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Abstract

Equivariant neural networks offer strong inductive biases for learning from molecular and
geometric data but often rely on specialized, computationally expensive tensor operations.
We present a framework to transfers existing tensor field networks into the more efficient
local canonicalization paradigm, preserving equivariance while significantly improving the
runtime. Within this framework, we systematically compare different equivariant represen-
tations in terms of theoretical complexity, empirical runtime, and predictive accuracy. We
publish the tensor frames package, a PyTorchGeometric based implementation for local
canonicalization, that enables straightforward integration of equivariance into any standard
message passing neural network.
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1. Introduction

Molecular systems in 3D space exhibit fundamental spatial symmetries — for instance, the
energy of a molecule remains invariant under global rotations and reflections, while vectorial
properties such as dipole moments transform accordingly. Learning models that respect
these symmetry constraints is essential for both accuracy and generalization. This has led
to the development of equivariant neural networks, which enforce consistent transformation
behavior of outputs with respect to the input geometry. However, two key challenges
remain: (a) comparing equivariant models with data augmentation is non-trivial (Lippmann
et al., 2025; Brehmer et al., 2024), and (b) existing equivariant architectures often rely on
specialized and computationally demanding building blocks (Passaro and Zitnick, 2023).

A recent line of work addresses both issues through local canonicalization (Lippmann
et al., 2025; Spinner et al., 2025), offering a lightweight and efficient way to enforce exact
equivariance. In this work, we build upon and extend this framework to molecular machine
learning: We show how to transfer existing equivariant tensor field networks into the frame-
work of local canonicalization, achieving improved runtime at competitive accuracy and
additional flexibility in the choice of possible representations. We systematically compare
different equivariant representations in terms of theoretical complexity, runtime, and predic-
tive performance. We release a modular, efficient PyTorchGeometric based implementation
that enables easy integration of our formalism into any standard message passing network.
Please find our code supplementary at https://tinyurl.com/tensor-frames-code.

2. Background: group representations and equivariance

Symmetries in physical systems can be described using the mathematical foundations of
group theory. Given a group G, a group representation ρ on a vector space V is a group
homomorphism ρ : G → GL(V ) such that

ρ(g1g2) = ρ(g1)ρ(g2) ∀g1, g2 ∈ G, (1)
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defining how elements g ∈ G act on vectors v ∈ V , i.e. (ρ(g)v)i =

∑
j ρ(g)ijvj . A function

φ : V → W is equivariant under G if ρout(g)φ(x) = φ(ρin(g)x) for all g ∈ G and x ∈ V ,
where ρin, ρout are representations on V and W respectively.

Representations of O(3). We consider representations of the group O(3), the group of
rotations and reflections in R3, to describe how geometric data transforms in equivariant
networks. A vector v transforms under R ∈ O(3) as (Rv)i =

∑
j Rijvj . Correspondingly,

higher-order Cartesian tensors transform as

T ′
i1...in =

∑
j1,...,jn

Ri1j1 · · ·RinjnTj1...jn or P ′
i1...in = det(R)Ri1j1 · · ·RinjnPj1...jn . (2)

We may distinguish between tensors T and pseudotensors P which behave differently under
reflections, i.e. orientation-reversing transformations (Jeevanjee, 2011). The representa-
tions in Eq. (2) can be decomposed into so-called irreducible representations (see App. B).
The irreducible representations of SO(3) are indexed by l ∈ N0 and described by the
Wigner-D matrices D(l)(R), which act on (2l+ 1)-dimensional tensors x as (D(l)(R)x)m =∑

m′ D
(l)
mm′(R)xm′ . Internal representations in neural networks often combine multiple ge-

ometric types into a direct sum of representations.

Equivariance via local canonicalization. The key idea of equivariance by local canon-
icalization (Lippmann et al., 2025) is the following: Based on the Euclidean geometry of the
network input, one predicts one equivariant local frame Ri at each node i. The geometric
input node features Fi are transformed from the global frame of reference into the local
frames, yielding coordinates fi = ρin(Ri)Fi invariant to the choice of global frame. After
this canonicalization step, the node features can be processed using an arbitrary backbone
architecture without breaking the invariance. However, in order to communicate geometric
information during message passing between nodes with distinct local frames, it is crucial
that tensorial messages are transformed from one local frame into the other. This yields the
following general form of invariant message passing with tensorial messages, as proposed
in (Lippmann et al., 2025):

f
(k)
i =

⊕
j∈N (i)

ϕ(k)
(
ρf(RiR

−1
j )f

(k−1)
j , Ri(xi − xj)

))
. (3)

The internal message representation ρf can be chosen freely as a hyperparameter.

