
Improving LLM Agent Planning with In-Context Learning
via Atomic Fact Augmentation and Lookahead Search

Samuel Holt * 1 Max Ruiz Luyten * 1 Thomas Pouplin 1 Mihaela van der Schaar 1

Abstract
Large Language Models (LLMs) are increasingly
capable but often require significant guidance
or extensive interaction history to perform ef-
fectively in complex, interactive environments.
Existing methods may struggle with adapting to
new information or efficiently utilizing past ex-
periences for multi-step reasoning without fine-
tuning. We introduce a novel LLM agent frame-
work that enhances planning capabilities through
in-context learning, facilitated by atomic fact aug-
mentation and a recursive lookahead search. Our
agent learns to extract task-critical “atomic facts”
from its interaction trajectories. These facts dy-
namically augment the prompts provided to LLM-
based components responsible for action proposal,
latent world model simulation, and state-value
estimation. Planning is performed via a depth-
limited lookahead search, where the LLM sim-
ulates potential trajectories and evaluates their
outcomes, guided by the accumulated facts and in-
teraction history. This approach allows the agent
to improve its understanding and decision-making
online, leveraging its experience to refine its be-
havior without weight updates. We provide a theo-
retical motivation linking performance to the qual-
ity of fact-based abstraction and LLM simulation
accuracy. Empirically, our agent demonstrates
improved performance and adaptability on chal-
lenging interactive tasks, achieving more optimal
behavior as it accumulates experience, showcased
in tasks such as TextFrozenLake and ALFWorld.

1. Introduction
Large Language Models (LLMs) have demonstrated remark-
able potential in building autonomous agents for sequential
decision-making in diverse settings, from text-based games

*Equal contribution 1University of Cambridge, UK. Correspon-
dence to: Samuel Holt <sih31@cam.ac.uk>.

Workshop on Computer-use Agents @ ICML 2025, Vancouver,
Canada. Copyright 2025 by the author(s).

(Yao et al., 2023) to complex interactive environments such
as those encountered in computer use tasks (Yang et al.,
2025). A key insight underpinning their success is their
vast pre-trained knowledge, which can be steered towards
specific tasks. However, effectively harnessing this knowl-
edge and enabling LLMs to learn from new experiences
in-context remains a critical challenge for improving their
accuracy and optimality in long-horizon tasks, which are
typical of computer usage.

Many LLM agents rely on extensive few-shot examples
(Shinn et al., 2023) or retrieve entire past trajectories (Ka-
gaya et al., 2024) to inform their decisions. While effective
to a degree, these approaches can lead to very long prompts
or may not efficiently distill the most crucial pieces of in-
formation from past experiences, such as recalling specific
command parameters or UI navigation shortcuts. Model-
based approaches (Hao et al., 2023; Chae et al., 2024) have
emerged, but often involve learning separate, potentially
shallow, predictive models or require environment interac-
tions for each step of their lookahead. This underutilizes
the LLM’s inherent simulation capabilities, for instance,
in predicting the outcome of a multi-step sequence of UI
interactions without direct environmental feedback.

The core idea of this paper is that LLMs possess a substan-
tial amount of latent knowledge about world dynamics and
task structures, particularly relevant to computer interac-
tions. To unlock better planning for computer use agents,
we need to identify and provide the missing pieces of in-
formation—concise, critical insights derived from experi-
ence—that allow the LLM to more accurately simulate out-
comes and evaluate states. We propose a novel LLM agent
architecture that learns and utilizes “atomic facts” to aug-
ment its planning process. These facts are textual statements
(e.g., “clicking button ‘Login’ with empty fields leads to er-
ror_message ‘Fields_Required’ ”, “file_path ‘/usr/local/bin’
contains ‘utility_X’ ”, “web_link ‘example.com/old_api’
is_broken”) extracted from the agent’s interaction history
at the end of each episode. The atomicity of these facts
is crucial; they represent minimal, yet impactful, units of
knowledge that can be precisely incorporated into the LLM’s
reasoning context, effectively grounding its general knowl-
edge to the specific nuances of the current computer system

1

Improving LLM Agent Planning with In-Context Learning via Atomic Fact Augmentation and Lookahead Search

or application.

Our agent employs these atomic facts to inform a recur-
sive, depth-limited lookahead search. The planning process
involves three key LLM-driven components: An action pro-
poser to suggest plausible next actions. A latent world
model to simulate the next observation, reward, and termi-
nation status given an action. A value estimator to predict
the long-term utility of states, especially at the leaves of
the search tree. All these components receive the current
observation, recent interaction history, and the curated set
of atomic facts as input, allowing the LLM to make more
informed predictions and decisions. The agent learns online,
purely in-context, as the set of facts evolves with experience,
leading to improved policies without any LLM fine-tuning.
This approach is inspired by Dyna-style architectures (Sut-
ton, 1990), where experience is used to refine a model (here,
the fact-augmented LLM reasoning process) which is then
used for planning.

Contributions: 1⃝Algorithmic: We propose an LLM
agent that performs online, in-context learning by extracting
atomic facts from episodic trajectories, which is particularly
useful for agents that must adapt to evolving digital inter-
faces or discover efficient workflows. These facts augment
LLM-driven action proposal, latent world model simulation,
and value estimation within a recursive lookahead search
framework. 2⃝ Theoretical Motivation: We connect our
approach to principles of fact-based state abstraction (Sec-
tion 3), suggesting that the quality of learned facts (impact-
ing ϵsim) and LLM simulation (impacting δmodel) underpins
agent performance, ultimately influencing the planning sub-
optimality ϵplan. 3⃝ Empirical: We demonstrate that our
method leads to improved decision-making and more opti-
mal behavior as the agent gains experience. On challenging
benchmarks like ALFWorld, the agent shows an ability to
achieve consistent high reward by leveraging its learned
atomic facts to master complex sequences of operations,
akin to sophisticated computer usage.

This work offers a step towards LLM agents that can more
effectively learn from their interactions with computer sys-
tems in-context, leading to more robust and accurate plan-
ning by systematically augmenting the LLM’s reasoning
with distilled, experience-grounded knowledge.

2. Related Work
Our work builds upon several lines of research in LLM-
based agents, model-based reinforcement learning, and the
use of external knowledge for planning—see Section A for
an extended related work.

LLM Agents Early LLM agents like ReAct (Yao et al.,
2023) introduced the concept of interleaving reasoning

(thought) and action generation. Reflexion (Shinn et al.,
2023) extended this by incorporating self-reflection, where
an LLM analyzes past failures to generate textual feedback
for future trials. This episodic learning is akin to our fact
extraction, but Reflexion focuses on high-level advice rather
than structured atomic facts for a world model. Many agents
operate in a model-free manner or rely heavily on in-context
exemplars from fixed datasets.

LLM-Based Planning and World Models Several ap-
proaches have explored using LLMs for planning. Some use
LLMs to score or propose actions within classical search al-
gorithms like Monte-Carlo Tree Search (MCTS) (Hao et al.,
2023; Kagaya et al., 2024; Liu et al., 2024b). For instance,
Retrieval-Augmented Planning (RAP) (Kagaya et al., 2024)
retrieves full past trajectories to inform MCTS, often requir-
ing environment interaction for tree expansion. Other works
like (Chae et al., 2024) use LLMs to build explicit, but of-
ten one-step, world models that predict state transitions or
webpage changes. (Xie et al., 2023) use LLMs to trans-
late natural language goals into formal planning problems.
Our approach differs by using the LLM itself as a latent
world model for multi-step simulation during lookahead,
conditioned on dynamically extracted atomic facts, rather
than just retrieving raw trajectories or learning a separate ex-
plicit model. The idea of an LLM as a “simulator” has been
explored, e.g., for few-shot generation (Prystawski et al.,
2023), but its integration with online fact-based learning for
improved planning is a novel aspect of our work.

Dyna-Style Architectures and Fact-Based RL Our
method is inspired by Dyna-style reinforcement learning
(Sutton, 1990; Sutton & Barto, 2018), where an agent learns
a model of the world from real interactions and then uses
this model to generate simulated experiences for planning.
In our case, the “model” is implicitly represented by the set
of atomic facts combined with the LLM’s inherent simula-
tion capabilities. The extraction of facts from trajectories
is analogous to model learning, and the lookahead search
is planning with this model. While traditional Dyna uses
tabular or parametric models, we leverage the LLM’s ability
to reason over textual facts. The concept of using facts or
symbolic knowledge in RL is not new (Abel et al., 2020),
but its integration with LLM-driven simulation and online
fact extraction is a key aspect of our work.

Knowledge Augmentation for LLMs Retrieval-
Augmented Generation (RAG) (Lewis et al., 2021) is
a common paradigm for providing LLMs with external
knowledge. Our fact extraction and augmentation mecha-
nism can be seen as a specialized form of RAG where the
“retrieved” knowledge (atomic facts) is actively generated
and refined from the agent’s own experience rather than
drawn from a static corpus. This makes the knowledge

2

Improving LLM Agent Planning with In-Context Learning via Atomic Fact Augmentation and Lookahead Search

highly task-specific and current, directly addressing the
information needs identified through interaction, rather
than relying on potentially less relevant or outdated general
knowledge.

Our work distinguishes itself by the tight integration of
online atomic fact learning from episodic experience with
an LLM-driven, multi-step lookahead planner where the
LLM serves as both a latent world model and value function,
all operating in-context without weight updates. This focus
on distilled, symbolic knowledge (atomic facts) aims to
provide a more structured and efficient way for the LLM to
learn from experience compared to methods relying on raw
trajectory retrieval or general textual reflections.

3. Theoretical Framework for Fact-Based
Reinforcement Learning

We propose enabling agents to construct and reason over
a fact-based world model. Such a model relies on a com-
pressed, symbolic representation of task-relevant informa-
tion extracted as “atomic facts” from the environment’s state.
This section establishes a formal theoretical basis for this
approach. We first define an idealized fact-based agent and
derive its performance guarantees. These theoretical ideals
subsequently motivate and guide the design of our practical
LLM-driven algorithm detailed in Section 4.

3.1. Problem Formulation

We model the agent’s interaction with its environment as
a Markov Decision Process (MDP), specified by the tu-
ple G = (S,A, T , R, γ). Here, S is the set of environ-
ment states, which we assume are fully observable or deriv-
able into a sufficient structured representation st ∈ S
from raw observations ot. A is a finite set of actions.
T : S × A × S → [0, 1] is the state transition probabil-
ity function, T (s′|s, a) = P (st+1 = s′|st = s, at = a).
R : S×A×S → R is the reward function, with expected re-
ward R(s, a) = Es′∼T (·|s,a)[R(s, a, s′)]. Finally, γ ∈ [0, 1)
is the discount factor. The agent’s goal is to learn a policy
π : S → A that maximizes the expected discounted cumula-
tive reward, V π

G (s) = Eπ

[∑∞
k=0 γ

kR(st+k, at+k)|st = s
]
.

The optimal value function in G is V ∗
G (s) = maxπ V

π
G (s).

To manage the potential complexity of S, we introduce a
fact-based state abstraction.

Definition 3.1 (Fact-Based Abstraction). Let Fatomic be a
vocabulary of atomic predicates (e.g., is_goal(loc),
obstacle_at((x,y))) relevant to the task. These
predicates primarily describe properties of the current state
st. A fact set for a state s ∈ S is Fs = {f ∈ Fatomic |
f is true in s}. The Fact Extractor is an abstraction func-
tion Ψ : S → ZF , where ZF = P(Fatomic) is the space of
all possible fact sets. Each z ∈ ZF constitutes an abstract

state, representing the equivalence class of ground states
{s ∈ S | Ψ(s) = z}. We denote the abstract state at time t
as zt = Ψ(st). A critical objective is that |ZF | ≪ |S|.

This abstraction Ψ induces an abstract MDP MΨ =
(ZF ,A, TΨ, RΨ, γ), where TΨ(z′|z, a) and RΨ(z, a) are
the abstract transition and reward functions. These are de-
rived from G by averaging over the ground states s that
map to a given abstract state z (Li et al., 2006). For in-
stance, if Sz = {s′ ∈ S | Ψ(s′) = z}, then RΨ(z, a) =
1

|Sz|
∑

s∈Sz
R(s, a), assuming a uniform distribution over

ground states within an abstract state.

3.2. An Idealized Fact-Based Agent (IFBA)

We conceptualize an Idealized Fact-Based Agent (IFBA)
that flawlessly leverages such abstractions.
Definition 3.2 (Ideal Fact Abstraction Ψ∗). The IFBA em-
ploys an ideal abstraction function Ψ∗ : S → ZF which es-
tablishes an ϵsim-approximate bisimulation with the ground
MDP G (Ferns et al., 2004). This implies a bound on the
difference between the optimal value functions in G and the
induced abstract MDP MΨ∗ :

∥V ∗
G − V ∗

MΨ∗ ◦Ψ∗∥∞ ≤
ϵsim

1− γ
(1)

where V ∗
MΨ∗ is the optimal value function for MΨ∗ , and

ϵsim ≥ 0 quantifies the maximum one-step deviation in re-
wards and discounted next-state distributions for states ag-
gregated by Ψ∗.

As we will discuss later, we would like it to be minimal,
achieving the sufficiency for near-optimal value representa-
tion (Eq. (1)) with the smallest possible fact set. This aligns
with the Information Bottleneck (IB) principle (Tishby et al.,
2000; Alemi et al., 2017), which seeks a compressed rep-
resentation zt = Ψ∗(st) of an input st that maximizes
information about a target variable (e.g., V ∗(st) or future
returns) while minimizing I(zt; st) (or a proxy like fact set
complexity).

The IFBA is assumed to dynamically maintain such an ab-
straction.
Definition 3.3 (Ideal Abstract World Model and Planner for
IFBA). The IFBA is endowed with:

1. A perfect abstract world model: Its internal model
M̂Ψ∗ is identical to the true abstract MDP MΨ∗ , im-
plying zero model error w.r.t. MΨ∗ .

2. An ϵplan-optimal planner: This planner computes
a policy π◦

MΨ∗ for MΨ∗ such that V ∗
MΨ∗ (z) −

V
π◦
MΨ∗

MΨ∗ (z) ≤ ϵplan for all z ∈ ZF , where ϵplan ≥ 0.

The policy executed by IFBA in G is πF (s) =
π◦
MΨ∗ (Ψ

∗(s)).

3

Improving LLM Agent Planning with In-Context Learning via Atomic Fact Augmentation and Lookahead Search

3.3. Performance Guarantees for Idealized Systems

We first establish a performance guarantee for the IFBA,
which operates with a perfect abstract model.

Theorem 3.4 (Performance of IFBA with Perfect Abstract
Model). Let πF be the policy derived by the Idealized Fact-
Based Agent (IFBA) as defined above. If the ideal fact
abstraction Ψ∗ establishes an ϵsim-approximate bisimulation
between G and MΨ∗ , and the planner for MΨ∗ is ϵplan-
optimal, then for any state s ∈ S:

V ∗
G (s)− V πF

G (s) ≤ 2ϵsim

1− γ
+ ϵplan (2)

Proof. We defer the proof to Section E

Performance with a Learned Abstract Model: In prac-
tice, an agent learns an approximate abstract model M̃Ψ =
(ZF ,A, T̃Ψ, R̃Ψ, γ) from data, based on an abstraction Ψ
(which itself has an associated ϵsim quality). Let πL be an
ϵplan-optimal policy for this learned model M̃Ψ. The value
loss is decomposed as:

V ∗
G (s)− V πL

G (s) = (V ∗
G (s)− V ∗

M̃Ψ
(Ψ(s)))︸ ︷︷ ︸

Term A

+ (3)

(V ∗
M̃Ψ

(Ψ(s))− V πL

M̃Ψ
(Ψ(s)))︸ ︷︷ ︸

Term B

+ (4)

(V πL

M̃Ψ
(Ψ(s))− V πL

G (s))︸ ︷︷ ︸
Term C

(5)

where V ∗
M̃Ψ

is the optimal value function in the learned

abstract model M̃Ψ.

• Term A (|V ∗
G − V ∗

M̃Ψ
|): This gap comprises two

parts: (1) the inherent loss from abstraction, |V ∗
G (s)−

V ∗
MΨ

(Ψ(s))| ≤ ϵsim
1−γ , and (2) the error in the

optimal value due to inaccuracies in the learned
model M̃Ψ compared to the true abstract model MΨ,
|V ∗

MΨ
(Ψ(s))− V ∗

M̃Ψ
(Ψ(s))|. This second part is typi-

cally bounded by C1
δmodel

(1−γ)2 , where δmodel represents a
composite one-step model error (in abstract transitions
and rewards) of M̃Ψ w.r.t. MΨ (Strehl et al., 2009;
Jiang et al., 2015). Thus, Term A ≲ ϵsim

1−γ + C1
δmodel

(1−γ)2 .

