identical to PoI ∀p ∈ P \ {p∗} such that ∀c ∈ Ct : St−1(p, c) = vc,t, ∃c ∈ A : St(p, c) ̸= St(p

∗, c)
and the update must not affect the PoI ∃c ∈ Ct : St−1(p

∗, c) ̸= vc,t.

For needle statements (rt = p∗): The update must not affect all non-PoI people ∃p ∈ P \ {p∗} :
∃c ∈ Ct : St−1(p, c) ̸= vc,t and after the update not all non-PoIs have identical states as the PoI
∃p ∈ P \ {p∗} : ∃c ∈ A : St(p, c) ̸= St(p

∗, c).

To prevent the distractors from becoming too trivial to track at lower difficulties, we require that a hay
statement does not result in all non-PoIs become identical so the set P \ {p∗} must contain at least
two persons with distinct attribute values. CogniLoad construction ensures that each hay statement
Tt = hay affects at least one non-PoI ∃p ∈ P \ {p∗} : ∀c ∈ Ct : St−1(p, c) = vc,t.

2.1.5 FINAL QUESTION GENERATION

After all N statements have been generated, the puzzle concludes with a question about a random
attribute of the PoI, sampled as a random category cq ∼ Uniform(A). The correct answer to the
puzzle is SN (p∗, cq) obtained from the final state of the PoI.

2.1.6 EVALUATION METRICS

We evaluate each puzzle by exact-matching of the queried attribute value in the output of model M
with accommodating minor phrasing and common lexical variants. See Appendices C and D for the
specifics of the evaluation pipeline and an overview of the granular failure types that contextualize
model specific error modes. The accuracy of model M across the evaluation set is calculated as
acc(M) = 1

|Z|
∑

z∈Z 1
[
answerM (z) = SN (p∗, cq)

]
where SN (p∗, cq) represents the final state

value of the queried attribute cq for the PoI p∗ after all N statements have been processed.

2.2 TUNABLE PARAMETERS

To systematically probe long-context reasoning, CogniLoad employs three independent parameters.
These parameters are designed to operationalize distinct cognitive load dimensions as defined by CLT
(Paas et al., 2003), allowing the creation of puzzles with varying characteristics. Together, they define
the load profile of a puzzle instance.

Intrinsic Difficulty (d) for d ∈ {1, 3, 5, 7, 10} controls multiple facets of puzzle complexity (see
Table 1), directly manipulating ICL which according to CLT hinges on element interactivity (Halford
et al., 1998). Increasing d increases ICL via: (i) combinatorial growth in state space (≈ (d+ 1)d),
(ii) increased interactivity between persons, attributes, and values, and (iii) increased rule complexity
(up to d conditions/updates per statement).

Task Length (N) for N ∈ {20, 50, 100, 250} sets the total number of sequential state-update state-
ments. While directly determining sequence length, N serves as an operational proxy for conditions
demanding GCL. Increasing N , particularly with a large d and ρ, compels deeper reasoning through
more essential interacting elements (Sweller, 2010). Additionally, increasing N necessitates the
maintenance of a coherent (stateful) problem representation over a longer term with the construction
of an efficient schema for it (Ericsson and Kintsch, 1995).

Needle-to-hay Ratio (ρ) for ρ ∈ {5, ..., 95} sets the percentage of PoI-relevant (“needle”) versus
distractor (“hay”) statements, directly manipulating ECL. ECL arises from processing non-essential
elements (Chandler and Sweller, 1991). Decreasing ρ increases ECL via increased distractor density
which challenges filtering. Increasing ρ controls ECL by focusing resources on relevant information.
Critically, CogniLoad’s “hay” statements are syntactically similar to “needles” and involve valid state
updates for non-PoIs, imposing a more challenging ECL than easy to distinguish distractor text.

