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Abstract001

Topic models uncover thematic structures in002
large document collections by assigning doc-003
uments to topics and representing each topic004
as a ranked list of terms. However, these005
lists are often hard to interpret and insuffi-006
cient for knowledge-intensive exploration, es-007
pecially in scientific domains. We propose the008
task of Topic Description for Scientific Cor-009
pora, which focuses on generating structured,010
concise, and informative summaries for topic-011
specific document sets. To this end, we adapt012
two LLM-based pipelines: Selective Context013
Summarisation (SCS), which uses maximum014
marginal relevance to select representative doc-015
uments; and Compressed Context Summari-016
sation (CCS), a hierarchical approach based017
on the RAPTOR framework that recursively018
abstracts subsets of documents to compress019
the input. We evaluate both methods using020
SUPERT and a multi-model LLM-as-a-Judge021
across three topic modeling backbones (CTM,022
BERTopic, TopicGPT) and three scientific cor-023
pora. SCS consistently outperforms CCS in024
quality and robustness, while CCS performs025
better on larger topics despite a higher risk of026
information loss. Our findings highlight trade-027
offs between selective and compressed strate-028
gies and provide new benchmarks for topic-029
level summarisation. Code and data for two of030
the three datasets will be released.031

1 Introduction032

Gaining an overview of large scientific corpora033

is useful for exploring research areas, identifying034

common methodologies, and tracking emerging035

developments. A common entry point is topic036

modeling, which reveals underlying topics and037

presents them as ordered lists of terms. Algo-038

rithms such as Latent Dirichlet Allocation (LDA;039

Blei (2012)), Contextualised Topic Models (CTM;040

Bianchi et al. (2021)) and BERTopic (Grootendorst,041

2022) are widely used for this purpose. While ef-042

fective for organising unlabelled data, these meth- 043

ods only provide term-based topic representations, 044

making them difficult to interpret (Chang et al., 045

2009). Most topic modeling pipelines stop at this 046

level, which limits their usefulness for knowledge- 047

intensive tasks, particularly in scientific domains 048

where understanding a research topic requires in- 049

sight into research goals, methods, and purposes. 050

Recent work has sought to improve interpretabil- 051

ity by enriching topic representations with machine- 052

generated labels or short contextual snippets (Lau 053

et al., 2011; Popa and Rebedea, 2021; Rosati, 2022; 054

Azarbonyad et al., 2023). However, these ap- 055

proaches often rely on surface-level signals, lack 056

domain-specific grounding and fail to incorporate 057

document-level context. Consequently, they offer 058

limited support for understanding the underlying 059

content of complex domains such as science. 060

We address this problem by introducing the 061

task of Topic Description for Scientific Corpora, 062

which aims to generate structured and informative 063

summaries for topics derived from topic models. 064

These descriptions enrich the topic representation 065

by incorporating document-level context while re- 066

maining aligned with the topic terms, offering a 067

clearer view of the underlying research themes. 068

To this end, we adapt two pipelines based on 069

large language models (LLMs). The first, Selec- 070

tive Context Summarisation (SCS), uses Maximum 071

Marginal Relevance (MMR; Carbonell and Gold- 072

stein (1998)) to select a representative subset of 073

topic documents prior summarisation. The second, 074

Compressed Context Summarisation (CCS), adapts 075

the RAPTOR framework (Sarthi et al., 2024), ap- 076

plying recursive summarisation over a hierarchy 077

constructed from the topic’s documents. 078

We evaluate these pipelines across three 079

topic modeling backbones—CTM (Bianchi et al., 080

2021), BERTopic (Grootendorst, 2022), and Top- 081

icGPT (Pham et al., 2024)—on three scientific cor- 082

pora. Evaluation is conducted using SUPERT (Gao 083
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et al., 2020), a reference-free semantic similarity084