• Term B (V ∗
M̃Ψ
− V πL

M̃Ψ
): This is the planning error

within the agent’s learned model M̃Ψ, bounded by ϵplan.

• Term C (|V πL

M̃Ψ
− V πL

G |): This simulation er-
ror is |V πL

M̃Ψ
(Ψ(s)) − V πL

G (s)| ≤ |V πL

M̃Ψ
(Ψ(s)) −

V πL

MΨ
(Ψ(s))|+ |V πL

MΨ
(Ψ(s))− V πL

G (s)|. The first part
is bounded by C2

δmodel
(1−γ)2 (Simulation Lemma type re-

sult (Kearns & Singh, 2002)), and the second by ϵsim
1−γ

(abstraction quality for policy πL). Thus, Term C
≲ ϵsim

1−γ + C2
δmodel

(1−γ)2 .

Summing these bounds, the total value loss is:

V ∗
G (s)−V πL

G (s) ≲
2ϵsim

1− γ
+ϵplan+(C1+C2)

δmodel

(1− γ)2
(6)

This equation rigorously connects abstraction quality (ϵsim),
planning sub-optimality (ϵplan), and abstract model learning
error (δmodel) to overall performance. A key implication
is that if |ZF | ≪ |S|, achieving a small δmodel for M̃Ψ is
expected to be more sample efficient than learning a model
of G directly (Strehl et al., 2009).

3.4. Discussion: Connecting to LLM-Based Agents

This theoretical framework, while idealized, motivates our
LLM-based agent. The LLM’s role is to approximate key
components:

• LLM as Fact Extractor (fθ): This LLM component
approximates the abstraction function Ψ, by processing
observations and trajectories to produce a set of atomic
facts Ft. The quality, relevance, and minimality of
these facts are paramount. Well-chosen facts aim to
create an abstraction that is value-preserving, thereby
minimizing the abstraction error ϵsim. The goal is to
capture sufficient statistics about the ground state st
in Ft such that planning in the abstract space remains
effective.

• LLM as Latent World Model and Value Estimator
(hω): The planning LLM, when simulating transitions
and estimating values based on Ft and current obser-
vation ot, implicitly defines the learned abstract model
M̃Ψ. If the LLM can accurately predict the conse-
quences of actions and the utility of states given the
facts, δmodel will be small.

The core idea is that LLMs possess vast prior knowledge.
By providing them with specific, missing atomic facts de-
rived from experience, we aim to improve their effective ϵsim
and δmodel for the task at hand, leading to better ϵplan through
more accurate lookahead search. The online learning of
facts allows the agent to adapt and refine its “understanding”
(i.e., its abstract model) over time, purely through in-context
mechanisms. Minimality and relevance of facts are key for
focusing the LLM’s reasoning, preventing dilution of criti-
cal information within the context window and grounding
its generative capabilities on task-specific evidence rather
than solely relying on its vast but potentially general pre-
trained knowledge. Our method, described next, aims to be
a practical realization of these principles, using the recur-
sive lookahead search to operationalize planning within this
learned, fact-based abstract MDP.

4

Improving LLM Agent Planning with In-Context Learning via Atomic Fact Augmentation and Lookahead Search

Hole @ (2,3)Hole @ (1,1)Hole @ (3,0)

Atomic Facts

<latexit sha1_base64="1XLeelKWdnmrxzbytTsi3ii1cvk=">AAACJ3icbVBdSxtBFJ3Vtmq0bbSPvgwNxUht2C2ivrSIvvio0EQhG5a7k5tkyMzOMnNXDMv+G1/6V/pSaKXUR/9JJzEPfvTAwOGce7hzT5or6SgMb4OFxRcvXy0tr9RW116/eVtf3+g4U1iBbWGUsRcpOFQywzZJUniRWwSdKjxPx8dT//wSrZMm+0aTHHsahpkcSAHkpaT+9axpEtrhkMht/oXbLf6Jx8rn+5CUMeEVlY4wryr+kcdD0BrinXgEVHaqptnaTuqNsBXOwJ+TaE4abI7TpP4r7htRaMxIKHCuG4U59UqwJIXCqhYXDnMQYxhi19MMNLpeObuz4h+80ucDY/3LiM/Uh4kStHMTnfpJDTRyT72p+D+vW9DgoFfKLC8IM3G/aFAoToZPS+N9aVGQmngCwkr/Vy5GYEGQr7bmS4ienvycdD63or3W3tlu4/BoXscy22TvWZNFbJ8dshN2ytpMsGv2g/1mN8H34GfwJ/h7P7oQzDPv2CMEd/8AnCWkBw==</latexit>

Q(ot, ai) = r→ → ωstep + ε V̂ (o→)

<latexit sha1_base64="VuI6DIVg3l/PZh9qZaVuhEdmkS0=">AAAB8nicbVBNSwMxEJ2tX7V+VT16CRahgpRdkeqx4MVjC/YDtsuSTdM2NJssSVYoS3+GFw+KePXXePPfmLZ70NYHA4/3ZpiZFyWcaeO6305hY3Nre6e4W9rbPzg8Kh+fdLRMFaFtIrlUvQhrypmgbcMMp71EURxHnHajyf3c7z5RpZkUj2aa0CDGI8GGjGBjJb9VlaF7hXDoXobliltzF0DrxMtJBXI0w/JXfyBJGlNhCMda+56bmCDDyjDC6azUTzVNMJngEfUtFTimOsgWJ8/QhVUGaCiVLWHQQv09keFY62kc2c4Ym7Fe9ebif56fmuFdkDGRpIYKslw0TDkyEs3/RwOmKDF8agkmitlbERljhYmxKZVsCN7qy+ukc13z6rV666bSqOdxFOEMzqEKHtxCAx6gCW0gIOEZXuHNMc6L8+58LFsLTj5zCn/gfP4ABouPww==</latexit>

Q(o0, a0)

Latent World Model
<latexit sha1_base64="PukZi8Ifw+rcPjCadMYxQFhoQsQ=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BItQQcquSPVY8OKxBfsB22XJpmkbmk2WZFYoS3+GFw+KePXXePPfmLZ70NYHA4/3ZpiZFyWCG3Ddb6ewsbm1vVPcLe3tHxwelY9POkalmrI2VULpXkQME1yyNnAQrJdoRuJIsG40uZ/73SemDVfyEaYJC2IyknzIKQEr+a2qCt0rTELvMixX3Jq7AF4nXk4qKEczLH/1B4qmMZNABTHG99wEgoxo4FSwWamfGpYQOiEj5lsqScxMkC1OnuELqwzwUGlbEvBC/T2RkdiYaRzZzpjA2Kx6c/E/z09heBdkXCYpMEmXi4apwKDw/H884JpREFNLCNXc3orpmGhCwaZUsiF4qy+vk851zavX6q2bSqOex1FEZ+gcVZGHblEDPaAmaiOKFHpGr+jNAefFeXc+lq0FJ585RX/gfP4ACBCPxA==</latexit>

Q(o0, a1)

<latexit sha1_base64="qeIqZnhLr4aOWyFalsLWtIeTxM0=">AAAB8nicbVBNSwMxEJ31s9avqkcvwSJUkLJbpHosePHYgv2A7VKyabYNzSZLkhXK0p/hxYMiXv013vw3pu0etPXBwOO9GWbmhQln2rjut7OxubW9s1vYK+4fHB4dl05OO1qmitA2kVyqXog15UzQtmGG016iKI5DTrvh5H7ud5+o0kyKRzNNaBDjkWARI9hYyW9V5MC9RnhQuxqUym7VXQCtEy8nZcjRHJS++kNJ0pgKQzjW2vfcxAQZVoYRTmfFfqppgskEj6hvqcAx1UG2OHmGLq0yRJFUtoRBC/X3RIZjradxaDtjbMZ61ZuL/3l+aqK7IGMiSQ0VZLkoSjkyEs3/R0OmKDF8agkmitlbERljhYmxKRVtCN7qy+ukU6t69Wq9dVNu1PM4CnAOF1ABD26hAQ/QhDYQkPAMr/DmGOfFeXc+lq0bTj5zBn/gfP4ACZWPxQ==</latexit>

Q(o0, a2)
<latexit sha1_base64="uYqbuUw7VtL0rlkmnr+3MdPduhM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEWo8FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpgQ7cQbniVt0FyDrxclKBHM1B+as/jFkaoTRMUK17npsYP6PKcCZwVuqnGhPKJnSEPUsljVD72eLUGbmwypCEsbIlDVmovycyGmk9jQLbGVEz1qveXPzP66UmvPEzLpPUoGTLRWEqiInJ/G8y5AqZEVNLKFPc3krYmCrKjE2nZEPwVl9eJ+2rqler1u6vK41aHkcRzuAcLsGDOjTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzifP+cJjYc=</latexit>a0

<latexit sha1_base64="QnyWfjG8KxLxAuF9O9hPRESztuk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEWo8FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpgQ68QbniVt0FyDrxclKBHM1B+as/jFkaoTRMUK17npsYP6PKcCZwVuqnGhPKJnSEPUsljVD72eLUGbmwypCEsbIlDVmovycyGmk9jQLbGVEz1qveXPzP66UmvPEzLpPUoGTLRWEqiInJ/G8y5AqZEVNLKFPc3krYmCrKjE2nZEPwVl9eJ+2rqler1u6vK41aHkcRzuAcLsGDOjTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzifP+iNjYg=</latexit>a1

<latexit sha1_base64="RBC/HmTkgw3mDoZq7JgkU1KTkxQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKVI8FLx4r2g9oQ5lsN+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUUdaisYhVN0DNBJesZbgRrJsohlEgWCeY3M79zhNTmsfy0UwT5kc4kjzkFI2VHnBQG5QrbtVdgKwTLycVyNEclL/6w5imEZOGCtS657mJ8TNUhlPBZqV+qlmCdIIj1rNUYsS0ny1OnZELqwxJGCtb0pCF+nsiw0jraRTYzgjNWK96c/E/r5ea8MbPuExSwyRdLgpTQUxM5n+TIVeMGjG1BKni9lZCx6iQGptOyYbgrb68Ttq1qlev1u+vKo16HkcRzuAcLsGDa2jAHTShBRRG8Ayv8OYI58V5dz6WrQUnnzmFP3A+fwDqEY2J</latexit>a2

Figure 1: Illustration of LWM-Planner’s fact-augmented lookahead search. The agent begins from a current environment
observation o0 (left panel). Leveraging previously extracted Atomic Facts (e.g., Hole@(3,0)), LWM-Planner
executes a recursive lookahead search (right panel) to determine the optimal action. This search involves: (i) an LLM,
acting as a Latent World Model, simulating action sequences (ai) to predict subsequent latent states (o′) and immediate
rewards (r′), conditioned on the Atomic Facts; (ii) an LLM-based state-value estimator providing V̂ (o′) for states at
the search frontier, also conditioned on the Atomic Facts; and (iii) these simulated outcomes and value estimates are
then aggregated into Q-values using the formula Q(ot, ai) = r′ − λstep + γ V̂ (o′) , which ultimately guides action
selection from o0.

4. Method: LLM Agent with Atomic Fact
Augmentation and Lookahead Planning

Our proposed agent, the LLM-based World Model Planning
Agent (LWM-Planner), enhances its decision-making capa-
bilities through a synergistic combination of online atomic
fact learning and LLM-driven lookahead search. The over-
arching goal is to enable the agent to learn from its interac-
tive experiences entirely in-context, without any updates to
the underlying LLM weights, and to leverage this learned
knowledge to improve its planning and achieve more opti-
mal behavior. The agent’s architecture and operation can
be understood through two main interacting processes: the
dynamic management of atomic facts and the lookahead
planning mechanism that utilizes these facts. A high-level
summary of the agent’s operational cycle is provided in
Algorithm 1, detailed in Section D. The overarching goal is
to enable the agent to learn from its interactive experiences
entirely in-context and to employ the lookahead planning
mechanism that utilizes these facts to approximate optimal
actions (minimizing ϵplan via an accurate implicit model,
thereby reducing δmodel).

The LWM-Planner maintains a concise representation of its
world understanding and recent interactions. Core to its state
are a short-term interaction history (‘history‘), which is a

deque of recent observation-action pairs, and a longer-term,
distilled knowledge base in the form of an atomic fact set
(‘facts‘). These facts serve as the cornerstone of the agent’s
learned abstraction; they are intended to capture the most
salient, value-relevant aspects of the environment discovered
through experience. The set is therefore composed of textual
statements (e.g., “object X is on table Y,” “door Z is locked”)
that are crucial for task completion. These, along with
an environment description and a list of allowed actions,
provide the necessary context for the LLM components.

The process of learning and refining the atomic fact set is
central to the agent’s adaptability. This occurs primarily
at the end of each episode through a “reflection” phase.
After an episode concludes, the complete trajectory of ob-
servations, actions, rewards, and outcomes is provided to an
LLM. This LLM is tasked with identifying and generating
“minimal new atomic facts” that were not previously known
(i.e., not in the current factsset) but are deemed critical
for better predicting state values or rewards in the future.
The aim is to distill the most salient pieces of information
from the recent experience that, if known earlier, could have
led to improved decision-making. This directly addresses
the goal of minimizing ϵsim by enriching the abstract state
representation zt = (ot, Ft) with information that better
distinguishes states with different true values or optimal

5

Improving LLM Agent Planning with In-Context Learning via Atomic Fact Augmentation and Lookahead Search

actions. These newly extracted facts are then added to the
factsdeque. To maintain the conciseness and relevance of
this knowledge base, an optional fact compression step can
be performed. Here, an LLM reviews the entire set of cur-
rent facts and attempts to eliminate redundancies or overly
specific information, producing a more compact yet informa-
tionally rich set of facts. This evolving factsset serves as
a dynamically updated, experience-grounded augmentation
for all subsequent LLM reasoning during planning.

Decision-making in LWM-Planner is orchestrated by recur-
sive lookahead search. This search is bounded by a config-
urable depth (e.g., d = 3) and branching factor (e.g., b = 4).
To ensure deterministic planning behavior within a single
search instance, all LLM calls during this phase operate with
a temperature of zero. A small step penalty is also incorpo-
rated to favor more efficient solutions. The lookahead search
relies on three specialized LLM-driven functionalities, in-
voked via structured function calls: propose_actions
for suggesting likely candidate actions from a given state;
simulate_step , which acts as the latent world model
T̃Ψ, R̃Ψ. Conditioned on zt = (ot, Ft) and a proposed ac-
tion ai, it predicts the next (potentially latent) observation o′,
immediate reward r′, and termination status. The accuracy
of this LLM-based simulation, enhanced by the atomic facts,
is directly tied to minimizing δmodel. Finally, estimate_-
value approximates the value function V̂M̃Ψ

of the learned
abstract MDP. It assesses the long-term utility of states, par-
ticularly those at the frontier of the search (leaf nodes or
terminal states). Facts also help ground this estimation (e.g.,
proximity to a known goal or hazard fact).

The planning process begins at the current observation ot.
First, the action proposal LLM, conditioned on ot, the inter-
action history, and the current atomic facts, suggests a set of
candidate actions. For each proposed action ai, an estimated
Q-value, Q(ot, ai), is computed. This computation involves
invoking the simulation LLM (again, conditioned on the
current state, action, history, and facts) to predict the im-
mediate reward r′ and next (potentially latent) observation
o′. If o′ is a terminal state or the maximum search depth
is reached, the value estimation LLM is called to predict
the future cumulative reward from o′. Otherwise, the search
recurses from o′ with decremented depth. The Q-value is
then a combination of the immediate simulated reward and
the discounted value of the subsequent state, plus any step
penalties Q(ot, ai) = r′−λstep + γ V̂ (o′). After evaluating
all initial candidate actions, the action yielding the highest
Q-value is selected for execution in the environment. To
manage computational overhead during a single planning
phase, the results of these LLM calls (proposal, simulation,
and value estimation) are memoized based on their inputs.

This architecture allows the LWM-Planner to systemati-
cally explore potential future trajectories by leveraging the

LLM’s generative and predictive power. Crucially, the qual-
ity and relevance of the atomic facts continuously improve
the LLM’s ability to simulate outcomes and evaluate states,
leading to an adaptive agent that learns and refines its be-
havior purely through in-context mechanisms.

5. Experiments
We evaluate our LWM-Planner to assess its ability to learn
from experience and improve its decision-making accuracy
and task performance over time. The focus is on demon-
strating that the online, in-context learning via atomic fact
augmentation leads to more optimal behavior, aligning with
the theoretical desiderata of minimizing ϵsim, δmodel, and
ϵplan.