3 RESULTS

We have evaluated the performance of 13 open weights LLMs on 100 random CogniLoad puzzles per
(d,N, ρ) configuration resulting in 14’000 puzzle instances per LLM in total. In addition, we have
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Table 1: Key parameters controlling the puzzle generation.
Symbol Name Definition Cognitive Load Affected

d Intrinsic
Difficulty

Controls cardinality of people set |P | =
max(d, 2), attribute categories |A| = d,
for each category c ∈ A the cardinal-
ity of value domains |Vc| = max(d +
1, 3), and the distribution of conditions
and updates per statement: k,m ∼
Uniform{1, ..., d}.

ICL: Element interactivity,
state space/rule complexity.

N Task Length Total number of sequential state transi-
tions in the puzzle.

GCL Proxy / Task Length:
Demands sustained engage-
ment with core elements.

ρ Needle-to-
hay Ratio

Percentage of statements directly influ-
encing the PoI (needles) versus distrac-
tor statements (hay)

ECL: Distractor density
challenges filtering, selective
attention, and imposing
load from processing non-
essential elements.

evaluated the proprietary Gemini-2.5 and gpt-51 models and DeepSeek-R1-0528 on 10 CogniLoad
puzzles per configuration (i.e., 1’400 puzzle instances). The maximum context length (input + output)
was set to 32K tokens and LLMs run with their preset default decoding settings and system prompts.

Figure 1 shows mean accuracy across models as each load dimension varies with trends corroborated
by our regression analysis (Section 3.1).

Intrinsic Difficulty (d) Performance declines monotonically with d for most models, although a
few mid-tier models show small bumps at d = 3 (e.g., QwQ-32B: 0.62→0.69; DS-Qwen-32B:
0.63→0.66). Top models degrade only slightly from d = 1 to d = 3 (o3: 0.96→0.93; gpt-5:
1.00→0.97), while smaller or distilled models drop by 0.10-0.25 in the same range. By d = 5, 12 of
22 models fall below 50% accuracy. Beyond d ≥ 7 the marginal decline flattens for the majority of
models: the strongest models maintain their performance even at d = 10 (gpt-5: 0.82; o3: 0.80), and
the weakest ones approach 0.10-0.15.

Task Length (N ) This parameter remains the dominant stressor. Most models exhibit their steepest
decline between N = 20 and N = 50 (e.g., DS-Llama-70B: 0.89→0.66; Qwen3-8B: 0.71→0.40),
while the best performing ones show relative resilience (gpt-5: 1.00→0.98; o3: 0.99→0.98). Accuracy
declines with longer sequences as at N = 100, several models roughly halve their N = 20 accuracy
(e.g., DS-Llama-70B: 0.48; Qwen3-32B: 0.38) and at N = 250 only two models show above 50%
accuracy (i.e., gpt-5 at 0.76 and o3 at 0.68) while the majority ones perform 0.20-0.30 accuracy.

Extraneous Load / Needle-to-hay Ratio (ρ) A characteristic U-shaped response is typical with
performance usually reaches as low as ρ ∈ [25, 50]% and recovers as ρ increases. Recovered
performance equals or exceeds that of small-ρ baseline in several cases (DS-Llama-70B: 0.61→0.64;
gpt-5-mini: 0.84→0.86; gemini-2.5-flash-lite: 0.38→0.53). The strongest models show smooth
variations (gpt-5: 0.97→0.89→0.91; o3: 0.93→0.89→0.88), indicating marginal sensitivity to
distraction, while some models recover only partially or not at all (Phi-4-reasoning-plus: 0.59→0.45;
EXAONE-Deep-32B: 0.47→0.32).

3.1 LOAD-SENSITIVITY REGRESSION

To quantify model-specific sensitivities of the accuracy to load dimensions and derive interpretable
capacity thresholds for each model, we employ a regression-based approach that allows us to isolate
the impact of each type of cognitive load (see Table 2).