metric, and a multi-model LLM-as-a-Judge frame-085

work using open-source models. Results show086

that the MMR-based pipeline consistently produces087

more focused and concise topic descriptions than088

the RAPTOR-based method. We also analyze how089

topic-level properties, such as size and cohesion,090

affect effectiveness, and complement our findings091

with qualitative examples.092

Our contributions are:093

• We introduce Topic Description for Scien-094

tific Corpora as the task of enriching topic095

model outputs with structured, interpretable,096

document-grounded summaries.097

• We adapt and compare two LLM-based098

pipelines for topic-level summarisation in sci-099

entific corpora.100

• We propose a robust evaluation strategy com-101

bining SUPERT and a multi-model LLM-as-102

a-Judge framework.103

2 Related Work104

We review prior work on topic modeling, enhanced105

topic representations, and multi-document scien-106

tific summarisation. Our work builds on these areas107

by combining topic model outputs with LLM-based108

summarisation to enrich topic representations.109

2.1 Topic Modeling110

Topic modeling is widely used for uncovering the-111

matic structure in large text collections. Latent112

Dirichlet Allocation (LDA; (Blei, 2012)) remains113

a foundational model, assuming documents are114

mixtures of latent topics and topics are distribu-115

tions over words. Contextualized Topic Models116

(CTM; (Bianchi et al., 2021)) extend this frame-117

work by incorporating document embeddings from118

pre-trained language models such as BERT (De-119

vlin et al., 2019) and Sentence-BERT (Reimers120

and Gurevych, 2019). BERTopic (Grootendorst,121

2022) clusters BERT embeddings for document122

topic assignment, while TopicGPT (Pham et al.,123

2024) employs decoder-only LLMs to directly gen-124

erate topics. These models are applied across vari-125

ous domains, including scientific literature.126

2.2 Enriching Topic Representations127

Beyond term lists, several methods aim to create128

more interpretable topic representations. Early129

work retrieved candidate labels from external 130

sources such as Wikipedia and ranked them by rele- 131

vance to topic terms (Lau et al., 2011; Bhatia et al., 132

2016). Later approaches used generative models 133

to create more descriptive labels from topic terms 134

(Alokaili et al., 2020). BART-TL (Popa and Rebe- 135

dea, 2021) fine-tunes a BART model using weakly 136

supervised training signals derived from heuristic 137

labels. In the scientific domain, topic interpreta- 138

tion often involves producing richer textual outputs. 139

One method clusters citation statements and sum- 140

marizes them using Longformer to reflect citation 141

intent (Rosati, 2022). Topic Pages (Azarbonyad 142

et al., 2023) construct structured descriptions by 143

combining definition extraction using SciBERT 144

with contextual snippets and co-occurrence-based 145

linking. LimTopic (Azhar et al., 2025) applies 146

BERTopic and LLMs to generate titles and sum- 147

maries for topics found in scientific limitation sec- 148

tions. Our work uses LLMs to generate document- 149

grounded topic descriptions reflecting methods, 150

purposes, and research objects. 151

2.3 Multi-Document Scientific Summarisation 152

Multi-document scientific summarisation (MDSS) 153

synthesizes coherent summaries from clusters of 154

scientific papers. Transformer-based methods such 155

as KGSum (Wang et al., 2022) encode documents 156

into knowledge graphs and use two-stage decod- 157

ing for improved coherence. PRIMERA (Xiao 158

et al., 2022) applies entity-level masking during 159

pretraining to improve salience modeling, and its 160

effectiveness extends to domain-specific datasets 161

such as Multi-XScience (Lu et al., 2020). Hy- 162

brid pipelines combine extractive and abstractive 163

stages. A biomedical-focused system combines 164

BERT-based extraction with a PEGASUS decoder 165

for summarisation (Shinde et al., 2022), while 166

SKT5SciSumm (To et al., 2024) uses SPECTER 167

(Cohan et al., 2020) embeddings for clustering 168

followed by T5-based generation, outperforming 169

larger models like GPT-4 on some tasks. The 3A- 170

COT framework (Zhang et al., 2024) structures 171

LLM prompting into Attend–Arrange–Abstract 172

stages to improve factuality and reduce redundancy. 173

We adopted this framework in our setting with mi- 174

nor adjustments to generate a unified, structured 175

output appropriate for our context. 176

We build on recent LLM-based MDSS advances, 177

adapting them to topic modeling settings. 178

2



3 Task Definition179

We define Topic Description for Scientific Cor-180

pora as the task of generating structured, inter-181

pretable summaries for topic model outputs. Each182

topic Tk is defined by:183

• A set of topic-specific documents Dk ⊆ D,184

where each document is assigned to a single185

dominant topic,186

• A ranked list of topic terms Wk =187

{w1, . . . , wn}.188

The goal is to generate a topic description Sk189

that summarises the main content of Dk, remains190

aligned with Wk, and follows a unified structure191

across topics. Each Sk contains a brief introduction192

to the topic, followed by the key research objects,193

methods, and purposes reflected in the underlying194

documents. This format supports comparable and195

structured exploration of scientific corpora.196

We assess each Sk along four dimensions. Rel-197

evance requires that the description accurately re-198

flects the key aspects of the topic by incorporating199

topic terms into meaningful context. Factuality200

ensures that the information is grounded in the orig-201

inal documents and does not introduce unsupported202

claims. Coherence refers to the logical flow and203

consistency of the description, ensuring it presents204

a unified explanation of the topic’s main ideas. Flu-205

ency concerns the linguistic quality of the output;206

descriptions should use clear, accessible language207

that balances readability and technical precision.208

4 Methodology209

We adapt two LLM-based approaches for generat-210

ing topic descriptions from sets of documents asso-211

ciated with each topic: Selective Context Summari-212

sation (SCS), which uses Maximum Marginal Rel-213

evance (MMR; (Carbonell and Goldstein, 1998))214

to select a small, diverse subset of representative215

documents, and Compressed Context Summarisa-216

tion (CCS), which builds a hierarchical structure217

over all topic documents using recursive clustering218

and abstraction, following the tree-based indexing219

strategy of the RAPTOR framework (Sarthi et al.,220

2024). Both methods operate independently of the221

underlying topic modeling backbone.222

In both pipelines, the generation process is223

guided by the same prompt template, adapted from224

the 3A-COT framework (Zhang et al., 2024), with225

topic terms provided as guidance. The full prompt226

is provided in Appendix A. An overview of the 227

pipelines is shown in Figure 1. 228

4.1 Selective Context Summarisation (SCS) 229

SCS builds on an existing integration of LLMs 230

into topic representation, as implemented in the 231

BERTopic library1. In the original implementa- 232

tion, representative documents for each topic are 233

selected and passed to an LLM alongside topic 234

terms to generate a short label. We extend this 235

idea to generate informative topic descriptions that 236

summarise the core content of each topic. 237

Given a topic, we select the ten highest-ranked 238

terms and concatenate them to form a single string. 239

This is then embedded using a pre-trained sentence 240

embedding model. All documents within the topic 241

are embedded in the same vector space and those 242

most similar to the topic vector are retrieved. 243

To ensure the selected documents are both rele- 244

vant and diverse, we apply Maximum Marginal Rel- 245

evance (MMR; (Carbonell and Goldstein, 1998)). 246

MMR iteratively selects documents that are simi- 247

lar to the topic vector while penalizing redundancy 248

with respect to previously selected documents. This 249

results in a representative and non-redundant subset 250

of documents that captures the breadth of the topic 251

and fits within the context window of the LLM. 252

In the generation process, we use the top 10 most 253

representative documents and the top 10 most rele- 254

vant topic terms for each topic. These are inserted 255

into the shared prompt template (see Appendix A) 256

and passed to the LLM, which generates the de- 257

scription based on this context. 258

4.2 Compressed Context Summarisation 259

(CCS) 260

The Compressed Context Summarisation method is 261

a slight adaptation of the tree-based indexing strat- 262

egy from the RAPTOR framework (Sarthi et al., 263

2024), which constructs a recursive hierarchy of 264

summaries through iterative clustering and abstrac- 265

tion. While RAPTOR is originally designed for 266

retrieval over long documents, we use its core strat- 267

egy to organize documents associated with each 268

topic and generate descriptive summaries. 269

Unlike the original RAPTOR pipeline, which 270

begins by segmenting long documents into smaller 271

chunks, we start directly from the short documents 272

already assigned to each topic (e.g., abstracts), 273

1https://maartengr.github.io/BERTopic/getting_started/
representation/llm.html
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Figure 1: Overview of the two topic description pipelines. SCS selects a representative subset of documents using
MMR and summarises them with an LLM. CCS summarises all topic documents via hierarchical clustering and
recursive abstraction.

without additional segmentation. These docu-274

ments are embedded and projected into a lower-275

dimensional space using UMAP (McInnes et al.,276

2020) to improve clustering quality.277

The projected embeddings are then clustered us-278

ing Gaussian Mixture Models (GMMs), which sup-279

port soft assignment, allowing documents to belong280

to multiple clusters. Each cluster is summarised us-281

ing an LLM, with the top 10 topic terms provided at282

each stage for additional guidance. This produces283

an abstract summary that captures the main content284

of the clustered documents. These summaries are285

recursively re-embedded and re-clustered, forming286

a tree structure in which each internal node sum-287

marises its child nodes.288

This recursive summarisation continues until289

only one cluster remains or no further abstraction290

is necessary. A final root node is added at the top291

of the tree, which is not part of the original RAP-292

TOR design, but is introduced in our adaptation.293

It serves as the output of the method: a topic de-294

scription generated by the LLM that summarises295

the top-level content in the tree.296

By including all topic documents and organiz-297

ing them hierarchically, CCS sidesteps LLM con-298

text length limitations and produces descriptions299

grounded in the complete topic context. The300

prompt template used for all summarisation steps301

is the same one used in SCS.302

5 Experimental Setup303

To assess the effectiveness and generalisability of304

the proposed topic description pipelines, we con-305

ducted experiments across diverse scientific do-306

mains and topic modeling backbones. This section 307

describes the datasets, modeling configurations, 308

and models used for generation and embedding. 309

5.1 Datasets 310

We evaluate our method on three domain-specific 311

scientific corpora, using the abstracts of English- 312

language research papers. Each dataset covers a 313

distinct field to assess generalizability. 314

ACL Anthology The ACL Anthology2 contains 315

publications in computational linguistics and NLP 316

from conferences such as ACL, EMNLP, and 317

NAACL. We use the official GitHub version, ex- 318

tracting metadata and abstracts. Non-English en- 319

tries and missing abstracts are removed, resulting 320

in 52,126 clean abstracts. 321

NIPS Papers The NIPS Papers Dataset3 includes 322

papers from the Neural Information Processing 323

Systems (NIPS) between 1987 and 2016. We re- 324

tain only English abstracts, removing missing en- 325

tries and performing basic preprocessing. The final 326

dataset contains 3,916 abstracts. 327

Quantum Computing Domain experts curated 328

this dataset using a Boolean query on Scopus to 329

retrieve recent papers (2010–2024) on quantum 330

computing hardware. We retain only unique En- 331

glish abstracts, yielding 45,830 documents. Due 332

to licensing restrictions, the dataset cannot be re- 333

leased; the full query is provided in Appendix B. 334

2https://github.com/acl-org/acl-anthology/tree/master/
python

3https://www.kaggle.com/datasets/benhamner/nips-papers
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5.2 Topic Modeling335