Benchmark Environments: We use three different diverse
environment domains, designed to mirror useful properties
for computer use agents. They are procedurally generated,
allowing a near limitless amount of different environments.
First, we create a procedurally generated text version of
FrozenLake (Brockman et al., 2016), which serves as an
abstraction for computer agents navigating interfaces with
potential ’dead ends’ or ’broken links’ (holes) while seeking
a goal state. Learning hole locations is analogous to an agent
learning to avoid non-functional UI elements or outdated
URLs to find efficient paths. We can alter the probability
that tiles are holes (h) and ensure each board is solvable.
Moreover, we use standard ALFWorld environments (Shrid-
har et al., 2020b). These are text environments that parallel
complex, multi-step tasks often performed on computers,
such as managing files, interacting with applications through
structured commands, or navigating information systems.
Each ALFWorld task requires reasoning over sequences
of actions and understanding object states, mirroring chal-
lenges like finding specific information in a help system
or executing a precise workflow in a software application.
Learning object locations and states is akin to a computer
agent learning where tools or files are located or how UI
elements respond to interaction. We randomly sample three
environments in the main paper, with more in the appendix.
Furthermore, we benchmark against CrafterMini, a proce-
durally generated mini version of Crafter (Hafner, 2021).
This is a 2D world demanding resource management and
sequential tool crafting, mirroring computer use scenarios
where an agent must learn a specific workflow or a ’more
efficient way to do X’ by discovering a sequence of opera-
tions, where later steps depend on the successful completion
of earlier ones (e.g., compiling software after setting up
the correct build environment and dependencies). Learn-
ing the crafting dependencies is akin to a computer agent
learning the correct sequence of commands or UI interac-
tions to achieve a complex digital outcome. The goal is to
craft an iron pickaxe, requiring prior crafting and resource

6

Improving LLM Agent Planning with In-Context Learning via Atomic Fact Augmentation and Lookahead Search

Table 1: Normalised cumulative return (higher better) and steps per success (lower better); mean± 95% CI, for each
benchmark method across each environment. LWM-Planner performs the best across all environments. Results are averaged
over ten random seeds. Normalised cumulative return is the cumulative return normalised to be between 0 and 100, where 0
corresponds to a Random policy and 100 corresponds to the expert, or here the highest on average being LWM-Planner.

Method (metric) TextFrozenLake (4×4; h=0.9) CrafterMini (5×5) ALFWORLD-A ALFWORLD-B ALFWORLD-C

LWM-Planner (Cum. return norm ↑) 100.00±18.24 100.00±10.23 100.00±44.68 100.00±52.92 100.00±42.90
(Steps/Success ↓) 6.00±0.00 46.50±7.32 8.44±1.46 7.56±0.97 7.55±1.10

ReAct + FEC (Cum. return norm ↑) 89.62±10.90 99.86±12.63 22.03±11.51 67.72±28.43 54.36±19.04
(Steps/Success ↓) – 41.35±5.72 14.55±12.27 5.75±2.87 9.35±5.35

ReAct (Cum. return norm ↑) −165.65± 30.04 86.73±13.01 59.06±1.73 55.92±1.98 64.10±1.93
(Steps/Success ↓) – 50.70±5.47 24.70±0.96 23.80±1.29 25.05±0.52

Reflexion (Cum. return norm ↑) 16.91±4.29 85.64±11.71 51.56±0.00 48.06±1.95 58.12±1.97
(Steps/Success ↓) 23.20±3.97 80.05±39.46 25.67±0.77 26.19±0.77 25.94±0.95

Random (Cum. return norm ↑) 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
(Steps/Success ↓) – – – – –

collection. We detail all environments in Section F.

Benchmark Methods: We seek to provide competitive
benchmarks; therefore, we compare against ReAct (Yao
et al., 2023), reasoning then acting, which observes the
current observation, interaction history, and the environment
description. Building on top of ReAct, we compare with
Reflexion (Shinn et al., 2023), which maintains a buffer of
previously learned verbal lessons on how to act better that
is appended to the end of each episode, and is included in
the agent’s prompt. Moreover, we compare with an ablation
of the method ReAct + FEC, which is a ReAct agent with
Fact Extraction and Compression as done in LWM-Planner,
without the tree search, we also compare with our method
of LWM-Planner. Lastly, we evaluate a Random policy.
We provide full benchmark method details in Section G.

Evaluation: We run each LLM Agent method for 300 envi-
ronment steps unless otherwise noted, tracking episode re-
turn and the number of steps taken for each episode. Specifi-
cally after 300 steps, we compute the cumulative return/total
reward (sum of returns up to 300 steps)—and repeat this
for three random seed runs for each result with their 95%
confidence intervals throughout. Moreover, we normalize
the cumulative return following the standard RL normaliza-
tion (Yu et al., 2020)—normalized to be between 0 and 100,
where a score 0 is given by the random policy and a score of
100 by an expert, which is the highest benchmark method
here, being LWM-Planner. Moreover, we provide further
experimental setup and evaluation details in Section H.

5.1. Main Results

We evaluated all the LLM benchmark methods across all
environments and tabulate the results in Table 1. LWM-
Planner achieves a high normalized cumulative return on all
environments. Specifically LWM-Planner can learn near-
optimal behaviour on environments, and solve the environ-

ments in the near minimal number of steps needed to solve
them. This is in comparison with non-online learning meth-
ods such as ReAct or Reflexion, which have to explore
within an environment to solve it, solving it after a larger
number of environment steps. The ReAct + FEC ablation
shows that fact learning itself provides a benefit, but the full
LWM-Planner with lookahead search further improves per-
formance, indicating the value of planning with the learned
facts.

5.2. Insight Experiments

In the following, we gain insight into why LWM-Planner
outperforms Reflexion and ReAct.

How does LWM-Planner with its atomic fact learn-
ing lead to a higher cumulative return over time com-
pared to baselines? To investigate why LWM-Planner
achieves a higher normalized cumulative return, as seen in
Table 1, we can qualitatively investigate the facts that it
learns throughout its process. Specifically on TextFrozen-
Lake (4× 4;h = 0.9), it learns the hole locations through
trial and error initially, as a hole terminates an episode, then
during its fact extraction stage it self extracts facts that if it
had known would have improved its state value future esti-
mation ability, which is the extraction of the atomic concise
facts of where the holes in the state are, such that it can then
avoid these. We provide detailed facts that are retrieved as a
case study in Section I.

Moreover, while capable, ReAct struggled with long-
horizon planning and adapting to subtle but critical state
changes that weren’t immediately obvious from the current
observation alone. Whereas, Reflexion, showed learning
by refining its high-level strategy. However, its reflections
were often less granular than the atomic facts used by LWM-
Planner, making it harder for the LLM to directly use them
for precise simulation during lookahead. Such benchmark

7

Improving LLM Agent Planning with In-Context Learning via Atomic Fact Augmentation and Lookahead Search

Table 2: Comparison of increasing environment state-action space. Normalised cumulative return (higher better) and
steps per success (lower better); mean± 95% CI, for each benchmark method across each environment. LWM-Planner
performs the best across all environments. Results are averaged over three random seeds. Normalised cumulative return is
the cumulative return normalized to be between 0 and 100, where 0 corresponds to a Random policy, and 100 corresponds to
the the expert, or here the highest on average being LWM-Planner.

Method (metric) TextFrozenLake (4×4; h=0.9) TextFrozenLake (6×6; h=9) TextFrozenLake (8×8; h=5)

LWM-Planner (Cum. return norm ↑) 100.00±46.34 100.00±30.91 100.00±90.33
(Steps/Success ↓) 6.00±0.00 13.67±11.47 42.83±80.65

ReAct + FEC (Cum. return norm ↑) 85.90±31.81 90.87±22.45 18.18±156.46
(Steps/Success ↓) 6.00±0.00 77.33±199.12 –

ReAct (Cum. return norm ↑) −114.10± 11.03 −279.57± 8.57 −336.36± 22.58
(Steps/Success ↓) – – –

Reflexion (Cum. return norm ↑) 17.31±13.16 47.83±14.12 −212.12± 104.31
(Steps/Success ↓) 23.33±7.99 – –

Random (Cum. return norm ↑) 0.00±0.00 0.00±0.00 0.00±0.00
(Steps/Success ↓) – – –

trajectories and memories are outlined in Section I.

Can LWM-Planner scale better with increasing state-
action space? To investigate this we used our procedurally
generated TextFrozenLake environments to generate envi-
ronments of increasing board size, and hence state-action
space. We tabulate these results for all the benchmarks in
Table 2. Interestingly, LWM-Planner achieves the highest
normalised cumulative return, and crucially, as the state-
action space increases, the other baselines degrade; whereas
LWM-Planner is still able to online-learn and solve the envi-
ronment. This verifies that the combination of both having
the fact extraction and compression, plus the ability to for-
ward plan, is crucial, and provides an effective in-context
online learning method to learn the minimal fact representa-
tions of the environment, in this case, where the holes are to
solve the environment optimally.

6. Conclusion
We introduced an LLM agent framework, the LWM-Planner,
that improves its planning and decision-making capabili-
ties through online, in-context learning. The agent extracts
atomic facts from its episodic experiences and uses these
facts to augment the prompts for its core LLM-driven com-
ponents: action proposal, latent world model simulation, and
state-value estimation. Planning is conducted via a recursive
lookahead search that leverages these LLM functionalities.

Our approach allows the agent to distill crucial knowledge
from its interactions and apply it to future reasoning, leading
to more accurate simulations and value assessments within
its lookahead search. This occurs without any LLM fine-
tuning, relying entirely on the power of in-context learning
augmented by dynamically generated facts. We provided

a theoretical motivation for this fact-based approach, link-
ing agent performance to the quality of the learned factual
abstraction and the LLM’s simulation fidelity.

Empirical evaluations on ALFWorld tasks suggest that the
LWM-Planner can effectively learn from experience, lead-
ing to improved success rates and more optimal behavior
over time compared to baselines that lack this focused fact-
learning mechanism or deep lookahead. The key lies in
providing the LLM with the specific, missing pieces of
information (atomic facts) it needs to better ground its pow-
erful generative and reasoning capabilities in the context of
the current task.

Future work includes exploring more sophisticated fact ex-
traction and management techniques, such as leveraging
insights from causal discovery to identify truly influential
facts; dynamically adjusting search depth based on task
complexity or uncertainty; and investigating methods for
the agent to explicitly identify when its factual knowledge
is insufficient and trigger targeted exploration. The LWM-
Planner represents a step towards more robust, adaptive, and
experience-grounded LLM agents for complex sequential
decision-making.

Acknowledgements
We extend our gratitude to the anonymous reviewers, area
and program chairs, and members of the van der Schaar
lab for their valuable feedback and suggestions. SH, ML &
TP gratefully acknowledge the sponsorship and support of
AstraZeneca. This work was supported by Azure sponsor-
ship credits granted by Microsoft’s AI for Good Research
Lab and by Microsoft’s Accelerate Foundation Models Aca-
demic Research Initiative.

8

Improving LLM Agent Planning with In-Context Learning via Atomic Fact Augmentation and Lookahead Search

References
Abel, D., Umbanhowar, N., Khetarpal, K., Arumugam, D.,

Precup, D., and Littman, M. Value preserving state-action
abstractions. In International Conference on Artificial
Intelligence and Statistics, pp. 1639–1650. PMLR, 2020.

Alemi, A. A., Fischer, I., Dillon, J. V., and Murphy,
K. Deep variational information bottleneck. In In-
ternational Conference on Learning Representations,
2017. URL https://openreview.net/forum?
id=HyxQzBceg.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym.
arXiv preprint arXiv:1606.01540, 2016.

Chae, H., Kim, N., Ong, K. T.-i., Gwak, M., Song, G., Kim,
J., Kim, S., Lee, D., and Yeo, J. Web agents with world
models: Learning and leveraging environment dynamics
in web navigation. arXiv preprint arXiv:2410.13232,
2024.

Dong, Q., Li, L., Dai, D., Zheng, C., Ma, J., Li, R., Xia,
H., Xu, J., Wu, Z., Chang, B., et al. A survey on in-
context learning. In Proceedings of the 2024 Conference
on Empirical Methods in Natural Language Processing,
pp. 1107–1128, 2024.

Ferns, N., Panangaden, P., and Precup, D. Metrics for finite
markov decision processes. In UAI, volume 4, pp. 162–
169, 2004.

Gallegos, I. O., Rossi, R. A., Barrow, J., Tanjim, M. M.,
Kim, S., Dernoncourt, F., Yu, T., Zhang, R., and Ahmed,
N. K. Bias and fairness in large language models: A
survey. Computational Linguistics, 50(3):1097–1179,
2024.

Hafner, D. Benchmarking the spectrum of agent capabilities.
arXiv preprint arXiv:2109.06780, 2021.

Hager, P., Jungmann, F., Holland, R., Bhagat, K., Hubrecht,
I., Knauer, M., Vielhauer, J., Makowski, M., Braren, R.,
Kaissis, G., et al. Evaluation and mitigation of the lim-
itations of large language models in clinical decision-
making. Nature medicine, 30(9):2613–2622, 2024.

Hao, S., Gu, Y., Ma, H., Hong, J. J., Wang, Z., Wang,
D. Z., and Hu, Z. Reasoning with language model is
planning with world model. In The 2023 Conference
on Empirical Methods in Natural Language Processing,
2023. URL https://openreview.net/forum?
id=VTWWvYtF1R.

Holt, S., Liu, T., and van der Schaar, M. Automati-
cally learning hybrid digital twins of dynamical systems.

In The Thirty-eighth Annual Conference on Neural In-
formation Processing Systems, 2024a. URL https:
//openreview.net/forum?id=SOsiObSdU2.

Holt, S., Qian, Z., Liu, T., Weatherall, J., and van der
Schaar, M. Data-driven discovery of dynamical sys-
tems in pharmacology using large language models.
In The Thirty-eighth Annual Conference on Neural In-
formation Processing Systems, 2024b. URL https:
//openreview.net/forum?id=KIrZmlTA92.

Holt, S., Luyten, M. R., Berthon, A., and van der Schaar,
M. G-sim: Generative simulations with large lan-
guage models and gradient-free calibration. In Forty-
second International Conference on Machine Learning,
2025. URL https://openreview.net/forum?
id=PvkO6rIixC.

Jiang, N., Kulesza, A., and Singh, S. Abstraction se-
lection in model-based reinforcement learning. In
Bach, F. and Blei, D. (eds.), Proceedings of the 32nd
International Conference on Machine Learning, vol-
ume 37 of Proceedings of Machine Learning Research,
pp. 179–188, Lille, France, 07–09 Jul 2015. PMLR.
URL https://proceedings.mlr.press/v37/
jiang15.html.

Kacprzyk, K., Holt, S., Berrevoets, J., Qian, Z., and van der
Schaar, M. ODE discovery for longitudinal heteroge-
neous treatment effects inference. In The Twelfth In-
ternational Conference on Learning Representations,
2024. URL https://openreview.net/forum?
id=pxI5IPeWgW.

Kaelbling, L. P., Littman, M. L., and Cassandra, A. R. Plan-
ning and acting in partially observable stochastic domains.
Artificial Intelligence, 101(1):99–134, 1998. ISSN 0004-
3702. doi: 10.1016/S0004-3702(98)00023-X.

Kagaya, T., Yuan, T. J., Lou, Y., Karlekar, J., Pranata, S., Ki-
nose, A., Oguri, K., Wick, F., and You, Y. RAP: Retrieval-
augmented planning with contextual memory for multi-
modal LLM agents. In NeurIPS 2024 Workshop on Open-
World Agents, 2024. URL https://openreview.
net/forum?id=Xf49Dpxuox.

Kearns, M. and Singh, S. Near-optimal reinforcement learn-
ing in polynomial time. Machine learning, 49:209–232,
2002.

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V.,
Goyal, N., Küttler, H., Lewis, M., tau Yih, W., Rock-
täschel, T., Riedel, S., and Kiela, D. Retrieval-augmented
generation for knowledge-intensive nlp tasks, 2021. URL
https://arxiv.org/abs/2005.11401.