1 The gpt-5 family models were evaluated using the “medium” reasoning effort setting.
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Table 2: Per-model quadratic-ρ GLM estimates with Wald z statistic for p-values alongside derived
50% load-capacity thresholds (see Section 3.1.3). The value −− for NT50 indicates that no real root
exists in [0, 1]. “DS” abbreviates “DeepSeek” in the model names. ∗∗∗p<0.001, ∗∗p<0.01, ∗p<0.05

Model β0 βd βN βρ βρ2 ECL50 NT50 ID50

gemini-2.5-pro 22.51∗∗∗ −0.41∗∗∗ −9.15∗∗∗ −1.67 1.76 153.3 −− 12.74
gemini-2.5-flash 18.14∗∗∗ −0.44∗∗∗ −7.56∗∗∗ −1.79 2.16 111.5 −− 8.56
gemini-2.5-flash-lite 3.19∗∗∗ −0.30∗∗∗ −1.22∗∗∗ −2.88∗∗ 3.82∗∗∗ 8.8 0.93 1.53
gpt-5-2025-08-07 17.34∗∗∗ −0.39∗∗∗ −5.11∗∗∗ −7.04∗∗∗ 5.62∗∗∗ 382.8 −− 14.78
gpt-5-mini-2025-08-07 11.09∗∗∗ −0.22∗∗∗ −3.96∗∗∗ −4.87∗∗∗ 5.10∗∗∗ 164.1 −− 11.72
gpt-5-nano-2025-08-07 6.50∗∗∗ −0.31∗∗∗ −2.43∗∗∗ −4.30∗∗∗ 4.12∗∗∗ 35.7 0.94 2.87
o3-2025-04-16 12.83∗∗∗ −0.22∗∗∗ −4.26∗∗∗ −2.72 2.07 356.9 −− 19.07
o4-mini-2025-04-16 13.00∗∗∗ −0.23∗∗∗ −4.89∗∗∗ −5.99∗∗∗ 6.37∗∗∗ 132.1 −− 10.86
DS-R1-0528 13.70∗∗∗ −0.39∗∗∗ −5.28∗∗∗ −4.13∗∗∗ 4.19∗∗∗ 104.6 −− 7.51
DS-Llama-70B 8.36∗∗∗ −0.30∗∗∗ −3.28∗∗∗ −3.50∗∗∗ 3.92∗∗∗ 69.8 0.53 5.14
DS-Qwen-32B 5.15∗∗∗ −0.19∗∗∗ −2.12∗∗∗ −2.07∗∗∗ 2.29∗∗∗ 54.3 0.78 3.95
DS-Qwen-7B 1.74∗∗∗ −0.23∗∗∗ −0.96∗∗∗ −0.45 0.58∗ 2.9 −− −0.53
DS-Qwen-1.5B −0.35∗∗ −0.20∗∗∗ −0.33∗∗∗ 0.47 −0.14 0.0 −− −3.95
Phi-4-reasoning-plus 9.52∗∗∗ −0.45∗∗∗ −3.58∗∗∗ −4.21∗∗∗ 3.41∗∗∗ 45.7 0.16 3.68
Phi-4-reasoning 9.11∗∗∗ −0.39∗∗∗ −3.35∗∗∗ −4.62∗∗∗ 3.99∗∗∗ 52.3 0.92 4.08
Phi-4-mini-reasoning 1.70∗∗∗ −0.24∗∗∗ −0.81∗∗∗ −1.40∗∗∗ 1.45∗∗∗ 1.3 −− −0.55
EXAONE-Deep-32B 4.09∗∗∗ −0.26∗∗∗ −1.55∗∗∗ −3.16∗∗∗ 2.45∗∗∗ 14.1 −− 1.0
QwQ-32B 5.68∗∗∗ −0.21∗∗∗ −2.08∗∗∗ −3.70∗∗∗ 3.07∗∗∗ 48.0 0.95 3.56
Qwen3-32B 7.22∗∗∗ −0.29∗∗∗ −2.75∗∗∗ −3.21∗∗∗ 2.75∗∗∗ 53.9 0.94 4.1
Qwen3-30B-A3B 5.83∗∗∗ −0.30∗∗∗ −2.25∗∗∗ −2.96∗∗∗ 2.87∗∗∗ 36.7 0.99 3.05
Qwen3-8B 5.40∗∗∗ −0.26∗∗∗ −2.19∗∗∗ −2.87∗∗∗ 2.66∗∗∗ 30.8 −− 2.2
Qwen3-1.7B 0.62∗∗∗ −0.17∗∗∗ −0.46∗∗∗ −1.53∗∗∗ 1.24∗∗∗ 0.0 −− −4.07