3. Learning representations

In many problems, there is no canonical choice for the representation under which geometric
messages should transform in Eq. (3). It can therefore be beneficial for the model to learn the
transformation from frame Rj to Ri. However, enforcing the strict mathematical properties
of a group representation, cf. Eq. (1), for a learned transformation is challenging. A more
flexible alternative is to relax this requirement and not enforce Eq. (1). As long as the
transition matrix RiR

−1
j is accounted for in the message passing, geometric consistency can

in principle be preserved (cf. Fig. 1 in (Lippmann et al., 2025)). The simplest approach
would be to learn a linear transformation between local frames. However, this requires
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outputting a full matrix of size df × df from an MLP, which scales poorly with feature
dimension df . To address this, we propose learning the effect of the frame transition on the
features directly: ρf (RiR

−1
j )fj ⇒ MLP(RiR

−1
j , fj). This learned transformation allows the

model to flexibly adapt the transformation behavior to the task, eliminating the need for
manual tuning.

4. Transforming tensor field based architectures to local canonicalization

The typical tensor field network is based on internal features that transform under the
irreducible representation and messages are computed via a tensor product convolution:

m
(l3)
ij,m3

=
[
f
(l1)
j ⊗R(rij)Y

(l2)(r̂ij)
]
m3

=

l1∑
m1=−l1

l2∑
m2=−l2

Cm3l3
m1l1,m2l2

f
(l1)
j,m1

R(rij)Y
(l2)
m2

(r̂ij), (4)

where R(rij) is a radial embedding of rij = ∥xi − xj∥, Y (l2)(r̂ij) are spherical harmonics

evaluated on the unit vector r̂ij =
xi−xj

∥xi−xj∥ , and C are Clebsch–Gordan coefficients that

couple irreducible representations of the angular momenta l1, l2, and l3. This operation
combines three ingredients: node features, a radial function of distance, and an angular
component via spherical harmonics. Motivated by this, we design a neural network layer
that mimics this structure using standard operations:

EDGE(ρf(RiR
T
j )fj , Ri(xi − xj)) = A(Bρf(RiR

−1
j )fj ⊙ MLP(R(rij)||Θ(Rir̂ij))). (5)

Linear
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Reshape
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Leaky ReLULeaky ReLU

Figure 1: LoCaFormer at-
tention block.

Following the form of Eq. 3, here, R and Θ are radial and
angular embedding functions of the local relative distance
vector Ri(xi − xj), see App. D and A and B are learned
linear transformations. ⊙ denotes element-wise multipli-
cation and || indicates concatenation. The transformation
ρf(RiR

T
j ) transforms features from node j into the local

frame of node i. This EDGE layer serves as a drop-in re-
placement for the tensor product in Eq. (4), enabling ex-
pressive equivariant message passing while relying on effi-
cient, standard components.

Using local canonicalization and the EDGE building
block, we have implemented an attention-based message
passing architecture, the LoCaFormer (Fig. 1), inspired by
the widely used Equiformer architecture (Liao and Smidt,
2022), see App. E for details. Beyond an implementation of
the LoCaFormer layer, our python package tensor frames

includes a module to predict equivariant local frames as
proposed in (Lippmann et al., 2025), efficient implemen-
tations for the transformation of the irreducible represen-
tation, Cartesian tensor representation and the MLP rep-
resentation described in Sec. 3. The main module of the
package is tensor frames.nn.TFMessagePassing which can be used as a drop-in replace-
ment for the widely used message passing module in PytorchGeometric (Fey and Lenssen,
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2019) to make any existing message passing layer equivariant using local canonicalization
combined with tensorial message passing, see App. A.