9

https://openreview.net/forum?id=HyxQzBceg
https://openreview.net/forum?id=HyxQzBceg
https://openreview.net/forum?id=VTWWvYtF1R
https://openreview.net/forum?id=VTWWvYtF1R
https://openreview.net/forum?id=SOsiObSdU2
https://openreview.net/forum?id=SOsiObSdU2
https://openreview.net/forum?id=KIrZmlTA92
https://openreview.net/forum?id=KIrZmlTA92
https://openreview.net/forum?id=PvkO6rIixC
https://openreview.net/forum?id=PvkO6rIixC
https://proceedings.mlr.press/v37/jiang15.html
https://proceedings.mlr.press/v37/jiang15.html
https://openreview.net/forum?id=pxI5IPeWgW
https://openreview.net/forum?id=pxI5IPeWgW
https://openreview.net/forum?id=Xf49Dpxuox
https://openreview.net/forum?id=Xf49Dpxuox
https://arxiv.org/abs/2005.11401

Improving LLM Agent Planning with In-Context Learning via Atomic Fact Augmentation and Lookahead Search

Li, L., Walsh, T. J., and Littman, M. L. To-
wards a unified theory of state abstraction for
mdps. In International Symposium on Artifi-
cial Intelligence and Mathematics, AI&Math 2006,
Fort Lauderdale, Florida, USA, January 4-6, 2006,
2006. URL http://anytime.cs.umass.edu/
aimath06/proceedings/P21.pdf.

Liu, T. J., Boullé, N., Sarfati, R., and Earls, C. J. Llms
learn governing principles of dynamical systems, reveal-
ing an in-context neural scaling law. arXiv preprint
arXiv:2402.00795, 2024a.

Liu, Z., Hu, H., Zhang, S., Guo, H., Ke, S., Liu, B., and
Wang, Z. Reason for future, act for now: A principled
framework for autonomous llm agents with provable sam-
ple efficiency, 2024b. URL https://arxiv.org/
abs/2309.17382.

Pearl, J. Causality. Cambridge University Press, 2 edition,
2009.

Pouplin, T., Sun, H., Holt, S., and Van der Schaar, M.
Retrieval-augmented thought process as sequential de-
cision making. arXiv e-prints, pp. arXiv–2402, 2024.

Prystawski, B., Li, M. Y., and Goodman, N. D. Why think
step by step? reasoning emerges from the locality of
experience, 2023. URL https://arxiv.org/abs/
2304.03843.

Ravindran, B. and Barto, A. G. An algebraic approach to
abstraction in reinforcement learning. PhD thesis, Uni-
versity of Massachusetts Amherst, 2004. AAI3118325.

Shinn, N., Cassano, F., Gopinath, A., Narasimhan, K., and
Yao, S. Reflexion: Language agents with verbal rein-
forcement learning. Advances in Neural Information
Processing Systems, 36:8634–8652, 2023.

Shridhar, M., Thomason, J., Gordon, D., Bisk, Y., Han,
W., Mottaghi, R., Zettlemoyer, L., and Fox, D. Alfred:
A benchmark for interpreting grounded instructions for
everyday tasks. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pp.
10740–10749, 2020a.

Shridhar, M., Yuan, X., Côté, M.-A., Bisk, Y., Trischler,
A., and Hausknecht, M. Alfworld: Aligning text and
embodied environments for interactive learning. arXiv
preprint arXiv:2010.03768, 2020b.

Strehl, A. L., Li, L., and Littman, M. L. Reinforcement
learning in finite mdps: Pac analysis. J. Mach. Learn.
Res., 10:2413–2444, December 2009. ISSN 1532-4435.

Sutton, R. S. Integrated architectures for learning, plan-
ning, and reacting based on approximating dynamic pro-
gramming. In Proceedings of the seventh international
conference on machine learning, pp. 216–224, 1990.

Sutton, R. S. and Barto, A. G. Reinforcement Learning: An
Introduction. The MIT Press, second edition, 2018.

Tishby, N., Pereira, F. C., and Bialek, W. The informa-
tion bottleneck method. arXiv preprint physics/0004057,
2000.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi,
E., Le, Q. V., Zhou, D., et al. Chain-of-thought prompting
elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837,
2022.

Xie, Y., Yu, C., Zhu, T., Bai, J., Gong, Z., and Soh, H.
Translating natural language to planning goals with large-
language models, 2023. URL https://arxiv.org/
abs/2302.05128.

Yang, K., Liu, Y., Chaudhary, S., Fakoor, R., Chaudhari, P.,
Karypis, G., and Rangwala, H. Agentoccam: A simple
yet strong baseline for llm-based web agents, 2025. URL
https://arxiv.org/abs/2410.13825.

Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan,
K., and Cao, Y. React: Synergizing reasoning and act-
ing in language models. In International Conference on
Learning Representations (ICLR), 2023.

Yu, T., Thomas, G., Yu, L., Ermon, S., Zou, J. Y., Levine, S.,
Finn, C., and Ma, T. Mopo: Model-based offline policy
optimization. Advances in Neural Information Processing
Systems, 33:14129–14142, 2020.

10

http://anytime.cs.umass.edu/aimath06/proceedings/P21.pdf
http://anytime.cs.umass.edu/aimath06/proceedings/P21.pdf
https://arxiv.org/abs/2309.17382
https://arxiv.org/abs/2309.17382
https://arxiv.org/abs/2304.03843
https://arxiv.org/abs/2304.03843
https://arxiv.org/abs/2302.05128
https://arxiv.org/abs/2302.05128
https://arxiv.org/abs/2410.13825

Improving LLM Agent Planning with In-Context Learning via Atomic Fact Augmentation and Lookahead Search

Appendix

Table of Contents
A Extended Related Work 11

B Prompt Structures 11
B.1 Fact Extractor LLM Prompts (fθ) . 12

B.2 Planner LLM Prompts (gϕ) . 14

C Conceptual Details of LLM Component Prompts 17
C.1 Fact Elicitation and Memory Refinement LLM (ΨLLM) . 17

C.2 Planner LLM (gϕ) Components for Lookahead Search . 18

D Algorithm Details and Reproducibility 20

E Theory 26
E.1 Theorem: Performance of Idealized Fact-Based Agent (IFBA) with Perfect Abstract Model 27

E.2 Further Theoretical Considerations . 33

F Benchmark Environments Details 62
F.1 TextFrozenLake . 63

F.2 ALFWorld . 65

F.3 CrafterMini . 69

G Benchmark Method Implementation Details 73
G.1 Random Agent . 76

G.2 ReAct Agent . 76

G.3 Reflexion Agent . 77

G.4 ReAct + FEC Agent (Ablation) . 78

G.5 LWM-Planner (Our Method) . 80

H Evaluation Details 83

I Case Study: LWM-Planner on TextFrozenLake (4x4) 86

J Additional Results 108
J.1 ALFWorld Full Results . 108

J.2 Ablation Study - LWM-Planner Variants . 113

J.3 Main Table Results Un-Normalized . 115

K Discussion of Limitations 116
K.1 Fact Management and Quality . 117

K.2 Planning and Simulation . 119

K.3 In-Context Learning Constraints . 120

K.4 Theoretical Framework and Assumptions . 121

K.5 Broader Considerations and Future Work . 122

L Ethical Considerations and Broader Impact 124

11

Improving LLM Agent Planning with In-Context Learning via Atomic Fact Augmentation and Lookahead Search

L.1 Ethical Considerations . 126

L.2 Broader Impact . 127

12

Improving LLM Agent Planning with In-Context Learning via Atomic Fact Augmentation and Lookahead Search

A. Extended Related Work
Our work builds upon several lines of research in LLM-based agents, model-based reinforcement learning, and the use of
external knowledge for planning. The related work in the following extends that given in the main paper.

LLM Agents Early LLM agents like ReAct (Yao et al., 2023) introduced the concept of interleaving reasoning (thought)
and action generation. Reflexion (Shinn et al., 2023) extended this by incorporating self-reflection, where an LLM analyzes
past failures to generate textual feedback for future trials. This episodic learning is akin to our fact extraction, but Reflexion
focuses on high-level advice rather than structured atomic facts for a world model. Many agents operate in a model-free
manner or rely heavily on in-context exemplars from fixed datasets.

LLM-Based Planning and World Models Several approaches have explored using LLMs for planning. Some use LLMs
to score or propose actions within classical search algorithms like Monte-Carlo Tree Search (MCTS) (Hao et al., 2023;
Kagaya et al., 2024; Liu et al., 2024b). For instance, Retrieval-Augmented Planning (RAP) (Kagaya et al., 2024; Pouplin
et al., 2024) retrieves full past trajectories to inform MCTS, often requiring environment interaction for tree expansion.
Other works like (Chae et al., 2024) use LLMs to build explicit, but often one-step, world models that predict state transitions
or webpage changes. (Xie et al., 2023) use LLMs to translate natural language goals into formal planning problems. Our
approach differs by using the LLM itself as a latent world model for multi-step simulation during lookahead, conditioned on
dynamically extracted atomic facts, rather than just retrieving raw trajectories or learning a separate explicit model. The idea
of an LLM as a “simulator” has been explored, e.g., for few-shot generation (Prystawski et al., 2023), but its integration with
online fact-based learning for improved planning is a novel aspect of our work.

A complementary research direction investigates using LLMs not just as simulators, but as architects for designing them.
Frameworks such as G-Sim use an LLM’s reasoning to propose a simulator’s causal structure, which is then calibrated with
empirical data (Holt et al., 2025). This methodology of using LLMs for automated model discovery has been effectively
applied to discover interpretable models of dynamical systems in fields such as pharmacology (Holt et al., 2024b) and to
create hybrid digital twins by having LLMs propose and optimize composite mechanistic and neural models (Holt et al.,
2024a). This contrasts with our work, where the LLM functions directly as the simulation engine, grounded by distilled
facts from experience rather than by designing a separate model structure. The idea that LLMs can intrinsically model
dynamical systems has also been explored, showing they can learn and extrapolate governing physical principles purely
from in-context time series data (Liu et al., 2024a).

Dyna-Style Architectures and Fact-Based RL Our method is inspired by Dyna-style reinforcement learning (Sutton,
1990; Sutton & Barto, 2018), where an agent learns a model of the world from real interactions and then uses this model to
generate simulated experiences for planning. In our case, the “model” is implicitly represented by the set of atomic facts
combined with the LLM’s inherent simulation capabilities. The extraction of facts from trajectories is analogous to model
learning, and the lookahead search is planning with this model. While traditional Dyna uses tabular or parametric models,
we leverage the LLM’s ability to reason over textual facts. The concept of using facts or symbolic knowledge in RL is not
new (Abel et al., 2020), including outside the LLM domain, for instance, through the discovery of ODEs for treatment effect
inference (Kacprzyk et al., 2024). Our integration of LLM-driven simulation with online atomic fact extraction brings this
paradigm into the modern LLM agent landscape.

Knowledge Augmentation for LLMs Retrieval-Augmented Generation (RAG) (Lewis et al., 2021) is a common paradigm
for providing LLMs with external knowledge. Our fact extraction and augmentation mechanism can be seen as a specialized
form of RAG where the “retrieved” knowledge (atomic facts) is actively generated and refined from the agent’s own
experience rather than drawn from a static corpus. This makes the knowledge highly task-specific and current, directly
addressing the information needs identified through interaction, rather than relying on potentially less relevant or outdated
general knowledge.

Our work distinguishes itself by the tight integration of online atomic fact learning from episodic experience with an
LLM-driven, multi-step lookahead planner where the LLM serves as both a latent world model and value function, all
operating in-context without weight updates. This focus on distilled, symbolic knowledge (atomic facts) aims to provide a
more structured and efficient way for the LLM to learn from experience compared to methods relying on raw trajectory
retrieval or general textual reflections.

13

Improving LLM Agent Planning with In-Context Learning via Atomic Fact Augmentation and Lookahead Search

B. Prompt Structures
This section provides the core prompt structures employed by LWM-Planner’s LLM components. These conceptual prompts
are dynamically populated at runtime with specific content such as environment descriptions ({{env_description_-
str}}), the current set of atomic facts ({{current_facts_list_str}}), the current observation ({{current_-
observation_str}}), and relevant interaction history ({{history_lines_str}}). All LLM interactions leverage
a structured function-calling interface. The prompts guide the LLM to produce a “thought” (chain-of-thought reasoning)
and then invoke a specified function with the relevant arguments, following Wei et al. (2022).

B.1. Fact Extractor LLM Prompts (fθ)

Invoked post-episode to extract new atomic facts and refine the fact memory. These LLM calls use a temperature of 0.0 for
deterministic fact processing.

B.1.1. FACT ELICITATION FROM TRAJECTORY (FACT_EXTRACTION)
Fact Elicitation Prompt:

SYSTEM: You are an expert agent.

USER: You are a LLM fact extraction agent. Operating in the following environment
defined below. Your task is to extract atomic facts that you did not know already to
help with predicting the next state value / next reward, such that if you had this
fact you would have improved your prediction for the next state value, when being a
world model (that is be able to complete the task optimally in the minimum number of
steps, therefore extract key information that helps you).

ENVIRONMENT DESCRIPTION:

{{ env_description_str }}

episode_trajectory_summary_str // This includes: Outcome: episode_outcome_str
(Total Reward: ...) // And a sequence like: // "1. Obs: S00 | Act: right |
Reward: 0.0 | Next_Obs: S01 // 2. Obs: S01 | Act: down | Reward: -1.0 | Next_-
Obs: S11 (Hole)"

We already know and have the following facts (ensure you do not duplicate them) (at
beginning of episode):

{{ current_facts_list_str }}

// e.g., ["hole@(1,1)", "object_A_is_on_table_B"]

Now respond with minimal new atomic facts (at beginning of episode) that you did not
already know, for the rest of the states assume you already know them. Make facts
as concise as possible. Optimize them for other agents reading and decision making
given a current state. Never duplicate the facts if they already exist within our
following fact set. Do not include any other text or reasoning, just the facts. If
no new facts just return empty string. Use function "fact_extraction" to do this now.

Function Call: fact_extraction Arguments: "thought": (string) Your reasoning
process for identifying these new facts. "new_facts": (list of strings) The list
of newly extracted atomic facts. If no new critical facts are found, provide an empty
list. Example: ["hole_at(1,1)", "goal_at(3,3)"]

14

Improving LLM Agent Planning with In-Context Learning via Atomic Fact Augmentation and Lookahead Search

B.1.2. (OPTIONAL) FACT MEMORY COMPRESSION AND REFINEMENT (FACT_REDUNDANCY_REMOVER)
Fact Memory Compression Prompt:

SYSTEM: You are an expert agent.

USER: Remove any redundant facts that are already included in the list of all facts
given to you. You will also always be given the environment description, therefore
you can use that to help you remove any redundant facts. Always keep all exhaustive
factual knowledge, just remove any duplicate facts, or redundant information already
contained within the environment description. You optimize the facts so they can be
read by another LLM agent using them for being a world model of the environment (where
the agent has to simulate given a state,action to predict the next state, next reward
and terminal state). Remove any redundancy, otherwise copy over the existing facts
verbatim.

ENVIRONMENT DESCRIPTION:

{{ env_description_str }}

Facts (at beginning of episode):

{{ current_facts_list_for_compression_str }}

// e.g., ["hole_at(1,1)", "object_A_is_on_table_B", "hole_at(row=1,col=1)"]

List of all facts (at beginning of episode) that you did not know already (not
contained within the environment description) to help with predicting the next state
value / next reward, such that if you had this fact you would have improved your
prediction for the next state value, when being a world model. Optimize them for
other agents reading and decision making given a current state. Use function "fact_-
redundancy_remover" to do this now.

Function Call: fact_redundancy_remover Arguments: "thought": (string) Your
reasoning for the compression and refinement decisions. "all_facts": (list of
strings) The refined, concise list of essential atomic facts.

15

Improving LLM Agent Planning with In-Context Learning via Atomic Fact Augmentation and Lookahead Search

B.2. Planner LLM Prompts (gϕ)

Used within the lookahead search. These LLM calls operate with a temperature of 0.0 for deterministic planning outcomes,
as described in Section 4.

B.2.1. ACTION PROPOSAL (PROPOSE_ACTIONS)
Action Proposal Prompt:

SYSTEM: You must call propose_actions.

USER: You are an next best action proposing agent, task with solving the given
environment defined below optimally. Your task is to propose up to {{ branch_factor_-
int }} most likely next best unique actions to try next that make the agent solve the
environment task optimally.

Environment description:

{{ env_description_str }}

Atomic facts that help to predict next state value / next reward accurately (at
beginning of episode):

{{ current_facts_list_str }}

Current Observation:

{{ current_observation_str }}

Recent history (old->new):

{{ history_lines_str }}

// e.g., "Obs: S00 -> Act: right -> Obs: S01"

You now see Observation: {{ current_observation_str }}. Now reason through (using
the atomic facts, and recent observation and action history), then give propose up to
{{ branch_factor_int }} most likely next best unique actions to try next that make the
agent solve the environment task optimally, each from {{ allowed_actions_list_str }}.
You will call the function propose_actions to do this.

Function Call: propose_actions Arguments: "thought": (string) Your reasoning for
selecting these actions. "actions": (list of strings) The proposed actions.