In order to provide a fair comparison testbed among336

different topic modeling approaches, we select337

three backbones: CTM, BERTopic and TopicGPT.338

Each variant builds upon quite distinct topic mod-339

eling methods, from classical bag-of-words sta-340

tistical estimation (CTM), to plain clustering of341

vector representations of texts (BERTopic), up to342

straightforward multi-step zero-shot topic genera-343

tion (TopicGPT). This choice composes a diverse344

set of setups with the goal of posing distinct levels345

and kinds of difficulty for creating topic descrip-346

tions. We apply each topic modeling method to347

each dataset, which leads to 9 topic models.348

For all approaches involving training, we per-349

form hyper-parameter optimization to find the best350

coherence and diversity metrics for each combina-351

tion of topic model and dataset. For coherence, we352

use the Gensim implementation of the Coherence353

Model (Řehůřek and Sojka, 2010), specifically its354

default C_V metric (Röder et al., 2015). For diver-355

sity, we calculate the Inverted Rank-Biased Over-356

lap (Webber et al., 2010; Terragni et al., 2021) of357

the top 10 keywords per topic.358

In Appendix C, we show (Table 3) the scores359

and number of topics for each topic model, to-360

gether with a full overview of their implementa-361

tion and optimization details. Broadly, CTM has362

shown the best coherence, followed by BERTopic363

and TopicGPT. Conversely, TopicGPT has modeled364

in general the greatest number of topics, followed365

by BERTopic and then CTM. For which, follow-366

ing previous art (Grootendorst, 2022; Pham et al.,367

2024), we choose to attribute to each document368

just its most pronounced topic. This allows for bet-369

ter comparability among the two other backbones,370

which work with singleton topic inference.371

5.3 LLM and Embedding Models372

We use the DeepSeek-V3 (DeepSeek-AI et al.,373

2024) model to generate topic descriptions across374

all pipelines. For embedding-based retrieval, we375

use ModernBERT (Warner et al., 2024a), a competi-376

tive model for sentence-level semantic similarity.377

6 Evaluation Strategy378

Evaluating topic descriptions is inherently chal-379

lenging due to the lack of gold-standard references380

and the wide variation in topics across different381

domains. We rely on reference-free evaluation met-382

rics that assess quality without requiring human-383

written summaries. We adopt two complementary 384

strategies: SUPERT, a semantic similarity met- 385

ric designed for multi-document summarisation, 386

and an LLM-as-a-Judge framework, which uses 387

prompting-based evaluation with LLMs. 388

6.1 SUPERT 389

SUPERT (Gao et al., 2020) is a reference-free eval- 390

uation metric developed for multi-document sum- 391

marisation tasks. It creates a pseudo-reference by 392

selecting key sentences from the input documents 393

and compares generated summaries based on their 394

semantic similarity to this reference. The similarity 395

is computed using contextualized embeddings and 396

soft token alignment. SUPERT has been shown 397

to align well with human judgments of relevance, 398

making it well-suited for assessing how much es- 399

sential content is preserved in a topic description. 400

6.2 LLM-as-a-Judge 401

We build on recent work from the Eval4NLP 2023 402

Shared Task (Leiter et al., 2023), which explored 403

prompting LLMs as explainable and reference- 404

free evaluation metrics. Our setup is inspired by 405

the best-performing system (Kim et al., 2023), 406

which demonstrated that zero-shot prompting, fine- 407

grained scoring, and deterministic decoding lead to 408

better alignment with human preferences. 409

To align evaluation with our task definition, we 410

assess topic descriptions along four dimensions: 411

Relevance, Factuality, Coherence, and Fluency. 412

These criteria correspond to the aspects outlined in 413

Section 3, and reflect the qualities expected from 414

a high-quality topic description. We compute the 415

Mean Aspect Score (MAS), as the average across 416

these four evaluation dimensions. 417

When selecting an LLM-as-a-judge model, we 418

prioritized open-source models with strong align- 419

ment to human judgment. To this end, we 420

chose Qwen2.5-7B-Instruct (Yang et al., 2024), 421

which achieved the highest alignment among 422

open-source models in the LLMEval benchmark 423

(Gu et al., 2024). To account for variability in 424

model outputs, we included two additional mod- 425

els. Our first choice was the Orca family, as both 426

Orca-13B and OpenOrca-Platypus2-13B have 427

shown promising alignment in prior studies (Kim 428

et al., 2023; Leiter and Eger, 2024). However, due 429

to their 4k context window limitations, we selected 430

Mistral-7B-OpenOrca4, which maintains similar 431

4https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca
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Method Metric ACL NIPS Quantum

CTM BERTopic TopicGPT CTM BERTopic TopicGPT CTM BERTopic TopicGPT

SCS SUPERT 0.475 0.477 0.508 0.459 0.465 0.519 0.489 0.486 0.557
MAS-Qwen 50.645 62.561 72.004 56.703 71.962 81.612 57.088 64.319 78.650

CCS SUPERT 0.467 0.474 0.501 0.453 0.469 0.515 0.458 0.484 0.552
MAS-Qwen 49.612 62.400 65.299 58.766 66.295 78.108 56.647 62.839 78.829

Table 1: SUPERT & MAS-Qwen scores across methods, datasets, and topic modeling backbones

alignment while supporting longer contexts (32k).432

As a third model from a different architecture line,433

we added Gemma-3-27B (Kamath et al., 2025) to434

ensure diversity across the various model families.435

As it is not possible to evaluate a generated de-436

scription against all documents associated with a437

topic at once due to the limited context window of438

LLMs, we instead sample 5 random draws of 10439

documents each from the full topic set. Each batch440

is evaluated independently, and we report the mean441

score across the five runs. This approach reflects442

a more realistic human evaluation scenario, where443

annotators are unlikely to read all the documents444

in a large collection. Moreover, it aligns with a key445

assumption in topic-level summarisation, where a446

strong topic representation should capture the cen-447

tral content of the topic and remain consistent and448

relevant across different subsets of its documents.449

Appendix D lists the evaluation prompts.450

7 Results451

In this section, we present SUPERT scores and452

Mean Aspect Score (MAS) from the LLM-as-a-453

Judge evaluation, using Qwen-2.5-7B-Instruct454

as our primary model. We confirm that trends hold455

across Mistral-7B-OpenOrca and Gemma-3-27B,456

showing robustness across model families. We457

first examine overall pipeline effectiveness, then458

analyze how topic size affects description quality.459

7.1 Performance Across Domains and460

Backbones461

We compare the two topic description pipelines462

across datasets and topic modeling backbones. The463

results, shown in Table 1, demonstrate a clear and464

consistent advantage for SCS. It achieves the high-465

est SUPERT and MAS scores in almost all configu-466

rations, highlighting its robustness across domains467

and backbone models. CCS performs competi-468

tively, achieving strong SUPERT scores in several469

configurations, but slightly falls behind SCS on470

MAS in most settings.471

To validate the consistency of the evaluation 472

results across LLMs, we measured the correla- 473

tion between the MAS scores produced by the 474

three judge models using Kendall’s tau-b. The 475

results demonstrate a strong agreement between 476

Qwen-2.5-7B-Instruct and Gemma-3-27B, and 477

moderate agreement across the other model pairs, 478

as shown in Table 2. Moreover, the MASs show

Judge Models τb p

Qwen & Gemma 0.7255 4.304 · 10−6

Qwen & Mistral 0.5033 2.99 · 10−3

Mistral & Gemma 0.5163 2.24 · 10−3

Table 2: Kendall’s τb correlations between MAS scores
of judge models.