5. Discussion and results on molecular property prediction

We have trained four LoCaFormer models with different internal representations on the
QM9 dataset (Wu et al., 2018), see Tab. 1. The models achieve competitive performance,
while being between 4-and 5-times faster than the widely used Equiformer, see App. E for
experimental details. Tensorial messages with Cartesian tensors or irreducible representa-
tions improve predictions for the isotropic polarizability α and magnetic dipole moment
norm µ, likely because these properties depend more strongly on geometric information. To
test this, we have trained the same models on the dataset of Zhang et al. (2023), containing
10,000 N-methylacetamide configurations with dipole moments µ (vectors) and polarizabil-
ities α (rank-2 tensors). Here, tensorial message passing notably outperforms both scalar
message passing and the learned MLP representation, confirming its advantage for tensorial
targets. This experiment highlights the flexibility of our framework, which allows straight-
forward comparison across representations to decide whether the extra cost of tensorial
features is justified or invariant features suffice. Notably, the less common Cartesian tensor
representation can be computationally more efficient than irreducible representations when
the transformation of the latter is limited by the Wigner matrix computation, see App. C.

Table 1: MAE and runtime on QM9
property prediction.

Method α
[a0]

ϵHOMO
[meV]

ϵLUMO
[meV]

µ
[D]

it/s
[s−1]

Equiformer (Liao and Smidt, 2022) .050 14 13 .010 0.8
MACE (Batatia et al., 2022) .038 22 19 .015 n/a

LoCaFormer: Scalar messages .057 20.8 18.2 .030 4.5
LoCaFormer: Cart. tensor rep. .052 20.6 17.7 .018 3.8
LoCaFormer: Irreducible rep. .054 19.1 19.4 .020 3.3
LoCaFormer: MLP rep. .057 20.6 17.9 .030 4.0

Table 2: RMSE of magn. dipole mo-
ment µ and polarizability α.

Method µ [a.u.] α [a.u.]

EANN (Zhang et al., 2023, 2020) .004 .020

LoCaFormer: Scalar messages .005 .050
LoCaFormer: Cart. tensor rep. .003 .036
LoCaFormer: Irreducible rep. .003 .042
LoCaFormer: MLP rep. .004 .158

Furthermore, we have compared our best performing LoCaFormer models (according to
Tab. 1) against models trained without local canonicalization but using data augmentation
instead. In our experiments (App. E.1), the models with built-in equivariance are more data
efficient, as expected, meaning that the prediction error decreases faster as more training
data becomes available. However, perhaps surprisingly, in the low data regime the prediction
error of the data augmented model is smaller. This challenges the common belief that models
with built-in equivariance should prevail in the low data regime since they do not need any
extra data to model the symmetries; and aligns with results in (Lippmann et al., 2025) for
a completely different architecture and dataset.

To summarize, the framework of local canonicalization offers a promising alternative
for equivariant architectures in molecular ML. Our comparative study highlights trade-
offs between different internal representations. While learned representations remain less
effective than exact group representations, we believe that learning representations can be
an interesting avenue for future research with numerous design choices yet to be explored.
By open-sourcing our efficient implementation we would like to aid the development of the
field of local canonicalization.
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Higher order equivariant message passing neural networks for fast and accurate force
fields. Advances in Neural Information Processing Systems, 35:11423–11436, 2022.

Simon Batzner, Albert Musaelian, Lixin Sun, Mario Geiger, Jonathan P Mailoa, Mordechai
Kornbluth, Nicola Molinari, Tess E Smidt, and Boris Kozinsky. E(3)-equivariant graph
neural networks for data-efficient and accurate interatomic potentials. Nature communi-
cations, 13(1):2453, 2022.

Johann Brehmer, Sönke Behrends, Pim De Haan, and Taco Cohen. Does equivariance
matter at scale? arXiv preprint arXiv:2410.23179, 2024.

David S Ebert, F Kenton Musgrave, Darwyn Peachey, Ken Perlin, and Steven Worley.
Texturing and modeling: A procedural approach, with contributions from wr mark and
jc hart, 2003.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geo-
metric. In ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

Johannes Gasteiger, Janek Groß, and Stephan Günnemann. Directional message passing
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Appendix A. Software contribution

We have implemented the general local canonicalization framework of Lippmann et al.
(2025) as a modular, publicly available Python library. All components, such as learning
local coordinate frames and handling different representations, are provided as reusable
PyTorch modules, enabling direct integration into existing architectures.