16

Improving LLM Agent Planning with In-Context Learning via Atomic Fact Augmentation and Lookahead Search

B.2.2. LATENT WORLD MODEL - SINGLE STEP SIMULATION (SIMULATE_STEP)
World Model Simulation Prompt:

SYSTEM: You must call simulate_step.

USER: You are a latent world model for the given environment defined below. Given the
current observation and an action, predict: the next (perhaps latent) observation,
immediate reward and done flag (whether the resulting state ends the episode). You
must be as accurate as possible, as your output is used as a planner to solve the
given environment optimally.

Environment description:

{{ env_description_str }}

Atomic facts that help to predict next state value / next reward accurately (at
beginning of episode):

{{ current_facts_list_str }}

Current Observation:

{{ current_observation_str }}

Recent history (old->new):

{{ history_lines_str }}

Given action to simulate the next observation and reward for:

{{ action_to_simulate_str }}

You now see Observation: {{ current_observation_str }}. Now reason through (using
the atomic facts, and recent observation and action history), and predict the next
(perhaps latent) observation, immediate reward, and done flag (whether the resulting
state ends the episode) after taking the given action of {{ action_to_simulate_str
}}. You must be as accurate as possible (for the predicted reward, and ensure your
predicted next observation has enough observation information to predict future
rewards for the given task in the given environment), as your output is used as
a planner to solve the given environment optimally. You will call the function
simulate_step to do this.

Function Call: simulate_step Arguments: "thought": (string) Your reasoning for
the predicted outcome. "next_observation": (string) The predicted (perhaps latent)
observation after the action. "reward": (float) The predicted immediate reward
(float) after the action. "done": (boolean) True if the resulting state ends the
episode (terminal), false otherwise.

17

Improving LLM Agent Planning with In-Context Learning via Atomic Fact Augmentation and Lookahead Search

B.2.3. VALUE ESTIMATOR (ESTIMATE_VALUE)
Value Estimation Prompt:

SYSTEM: You must call estimate_value.

USER: You are a state value function estimator for the given environment defined below.
You must predict the current cumulative future reward from the current (perhaps
latent) observation. You must be as accurate as possible, as your output is used as
a planner to solve the given environment optimally. The environment’s discount factor
is {{ discount_gamma_float }}.

Environment description:

{{ env_description_str }}

Atomic facts that help to predict next state value / next reward accurately (at
beginning of episode):

{{ current_facts_list_str }}

Current Observation (to predict the current cumulative future reward for):

{{ observation_to_evaluate_str }}

Recent history (old->new):

{{ history_lines_str }}

You now see Observation: {{ observation_to_evaluate_str }}. Now reason through
(using the atomic facts, and recent observation and action history), and predict the
current cumulative future reward from the current (perhaps latent) observation. You
must be as accurate as possible, as your output is used as a planner to solve the
given environment optimally. The environment’s discount factor is {{ discount_gamma_-
float }}. You will call the function estimate_value to do this.

Function Call: estimate_value Arguments: "thought": (string) Your reasoning for
this value estimate. "value": (float) The estimated state value (float). The
cumulative future reward from the current (perhaps latent) observation.

18

Improving LLM Agent Planning with In-Context Learning via Atomic Fact Augmentation and Lookahead Search

C. Conceptual Details of LLM Component Prompts
This appendix provides a more formal conceptual overview of the prompts used to guide the LLM components within
the LWM-Planner framework, as detailed in Section 4. These prompts are designed to elicit specific reasoning and
generation capabilities from the LLMs, enabling them to function as fact extractors, world model simulators, and value
function approximators, all operating through a structured function-calling interface. The specific fields like {{ env_-
description_str }}, {{ current_facts_list_str }}, etc., are placeholders populated dynamically by the
agent at runtime.

C.1. Fact Elicitation and Memory Refinement LLM (ΨLLM)

The Fact Elicitation and Memory Refinement LLM, denoted ΨLLM (see Section 3.4), is responsible for constructing
and maintaining the agent’s symbolic Fact Memory, Mt. This typically occurs post-episode, leveraging the trajectory
τe = (o0, a0, r0, . . . , oH) from episode e. The process involves two main LLM-driven function calls: fact extraction and
fact compression/refinement.

C.1.1. FACT ELICITATION (FACT_EXTRACTION CALL)

• Objective: To identify a concise set of new, task-relevant atomic facts ∆Fe from the trajectory τe. These facts, when
incorporated into the existingMt, are intended to improve the agent’s predictive capabilities and decision-making quality,
effectively learning and refining the abstraction function Ψ.

• Input to LLM (Context provided in the user prompt):

1. Environment Description ({{ env_description_str }}): A comprehensive description of the environment
G, including its rules, objectives, action space A, and the nature of observations o ∈ O.

2. Current Fact Memory ({{ current_facts_list_str }}): The set of atomic facts,Mt, that the agent
currently holds, passed as a list of strings.

3. Episode Trajectory Summary ({{ episode_trajectory_summary_str }}): A string summarizing the
completed episode τe, including the outcome (e.g., success/failure), total reward, and a formatted sequence of
observations, actions, rewards, and next observations.

• LLM Task Specification (Instructions guiding the LLM to generate arguments for the fact_extraction function):

1. Analyze the provided {{ episode_trajectory_summary_str }} in conjunction with the {{
current_facts_list_str }} and {{ env_description_str }}.

2. Identify “minimal new atomic facts” (∆Fe) that are evidenced by or can be reliably inferred from the trajectory
and are not already present or directly implied by the {{ current_facts_list_str }} or {{ env_-
description_str }}.

3. Prioritize facts crucial for explaining significant trajectory events (e.g., unexpected rewards, state transitions leading
to success or failure, particularly those that would improve the prediction of state values or rewards if known
beforehand).

4. Ensure facts are concise, atomic, and adhere to any implicitly defined predicate vocabulary illustrated by examples
(e.g., hole_at(x,y) for TextFrozenLake, object_X_is_in_receptacle_Y for ALFWorld).

5. The LLM should structure its output to call the fact_extraction function, providing its internal reasoning as
the thought argument and the identified new facts as a list of strings for the new_facts argument.

• Qualitative Goal: The LLM engages in a form of abductive reasoning to hypothesize underlying environmental properties
or dynamics. These hypotheses, framed as new atomic facts, should explain observed phenomena in τe, especially aspects
that were surprising or poorly modeled by the existingMt. The aim is to iteratively refineMt towards a more accurate
and value-preserving abstraction, contributing to minimizing ϵsim.

C.1.2. (OPTIONAL) FACT COMPRESSION AND REFINEMENT (FACT_REDUNDANCY_REMOVER CALL)

• Objective: To maintain a compact, non-redundant, and highly informative Fact MemoryMt+1. This enhances computa-
tional efficiency within the LLM’s context window and can improve the generalization of the Planner LLM by focusing its
attention on the most salient information.

19

Improving LLM Agent Planning with In-Context Learning via Atomic Fact Augmentation and Lookahead Search

• Input to LLM (Context provided in the user prompt):

1. Environment Description ({{ env_description_str }}).
2. Augmented Fact Set ({{ current_facts_list_for_compression_str }}): The union of the previ-

ous Fact Memory and newly extracted facts,Mt ∪∆Fe, passed as a list of strings.

• LLM Task Specification (Instructions guiding the LLM to generate arguments for the fact_redundancy_remover
function):

1. Review the entire provided set of facts for semantic overlap, direct redundancy (e.g., facts identical to or trivially
inferable from the {{ env_description_str }}), or subsumption by more general facts within the set.

2. Generate a revised and refined fact set,Mt+1, by removing or merging facts to enhance conciseness while preserving
all critical, distinct pieces of information essential for optimal decision-making and world model accuracy.

3. The LLM should structure its output to call the fact_redundancy_remover function, providing its reasoning
as the thought argument and the complete, refined list of facts as the all_facts argument.

• Qualitative Goal: This process aims to manage the complexity of the abstract state representation |ZF |. By ensuring
Mt+1 is maximally informative yet minimally redundant, it helps focus the Planner LLM’s reasoning and prevents
dilution of critical information, especially within a fixed context window.

C.2. Planner LLM (gϕ) Components for Lookahead Search

The Planner LLM, gϕ, is central to the lookahead search mechanism described in Section 4. It is invoked through three
distinct function calls to propose actions, simulate their outcomes, and estimate the value of states encountered during the
search. An abstract state zk at any point in the search (real or simulated) is effectively represented by (ok,Mt), where ok is
the observation at that point andMt is the agent’s current, fixed set of atomic facts for the episode.

C.2.1. ACTION PROPOSAL (PROPOSE_ACTIONS CALL)

• Objective: To generate a focused yet diverse set of up to kB candidate actions from the current (potentially simulated)
observation ok that are relevant for achieving the task goal or for effective exploration during planning.

• Input to LLM (Context provided in the user prompt):

1. Environment Description ({{ env_description_str }}).
2. Current Atomic Facts ({{ current_facts_list_str }}): The agent’s Fact Memory,Mt.
3. Current Observation ({{ current_observation_at_node_k_str }}): The observation ok from which

actions are to be proposed.
4. Recent Trajectory History ({{ recent_history_for_prompt_str }}): An excerpt of the (simulated or

real) trajectory within the current lookahead search (or agent history) leading to ok. This is typically a list of "Obs:
..." and "Act: ..." strings.

5. Available Actions ({{ available_actions_list_str }}): The set of legally permissible actions A(sk)
from the underlying ground state sk corresponding to ok (or the full action set A).

6. Branching Factor ({{ branch_factor_k_B_int }}): The maximum number of actions to propose.

• LLM Task Specification (Instructions for the propose_actions function): Given ok, Mt, and {{ recent_-
history_for_prompt_str }}, propose up to {{ branch_factor_k_B_int }} distinct actions from {{
available_actions_list_str }} that appear most promising. The selection should be informed by the current
understanding of the environment as encoded in Mt and the immediate context ok. The LLM returns its reasoning
(thought) and the list of actions.

C.2.2. SINGLE-STEP ABSTRACT SIMULATION (SIMULATE_STEP CALL)

• Objective: To predict the immediate outcome—next observation o′j , immediate reward rj , and termination status d′j—of
executing a proposed action aj from the current observation ok, conditioned on the Fact MemoryMt. This approximates
the abstract transition T̂Ψ and reward R̂Ψ functions.

20

Improving LLM Agent Planning with In-Context Learning via Atomic Fact Augmentation and Lookahead Search

• Input to LLM (Context provided in the user prompt):

1. Environment Description ({{ env_description_str }}).
2. Current Atomic Facts ({{ current_facts_list_str }}, i.e.,Mt).
3. Current Observation ({{ current_observation_at_node_k_str }}, i.e., ok).
4. Action to Simulate ({{ action_to_simulate_str }}, i.e., aj ∈ A).
5. Recent Trajectory History ({{ recent_history_for_prompt_str }}) leading to ok.

• LLM Task Specification (Instructions for the simulate_step function): Predict the next_observation (o′j),
reward (rj), and done (d′j) status that would result from taking {{ action_to_simulate_str }} from {{
current_observation_at_node_k_str }}, given {{ current_facts_list_str }}. The prediction
should be deterministic (temperature for this LLM call is 0.0 as per Section 4) and consistent with the known facts and
environment rules. The LLM returns its reasoning (thought) and these three predicted outcomes.

• Qualitative Goal: The LLM leveragesMt to make informed predictions. For instance, a fact like hole_at(x,y)
should lead to a prediction of a terminal state and negative reward if aj leads to (x, y). If facts are insufficient, the LLM
relies on its pre-trained knowledge, as discussed in the context of minimizing δmodel.

C.2.3. ABSTRACT STATE-VALUE ESTIMATION (ESTIMATE_VALUE CALL, APPROXIMATING V̂M̃Ψ
)

• Objective: To estimate the expected total discounted future reward, V (ok|Mt) ≈ V ∗
M̃Ψ

(zk), obtainable from the abstract

state zk ≜ (ok,Mt), particularly for leaf nodes in the lookahead search tree.

• Input to LLM (Context provided in the user prompt):

1. Environment Description ({{ env_description_str }}).
2. Current Atomic Facts ({{ current_facts_list_str }}, i.e.,Mt).
3. Observation to Evaluate ({{ observation_to_evaluate_str }}, i.e., ok).
4. Recent Trajectory History ({{ recent_history_for_prompt_str }}) leading to ok.
5. Discount Factor ({{ discount_gamma_float }}, i.e., γ).

• LLM Task Specification (Instructions for the estimate_value function): Estimate the cumulative future discounted
reward (value) achievable from {{ observation_to_evaluate_str }}, considering {{ current_-
facts_list_str }} and the overall task objective. The estimation should be deterministic (temperature for this
LLM call is 0.0). The LLM returns its reasoning (thought) and the estimated value.

• Qualitative Goal: The LLM assesses the long-term utility by considering the strategic implications of known facts (e.g.,
proximity to a goal, known hazards, locked doors leading to goal areas) relative to the task.

The LWM-Planner’s lookahead search (Section 4) systematically invokes these LLM functionalities. The propose_-
actions function generates branches, simulate_step projects these branches forward one step in the abstract model
M̃Ψ, and estimate_value provides valuations V̂M̃Ψ

at the search frontier or for terminal states. This entire process
relies on the dynamically updatedMt to ground the LLM’s powerful generative and reasoning capabilities in task-specific,
experience-derived knowledge.

21

Improving LLM Agent Planning with In-Context Learning via Atomic Fact Augmentation and Lookahead Search

D. Algorithm Details and Reproducibility
The LWM-Planner agent enhances its decision-making by iteratively learning atomic facts and using them in a lookahead
planning process. This section details its operational cycle, broken down into a main agent loop (Algorithm 1) and
sub-algorithms for the core planning (Algorithm 2) and fact learning (Algorithm 3) phases. This modular description
aims to provide clarity for reproducibility, aligning with the methodology presented in Section 4 and the agent’s Python
implementation. Key LLM interactions are managed via a structured function-calling interface, detailed in Appendix B and
Appendix C.

Algorithm 1: LWM-Planner: Main Agent Loop

Initialize : Global Fact MemoryM← ∅;
LLM Components: ΨLLM: Fact Extractor & Refiner LLM, gϕ: Planner LLM, comprising gpropose

ϕ , gsimulate
ϕ , gvalue

ϕ ;
Hyperparameters: Ds, kB , γ, λstep, Tmax, HL;
Short-term history buffer H← deque(maxlen=HL);

1 for episode e← 1 to E do
2 Be ← ∅ ; # Episode trajectory buffer for (o, a, rreal, o′, d) tuples
3 ot ← env.reset();
4 H.clear();H.append(FormatAsHistoryString("Obs:", ot)) ; # Reset history
5 Mcurrent_ep ←M ; # Snapshot of facts for consistent planning
6 for t← 0 to Tmax − 1 do
7 a∗t ← RecursiveLookaheadPlan(ot,H,Mcurrent_ep, Ds, kB , γ, λstep, gϕ);
8 Execute a∗t in environment G; observe real (ot+1, r

real
t , dt+1);

9 Add (ot, a
∗
t , r

real
t , ot+1, dt+1) to Be;

10 H.append(FormatAsHistoryString("Act:", a∗t));
11 H.append(FormatAsHistoryString("Obs:", ot+1));
12 ot ← ot+1;
13 if dt+1 then
14 break ; # End episode if terminal state reached

15 M← LearnFactsAndUpdateMemory(Be,M,env_description_str,ΨLLM);

Main Agent Loop (Algorithm 1) The LWM-Planner operates over a series of E episodes.

• Initialization (Lines 1-5): The agent starts with an empty global Fact Memory (M). The LLM components are
defined: ΨLLM for managing facts and gϕ for planning. The planner gϕ internally comprises three distinct LLM-driven
functionalities: gpropose

ϕ for proposing actions, gsimulate
ϕ for simulating outcomes of actions, and gvalue

ϕ for estimating
the value of states. Hyperparameters critical for the agent’s operation are set, including maximum search depth Ds,
branching factor kB , discount factor γ, step penalty λstep, maximum steps per episode Tmax, and the length HL of the
short-term interaction history buffer H. This buffer H stores a rolling window of the most recent observations and
actions (conceptually as formatted strings, e.g., "Obs: <obs_string>") to provide immediate context to the
LLMs.

• Episodic Interaction (Lines 6-16): For each episode:

– An episode buffer Be is initialized to log the sequence of interactions. The environment is reset, and the initial
observation o0 is used to initialize H. A snapshot of the current global Fact Memory, Mcurrent_ep, is taken to
ensure that planning within the current episode uses a consistent set of facts learned up to that point.

– Per-Step Cycle (Lines 7-14): The agent interacts with the environment step-by-step.