479
consistent behavior across document draws. For 480

transparency, we include a detailed presentation of 481

MAS on each document set draw in Appendix F. 482

7.2 Effect of Topic Size 483

To better understand how topic characteristics im- 484

pact description quality, we analyze the effect of 485

topic size on MAS distributions for SCS and CCS, 486

cross-validated with topic cohesion (mean cosine 487

distance among topic documents). 488

Figure 2 shows the distribution of winners 489

among the probed pipelines by topic size quartile. 490

It is noteworthy that SCS achieves the highest rank- 491

ing among the first, second, and third topic size 492

quartiles. The only exception is the Large category, 493

where CCS matches SCS with an equal number of 494

wins. Additionally, while the number of SCS wins 495

tends to decline as topic size increases, CCS shows 496

an upward trend from Small to Large categories, 497

matching SCS in the largest quartile. 498

Cross-validation against topic cohesion confirms 499

that description quality remains remarkably con- 500

sistent across all topic cohesion quartiles for both 501

SCS and CCS, indicating that these approaches are 502

robust to variation in topical coherence and that 503
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Figure 2: Winner count on LLM-Eval MAS per topic
size quartile over all topic models.

the observed size effects above are not confounded504

by cohesion variations. We provide a thorough505

presentation against topic cohesion in Appendix506

G. Appendix H shows SUPERT-based results by507

topic size & cohesion, showing a similar trend to508

MAS. Appendix E reports Kendall’s τb correlations509

between LLMs on topic size preferences.510

8 Discussion511

This section discusses both pipeline effectiveness512

and highlights trends by topic size and structure.513

8.1 Selective vs. Compressed Approaches to514

Topic Description515

Effectiveness Advantage of Selective Sampling516

Our results demonstrate a consistent effectiveness517

advantage for the Selective Context Summarisation518

(SCS) pipeline across multiple datasets and topic519

modeling backbones. The MMR selection process520

in SCS provides a balanced set of relevant and521

diverse documents, creating focused yet compre-522

hensive input for the LLM. This selective approach523

seems to reduce noise from peripheral documents524

while ensuring core topic terms remain prominent525

throughout the description generation process. In526

scientific corpora, we hypothesize that this advan-527

tage may be amplified, since documents on the528

same research topic often share similar objects of529

study, purposes, and methodologies.530

Limitations of Hierarchical Compression531

CCS’s hierarchical structure, despite its theoretical532

capacity to process entire document sets, suffers533

from what we term "error propagation" and534

"keyword attrition." As abstractions build upward535

through the tree, inaccuracies at lower levels can536

amplify in subsequent steps, while important 537

terminology may become diluted during recursive 538

summarisation. These phenomena likely contribute 539

to CCS’s generally lower effectiveness across our 540

evaluation metrics. From an efficiency standpoint, 541

SCS demonstrates a superior compute-to-quality 542

ratio, requiring only a single document set pass 543

compared to CCS’s multiple rounds of embedding, 544

clustering, and LLM calls. The stability of SCS 545

effectiveness across different topic modeling back- 546

bones (CTM, BERTopic, and TopicGPT) further 547

highlights its robustness as a general-purpose 548

topic description method that can integrate with 549

existing topic modeling workflows regardless of 550

their underlying approach. 551

8.2 Scalability and Topic Size Effects 552

Size-Dependent Effectiveness Patterns Analy- 553

sis of topic size effects reveals an intriguing pattern: 554

while SCS dominates for small to medium-sized 555

topics, CCS becomes competitive and even outper- 556

forms SCS for the largest topics (4th quartile), as 557

shown in Figure 2. This finding highlights impor- 558

tant scalability considerations for topic description 559

applications. For smaller topics, SCS effectively 560

identifies a representative subset that captures the 561

topic’s essence. However, as topics grow larger, the 562

fixed selection size (10 documents in our setup) be- 563

comes limiting. When topics contain hundreds of 564

documents, even carefully selected subsets may 565

miss important sub-themes or variations. CCS 566

shows a valuable property for larger topics: its hier- 567

archical summarisation approach scales with topic 568

size, preserving coverage of diverse sub-themes 569

that fixed-size selection may miss. 570

Effectiveness Nuances Across Size Deciles The 571

relationship between topic size and method effec- 572

tiveness shows additional nuance when examined 573

at finer granularity. Figure 3 displays MAS per 574

topic size decile. Notably, SCS demonstrates a con- 575

sistent dominance in quality across the initial six 576

deciles. CCS then assumes the lead for the seventh 577

and eighth deciles, before SCS regains dominance 578

for the largest topics. This suggests that while CCS 579

outperforms SCS for some larger topics, it also 580

has a saturation point, likely due to a bottleneck in 581

the hierarchical compression of information. This 582

scale-dependent effectiveness suggests that prac- 583

tical applications might benefit from a hybrid ap- 584

proach that adaptively selects between methods 585

based on topic size. Our analysis confirms that 586
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Figure 3: Mean Aspect Score per topic size decile.

these patterns persist when controlling for topic587

cohesion, indicating that the observed effects are588

genuinely related to scale. This highlights topic589

size as a key factor in designing and evaluating590

topic description pipelines for scientific corpora.591

8.3 Qualitative Analysis592

To complement our quantitative results, we con-593

ducted a targeted qualitative analysis of 45 topic594

descriptions. We examined 15 top-scoring, 15 low-595

scoring and 15 descriptions with diverging SU-596

PERT and LLM-as-Judge scores. This enabled us597

to examine the behaviours of the methods beyond598

aggregate metrics. Examples illustrating content599

quality across different models and methods are600

provided in Appendix I.601

Characteristics of Selective Context Summari-602

sation Our analysis reveals that SCS consistently603

generates clear and coherent summaries in high-604

scoring cases, with strong alignment to the pro-605

vided topic terms and good coverage of central606

concepts (see Example 1). It demonstrates notable607

resilience to incoherence in topic terms (Exam-608

ple 2), as any inconsistencies in the topic terms do609

not compound through multiple summarisation lay-610

ers. SCS descriptions maintain coherence across611

different datasets and topic modeling backbones,612

indicating robust transferability. However, in low-613

performing cases, particularly when topic terms are614

overly general or lossy, the method tends to pro-615

duce generic or shallow outputs. This limitation is616

exacerbated when the selected representative docu-617

ments contain primarily general knowledge rather618

than specific insights. We observe that SCS cap-619

italizes on well-selected topic terms from the un-620

derlying model, creating a synergistic effect where621

strong topic models yield better descriptions. 622

Characteristics of Compressed Context Sum- 623

marisation CCS exhibits distinctive strengths in 624

handling complex or technical topics, often produc- 625

ing more detailed descriptions than SCS. However, 626

this method shows lower alignment with the origi- 627

nal topic terms, in several cases, generating dense 628

and nuanced content that only partially connects 629

to the provided terms. This misalignment creates 630

challenges in verifying how faithfully the descrip- 631

tion represents the intended topic (see Example 3). 632

The hierarchical summarisation approach in CCS 633

appears to struggle with effectively prioritizing the 634

most important content, often resulting in informa- 635

tion overflow manifested as lengthy lists or exces- 636

sive detail. This limitation stems from "document 637

grounding distance" in effect in the hierarchical 638

summarisation process, which may not optimally 639

distinguish central from peripheral information. Fi- 640

nally, CCS demonstrates greater sensitivity to topic 641

term quality, with more frequent failures when 642

topic terms are incoherent (see Example 4 com- 643

paratively to Example 2). 644

9 Conclusion & Future Work 645

We introduced the task of Topic Description for 646

Scientific Corpora, which aims to create struc- 647

tured, document-based summaries that go beyond 648

term lists. To address this, we adapted two LLM- 649

based pipelines: Selective Context Summarisation 650

(SCS) and Compressed Context Summarisation 651

(CCS). SCS consistently achieved better perfor- 652

mance across datasets and topic modeling back- 653

bones. CCS showed advantages for large topics 654

due to its scalable, recursive structure. Our find- 655

ings highlight a trade-off between selective and 656

compressed strategies. SCS excels in precision and 657

stability, while CCS offers broader coverage for 658

large-scale topics. Together, they provide practi- 659

cal foundations and insights for developing inter- 660

pretable topic representations in scientific domains. 661

This work suggests directions for further ex- 662

ploration, including methodological improvements 663

and practical applications. Instead of single-vector 664

retrieval of SCS, future work could examine more 665

fine-grained retrieval strategies to improve cover- 666

age and adaptability for complex or broad topics. 667

Our evaluation strategy combines SUPERT and 668

LLM-as-a-Judge; future research could investigate 669

alternative setups based on automatic factuality and 670

coverage check-ups with retrieval techniques. 671
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Limitations672