3.1.1 REGRESSION MODEL SPECIFICATION

We model the performance of LLMs using a binomial generalized linear model (GLM) with a logit
link function:

Pr
(
Y=1

)
= σ

(
β0 + βd d+ βN log10 N + βρ ρ+ βρ2 ρ2

)
,

where the binary outcome Y represents exact-match accuracy (Y = 1, when the model solves the
puzzle correctly), σ(·) is the inverse logit function, and the coefficients βd, βN and βρ quantify
sensitivity to intrinsic difficulty (ICL), task length (GCL), and distractor ratios (ECL), respectively.
The inclusion of a quadratic term for ρ is motivated by the characteristic U-shape observed in the
third panel of Figure 1 and based on an improved Akaike Information Criterion (AIC) value for 18
out of the 22 fitted models when included (see Appendix E). Since N ranges up to 250, we apply
log10 to keep it at a similar scale as the other parameters of the regression.

3.1.2 SIGNIFICANCE OF MAIN EFFECTS

In all models, βd and βN are significant and highly negative, confirming performance degradation
with increased ICL and GCL. The quadratic term for ρ is also significant (except for two models)
confirming the U-shaped response for most models: models typically perform worst at intermediate
ρ values and recover as ρ approaches either extreme. Five models exhibit statistically insignificant
coefficients for ρ terms, reflecting poor baseline performance for the smallest models and indifference
to distraction for strong models (i.e., o3, gemini-2.5-pro, gemini-2.5-flash).

3.1.3 CAPACITY POINTS AT 50% ACCURACY

The GLM coefficients (Table 2) allow us to derive interpretable capacity thresholds. These represent
the point at which a model’s accuracy is predicted to drop to 50% when varying a single load
parameter, while holding other load parameters at their estimated mean values:

ECL50 (Effective Context Length): Maximum number of statements a model can process while
maintaining 50% accuracy. Large ECL50 values indicate superior context handling.

NT50 (Needle-to-hay Threshold): Minimum proportion of relevant information required to maintain
50% accuracy. Crucially, small values indicate greater robustness to distractors. If the estimated
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NT50 is missing, then the model accuracy is not expected to cross the 50% threshold for any value
0 ≤ ρ ≤ 1, under mean conditions for d and N .

ID50 (Intrinsic Difficulty): It is the maximum intrinsic complexity (number of interacting entities/at-
tributes) that a model can handle while maintaining 50% accuracy. Negative values indicate failure to
reach 50% accuracy even at the lowest difficulty setting under mean conditions for N and ρ.

Mathematically, these thresholds are derived by setting the logit in the GLM equation to zero (for
Pr(y = 1) = 0.5) and solving for the parameter of interest, e.g.:

ECL50 = 10−(β0+βdd̄+βρρ̄+βρ2 ρ̄
2)/βN ; ID50 = −(β0 + βN log10 N + βρρ̄+ βρ2 ρ̄2)/βd.

For NT50, we solve the quadratic equation β0 + βdd̄+ βN log10 N + βρρ+ βρ2ρ2 = 0 for ρ.