* Planning (Line 7): The RecursiveLookaheadPlan sub-algorithm (Algorithm 2) is invoked. This
function takes the current observation ot, the short-term history H, the episode’s fact setMcurrent_ep, and
planning hyperparameters to determine the best action a∗t .

22

Improving LLM Agent Planning with In-Context Learning via Atomic Fact Augmentation and Lookahead Search

* Interaction & Recording (Lines 8-12): The chosen action a∗t is executed in the actual environment G. The
resulting transition (next observation ot+1, real reward rreal

t , and done signal dt+1) is recorded in Be. The
short-term historyH is updated with a∗t and ot+1. The current observation ot becomes ot+1.

* Episode Termination (Line 14): If a terminal state is reached (dt+1 is true), the inner step loop concludes.
– Fact Model Learning (Line 15): After the episode finishes, the LearnFactsAndUpdateMemory sub-

algorithm (Algorithm 3) is called. This function processes the trajectory Be and the facts known at the start of the
episode (Mcurrent_ep) to update the globalM.

Algorithm 2: LWM-Planner: Recursive Lookahead Plan

1 Function RecursiveLookaheadPlan(ocurr,Hcurr,Mep, Ds, kB , γ, λstep, gϕ):
2 Candidate actions {aj}NA≤kB

j=1 ← gproposeϕ (ocurr,Hcurr,Mep);
3 if {aj} is empty then
4 return a default action (e.g., random or no-op from available actions);

5 Qroot(aj)← −∞ for all aj ;
6 foreach candidate action aj ∈ {aj} do
7 (o′j , rj , d

′
j)← gsimulateϕ (ocurr, aj ,Hcurr,Mep);

8 if d′j then
9 V (z′j)← 0 ; # Terminal state, no future rewards

10 else
11 H′

j ←
Hcurr ⊕ (FormatAsHistoryString("Act:", aj),FormatAsHistoryString("Obs:", o′j));

12 V (z′j)← EstimateNodeValue(o′j ,H′
j ,Mep, Ds − 1, kB , γ, λstep, gϕ);

13 Qroot(aj)← rj − λstep + γ · V (z′j);

14 return argmaxaj
Qroot(aj);

15 Function EstimateNodeValue(onode,Hnode,Mep, depth, kB , γ, λstep, gϕ):
16 if depth ≤ 0 or onode is known/simulated as terminal then
17 return gvalueϕ (onode,Hnode,Mep);

18 Candidate actions {ak} ← gproposeϕ (onode,Hnode,Mep);
19 if {ak} is empty then
20 return gvalueϕ (onode,Hnode,Mep) ; # Leaf node: estimate value directly

21 Vnode_val ← −∞ ; # This will store maxk Q(znode, ak)
22 foreach action ak ∈ {ak} do
23 (o′k, rk, d

′
k)← gsimulateϕ (onode, ak,Hnode,Mep);

24 if d′k then
25 V (z′k)← 0;
26 else
27 H′

k ←
Hnode ⊕ (FormatAsHistoryString("Act:", ak),FormatAsHistoryString("Obs:", o′k));

28 V (z′k)← EstimateNodeValue(o′k,H′
k,Mep, depth− 1, kB , γ, λstep, gϕ);

29 Q(znode, ak)← rk − λstep + γ · V (z′k);
30 Vnode_val ← max(Vnode_val, Q(znode, ak));

31 return Vnode_val ; # Node’s value is max Q of children

Recursive Lookahead Plan (Algorithm 2) This algorithm describes the planning process to select an action at the current
step t.

• Function RecursiveLookaheadPlan (Lines 1-12): This is the entry point for planning at the root of the search
(current actual state).

23

Improving LLM Agent Planning with In-Context Learning via Atomic Fact Augmentation and Lookahead Search

– Inputs: Current observation ocurr, current short-term historyHcurr, the episode’s Fact MemoryMep, max search
depth Ds, branch factor kB , discount γ, step penalty λstep, and the planner LLM collection gϕ.

– Root Action Proposal (Line 2): gpropose
ϕ generates initial candidate actions {aj} from ocurr. If no actions are

proposed, a default policy is invoked (Lines 3-4).
– Root Q-Value Calculation (Lines 6-13): For each proposed root action aj :

* The world model gsimulate
ϕ predicts the next state o′j , immediate reward rj , and done status d′j .

* If the simulated state o′j is terminal (d′j is true), its future value V (z′j) is 0 (Line 8).

* Otherwise, the value V (z′j) is obtained by calling EstimateNodeValue (Line 10) for state o′j with
remaining depth Ds − 1. The history H′

j for this recursive call is the current history Hcurr extended by the
action aj and simulated observation o′j .

* The Q-value Qroot(aj) is computed using the simulated reward rj , the step penalty λstep, and the discounted
estimated value V (z′j) of the next state.

– Action Selection (Line 14): The action a∗t with the highest Qroot value is selected.

• Function EstimateNodeValue (Lines 16-31): This function recursively estimates the value of a node onode in the
search tree.

– Inputs: The node’s observation onode and its history path Hnode,Mep, current remaining search depth depth,
and other parameters.

– Base Cases (Lines 16-20):

* If depth ≤ 0, or if onode is determined to be a terminal state, the recursion stops. The value of onode is then
directly estimated by gvalue

ϕ .

* If gpropose
ϕ fails to generate any actions from onode, onode is also treated as a leaf, and its value is estimated by

gvalue
ϕ .

– Recursive Step (Lines 22-30): If not a base case:

* Candidate actions {ak} are proposed from onode using gpropose
ϕ .

* For each action ak: gsimulate
ϕ yields (o′k, rk, d

′
k).

* If d′k is true, V (z′k) = 0. Else, EstimateNodeValue is called recursively for o′k with depth-1 to get
V (z′k).

* The Q-value Q(znode, ak) is calculated: rk − λstep + γV (z′k).
– Return Value (Line 31): The function returns Vnode_val = maxak

Q(znode, ak), representing V (znode).

All LLM calls by gϕ components within the planning phase operate with a temperature of 0.0 for deterministic
evaluations. Results are memoized within a single planning step (_value_cache in the implementation) to avoid
redundant computations, as mentioned in Section 4.

Algorithm 3: LWM-Planner: Fact Model Learning and Memory Update

1 Function LearnFactsAndUpdateMemory(Be,Mknown,env_desc_str,ΨLLM)
Fact Extraction from completed episode trajectory

2 trajectory_summary_str← FormatTrajectorySummary(Be);
3 ∆Fe ← Ψextract

LLM (trajectory_summary_str,Mknown,env_desc_str) ; # Invokes fact
elicitation LLM

Update Fact Memory and Optionally Refine/Compress
4 Mcandidate ←Mknown ∪∆Fe;
5 if compression hyperparameter is enabled then
6 Mnext_global ← Ψrefine

LLM (Mcandidate,env_desc_str) ; # Invokes fact compression LLM

7 else
8 Mnext_global ←Mcandidate;

9 returnMnext_global;

24

Improving LLM Agent Planning with In-Context Learning via Atomic Fact Augmentation and Lookahead Search

Fact Model Learning and Memory Update (Algorithm 3) This procedure, corresponding to the reflect method in
the agent’s codebase, is executed at the end of each episode e to update the agent’s knowledge.

• Inputs (Line 1): The episode trajectory buffer Be, the Fact MemoryMknown that was used for planning during that
episode, a description of the environment env_desc_str, and the Fact Extractor & Refiner LLM ΨLLM.

• Fact Extraction (Lines 2-3): A textual summary (trajectory_summary_str) of the trajectory in Be is created.
The fact elicitation component, Ψextract

LLM , processes this summary, along withMknown and env_desc_str, to generate
a set of new candidate atomic facts ∆Fe.

• Memory Update and Refinement (Lines 4-8): The newly extracted facts ∆Fe are combined withMknown. If fact
compression is enabled (via the compress flag in the implementation), Ψrefine

LLM processes this combined set to produce
the refined Fact MemoryMnext_global. Otherwise, the combined set becomesMnext_global.

• Output (Line 9): Returns the updated global Fact MemoryMnext_global.

This iterative cycle enables LWM-Planner to adapt by progressively building a more accurate symbolic understanding of its
environment.

25

Improving LLM Agent Planning with In-Context Learning via Atomic Fact Augmentation and Lookahead Search

E. Theory
This section provides the theoretical underpinnings of our fact-based reinforcement learning approach, focusing on the
performance guarantees of an idealized agent.

E.1. Theorem: Performance of Idealized Fact-Based Agent (IFBA) with Perfect Abstract Model

Let πF be the policy derived by the Idealized Fact-Based Agent (IFBA), as defined in Section 3.2 of the main text. If the
ideal fact abstraction Ψ∗ establishes an ϵsim-approximate bisimulation (Definition 3.2) between the ground MDP G and the
induced abstract MDP MΨ∗ , and the planner for MΨ∗ is ϵplan-optimal (Definition 3.3), then for any state s ∈ S:

V ∗
G (s)− V πF

G (s) ≤ 2ϵsim

1− γ
+ ϵplan (7)

E.1.1. PROOF

The value loss of the policy πF in the ground MDP G can be decomposed. Recall that πF (s
′) = π◦

MΨ∗ (Ψ
∗(s′)), where

π◦
MΨ∗ is the ϵplan-optimal policy found by the planner operating in the abstract MDP MΨ∗ .

We express the total value loss as follows:

V ∗
G (s)− V πF

G (s) =
(
V ∗
G (s)− V ∗

MΨ∗ (Ψ
∗(s))

)
+

(
V ∗
MΨ∗ (Ψ

∗(s))− V
π◦
MΨ∗

MΨ∗ (Ψ∗(s))

)
+

(
V

π◦
MΨ∗

MΨ∗ (Ψ∗(s))− V πF

G (s)

)
Let’s analyze each term:

1. Term I: Abstraction Error on the Optimal Value Function
This term,

(
V ∗
G (s)− V ∗

MΨ∗ (Ψ
∗(s))

)
, represents the difference between the optimal value function in the ground MDP

and the optimal value function in the abstract MDP, mapped back to the ground state via Ψ∗. By Definition 3.2
(specifically, Equation (1) in the main text), the property of ϵsim-approximate bisimulation directly bounds this
difference:

|V ∗
G (s)− V ∗

MΨ∗ (Ψ
∗(s))| ≤ ϵsim

1− γ

2. Term II: Planning Error in the Abstract MDP

This term,
(
V ∗
MΨ∗ (Ψ

∗(s))− V
π◦
MΨ∗

MΨ∗ (Ψ∗(s))

)
, quantifies the sub-optimality of the policy π◦

MΨ∗ computed by the

planner within the abstract model MΨ∗ . By Definition 3.3, the planner is ϵplan-optimal, which means:

V ∗
MΨ∗ (Ψ

∗(s))− V
π◦
MΨ∗

MΨ∗ (Ψ∗(s)) ≤ ϵplan

Since value functions are non-negative (assuming non-negative rewards or appropriate initialization), this term is
bounded by ϵplan.

3. Term III: Abstraction Error on the Planned Policy’s Value

This term,
(
V

π◦
MΨ∗

MΨ∗ (Ψ∗(s))− V πF

G (s)

)
, captures the difference between the value of the planned policy π◦

MΨ∗ when

evaluated in the abstract MDP MΨ∗ versus its value when executed in the ground MDP G (which is V πF

G (s) by
definition of πF). A key property of ϵsim-approximate bisimulation is that it not only bounds the difference in optimal
value functions but also the difference in value functions for any fixed policy that respects the abstraction Ψ∗. Since
πF (s

′) = π◦
MΨ∗ (Ψ

∗(s′)), it respects the abstraction. Therefore, we have (Ravindran & Barto, 2004):

|V π◦
MΨ∗

MΨ∗ (Ψ∗(s))− V πF

G (s)| ≤ ϵsim

1− γ

26

Improving LLM Agent Planning with In-Context Learning via Atomic Fact Augmentation and Lookahead Search

Combining the Bounds:

Using the triangle inequality (X − Z = (X − Y) + (Y − Z) =⇒ |X − Z| ≤ |X − Y | + |Y − Z|), we can sum the
absolute bounds of these terms. More directly, since Term II is already an upper bound on the difference (not an absolute
value), we have:

V ∗
G (s)− V πF

G (s) ≤
∣∣V ∗

G (s)− V ∗
MΨ∗ (Ψ

∗(s))
∣∣

+

(
V ∗
MΨ∗ (Ψ

∗(s))− V
π◦
MΨ∗

MΨ∗ (Ψ∗(s))

)
+

∣∣∣∣V π◦
MΨ∗

MΨ∗ (Ψ∗(s))− V πF

G (s)

∣∣∣∣
≤ ϵsim

1− γ
+ ϵplan +

ϵsim

1− γ

=
2ϵsim

1− γ
+ ϵplan

This completes the proof, establishing the performance bound for the Idealized Fact-Based Agent operating with a perfect
abstract model MΨ∗ derived from an ϵsim-approximate bisimulation Ψ∗, and an ϵplan-optimal planner.

E.2. Further Theoretical Considerations

The theoretical framework presented in Section 3 and the proof in Appendix E.1.1 rely on the quality of the fact-based
abstraction Ψ and the learned abstract model M̃Ψ. Here, we elaborate on two guiding principles relevant to achieving a good
abstraction and, consequently, robust agent performance: bisimulation for state aggregation and the Information Bottleneck
principle for fact minimality and relevance.

E.2.1. APPROXIMATE STATE ABSTRACTION AND BISIMULATION

The concept of ϵsim-approximate bisimulation (Definition 3.2) provides a formal grounding for why a good fact-based
abstraction can lead to provably near-optimal policies (Ferns et al., 2004). A bisimulation groups states of the ground MDP
G that are behaviorally equivalent. In an exact bisimulation, states s1, s2 are in the same abstract state z = Ψ(s1) = Ψ(s2)
if, for any action a ∈ A:

• They yield the same immediate reward: R(s1, a) = R(s2, a).

• They transition to the same distribution over next abstract states:
∑

s′1∈Sz′
T (s′1|s1, a) =

∑
s′2∈Sz′

T (s′2|s2, a) for all
z′ ∈ ZF .

The ϵsim term in an approximate bisimulation relaxes these conditions, allowing for small differences in one-step rewards
and transition probabilities for states mapped to the same abstract state z. The crucial implication, as shown in Equation (1),
is that the value function V ∗

MΨ∗ in the abstract MDP MΨ∗ (induced by an ϵsim-approximate bisimulation Ψ∗) is close to the
optimal value function V ∗

G in the ground MDP, with the error bounded by ϵsim
1−γ .

In LWM-Planner, the atomic fact set Fs generated by the Fact Extractor fθ for a ground state s forms the basis of the
abstract state z = Ψ(s) = (o, Fs) (where o is the direct observation). The goal of learning “critical” and “minimal” facts
is to construct an abstraction Ψ that minimizes ϵsim. That is, the facts should capture enough information to ensure that
states s1, s2 mapped to the same (o, Fs) have similar optimal values and similar optimal actions. If the extracted facts fail to
distinguish between ground states that are behaviorally different (e.g., one leads to a high reward and another to a low reward
with the same action), ϵsim will be large, and the performance guarantee in Equation (6) degrades. The online learning of
facts is a process of refining Ψ to better approximate a bisimulation relevant to the task.

E.2.2. INFORMATION BOTTLENECK PRINCIPLE AND FACT RELEVANCE

The desire for “minimal, yet impactful, units of knowledge” (atomic facts) aligns with the Information Bottleneck (IB)
principle (Tishby et al., 2000; Alemi et al., 2017). The IB principle seeks to find a compressed representation (bottleneck)

27

Improving LLM Agent Planning with In-Context Learning via Atomic Fact Augmentation and Lookahead Search

Z of a source variable X that is maximally informative about a target relevance variable Y , while minimizing the mutual
information I(X;Z) (i.e., Z should be a minimal sufficient statistic of X for predicting Y).

In our context:

• The source variable X is the ground state st (or the full trajectory history leading to st).

• The compressed representation Z is the abstract state zt = Ψ(st), primarily defined by the set of atomic facts Fst

derived from st or its history.

• The target relevance variable Y can be conceptualized as the optimal action-value function Q∗
G(st, a), the optimal

value function V ∗
G (st), or even future rewards and observations.

The LWM-Planner’s fact extraction process aims to learn a Ψ (instantiated by fθ) that distills Fst such that it is highly
informative about V ∗

G (st) (to minimize ϵsim) and future transitions/rewards (to minimize δmodel when gϕ uses these facts).
The “atomicity” and “minimality” criteria for facts directly serve the goal of compressing st into Fst without losing
task-critical information. A smaller, more relevant set of facts:

• Reduces computational burden: Shorter prompts for the LLM components.

• Focuses LLM reasoning: Prevents dilution of critical information within the LLM’s limited context window, allowing
the LLM to better utilize its pre-trained knowledge by grounding it on the most salient task-specific evidence.