PyTorchGeometric (Fey and Lenssen, 2019) is one of the most commonly used Python
libraries to implement graph neural networks. For concreteness, let us consider a standard
message passing network with message passing layers of the following form

f
(k+1)
i =

⊕
j∈N (i)

ϕ(f
(k)
j , xi − xj), (6)

where fi are the local node features at node i and xi − xj is the relative distance vector.
Using local canonicalization with local frames Ri at each node i and tensorial messages, the
modified message passing formula reads

f
(k+1)
i =

⊕
j∈N (i)

ϕ(ρf(RiR
−1
j )f

(k)
j , Ri(xi − xj)). (7)

The above can be implemented effortlessly in our tensor frames packages whose main
module TFMessagePassing is a wrapper around torch geometric.nn.MessagePassing

that handles all transformations automatically after providing the used representations.
The following minimal code example in Listing 1 and 2 illustrates how easily one can trans-
fer existing non-equivariant message passing layers to layers which exhibit exact built-in
equivariance using the framework of local canonicalization. Notably, the message func-
tion, which in this example is very simple but often contains the most complicated logic
of the layer, must not be altered at all. For the purpose of this submission, our full
Python code is available at https://www.dropbox.com/scl/fo/1kkixfusw900ltoarihdx/
ALg4UAGF7W4H5wLdin3M_yU?rlkey=wh8422h1xcer31e8v7171qpyb&st=lkwwd522&dl=0.

Listing 1: Example of a variant of the EdgeConv layer (Wang et al., 2019) implemented in
PyTorchGeometric.

from torch_geometric.nn import MessagePassing as MP

from torch_geometric.models import MLP

class EdgeConv(MP):

def __init__(self, in_dim, out_dim):

super().__init__()

self.mlp = MLP(in_dim + 3, out_dim, hidden_channels=[256])

def forward(self, edge_index, f, pos):

return self.propagate(edge_index, f=f, pos=pos)

def message(self, f_j, pos_i, pos_j):

return self.mlp(torch.cat([f_j, pos_i - pos_j], dim=-1))

message_passing_layer = EdgeConv(32, 32)
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Listing 2: Example of equivariant adaptation of the EdgeConv layer variant using our

TFMessagePassing for tensorial message passing in local canonicalization. The
module is a wrapper around torch geometric.nn.MessagePassing.

- from torch_geometric.nn import MessagePassing

+ from tensor_frames.nn.tfmessage_passing import TFMessagePassing as MP

+ from tensor_frames.reps Irreps, MLPReps, TensorReps

+ from tensor_frames.lframes.lframes import LFrames

from torch_geometric.models import MLP

class EdgeConv(MP):

- def __init__(self, in_dim, out_dim):

+ def __init__(self, in_reps: Irreps | TensorReps | MLPReps, out_reps):

- super().__init__()

+ super().__init__(

params_dict={

"x": {"type": "local", "rep": in_reps}

"positions": {"type": "global", "rep": TensorReps("1x0n")},

}

)

- self.mlp = MLP(in_dim + 3, out_dim, hidden_channels=[256])

+ self.mlp = MLP(in_reps.dim + 3, out_reps.dim, hidden_channels=[256])

- def forward(self, edge_index, f, pos):

+ def forward(self, edge_index, f, pos, lframes: LFrames):

- return self.propagate(edge_index, f=f, pos=pos)

+ return self.propagate(edge_index, f=f, pos=pos, lframes=lframes)

def message(self, f_j, pos_i, pos_j):

return self.mlp(torch.cat([f_j, pos_i - pos_j], dim=-1))

- message_passing_layer = EdgeConv(32, 32)

+ message_passing_layer = EdgeConv(Irreps("8x0n+8x1n"), Irreps("1x0n+1x1n"))

Appendix B. Connection between irreducible and Cartesian tensor
representation

In this section, we demonstrate how the Cartesian tensor representations used in our exper-
iments can be decomposed into irreducible representations to allow for a fair comparison.

A representation is called irreducible if there is no non-trivial subspace of the vector space
that the representation acts on that is closed under the action of the group (Jeevanjee, 2011).
In other words, the irreducible representations can be thought of as the smallest building
blocks of a representation, which cannot be further decomposed into smaller representations.

The irreducible representations of SO(3) are given by the Wigner-D matrices, which
act on 2l+ 1-dimensional vector spaces. Therefore, l is an index that labels the irreducible
representations. An element of the vector space is a vector with 2l + 1 components, which
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is called a spherical tensor. For a spherical tensor x, the Wigner-D matrix acts as follows:

(D(l)(R)x)m =

l∑
m′=−l

D
(l)
mm′(R)xm′ , m ∈ {−l, . . . , l}. (8)

Inside equivariant neural networks, it is common to use features that combine several dif-
ferent representations, such as vectors and scalars.