3.1.4 MODEL CAPACITY

The regression analysis and estimated capacity thresholds (Table 2) reveal clear variations among
models that can be grouped into three classes:

Frontier/High-capacity Models: gpt-5 and o3 lead by a wide margin (ECL50 > 300), followed by
gemini-2.5-pro, gpt-5-mini, o4-mini, and DS-R1-0528. The high baseline performance of gemini-
2.5-pro (β0 = 22.5) together with the large βN of -9.15 is consistent with the uniquely large amount
long context errors as N increases (as illustrated in the Appendix D).

Mid-capacity Models: DS-Llama-70B , Qwen3-32B, DS-Qwen-32B, QwQ-32B, Phi-4-reasoning,
Phi-4-reasoning-plus, Qwen3-30B-A3B, gpt-5-nano-2025-08-07, and Qwen3-8B form a broad middle
tier with good performance at moderate N and d values.

Low-capacity Models: DS-Qwen-7B, Phi-4-mini-reasoning, DS-Qwen-1.5B, and Qwen3-1.7B ex-
hibit minimal effective context handling capacity failing to reach 50% accuracy even under mean
context/distractor conditions, deteriorating rapidly under slightly increasing load.

3.1.5 DIFFERENTIAL SENSITIVITY TO LOAD DIMENSIONS

The estimated coefficients further reveal distinct sensitivity profiles:

Sensitivity to context length (βN ): Universally negative and highly significant, larger models often
show greater relative degradation compared to their higher baselines. Yet large ECL50 values for
frontier models arise from the combined effect of β0, βN indicating comparisons are best made via
ECL50 and not βN in isolation.

Sensitivity to intrinsic difficulty (βd): Negative across models with a narrow range, it suggests a more
uniform effect. Despite some steep βd values, high baselines (e.g., gemini-2.5-flash) yield large ID50

values unlike smaller models with similar βd (e.g., Phi-4-reasoning-plus).

Sensitivity to information relevance (βρ and βρ2 ): Confirms the U-shaped response, but NT50 values
reveal nuanced distractor robustness variations masked by aggregate scores (e.g., DS-Llama-70B
vs. Qwen3-32B). For frontier models, the absence of NT50 indicates achieving above 50% accuracy
while for weak models the same absence indicates remaining below 50% accuracy.

3.2 FAILURE MODES ACROSS MODELS, LENGTH, AND DIFFICULTY

We analyze error categories from the evaluation pipeline (see Appendix C) to identify failure modes
and provide the complete distributions and per-model breakdowns in the Appendix D.

State-tracking mistakes dominate under load. Across models, the most common non-context
failure is wrong final attribution in the last valid PoI sentence (valid-logic), consistent with mis-
tracking sequential updates rather than formatting issues. For example, at N=250, Qwen3-32B has
2’541 valid-logic cases, DS-Llama-70B 2’465, and QwQ-32B 2’092. These logic errors also increase
monotonically with d for nearly all models.

Long-context budget overflows are a prominent, model-specific failure at extreme N . The max-
context errors grow sharply with N for some models: gemini-2.5-flash (280 errors in 350 samples at
N = 250) or gemini-2.5-pro (268/350). OpenAI models also make these errors at N = 250 but at
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much lower levels (gpt-5: 32/350; o3: 24/348). The high error counts for the Gemini models indicate
relatively poor token efficiency when reasoning.

Instruction-following drift emerges under higher N and d, mainly in smaller models. While
poi-logic stays near zero for most models, last-logic increases notably for compact models (e.g.,
Phi-4-mini-reasoning: 400 last-logic at N = 250); DS-Qwen-7B: 116), indicating that under load,
models often fail to answer in the instructed format.

"Other" failures rise with sequence length in small and mid-tier models. At N = 250, DS-
Qwen-1.5B has 605 “other” cases (often claiming the puzzle is unsolvable) and DS-Qwen-7B 461
indicating a shift from precise (but wrong) answers to non-answers as load grows.