Despite our multi-faceted evaluation strategy, sev-673

eral limitations remain. First, we do not include hu-674

man assessment. Although we combine SUPERT675

and LLM-as-a-Judge to approximate quality, ex-676

pert feedback is essential, especially in scientific677

domains where interpretability and factual accu-678

racy require domain knowledge. The use of both679

SUPERT and LLM-based evaluation offers com-680

plementary strengths: SUPERT captures content681

relevance via semantic similarity, while LLM-as-a-682

Judge enables structured, fine-grained evaluation.683

This dual setup mitigates some metric-specific bi-684

ases, though it cannot fully substitute for human685

judgment.686

This challenge is compounded by limitations in687

the topic modeling stage itself. The quality of topic688

descriptions is directly tied to the coherence and rel-689

evance of the underlying topics and their terms. De-690

spite optimization, CTM often produced noisy or691

domain-unspecific topics. Similarly, TopicGPT oc-692

casionally generated topics that were overly broad693

or narrowly scoped. These issues degraded the694

resulting descriptions, even with grounded genera-695

tion. This reliance on topic model quality is another696

central limitation in this present study. Still, such697

limitations are inherent to real-world applications698

(academic and industrial alike) when attempting to699

gain an overview of large-scale (scientific) corpora.700

Our analysis reflects these challenges rather than701

avoids them.702

In addition, while the chosen LLMs are among703

the strongest models, their outputs remain sensitive704

to prompt design and can hallucinate content. Our705

pipelines use a fixed 3A-COT-derived prompting706

strategy, but prompt wording significantly affects707

LLM output. No ablation or robustness analysis708

was conducted to assess this sensitivity. Also, even709

strong LLMs are prone to hallucination, especially710

when context is sparse or ambiguous. This is only711

partially mitigated by the factuality criterion in our712

LLM-as-a-Judge evaluation.713

Finally, our evaluation is confined to abstracts714

in English-language scientific corpora. This raises715

questions about the generalisability of the approach716

to full-text documents, other genres such as patents,717

or non-English data.718
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A Summarisation Prompts 965

We used the deepseek-v3 model to generate topic 966

descriptions across all methods. To ensure con- 967

sistency and structure in the outputs, we define a 968

fixed system message and adopt a 3-step prompt- 969

ing framework inspired by the 3A-COT method 970

(Zhang et al., 2024). This includes attending to 971

key aspects, arranging extracted information, and 972

generating the final abstract. The exact prompt 973

templates used are provided below. 974

System Prompt
You are a scientific research assistant who or-
ganizes information into structured markdown
documents. Your writing style sounds natural
and professional. Avoid using Marketing and
HR language.

Prompt 1: System prompt used for topic description
generation

Attend Prompt
[DOCUMENTS]

What are the research purposes in this docu-
ment?
What are the research object in this document?
What are the research methods in this document?
What are the research result in this document?
What are the main findings in this document?

Please answer the above questions:

Prompt 2: Attend prompt for extracting key information
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Arrange Prompt
[ATTEND_OUTPUT]

Organize the above important information. Ar-
range this information in a logical order or rele-
vance to build a coherent narrative, and consider
how information from different articles can be
combined to complement and connect with each
other.

Prompt 3: Arrange prompt for structuring extracted
content

Abstract Prompt
[ABSTRACTS]
—
[ARRANGE_OUTPUT]

Based on the above abstracts, key information
and the keywords: {topic_words}, write a sum-
mary.

Make sure to include key information, research
objectives and ideas. The summary should be
structured as clean MARKDOWN with ONLY
the following Headings:

Brief Introduction into the Topic, Key Research
Objects, Key Research Methods, Key Research
Purpose.

Each Heading should have only Keypoints listed.
Avoid the use of additional MARKDOWN sub-
sections. Avoid adding your own opinion, inter-
pretation, or conclusions or Future Work. Use
the information provided in the text only.

Prompt 4: Abstract prompt for final topic description
generation

B Quantum Dataset Query975

In Query 1, we present the full boolean query used976

for collecting the source documents for the Quan-977

tum Computing dataset. Specially, the query is978

specialized in the hardware part of this scientific979

field.980

C Topic Models981

This section presents implementation details and982

results of three topic modeling approaches used in983

our comparative analysis.984

Boolean Query
TITLE-ABS-KEY ( "quantum comput*" OR
"quantum processor" OR "quantum circuit"
OR "quantum logic gate" OR "quantum gate"
OR "logical qubit" OR qubit OR "quantum
system" OR "quantum information process-
ing" OR "quantum control" OR "quantum elec-
tronics" OR "quantum hardware" OR "noisy
intermediate-scale quantum era" OR "NISQ"
OR "multiqubit circuit" OR "quantum simula-
tion" OR "quantum simulator" ) AND TITLE-
ABS-KEY ( ( cryogen* OR "magnetic field"
OR laser OR photoluminescence OR silicon
OR "electric fields" OR magnetism OR fluores-
cence ) OR ( "neutral atom" OR "cold atom"
OR "trap*atom" OR "atom trap" OR "rydberg"
OR atoms OR "optical lattice*" OR magic OR
"optical tweezer*" OR strontium OR ytterbium
OR "photonic crystal fibre" ) OR ( "ion traps"
OR "trapped ions" OR "ions" OR "integrated
waveguide" OR "laser induced deep etching"
OR "on-chip coupling" ) OR ( superconduct*
OR "SQUIDs" OR "Josephson junction device*"
OR "indium bump" OR "NbN films" OR "single
flux quantum" OR "quantum flux" OR "SQUID"
) OR ( center OR diamond OR "NV center" OR
"NV centre" OR "color centre" OR "colour cen-
ter" OR "silicon vacancy centre" OR "silicon
vacany center" ) OR ( photon* OR "gaussian
boson sampl*" OR "squeezed light source" OR
niobate OR "superconducting nanowire single-
photon detector" OR "SNSPD" ) OR ( topol-
ogy OR "topological quantum computing" OR
"topological insulator*" ) OR ( semiconductor
OR "molecular beam epitaxy" OR "semiconduct-
ing*" OR "crystal lattice*" OR phonons ) ) AND
PUBYEAR > 2009 AND PUBYEAR < 2026

Query 1: Boolean query used for collecting the source
documents for the Quantum Computing dataset.