Let us illustrate for a rank-2 tensor representation Tij of SO(3) the decomposition into
irreducible representations. First the symmetric Sij and the antisymmetric Aij parts of the
rank-2 tensor Tij

Sij =
1

2
(Tij + Tji), Aij =

1

2
(Tij − Tji), (9)

are defined, which form representations themselves. The symmetric part lives in a subspace
closed under the action of the group, which can be seen by

S′
ij =

1

2
(T ′

ij + T ′
ji) =

1

2
(RikRjlTkl +RjkRilTkl) = RikRjl

1

2
(Tkl + Tlk) = RikRjlSkl. (10)

This proof also holds for the antisymmetric part. Counting degrees of freedom, antisym-
metric part is a three-dimensional subspace, which can be shown to be equivalent to the
irreducible representation of l = 1. The symmetric part can be further decomposed into a
trace and the traceless part. Both forming its own subspace:

Tr(S′) =
∑
i

S′
ii =

∑
j,k

∑
i

RijRikSjk =
∑
i

Sii = Tr(S), (11)

where we have used that RR⊤ = 1. The trace is the subspace, which corresponds to the
irreducible representation of l = 0. The last part, which is left, is the traceless symmetric
part

Sij − δij
Tr(S)

3
, (12)

which is an irreducible subspace and corresponds to the irreducible representation of l = 2
with dimension 5. Note that Tij transforms like the outer product of two vectors v and w,
e.g. T ′

ij = v′iw
′
j = RikRjlvkwl = RikRjlTkl. This justifies that the Cartesian tensors of rank

2 is labeled by its dimensions 3⊗3, where 3 corresponds to the irreducible representation of
l = 1 that has dimension 3. In terms of dimensions the decomposition of a rank-2 Cartesian
tensor into irreducible representations is given by:

3⊗ 3 = 1⊕ 3⊕ 5. (13)

The general rule to decompose the outer product or tensor product of two spherical tensors
with angular momenta l1 and l2 is:

2l1 + 1⊗ 2l2 + 1 =

l1+l2⊕
L=|l1−l2|

2L+ 1 (14)

9
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Following this rule, we can decompose higher-order Cartesian tensor representations:

3⊗ 3⊗ 3 = (1⊕ 3⊕ 5)⊗ 3

= 1⊗ 3⊕ 3⊗ 3⊕ 5⊗ 3

= 3⊕ (1⊕ 3⊕ 5)⊕ (3⊕ 5⊕ 7)

= 1⊕ 3⊕ 3⊕ 3⊕ 5⊕ 5⊕ 7. (15)

Using these decompositions, the Cartesian tensor representations used in the experiments
can be decomposed into irreducible representations to allow for a fair comparison.

Appendix C. Computational complexity of Cartesian tensors and
irreducible representations

Let n denote the order of a Cartesian tensor representation in 3-dimensional Euclidean
space. The highest irreducible representation contained in such a tensor is l = n, as dis-
cussed in App. B. A tensor of order n has 3n components, and the transformation of a single
component under a group element R ∈ O(3) is given by

T ′
i1...in =

∑
j1,...,jn

Ri1j1 . . . RinjnTj1...jn , (16)

involving n contracted indices, each running over d = 3 values. Updating one component
therefore requires O(n) operations, and the full tensor transformation scales as O(n 3n).

For comparison, consider a 3D irreducible representation of angular momentum l. Such
a representation has 2l+1 components, which transform according to the Wigner-D matrix
D(l) ∈ R(2l+1)×(2l+1), cf. Eq. (8). Applying D(l) to a single component requires O(2l + 1)
operations. For the irreducible representation, the number of components grows linearly in
l, while for the Cartesian tensor representation the number of components are 3n for n = l.
While Cartesian tensor representations grow much faster in components, they avoid the
need to compute Wigner-D matrices, whose computation is non-trivial.

The most efficient approach for computing the Wigner-D matrices for a given R ∈
SO(3) is described in (Pinchon and Hoggan, 2007), in which one uses different precomputed
building blocks for every l. The approach scales like O(l3) for the computation of D(l)(R).
In practice, only one Wigner matrices must be computed for each combination of l and

Table 3: Computational complexity for Cartension tensor representation and ir-
reps of SO(3) “Per entry” refers to the cost of transforming a single feature
component. The total transform cost for the irreducible representation includes
the computation of the Wigner-D matrix, which is the complexity bottleneck.