• Improves sample efficiency for model learning: A smaller abstract state space |ZF | generally means that learning the
dynamics T̃Ψ and rewards R̃Ψ of the abstract MDP M̃Ψ (implicitly done by gϕ) requires fewer samples (interactions)
to achieve a low δmodel (Strehl et al., 2009).

The optional fact compression step in LWM-Planner explicitly attempts to enforce this minimality by removing redundant or
less informative facts, further aligning with the IB objective of finding a maximally compressed yet sufficient representation.
The quality of this compression directly impacts the complexity and effectiveness of the learned abstract model and,
consequently, the overall planning performance.

By striving for fact-based abstractions that approximate bisimulations and adhere to information bottleneck principles,
LWM-Planner aims to construct an internal representation that is both robust for planning and efficient for learning. The
interplay between the quality of facts (ϵsim) and the LLM’s ability to simulate and value using these facts (δmodel) is central
to achieving near-optimal performance, as formalized in Equation (6).

E.2.3. FUTURE THEORETICAL DIRECTIONS AND OPEN QUESTIONS

While the current theoretical framework provides initial motivation, several avenues for future theoretical work could further
solidify and extend the understanding of LWM-Planner and similar fact-based LLM agents.

Causality in Fact Extraction A significant direction is the integration of causal reasoning into the fact extraction process
(Pearl, 2009). Currently, atomic facts are evaluated in terms of correlation1, capturing observed relationships (e.g., “action Z
leads_to_failure_condition”). However, facts that represent causal relationships (e.g., “action Z causes failure condition if
precondition P holds”) would offer more robust and generalizable knowledge.

• Improved Generalization: Causal facts are more likely to hold true under slight variations in the environment or
task, potentially leading to a smaller δmodel when the agent encounters novel situations that share underlying causal
structures.

• Intervention-based Learning: Future agents could be designed to perform specific interventions (exploratory actions)
aimed at discovering causal links, rather than passively observing correlations. This could lead to more sample-efficient
learning of highly impactful facts.

1LLMs probably implicitly already perform some form of causal reasoning

28

Improving LLM Agent Planning with In-Context Learning via Atomic Fact Augmentation and Lookahead Search

• Counterfactual Reasoning: A fact base enriched with causal understanding could allow the Planner LLM (gϕ) to
engage in more sophisticated counterfactual reasoning during lookahead search (e.g., “what would have happened if I
had chosen action B instead of A, given these causal rules?”).

Developing methods for fθ to reliably infer or validate causal statements from observational and interventional data within
interactive environments is a challenging but promising research area.

Formal Analysis of LLM-driven Components The current framework treats the LLM components (gpropose
ϕ , gsimulate

ϕ ,
gvalue
ϕ , and ΨLLM) largely as oracles with certain performance characteristics (e.g., LLM simulation accuracy contributing to
δmodel). Future work could delve into:

• Characterizing LLM Errors: More formally characterizing the types of errors LLMs make in simulation and value
estimation, and how these errors propagate through the lookahead search to affect ϵplan.

• Impact of Prompt Engineering: Theoretically analyzing the sensitivity of ϵsim and δmodel to the quality and structure
of prompts, including the presentation of atomic facts.

• Convergence of Fact Memory: Investigating conditions under which the learned Fact MemoryMt converges to a
“sufficient” or “minimal” set of facts that guarantees a certain level of performance (e.g., bounding ϵsim below a desired
threshold).

Fact-Based Abstractions in Partially Observable MDPs (POMDPs) The current theoretical analysis assumes an
underlying MDP where states st are fully observable or can be derived into a sufficient structured representation. Many
real-world scenarios are better modeled as POMDPs (Kaelbling et al., 1998), where the agent receives observations ot that
are incomplete or noisy manifestations of the true underlying state st.

• Belief State Abstraction: Future work could explore how atomic facts can be used to form abstractions not directly
over st, but over belief states b(st) = P (st|history). Atomic facts could represent properties of the environment that
are inferred to be true with high probability based on the observation history.

• Information-Gathering Facts: The agent might learn facts not just about the environment’s dynamics, but about
which actions are most informative for reducing uncertainty about critical, unobserved aspects of the state, guiding
exploration more effectively.

Addressing these theoretical questions will be crucial for advancing the capabilities and understanding of LLM agents that
learn and plan from interaction by building and reasoning over symbolic knowledge representations like atomic facts.

29

Improving LLM Agent Planning with In-Context Learning via Atomic Fact Augmentation and Lookahead Search

F. Benchmark Environments Details
We evaluate our LWM-Planner agent and baseline methods on three distinct, procedurally generated, text-based environments.
Each environment is designed to test different aspects of an agent’s learning and planning capabilities, ranging from grid-
world navigation with sparse rewards to complex instruction following and multi-step crafting tasks.

F.1. TextFrozenLake

This environment is a procedurally generated text-based version of the classic FrozenLake problem (Brockman et al., 2016).

• Objective: The agent must navigate from a starting position (S) at coordinates (0,0) to a goal position (G) at
(N − 1, N − 1) on an N ×N grid. The grid also contains ice surfaces (.) and holes (H). Reaching the goal yields a
reward of +1.0, falling into a hole yields -1.0, and all other steps yield 0.0. An episode terminates upon reaching the
goal, falling into a hole, or exceeding a maximum step limit.

• Procedural Generation:

– The grid size N (e.g., 4× 4, 6× 6, 8× 8) and hole density h are configurable parameters at initialization.
– A key feature is the guarantee of at least one solvable path from start to goal. This is achieved by first constructing

a "Manhattan corridor" or a zig-zag safe path near the diagonal to connect (0,0) and (N − 1, N − 1). Holes are
then sampled on the remaining cells based on the hole_density parameter.

– The environment can be seeded for deterministic board generation and agent starting position.

• Observation Space: The agent receives a textual observation describing its current state, e.g., "You are at (0, 1) on
ice.". This provides local information (current coordinates and terrain type of the square it stands on) without revealing
the global map layout.

• Action Space: The agent has four discrete actions: "up", "down", "left", "right". Actions that would move the agent off
the grid boundaries result in the agent remaining in its current position but on the edge cell.

• Rewards: As described, +1.0 for goal, -1.0 for a hole, 0.0 otherwise.

• Episode Termination: An episode ends if the agent reaches the goal (G), falls into a hole (H), or if the _step_count
reaches max_steps. The max_steps is set to 8× (N − 1), which is four times the optimal path length in an empty
grid.

• env_description: The environment provides a detailed textual description string that includes the grid size,
start/goal locations, reward structure, maximum steps, and hole density, explicitly stating that a path to the goal is
guaranteed.

F.2. ALFWorld

We utilize the standard ALFWorld (Action Learning From World) benchmark (Shridhar et al., 2020b), which involves
text-based agents performing tasks in simulated household environments based on the ALFRED dataset (Shridhar et al.,
2020a). The AlfWorldEnv class in our codebase acts as a thin adapter around the official ALFWorld text environment.

• Objective: The agent is given a high-level natural language instruction (e.g., "put some spraybottle on toilet") and must
navigate the environment, interact with objects and receptacles, and manipulate objects to satisfy the goal condition.

• Environment Structure: ALFWorld environments are simulated indoor scenes (kitchens, bedrooms, bathrooms)
containing various receptacles (e.g., cabinets, drawers, countertops, sinks) and objects (e.g., spraybottle, bowl,
desklamp). Objects can be picked up, placed in/on receptacles, and sometimes manipulated (e.g., heated, cleaned,
sliced, though these more complex interactions are often simplified or yield generic feedback in some wrapper
implementations).

• Observation Space: The agent receives rich textual observations describing its current location, visible objects and
receptacles, its inventory, and feedback from its previous action. The initial observation also includes the specific task
goal.

30

Improving LLM Agent Planning with In-Context Learning via Atomic Fact Augmentation and Lookahead Search

• Action Space: The environment defines a set of canonical action templates such as "look", "inventory", "go to
(receptacle)", "open (receptacle)", "close (receptacle)", "take (object) from (receptacle)", "move (object) to (receptacle)",
"examine (something)", "use (object)", etc..

• Rewards: A reward of +1.0 is typically given upon successful completion of the task goal. All other steps yield a
reward of 0.0.

• Episode Termination: An episode ends if the agent successfully completes the task or if the maximum number of
steps (max_steps, typically configured from a YAML file, e.g., base_config.yaml) is reached.

• Task Variability: ALFWorld offers a diverse set of tasks (identified by task_id) categorized into different types
(e.g., pick & place, heat & place, clean & place). For our experiments, we randomly sample tasks from the "eval_-
out_of_distribution" split, as specified in the AlfWorldEnv constructor. Each task_id corresponds to a unique
environment configuration and goal.

• env_description: The AlfWorldEnv provides a comprehensive env_description string that outlines the
nature of the environment, receptacles, objects, task structure, reward system, maximum steps, the full list of admissible
actions, and examples of interaction, along with advice for the agent.

For some ablation studies or simpler scenarios, a minimal version, AlfMiniEnv, is also available. It features a single,
deterministically generated room with a fixed set of receptacle and object types (e.g., "drawer", "shelf", "vase", "keychain")
and a canonical goal like "put some vase in safe 1". This version allows for more controlled experimentation by simplifying
the state and action space while retaining the core object interaction mechanics. It also features deterministic resets to a
blueprint state or a newly seeded state.

F.3. CrafterMini

CrafterMini is a procedurally generated, text-only, miniaturized version of the Crafter environment (Hafner, 2021), designed
to test planning for resource gathering and multi-step crafting.

• Objective: The primary goal is to craft an "iron_pickaxe". This requires a sequence of sub-goals: collecting raw
materials (wood, stone, iron) and crafting intermediate tools (wood_pickaxe, stone_pickaxe).

• Environment Structure: The world is a N ×N grid (default 5× 5) with a toroidal (wrap-around) topology. Each tile
can be grass, tree, stone, iron, or water.

• Procedural Generation:

– The grid size N and max_steps are configurable. The world is seeded for deterministic generation.
– The grid is randomly populated with tiles, ensuring that at least one of each crucial resource (tree, stone, iron) is

present, making the game solvable.
– The reset() method can either restore an initial "blueprint" of the world or generate a new world if a new seed

is provided.

• Observation Space: The observation is a textual string describing the agent’s current tile type and coordinates, the
terrain in the four cardinal directions, the agent’s inventory (e.g., "wood=3, stone=1"), and a list of tools already crafted.

• Action Space: Actions are represented by integers with corresponding names:

– 0-3: Movement (north, south, east, west).
– 4: "collect" - Gathers a resource from the current tile if it’s a resource tile (tree, stone, iron). Collecting turns the

tile to grass.
– 5: "craft_wood_pickaxe" (requires 3 wood).
– 6: "craft_stone_pickaxe" (requires 1 wood, 3 stone).
– 7: "craft_iron_pickaxe" (requires 1 stone_pickaxe, 3 iron).

31

Improving LLM Agent Planning with In-Context Learning via Atomic Fact Augmentation and Lookahead Search

Crafting actions are only considered available if the recipe can be satisfied by the current inventory and already crafted
tools (e.g., a stone_pickaxe is consumed to make an iron_pickaxe). The RobustCrafterMiniEnv variant can also
parse textual synonyms for these actions.

• Rewards:

– Each step incurs a -1 reward (step cost).
– Crafting a wood_pickaxe gives +10 reward.
– Crafting a stone_pickaxe gives +20 reward.
– Crafting an iron_pickaxe gives +50 reward.

• Episode Termination: The episode ends immediately if an "iron_pickaxe" is successfully crafted or if the number of
steps reaches max_steps (default 4×N2).

• env_description: A detailed textual description outlines the grid, observation format, action list with integer
mappings, crafting recipes, rewards, and termination conditions.

These three environments provide a diverse set of challenges for evaluating the LWM-Planner’s ability to learn from textual
interactions, build effective world models through atomic facts, and plan over extended horizons.

32

Improving LLM Agent Planning with In-Context Learning via Atomic Fact Augmentation and Lookahead Search

G. Benchmark Method Implementation Details
This section provides a detailed overview of the high-level logic for each benchmark method evaluated in our experiments.
All LLM-based agents (LWM-Planner, ReAct, Reflexion, and ReAct + FEC) utilize a frozen LLM (model gpt-4o). LLM
interactions are performed via API calls using a common internal utility that supports structured function calling; no LLM
weights are updated during experiments. The default temperature for LLM calls in planning components (simulation, value
estimation) and fact processing is 0.0. For ReAct-style thought generation, a temperature of 0.3 is typically used. The
maximum token output for LLM responses is configured to 8512 tokens.

G.1. Random Agent

The Random agent serves as a basic non-learning baseline.

• Policy: At each step, the agent selects an action uniformly at random from the set of allowed actions provided for the
specific environment.

• State: It maintains a short-term memory buffer of observation-action pairs for logging consistency, though this history
does not influence its action selection.

G.2. ReAct Agent

The ReAct agent implements the Reason-Act prompting paradigm (Yao et al., 2023).

• Core Mechanism: The agent prompts an LLM to first generate a “Thought” (internal reasoning) and then an “Action”
to take in the environment.

• LLM Interaction:

– A prompt is constructed using a template specific to the ReAct style. This template incorporates a description of
the environment, the current observation, the recent interaction history (formatted as a sequence of observations
and actions), and the list of allowed actions.

– The LLM is expected to provide its output in a structured format that distinguishes the thought process from the
chosen action.

• State: The agent maintains a short-term memory buffer (a deque of observation-action strings) of a configurable length
(e.g., 51 interactions). It also stores the most recent thought generated by the LLM.

• Hyperparameters: Key parameters include the length of the interaction history, LLM model, temperature, and
maximum token limits.

G.3. Reflexion Agent

The Reflexion agent extends the ReAct agent by incorporating a self-reflection mechanism to learn from past experiences
(Shinn et al., 2023).

• Core Mechanism: In addition to ReAct’s thought-action cycle, after each episode, the Reflexion agent analyzes its
trajectory to generate a textual "lesson".

• Lesson Generation and Usage:

– Lessons are stored in a memory buffer (a deque) of a configurable maximum length (e.g., 5 lessons).
– The ReAct prompt template is augmented to include these learned lessons, providing additional context for future

decisions.
– A post-episode reflection process involves constructing a summary of the completed trajectory (including obser-

vations, actions, rewards, and overall outcome) and prompting an LLM to generate a concise, actionable lesson
(typically ≤ 20 words and prefixed accordingly).

33

Improving LLM Agent Planning with In-Context Learning via Atomic Fact Augmentation and Lookahead Search

• State: In addition to the ReAct state, it maintains the buffer of lessons, a record of the current episode’s trajectory
(observations, actions, rewards, next observations), and the cumulative reward for the current episode.

• Hyperparameters: Includes ReAct parameters plus the lesson buffer length and a reward threshold to determine
episode success for reflection purposes (e.g., 0.99).

G.4. ReAct + FEC Agent (Ablation)

This agent is an ablation of our full LWM-Planner. It combines the ReAct decision-making process with the Fact Extraction
and Compression (FEC) mechanism, but without lookahead search.

• Fact Mechanism:

– Maintains a memory buffer (a deque) of atomic facts with a configurable maximum length (e.g., 200 facts).
– The ReAct prompt template is augmented to include these atomic facts.
– Fact Extraction: After each episode, a dedicated LLM-driven process analyzes the trajectory summary, environ-

ment description, and existing facts to identify minimal new atomic facts critical for improving predictions. The
LLM is guided to output these new facts in a structured manner.

– Fact Compression: If enabled, another LLM-driven process reviews the complete set of current facts (newly
extracted plus existing) along with the environment description. It aims to produce a concise, refined set of facts
by removing redundancies or information trivially inferable from the environment description, again using a
structured output format.

• Decision-Making: Employs the standard ReAct thought-action cycle, but the LLM’s reasoning is informed by the
dynamically updated set of atomic facts included in its prompt.

• Hyperparameters: Includes ReAct parameters plus the fact buffer length and a flag to enable/disable fact compression.

G.5. LWM-Planner (Our Method)

The LWM-Planner is our proposed agent that integrates online atomic fact learning with a recursive lookahead search, where
LLMs serve as key planning components.

• Base Functionality: It incorporates the same fact extraction and compression mechanisms (Fact Extractor ΨLLM) as
the ReAct + FEC agent. These facts are stored in a dynamically updated memory buffer (a deque with a capacity of,
e.g., 200 facts) and are used to augment the reasoning of all LLM components.

• Core Planning Mechanism: Instead of a direct ReAct step, LWM-Planner performs a depth-limited recursive
lookahead search to select actions (Planner gϕ).