C.1 Implementation Details 985

CTM In the CTM backbone, we use the Gi- 986

hub implementation5 of the original contribution 987

(Bianchi et al., 2021). Here, we choose to opti- 988

mize over four hyper-parameters: number of topics 989

(40—100), number of epochs (10—50), activation 990

function ({sigmoid, relu, softplus}), number of neu- 991

rons (100—500). All other hyper-parameters use 992

5https://github.com/MilaNLProc/contextualized-topic-
models
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standard values from the implementation.993

BERTopic For this approach, we use the known994

BERTopic package6. This standard pipeline con-995

sists of mainly three stages: Embedding (Em.)996

stage, Dimensionality Reduction (DR) stage, the997

Clustering (Cl.) stage, and Topic Representa-998

tion (TR) stage. For the Em stage, we use the999

nomic-ai/modernbert-embed-base7 model (Nuss-1000

baum et al., 2024), which is an embedding model1001

trained on the ModernBERT (Warner et al., 2024b)1002

encoder. For the DR and Cl. stages, we opt for the1003

standard pairing with UMAP (McInnes et al., 2018)1004

and HDBSCAN (McInnes et al., 2017). Finally, in1005

the TR stage, we use class-TFIDF, which is firstly1006

introduced in (Grootendorst, 2022). Overall, in1007

this approach, we have also four hyper-parameters:1008

UMAP - number of neighbors (5—50), number1009

of components (2—15) and min. distance (0.0—1010

0.5); HDBSCAN - min. cluster size (10—50). For1011

UMAP, we fix the metric to cosine, and euclidean1012

for HDSCAN. All other hyper-parameters use stan-1013

dard values from their implementations.1014

TopicGPT We follow the original TopicGPT1015

pipeline (Pham et al., 2024), using the open-source1016

implementation available at GitHub 8 and alter-1017

ing only the document-assignment stage to align1018

with BERTopic and CTM. For topic generation,1019

we randomly sample 1,000 documents from each1020

dataset and leverage GPT-4 to propose an initial1021

set of top-level topics, which we then iteratively1022

refine into subtopics to build a complete hierar-1023

chical structure. In the subsequent assignment1024

phase—applied to the full datasets—we replace1025

TopicGPT’s default routine (which, for each doc-1026

ument, prompts GPT-3.5-turbo with the finalized1027

hierarchy and returns the best-matching topic with1028

a supporting quote) with a two-part prompt to1029

GPT-3.5-turbo: (i) assign each document to its1030

best-matching topic in our hierarchy; and (ii) ex-1031

tract ten representative keywords per document.1032

Finally, we post-process all extracted keywords1033

for each topic by tokenizing them on whitespace,1034

converting to lowercase, stripping punctuation, ag-1035

gregating token frequencies, and selecting the ten1036

most frequent tokens per topic—thereby exactly1037

matching the output format of our BERTopic and1038

CTM backbones.1039

6https://maartengr.github.io/BERTopic/index.html
7https://huggingface.co/nomic-ai/modernbert-embed-base
8https://github.com/chtmp223/topicGPT

Own Assignment Prompt Template
You will receive a document and a topic hierar-
chy. Assign the document to the most relevant
topic of the hierarchy. Then, output the topic
label, and supporting keywords from the doc-
ument. DO NOT make up new topics or key-
words.

[Topic Hierarchy]
{tree}

[Instructions]
1. Topic label must be present in the provided
topic hierarchy. You MUST NOT make up new
topics.
2. The keywords must be taken from the docu-
ment. You MUST NOT make up keywords or
quotes. All keywords MUST NOT contain stop
words.

[Document]
{Document}

Double check that your assignment exists in the
hierarchy! Your response should be in the fol-
lowing format:
[Topic Level] Topic Label: keyword1,
keyword2, etc

Your response:

Prompt 5: Prompt template used for document-to-topic
assignment in the TopicGPT adaptation.

C.2 Results 1040

Table 3 presents topic modeling evaluation re- 1041

sults across three datasets (ACL, NIPS, and Quan- 1042

tum) for three different topic modeling approaches: 1043

CTM, BERTopic, and TopicGPT. The evaluation 1044

metrics used in the comparison are Coherence, Di- 1045

versity, and Number of Topics (N.Topics). CTM 1046

consistently achieves the highest coherence scores 1047

across all three datasets (0.664 for ACL, 0.601 for 1048

NIPS, and 0.692 for Quantum). It also maintains 1049

high diversity scores above 0.94 for all datasets. 1050

BERTopic shows moderate coherence performance 1051

(0.504 for ACL, 0.458 for NIPS, and 0.546 for 1052

Quantum), with somewhat lower diversity met- 1053

rics, particularly for the Quantum dataset (0.799). 1054

TopicGPT demonstrates coherence scores between 1055

0.458 and 0.526 across datasets, with strong diver- 1056
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sity in the NIPS dataset (0.963) but lower diver-1057

sity for ACL (0.881) and Quantum (0.809). Re-1058

garding the number of topics identified, TopicGPT1059

produces substantially more topics than the other1060

approaches, particularly for NIPS (276). BERTopic1061

identifies the fewest topics overall with just 24 for1062

the NIPS dataset. For the ACL dataset, the number1063

of topics is more consistent across models (CTM:1064

72, BERTopic: 70, TopicGPT: 66). The Quan-1065

tum dataset shows moderate variation, with CTM1066

identifying 59 topics, BERTopic 72, and TopicGPT1067

significantly more at 169.1068

D Evaluation Prompts1069

We evaluate summaries along four dimensions: rel-1070

evance, coherence, factuality, and fluency. Each1071

is scored independently using a dedicated prompt,1072

detailed below.1073

Aspect Definitions1074

• Relevance: The rating measures how well the1075

summary captures the key points of the doc-1076

uments. Consider whether all and only the1077

important aspects are contained in the sum-1078

mary.1079

• Coherence: This rating evaluates how seam-1080

lessly the sentences of the summary flow to-1081

gether, creating a unified whole. Assess how1082

smoothly the content transitions from one1083

point to the next, ensuring it reads as a co-1084

hesive unit.1085

• Factuality: This rating gauges the accuracy1086

and truthfulness of the information presented1087

in the summary compared to the original doc-1088

uments. Scrutinize the summary to ensure it1089

presents facts without distortion or misrepre-1090

sentation, staying true to the source content’s1091

details and intent.1092

• Fluency: This rating evaluates the clarity and1093

grammatical integrity of each sentence in the1094

summary. Examine each sentence for its struc-1095

tural soundness and linguistic clarity.1096

E Gemma-3-27B &1097

Mistral-7B-OpenOrca Results1098

To complement the main results, we report the1099

MAS obtained using Gemma-3-27B and Mistral-1100

7B-OpenOrca in Table 4. These models provide1101

Evaluation Prompt Template
Instruction:
In this task you will evaluate the quality of a
summary written for multiple documents.
To correctly solve this task, follow these steps:
1. Carefully read the document, be aware of the
information it contains.
2. Read the proposed summary.
3. Rate each summary on a scale from 0 (worst)
to 100 (best) by its {aspect}. Decimals are
allowed.

# Definition:
{definition}

Source documents:
{source}

Summary:
{summary}

Score:

Prompt 6: Evaluation prompt template used for scoring
topic descriptions across relevance, factuality, coher-
ence, and fluency

additional perspectives on the quality of the gener- 1102

ated descriptions and help verify the consistency of 1103

trends observed with Qwen-2.5-7B-Instruct. 1104

To further assess inter-model agreement, we 1105

compute Kendall’s τb between the rankings of 1106

method–size combinations (i.e., CCS/SCS across 1107

the four topic size categories: Small, Medium- 1108

Small, Medium-Large, and Large) for each pair 1109

of judge models. We evaluate agreement across 1110

the full 8-item ranking. This provides a single 1111

τb score per pair, reflecting overall alignment in 1112

method preferences across topic sizes. As shown 1113

in Table 5, Qwen2.5-7B-Instruct aligns mod- 1114

erately to strongly with both Gemma-3-27B and 1115

Mistral-7B-OpenOrca, while Gemma-3-27B and 1116

Mistral-7B-OpenOrca exhibit weaker agreement. 1117

F Impact of drawn documents in 1118

LLM-Eval 1119

In order to analyze the impact of using subsets of 1120

documents of topics as reference documents in the 1121

LLM-Eval strategies, we present a detailed visual- 1122

ization of the Quantum dataset results in Figure 4 1123

across all five document draws for each TM and 1124
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TM Dataset Coherence Diversity N.Topics

CTM
ACL 0.664 0.994 72
NIPS 0.601 0.949 38
Quantum 0.692 0.996 59

BERTopic
ACL 0.504 0.972 70
NIPS 0.458 0.930 24
Quantum 0.546 0.799 72

TopicGPT
ACL 0.458 0.881 66
NIPS 0.472 0.963 276
Quantum 0.526 0.809 169

Table 3: Topic modeling evaluation results across three scientific datasets.