Representation # Components Total Transform Cost Per-Entry Cost

Irrep (l) 2l + 1 O(l3) O(l2)
Cart. tensor rep (n) 3n O(n 3n) O(n)
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R, so that it can be reused across feature channels of the same l. Nonetheless, for large l
the O(l3) scaling may become a bottleneck. Therefore, if each feature component carries
comparable information content, Cartesian tensor representations can be computationally
more efficient when the computation of the Wigner matrix dominates the runtime. However,
the need for large l in practical applications is not yet fully explored, most likely related to
this computational bottleneck.

Appendix D. Radial and angular embedding of the molecule geometry

The radial embedding of the relative distance rij = ∥xi − xj∥ is calculated from Bessel
functions of the first kind:

R(m)(rij) =
ω(rij)

rij
sin

(
rij
rc

λ(m)

)
(17)

Here, ω is a smooth cutoff function (Ebert et al., 2003) that goes smoothly to 0 at the
cutoff radius rc and λ(m) are learnable frequencies. The embedding functions are depicted
in Fig. 2. In principle, one could use other functions as the embedding functions such as
Gaussians. We ablated this choice in preliminary experiments, and found Bessel functions
performed equally well with fewer frequencies than Gaussian embedding functions. This
coincides with the results of Gasteiger et al. (2020). We embed the angular part of the
relative distance vector similarly to the radial part. Each component of the normalized

Figure 2: Bessel embedding functions. Here, Bessel functions of the first kind are
depicted with ten different frequencies. The Bessel functions are also multiplied
by the envelope function with a cutoff radius of 1.
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relative distance vector r̂ij =

xi−xj

∥xi−xj∥ is embedded separately:

θ(m)(r̂kij) =
ω(r̂kij)

r̂kij
sin

(
r̂kijλ

(m)
)
sign(r̂kij), k ∈ {x, y, z}, Θ = θ(r̂xij) || θ(r̂

y
ij) || θ(r̂

z
ij)

(18)
Each component k ∈ {x, y, z} of the normalized relative distance vector is embedded by
Bessel functions of the first kind, as for the radial embedding. This embedding needs to be
multiplied with the sign of the component of the relative distance vector, since the Bessel
functions are symmetric around the origin, but in the angular case negative and positive
x, y or z values need to be embedded separately. Including the sign functions introduces
a non-continuity if x = 0, y = 0 or z = 0 in the angular embedding, but in experiments
we not found found this to be a problem for the training dynamics of the model. The full
angular embedding θij is the concatenation of the three components.

Appendix E. Experimental details

Hyperparameter choices. The hyperparameters for the models trained on QM9 prop-
erty prediction are summarized in Tab. 4. Further, let us introduce the following notation to
specify the feature representation used during message passing: The feature representation
is given by a direct sum of Cartesian tensor and pseudotensor representations. A Cartesian
tensor representation is characterized by its order (i.e. the number of indices, see Eq. (2))
and its behavior under parity (n for tensors and p for pseudotensors). Furthermore, we
specify the multiplicities, that is, how often each representation appears in a direct sum
representation. For instance, the representation denoted as 8x0p+4x1n is the direct sum
of 8 pseudoscalars and 4 vectors. For a fair representation comparison, the decomposition
of the Cartesian tensor representation into irreducible representations (cf. App. B) can be
used to build the corresponding irreducible representation. For the MLP representation the
same feature dimension as in the other representations is used.

Architectural design. In the Equiformer (Liao and Smidt, 2022), special care is re-
quired to use the appropriate specialized linear layers, normalization layers and activation

Table 4: Hyperparameters for training our LoCaFormer models on QM9 prop-
erty prediction.

LoCaFormer

optimizer AdamW
weight decay 5e-3
learning rate 5e-4
scheduler Cosine-LR
epochs 600
warm up epochs 5
gradient clip 0.5
loss Smooth-L1
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Table 5: Architecture of the LoCaFormer model.