4 DISCUSSION

CogniLoad, by operationalizing CLT, enables a multi-dimensional evaluation of LLM reasoning,
revealing nuanced failure patterns obscured by single-dimensional benchmarks. Our empirical
results (Section 3) offer several key insights: task length (N ) emerges as a dominant determinant,
suggesting challenges in sustained, germane-like processing for long, intrinsically demanding tasks;
models exhibit distinct sensitivities to intrinsic difficulty (d) versus extraneous load (ρ), with the latter
surprisingly showing U-shaped performance curves, indicating particular difficulties with intermediate
distractor densities; and estimated capacity thresholds provide concise “cognitive fingerprints” for
diagnostic LLM evaluation. The limitations of our study are summarized as follows:

Nuances of the CLT-LLM Analogy While CLT provides a powerful analogous framework, it
is crucial to acknowledge that “cognitive load” in LLMs manifests as computational constraints
(e.g., attention saturation, representational bottlenecks) rather than biological working memory
limitations. Our operationalization of N as a proxy for conditions demanding GCL, for example, is
an abstraction. Future research should aim to bridge CLT concepts with direct, mechanistic measures
of the underlying computational processes in LLMs to refine this analogy.

Scope of Reasoning and Generalizability CogniLoad focuses on sequential and pure deductive
reasoning without requiring domain knowledge. While this reasoning type is fundamental to various
subject areas (e.g., code, math), it is distinct from alternative reasoning paradigms like inductive,
abductive, or analogical reasoning. Extending the CLT-grounded multi-dimensional evaluation to
other reasoning types and evaluating it in other languages is a promising next step.

Beyond Accuracy and Main Effects The current evaluation relies on exact-match accuracy. Future
iterations could incorporate richer metrics (e.g., step-wise reasoning fidelity, solution coherence, un-
certainty of solutions) and systematically investigate interactions among d,N, ρ, which CogniLoad’s
factorial design supports. Reinforcement learning on verifiable rewards (Guo et al., 2025) presents
a promising application of CogniLoad in LLM training, as its generated metadata enables precise
verification of reasoning steps despite limited data of this kind.

Despite these considerations, by decomposing the “task difficulty” into principled, controllable di-
mensions inspired by CLT, CogniLoad provides a more insightful perspective than single-dimensional
benchmarks. It allows a more differentiated understanding of LLM reasoning capabilities and
limitations, paving the way for more targeted development of robust and generalizable AI systems.

5 CONCLUSION

We introduced CogniLoad, a novel synthetic benchmark grounded in CLT for multi-dimensional
evaluation of LLM long-context reasoning. By independently controlling parameters for intrinsic cog-
nitive load (d), extraneous cognitive load (ρ), and task length (N ), CogniLoad offers unprecedented
diagnostic precision. Our evaluations revealed task length as a dominant performance constraint and
uncovered unique “cognitive fingerprints” of LLM sensitivities to different load types, providing
actionable insights beyond single-dimensional benchmarks. CogniLoad offers a reproducible, scal-
able, and theoretically-grounded tool to systematically dissect LLM reasoning limitations and guide
the development of more capable and robust AI systems. While human and artificial cognition are
mechanistically distinct, applying frameworks such as CLT to AI evaluation can provide valuable
perspectives for understanding and characterizing their operational differences and capabilities.
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6 LLM DISCLOSURE

LLMs were used only in the early stages of writing the paper to refine phrasing and correct grammar.
During coding they were used to update the chart formatting code, and to translate the manual
implementation of the generation algorithm in Elixir to python for reproducibility.

7 REPRODUCIBILITY

The code for generating CogniLoad puzzles according to the algorithm described in this paper is
provided at: https://anonymous.4open.science/r/cogniload-292B/. The dataset
of the puzzles on which the LLMs were evaluated for the results presented in this paper is provided on
HuggingFace: https://huggingface.co/datasets/cogniloadteam/cogniload
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