Method Metric ACL NIPS Quantum

CTM BERTopic TopicGPT CTM BERTopic TopicGPT CTM BERTopic TopicGPT

SCS MAS-Mistral 74.913 74.306 76.307 75.497 75.109 77.240 72.077 73.127 76.120
MAS-Gemma 81.537 85.163 87.411 82.691 83.865 89.400 82.006 85.255 89.395

CCS MAS-Mistral 73.092 71.207 74.471 66.384 70.771 75.201 65.031 72.758 74.528
MAS-Gemma 81.483 85.155 86.799 81.194 83.370 88.549 80.204 85.120 89.125

Table 4: MAS scores across methods, datasets, and topic modeling backbones using Mistral and Gemma as judge
models.

Model Pair τb p

Qwen & Gemma 0.6183 0.0340
Qwen & Mistral 0.6910 0.0178
Gemma & Mistral 0.2857 0.3988

Table 5: Kendall’s τb between full method–size rankings
of each model pair.

TD approach. As for the other datasets, a similar1125

scenario holds.1126

From visual inspection of Figure 4, we observe1127

that scores remain relatively stable across different1128

document draws for the same TM and TD method.1129

When fixing a topic modeling approach and a topic1130

description pipeline, the fluctuations in LLM-Eval1131

MAS are generally small, with most variations re-1132

maining within 5 points to the mean on our 100-1133

point scale.1134

While a comprehensive variance analysis across1135

all datasets would provide further statistical rigor,1136

the consistency observed in the Quantum dataset1137

suggests that our sampling approach produces reli-1138

able evaluations. The observed stability indicates1139

that randomly sampling 10 documents five times1140

provides a reasonable approximation of how a topic1141

description would be evaluated against the full doc-1142

ument collection. 1143

The observed consistency across document 1144

draws supports our decision to use this sampling 1145

approach as a practical solution to the context win- 1146

dow limitations of LLMs. While a more exhaustive 1147

analysis would be valuable for future work, the 1148

current evidence suggests that our methodology 1149

provides reliable evaluations of topic descriptions 1150

despite using only subsets of the complete docu- 1151

ment collections. 1152

G Effect of Topic Cohesion on Mean 1153

Aspect Score (MAS) 1154

To study the impact of topic cohesion on the quality 1155

of topic descriptions, We compute the mean cosine 1156

embedding distance among all documents for each 1157

topic. We call this indicator "Topic Cohesion." Fig- 1158

ure 5 shows the MAS distributions for all topics 1159

grouped by their topic cohesion quartile. Interest- 1160

ingly, topic cohesion plays an almost negligible 1161

role in the MAS distributions across all quartiles. 1162

There is a clear downward trend indicating the an- 1163

ticipated TD quality degradation towards topics 1164

of low cohesion. However, this effect is minor 1165

among all TD approaches, only becoming more 1166

pronounced in the low cohesion quartile. Even 1167

there, the best topic descriptions of the two best 1168
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(a) SCS

(b) CCS

Figure 4: LLM-Eval MAS for every draw of 10 docu-
ments per topic.

Figure 5: Box-plots of MAS distributions from Qwen
conditioned on topic cohesion quartile.

approaches, SCS and CCS, are competitive with 1169

TD’s best scores in the more cohesive quartiles. 1170

H Effect of Topic Size and Cohesion on 1171

SUPERT 1172

Figure 6 shows the distribution of winners per topic 1173

size category based on the SUPERT metric. SCS 1174

leads in the first and second quartiles, with CCS 1175

gaining a slight edge in the third. In contrast to 1176

MAS-Qwen, which shows CCS catching up in the 1177

largest category, SUPERT continues to favor SCS 1178

in the fourth quartile. This suggests that SCS is 1179

more aligned with SUPERT’s relevance-focused 1180

evaluation, even as topic size increases. 1181

Figure 6: Winner count on SUPERT per topic size quar-
tile over all topic models

Figure 7 shows SUPERT distributions grouped 1182

by topic cohesion (mean pairwise cosine distance). 1183

Both SCS and CCS remain relatively stable across 1184

cohesion levels, with only slight performance 1185

degradation from high to low cohesion. 1186
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Figure 7: Box-plots of SUPERT distributions condi-
tioned on topic cohesion quartile

Figure 8: SUPERT Score per topic size decile.

The SUPERT experiments on effectiveness nu-1187

ances across size deciles, to be seen in Figure 81188

reveal patterns consistent with the results of LLM-1189

Eval in Section 8.2: method effectiveness remains1190

tied to topic size, with SCS dominating slightly for1191

smaller topics (first to sixth decile). The effect of1192

CCS slightly outperforming SCS in LLM-Eval for1193

the larger topics (seventh and eigth deciles) is not1194

to be seen with SCS even achieving minially better1195

scores with SUPERT. Still, the overall trend is repli-1196

cated from LLM-Eval and this replication further1197

confirms that scale, besides intrinsic topic quality,1198

drives performance differences and emphasizes the1199

viability of adaptive hybrid approaches.1200

I Examples of generated Topic1201

Descriptions1202

To demonstrate the results of our topic description1203

pipeline, we present a selection of examples cov-1204

ering different datasets and modelling approaches.1205

Each example provides metadata, the generated1206

summary, and evaluation scores. Together, these 1207

elements help contextualise the content and quality 1208

of the generated descriptions. 1209
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acl-53
Dataset: ACL
Model: TopicGPT
Method: SCS
Category: Best
Topic Words: data, LOD, digital, linguistics, studies, linked open, humanities, multilingual, modeling
SUPERT: 0.7043
LLMEval: 87.5000

Topic Summary: Linked Open Data (LOD) in the Humanities
Brief Introduction into the Topic
Linked Open Data (LOD) is increasingly being integrated into the Humanities to enhance the
accessibility, interoperability, and analysis of machine-readable information. Two notable
initiatives, LODinG and DigItAnt, exemplify this trend. LODinG explores broad applications across
various Humanities disciplines, while DigItAnt focuses on creating, linking, and exploiting LOD
lexica for historical linguistics and epigraphy data.

Key Research Objects
- LODinG: Covers digital humanities, computational linguistics, digital lexicography, philology,
translatology, cultural and literary studies, media studies, information science, and law.
- DigItAnt: Manages LOD lexica and heterogeneous resources in historical linguistics and epigraphy,
supporting the H2IOSC Italian infrastructures cluster project.

Key Research Methods
- LODinG: Collects, models, links, releases, and analyzes multilingual data in LOD format,
developing a modular, cross-domain Humanities data model.
- DigItAnt: Designs architecture for LOD lexica and links Linguistic Linked Open Data (LLOD) with
non-LLOD datasets, following FAIR principles.

Key Research Purpose
- LODinG: Improves extraction and modeling of multilingual LOD data, demonstrates LLOD applications
in interdisciplinary contexts, and develops a cross-domain data model.
- DigItAnt: Aims to build and integrate LOD lexica for historical linguistics and epigraphy,
support the H2IOSC project, and contribute to Italian Humanities infrastructure.

Example 1: Example topic description for topic acl-53.