Parameter Value

Number of radial Bessel functions 32
Number of angular Bessel functions 20

Number of layers 5
Number of heads 4

Attention branch dimension 48
Value branch dimension 96

Hidden Layer MLP 512
Attention score dropout 0.1

Stochastic depth 0.05

function, whereas in our case a standard MLP and LayerNorm can be employed without
breaking equivariance. Beside the LoCaFormer attention block illustrated in Fig. 1, the full
LoCaFormer layer consists of the attention block followed by an MLP, together with two
vanilla LayerNorm layers, one inserted before the MLP and one before the attention block.
Further, we have added skip connections around both modules to improve gradient flow.
The hyperparameters used in our experiments are summarized in Tab. 5. All LoCaFormer
models use radial and angular embedding of the relative distance vector with a Bessel
function (App. D). The learned local frames are predicted using the procedure described
in (Lippmann et al., 2025). As an output head, we use an MLP with hidden dimensions
[512, 128, 32], followed by sum-pooling used to aggregate the final node-wise predictions.
During training, we use a dropout rate of 0.1 for the attention scores and a stochastic depth
of 5% during training.

Tensorial property prediction. For the tensorial property prediction task on the dataset
taken from (Zhang et al., 2023) the same architecture are used as for property prediction
on QM9, except for the following small modifications: The intermediate representations are

Table 6: Influence of the representations on train time. We report the iterations per
second during training of the model with the QM9 regression task. The timings are
averaged over 1 epoch. Batch size is set to 128. We also measure the runtime of the
Equiformer (Liao and Smidt, 2022), which uses computationally more demanding
tensor products to achieve equivariance. The models were trained on a single
NVIDIA RTX 6000 GPU (CPU: 2x AMD Epyc 7452, 1024 GB RAM).

Representation LoCaFormer [it/s] Diff. to scalar Equiformer [it/s]

Scalar 4.5 0% n/a
Cart. Tensor 3.8 -16% n/a
Irreducible 3.3 -27% 0.8
MLP 4.0 -11% n/a
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based on the Cartesian tensor representation “94x0n + 32x1n + 16x2n” and the number of
message passing layers is reduced to three due to the smaller size of the tensorial property
prediction dataset.

Influence of the representations on train time. In Tab. 6 we report the number
of training iterations on QM9 property prediction. While the LoCaFormer with scalar
messages still predicts local frames to leverage local canonicalization, it does not perform any
(non-trivial) frame-to-frame transitions. Using learned MLP representations (cf. Sec. 3) or
a proper group representation in the frame-to-frame transition introduces a computational
overhead but notably improves the predictions in particular on geometric and tensorial
targets (see Tabs. 1 and 2). Moreover, the combination of local canonicalization paired with
tensorial message passing offers an efficient framework for implementing exact equivariance
with optimized standard deep learning building blocks. This can be seen in the direct
runtime comparison against the popular Equiformer architecture (Liao and Smidt, 2022),
trained on the same hardware and with the same batch size. Depending on the internal
representations used in the message passing of the LoCaFormer, our model is between 4 and
5 times faster than the Equiformer, which employs only irreducible representations; and,
unlike our approach, relies on specialized tensor operations to achieve exact equivariance,
which are computationally demanding (Passaro and Zitnick, 2023).

E.1. Relation to data augmentation.

The framework of local canonicalization makes it straightforward to compare data augmen-
tation (by choosing the same random local frame for each node) with built-in equivariance.
Equivariant models are often considered more data-efficient because they do not need to
spend model capacity or additional data to learn symmetries (Batzner et al., 2022), im-
plying faster performance gains as training data increases (Hestness et al., 2017). To test

10 1 100

Fraction of training data

102

M
AE

 o
n 

te
st

 se
t [

m
eV

]

Built-in equiv.
Data augm.
Built-in equiv. fit
Data augm. fit

(a) Data efficiency plot with ϵLUMO as
target
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(b) Data efficiency plot with µ as tar-
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Figure 3: Equivariance increases data efficiency compared to data augmentation
on QM9. However, in the low data regime the data augmentation yields superior
accuracy.
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this, we trained the best equivariant model (according to Tab. 1) and its data-augmented
counterpart (same architecture and hyperparameters) on varying fractions of the training
set and compared test accuracies. We evaluated two targets: the norm of the magnetic
dipole moment µ, where tensorial messages improve performance, and ϵLUMO, where tenso-
rial messages have little effect. In both cases, the model with built-in equivariance exhibits
steeper error–data scaling, cf. Fig. 3, confirming higher data efficiency (Hestness et al.,
2017). However, interestingly, the equivariant model did not consistently achieve lower
error across all data fractions: in the low-data regime, the augmented model sometimes
outperformed it. This challenges the common assumption that exact equivariance would
dominate in low-data settings.
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