18



quantum-49
Dataset: Quantum
Model: CTM
Method: SCS
Category: Ambiguous
Topic Words: foremost, boast, ineffective, craft, exacerbate, maintains, complication, pack, prevail, upon
SUPERT: 0.4825
LLMEval: 62.5

Summary of Quantum Computing and Related Technologies
Brief Introduction into the Topic
Quantum computing and related technologies focus on advancing fault-tolerant quantum machines,
enhancing quantum communication, and exploring novel materials and methods for quantum applications.
Research spans from error correction in quantum computing to the development of high-performance
quantum platforms, quantum networking, and advanced optical materials.

Key Research Objects
Fault-tolerant quantum machines: Large-scale quantum computers relying on error correction using
logical and physical qubits.
Quantum emitters and waveguides: Dipole quantum emitters embedded in dielectric slab waveguides.
Quantum platforms: Diamond with engineered coherent defects for quantum control.
Quantum simulations: SU(3) gauge theories in Quantum Chromodynamics (QCD) using discrete subgroup
S(1080).
Quantum networking: Quantum wrapper networking with classical headers and quantum payloads.
Quantum box arrays: Self-assembled porous (metal-)organic networks modified by C60 adsorbates.
Quantum optics: High refractive index polymers for infrared (IR) optics.
Quantum communication: DWDM transmission using ultra-low loss G.654.D fiber and lumped doped fiber
amplifiers.
Quantum spin manipulations: Ce<sup>3+</sup> doped LiYF<inf>4</inf> crystals for ENDOR
spectroscopy.
Quantum geometry: Desargues and Pappus properties in projective geometry applied to quantum
systems.

Key Research Methods
Error correction: Spreading the value of a single logical qubit over multiple physical qubits.
Waveguide analysis: Studying the effective quantum yield of dipole emitters in dielectric slab
waveguides.
Materials engineering: Controlling coherent defects in diamond for quantum applications.
Digitization schemes: Practical digitization of SU(3) gauge theories using discrete subgroups.
Noise characterization: Analyzing in-fiber scattering processes in quantum wrapper networking.
Adsorbate modification: Using C60 to modify electronic states in quantum box arrays.
Inverse vulcanization: Synthesizing high refractive index polymers from waste materials.
DWDM transmission: Demonstrating high-speed data transmission using advanced fiber and amplifiers.
ENDOR spectroscopy: Resolving Mims ENDOR spectra for electron-nuclear interactions.
Geometric analysis: Applying Desargues and Pappus properties to quantum systems.

Key Research Purpose To craft large, fault-tolerant quantum machines capable of robust computations.
To boast the performance of quantum emitters and waveguides by optimizing their properties.
To maintain long spin coherence times in diamond-based quantum platforms.
To pack the infinite-dimensional gluon field into a minimal qubit representation for QCD
simulations.
To exacerbate the understanding of noise impacts in quantum networking.
To prevail in engineering quantum states in on-surface network architectures.
To foremost develop low-cost, high-performance materials for IR optics.
To complicate the understanding of high-speed data transmission in optical communication.
To upon investigate electron-nuclear interactions for spin manipulations.
To ineffective link projective geometry principles to quantum physics and information.

Example 2: Example SCS topic description for topic quantum-49.
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acl-20
Dataset: ACL
Model: BERTopic
Method: CCS
Category: Ambiguous
Topic Words: word2vec, embeddings, vocabulary, wordnet, semantic, semantics, embedding, contextualized, word,
linguistic
SUPERT: 0.4274
LLMEval: 85.4250

Brief Introduction into the Topic
The extraction and analysis of health-related information from social media platforms, particularly
Twitter, have become critical in pharmacovigilance, public health monitoring, and mental health
studies. Advances in Natural Language Processing (NLP) and transformer-based models (e.g., BERT,
RoBERTa, BERTweet) have improved the ability to process informal and noisy text, enabling the
identification of Adverse Drug Events (ADEs), disease mentions, and psychological conditions such
as depression, anxiety, and mood disorders. Social media data, especially tweets, provide valuable
insights into public health trends and individual health experiences.

Key Research Objects
- Psychological and Mood-Related Terms: Keywords such as depression, depressed, mood, psychological,
and anxiety, relevant to ADE classification and diagnosis.
- Tweets: Informal text from Twitter containing colloquial language related to health, drug effects,
and psychological conditions.
- Disease Mentions: Identification of diseases such as depression and anxiety in Spanish tweets
and other social media content.
- Adverse Drug Events (ADEs): Mentions of adverse effects from medications and dietary supplements
in tweets.
- Social Media Platforms: Twitter, Reddit, and health forums as primary sources of health-related
data.

Key Research Methods
1. Transformer-Based Models
- BERT, RoBERTa, BERTweet, and CT-BERT are fine-tuned for tasks such as classification, Named
Entity Recognition (NER), and information extraction.
- Ensemble Methods: Combining multiple BERT variants to improve accuracy in classifying
health-related tweets.
2. Large Language Models (LLMs)
- Data Augmentation: Generating synthetic data to address data imbalance in ADE extraction and
disease mention detection.
- Retrieval-Augmented Generation (RAG): Mapping informal tweet language to standardized terms like
MedDRA Preferred Terms.
3. Advanced NLP Techniques
- Transfer Learning: Fine-tuning multilingual models like mBERT for disease mention extraction in
Spanish tweets.
- Knowledge Graph Integration: Enhancing models with external evidence from medical gazetteers and
ontologies.
- Flair-NER Framework: Evaluating embeddings for capturing complex disease mentions in social
media text.
4. Preprocessing and Optimization
- Domain-Specific Preprocessing: Cleaning and preparing social media text for analysis.
- Hyperparameter Optimization: Enhancing model performance through tuning.

Key Research Purpose
- Enhance ADE Discovery: Improve the accuracy and robustness of ADE extraction and normalization
from social media data.
- Improve Disease Mention Extraction: Develop advanced NER systems for identifying diseases in
informal text, particularly in non-English languages like Spanish.
- Standardize Health-Related Terms: Map colloquial language to standardized medical terms (e.g.,
MedDRA Preferred Terms) for better pharmacovigilance and health monitoring.
- Promote Open Research: Provide open-source code and methodologies to foster collaboration and
further innovation in the field.
- Monitor Public Health Trends: Leverage social media data for real-time monitoring of public
health issues, including COVID-19 and psychological conditions.

Example 3: Example topic description for topic acl-20.
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quantum-49
Dataset: Quantum
Model: CTM
Method: CCS
Category: Worst
Topic Words: foremost, boast, ineffective, craft, exacerbate, maintains, complication, pack, prevail, upon
SUPERT: 0.1685
LLMEval: 7.1150

Brief Introduction into the Topic
The topic revolves around the analysis of certain systems or strategies that are deemed foremost
in their field but may boast features that are ultimately ineffective. These systems often craft
solutions that inadvertently exacerbate existing issues, leading to further complication. Despite
these challenges, the systems maintain their prominence, as they are designed to pack significant
functionality. The research aims to explore why such systems prevail and the factors that drive
their continued use upon further scrutiny.

Key Research Objects
The primary objects of research include systems or strategies that are considered leading in their
domain. These objects are characterized by their advanced features, which are often highlighted
as strengths but may contribute to inefficiencies or unintended consequences. The study focuses
on understanding the dynamics of these systems and their impact on the broader context in which
they operate.

Key Research Methods
The research employs a combination of qualitative and quantitative methods to evaluate the
effectiveness of the systems under study. This includes analyzing case studies, conducting
surveys, and performing comparative assessments to identify patterns and outcomes. The methods
aim to uncover the reasons behind the systems’ continued use despite their potential drawbacks.

Key Research Purpose
The purpose of the research is to critically examine the systems that are widely regarded as
top-tier in their field. It seeks to identify the factors that contribute to their perceived
success, as well as the unintended consequences that may arise from their implementation. The
study aims to provide a comprehensive understanding of why these systems prevail and how they
impact their respective domains.

Example 4: Example CCS topic description for topic quantum-49.
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