– Action Proposal (gpropose
ϕ): At each node in the search, an LLM module proposes a set of plausible actions (up

to a configurable branching factor, e.g., 4). This proposal is conditioned on the current (potentially simulated)
observation, the history of interactions within the simulation, and the accumulated atomic facts.

– Latent World Model Simulation (gsimulate
ϕ): For each proposed action, an LLM module predicts the next (latent)

observation, immediate reward, and termination status. This simulation is conditioned on the current state, the
action being simulated, the simulation history, and the atomic facts. This LLM interaction operates with a
temperature of 0.0 for deterministic outcomes.

– Value Estimation (gvalue
ϕ): At the leaves of the search tree (determined by a configurable search depth, e.g., 3, or

upon reaching a terminal state), an LLM module estimates the discounted future cumulative reward (value) from
that state. This estimation is also conditioned on the state’s observation, simulation history, and atomic facts, and
uses a temperature of 0.0.

• Q-Value Computation: The Q-value for an action ai from observation ot is computed as Q(ot, ai) = r′ − λstep +

γV̂ (o′), where r′ and o′ are from the simulation, λstep is a step penalty (e.g., -0.01), and γ is the discount factor (e.g.,
0.99). V̂ (o′) is the estimated value of the next state, derived either from further recursion or direct estimation at a leaf
node.

34

Improving LLM Agent Planning with In-Context Learning via Atomic Fact Augmentation and Lookahead Search

• State and Caching: The agent maintains a short-term interaction history (e.g., last 51 interactions) and the set of
learned atomic facts. Within a single planning phase (for one action selection), results of LLM calls for action proposal,
simulation, and value estimation are memoized to avoid redundant computations. A set of known terminal observations
is also maintained across steps.

• Hyperparameters: Inherits fact-related parameters. Key planning parameters include search depth, branching factor,
discount factor for planning, and step penalty. Asynchronous execution of LLM calls for different search branches is
supported to improve computational efficiency. The MCTS-based extension of this agent introduces further parameters
like the number of simulations and an exploration constant (UCT).

All LLM-based agents are initialized with a textual description of the environment and the set of allowed actions. Their
prompts are dynamically constructed to include the current observation, relevant interaction history, and any learned
knowledge (lessons or facts) appropriate for the specific agent architecture.

35

Improving LLM Agent Planning with In-Context Learning via Atomic Fact Augmentation and Lookahead Search

H. Evaluation Details
The experimental evaluation of our proposed LWM-Planner and baseline methods follows a structured procedure to ensure
fair comparison and robust assessment of performance. Key aspects of our evaluation protocol are detailed below:

• Run Duration: Each agent method is run for a total of 300 environment steps per evaluation trial, unless specified
otherwise in a particular experiment. Within these 300 steps, an agent may complete multiple episodes depending on
task complexity and its efficiency.

• Metrics Tracked: We focus on the following quantitative metrics to assess agent performance:

– Cumulative Return: This is the primary metric and is defined as the sum of all rewards obtained by the agent
over the entire 300-step run. It reflects the agent’s overall ability to accumulate reward within a fixed interaction
budget.

– Steps per Success: For environments that have a clear binary success condition (e.g., reaching the goal tile in
TextFrozenLake, or successfully completing the assigned task in ALFWorld), we record the number of environment
steps taken within an episode to achieve that success. This metric is typically reported as an average over all
successful episodes completed by the agent during its run. If an agent fails to achieve success in an episode or
across the entire 300-step run, it may not contribute to this average, or its contribution might be noted as not
applicable (e.g., marked as ’–’ in results tables).

• Replication and Statistical Significance: To account for inherent stochasticity in agent learning (if applicable) and
environment generation (for procedurally generated tasks), results for each method on each environment are averaged
over multiple independent runs, each initialized with a different random seed. The number of seeds is typically 3 or 10,
as specified in the respective table captions in Section 5. We report the mean of the metrics and the 95% confidence
interval (CI) to provide a measure of statistical significance and variability.

• Normalized Cumulative Return: To facilitate comparison of agent performance across different benchmark en-
vironments, which may have varying reward scales and task difficulties, we normalize the cumulative return. This
normalization follows the methodology proposed by Yu et al. (2020):

Normalized Score = 100× Raw Score− Random Agent Score
Expert Agent Score− Random Agent Score

In our experiments:

– The “Random Agent Score” is the average cumulative return achieved by the Random policy (described in
Section G) on the specific environment.

– The “Expert Agent Score” is set to the average cumulative return achieved by the highest-performing benchmark
method observed in our experiments for that particular environment. As per our findings (detailed in Section 5),
LWM-Planner consistently represents this expert level.

This normalization scales the performance scores to a range where 0 typically corresponds to the Random agent’s
performance, and 100 corresponds to the best performance observed among the evaluated methods, providing a
standardized measure of relative improvement.

36

Improving LLM Agent Planning with In-Context Learning via Atomic Fact Augmentation and Lookahead Search

I. Case Study: LWM-Planner on TextFrozenLake (4x4)
This case study details the learning process of the LWM-Planner agent in a procedurally generated 4× 4 TextFrozenLake
environment. The specific instance, corresponding to grid_4_h_9_s_0 from our experiments (with a 90% chance any
non-start/goal tile is a hole, and solvability ensured), features a high density of holes. Holes (H) terminate the episode with a
negative reward. The agent’s objective is to navigate from the starting position (S) at (0,0) to the goal (G) at (3,3). Ice
tiles (.) are safe to traverse.

The initial state of the grid is (S represents the Start/Agent):

S . H H
H . . H
H H . .
H H H G

The agent never observes this map, this is just for illustration. Instead the agent can only learn where the holes are by falling
down each hole at least once, motivating the need for a persistent memory.

Initial Exploration and Learning from Failures (Episodes 0-3)

In its initial episodes, LWM-Planner explores the environment and primarily learns by encountering hazards. The atomic
fact extraction mechanism is crucial during this phase for building a rudimentary map of dangers.

• Episode 0: The agent’s first action is to move ‘down‘ from (0,0).

– Trajectory Snippet: Obs: You are at (0,0) on start. | Act: down | R: -1.0 |
Next: You are at (1,0) on hole.

– Outcome: FAILURE.
– Fact Extracted: (1,0) is a hole.

– Accumulated Facts (after Ep. 0): [’(1,0) is a hole.’]

This first fact immediately informs the agent about a critical environmental feature.

• Episode 1: Aware of the hole at (1,0), the agent attempts a different path. It moves ‘right‘ from (0,0) to (0,1),
then ‘down‘ to (1,1), and then ‘down‘ again.

– Trajectory Snippet: ...Obs: You are at (1,1) on ice. | Act: down | R: -1.0 |
Next: You are at (2,1) on hole.

– Outcome: FAILURE.
– Fact Extracted: (2,1) is a hole.

– Accumulated Facts (after Ep. 1): [’(2,1) is a hole.’, ’(1,0) is a hole.’]

• Episode 2: The agent continues to explore. From (0,1), it moves ‘right‘.

– Trajectory Snippet: ...Obs: You are at (0,1) on ice. | Act: right | R: -1.0 |
Next: You are at (0,2) on hole.

– Outcome: FAILURE.
– Fact Extracted: (0,2) is a hole.

– Accumulated Facts (after Ep. 2): [’(0,2) is a hole.’, ’(2,1) is a hole.’, ’(1,0) is
a hole.’]

• Episode 3: Another failed attempt reveals another hole. From (1,2), it moves ‘right‘.

– Trajectory Snippet: ...Obs: You are at (1,2) on ice. | Act: right | R: -1.0 |
Next: You are at (1,3) on hole.

– Outcome: FAILURE.
– Fact Extracted: (1,3) is a hole.

37

Improving LLM Agent Planning with In-Context Learning via Atomic Fact Augmentation and Lookahead Search

– Accumulated Facts (after Ep. 3): [’(1,3) is a hole.’, ’(0,2) is a hole.’, ’(2,1) is
a hole.’, ’(1,0) is a hole.’]

After these initial four failures, the agent has learned the locations of four distinct holes. This knowledge is critical for
subsequent planning using lookahead search, as these facts help the LLM-based simulator predict negative outcomes.

First Success and Learning the Safe Path (Episode 4)

Equipped with knowledge of several hazards, LWM-Planner’s lookahead search can now better evaluate potential paths,
biasing away from known holes.

• Episode 4: The agent successfully navigates to the goal.

– Full Trajectory: (0,0) -> right -> (0,1) -> down -> (1,1) -> right -> (1,2) ->
down -> (2,2) -> right -> (2,3) -> down -> (3,3)

– Steps: 6 (Optimal for this grid)
– Outcome: SUCCESS (Reward: +1.0)
– Facts Extracted: A set of facts confirming the nature of the traversed safe tiles and the goal location:

* (0,1) is ice.

* (1,1) is ice.

* (1,2) is ice.

* (2,2) is ice.

* (2,3) is ice.

* (3,3) is the goal.

– Accumulated Facts (Snapshot after Ep. 4 includes): [’(0,1) is ice.’, ’(1,1) is ice.’, ...,
’(3,3) is the goal.’, ’(1,3) is a hole.’, ’(0,2) is a hole.’, ’(2,1) is a
hole.’, ’(1,0) is a hole.’]

This successful episode significantly expands the agent’s knowledge base, not just with more hazards, but with positive
confirmation of safe (ice) tiles and the goal’s location. This richer set of facts allows the LLM-driven world model and value
estimator to make more accurate predictions during lookahead.

Refinement and Consistent Optimal Performance (Episodes 5 onwards)

Even after the first success, the agent continues to refine its understanding of the environment.

• Episode 5: The agent explores an alternative move from a state on the previously successful path ((2,2)) and
encounters another hole.

– Trajectory Snippet: ...Obs: You are at (2,2) on ice. | Act: down | R: -1.0 |
Next: You are at (3,2) on hole.

– Outcome: FAILURE.
– Fact Extracted: (3,2) is a hole.

– This further completes the agent’s map of hazards, particularly those adjacent to the known safe path.

• Episode 6: The agent again reaches the goal in 6 steps, following the optimal path.

– Outcome: SUCCESS.
– Facts Extracted: [’(0,0) is the start.’, ’(0,0) is ice.’] (Identifying properties of the start

tile based on the successful trajectory.)

• Episode 7: The agent achieves another 6-step success. The LLM’s reflection process identifies additional facts based
on the episode’s context and existing knowledge.

– Outcome: SUCCESS.

38

Improving LLM Agent Planning with In-Context Learning via Atomic Fact Augmentation and Lookahead Search

– New Facts Extracted Include: ’(0,3) is a hole.’, ’(3,0) is a hole.’, ’(3,1) is a
hole.’. The LLM also re-identified ’(3,2) is a hole.’ (learned in Episode 5), possibly due to its
relevance in the broader context of successful navigation.

– Accumulated Facts (after Ep. 7):
[’(0,3) is a hole.’, ’(3,0) is a hole.’, ’(3,1) is a hole.’,
’(3,2) is a hole.’, ’(0,0) is the start.’, ’(0,0) is ice.’,
’(0,1) is ice.’, ’(1,1) is ice.’, ’(1,2) is ice.’,
’(2,2) is ice.’, ’(2,3) is ice.’, ’(3,3) is the goal.’,
’(1,3) is a hole.’, ’(0,2) is a hole.’,
’(2,1) is a hole.’, ’(1,0) is a hole.’]

At this stage, the agent has a fairly comprehensive map of the 4x4 grid, identifying most holes and the safe path.

• Subsequent Episodes (e.g., Episodes 8-15 from trace): The agent consistently solves the task by taking the optimal
6-step path. Fact extraction continues to refine its knowledge. For example, in Episode 11, the fact ’(2,0) is a
hole.’ is added, correctly identifying one of the remaining unknown holes. Other extracted facts often reinforce
existing knowledge (e.g., ’(0,1) is not a hole.’ in Episode 8, consistent with ’(0,1) is ice.’). By
Episode 12, the agent’s fact list implies knowledge of all hole locations and the optimal path.

Comparison with ReAct and Reflexion Baselines

To contextualize LWM-Planner’s performance, we compare its learning trajectory with ReAct and Reflexion agents on the
same TextFrozenLake instance (4× 4, h = 0.9, seed 0).

ReAct Agent: The ReAct agent, which relies on in-context reasoning based on the current observation and a short
interaction history, struggled significantly in this environment. Over 150 timesteps (spanning 83 episodes in the provided
trace), the ReAct agent failed to solve the task even once.

• Behavior Pattern: ReAct repeatedly fell into the same holes. For example, it fell into the hole at (1,0) (by moving
‘down‘ from start) in Episode 0, and repeated this exact mistake in Episodes 3, 4, 5, 7, 10, 11, 13, 14, 15, 16, etc.
Similarly, it frequently fell into the hole at (2,1) (e.g., Episodes 1, 2, 6, 8, 9, 12).

• Lack of Persistent Memory: This behavior demonstrates ReAct’s core limitation in environments requiring persistent
spatial memory beyond its immediate prompt context. Without a mechanism to explicitly record and recall that "(1,0)
is a hole" across episodes, it re-discovers these hazards repeatedly. The short-term history provided in its prompt
is insufficient for building a persistent map of the environment.

ReAct’s performance highlights the challenge of pure in-context reasoning without a structured memory mechanism for
accumulating task-critical knowledge like hazard locations.

Reflexion Agent: The Reflexion agent incorporates an episodic self-reflection mechanism, generating textual "lessons"
from past failures and successes. This allows for a degree of learning across episodes.

• Initial Learning: Reflexion also initially failed, but its lessons attempted to capture insights.

– Ep 0 Failure: (fell into (1,0))→ Lesson: “Avoid moving into holes by evaluating the safety of the next position
before taking an action.” (General advice)

– Ep 1 Failure: (fell into (0,2))→ Lesson: “Avoid moving right from (0,1) on ice to prevent falling into the hole
and losing reward.” (More specific, state-action advice)

• First Success: Reflexion achieved its first success (optimal 6 steps) in Episode 5 (after 11 total environment steps,
plus 4 prior failed episodes). This is notably slower than LWM-Planner, which succeeded in Episode 4 (after 4 prior
failed episodes, totaling 10 failure steps + 6 success steps = 16 steps to first success, vs Reflexion’s 4 failure episodes
of 1+2+3+4 = 10 steps + 6 success steps = 16 steps to first success – wait, the LWM-Planner trace shows 1+3+2+4 =
10 steps for failures, so LWM-Planner also took 16 steps to first success).

39

Improving LLM Agent Planning with In-Context Learning via Atomic Fact Augmentation and Lookahead Search

• Nature of Lessons vs. Facts: Reflexion’s lessons are typically higher-level strategic advice or state-action rules (e.g.,
"Avoid moving down from (1,1) on ice..."). While helpful, these lessons are less granular and less directly usable for
precise world model simulation compared to LWM-Planner’s atomic facts (e.g., "(2,1) is a hole."). An atomic
fact directly describes a property of the environment state, which is crucial for simulating outcomes.

• Consistency and Repeated Errors: Despite learning, Reflexion still exhibited some inconsistent behavior and repeated
errors. For instance, after its first success in Episode 5, it failed in Episode 6 by falling into (3,2) (a new hole).
In Episode 7, it repeated the mistake from Episode 1 by falling into (0,2), even though a lesson about it was
generated. This suggests that the general nature of lessons or the limited buffer for lessons might not always prevent
re-encountering hazards if the specific context isn’t perfectly matched by an active lesson. It did achieve further
successes (e.g., Ep 10, 11, 16, 17, 18), showing progressive improvement, but its path to consistent optimal play was
slower and less robust than LWM-Planner’s.

Reflexion demonstrates learning through its self-generated advice, but the abstract nature of its lessons and potential for
lesson forgetting (due to a limited buffer) can make it less efficient and robust than LWM-Planner’s fact-based learning in
this type of task.

Analysis of LWM-Planner’s Advantage

This case study, when compared to ReAct and Reflexion, demonstrates LWM-Planner’s ability to:

1. Learn from Failures and Successes: Initial interactions quickly identify critical hazards (holes), and successful
trajectories confirm safe paths and the goal. Both types of experiences are distilled into atomic facts.

2. Improve Planning via Fact Augmentation: The accumulated atomic facts dynamically augment the prompts for the
LLM components (proposer, simulator, value estimator). This grounding significantly improves the LLM’s ability to:

• Simulate transitions more accurately (reducing δmodel from our theoretical framework): Knowing ’(1,0) is
a hole.’ means simulating ‘down‘ from (0,0) will correctly predict a terminal state and negative reward.
This precise knowledge is more effective than ReAct’s lack of memory or Reflexion’s more general "avoid holes"
advice.

• Estimate state values more effectively: States adjacent to known holes or leading towards known safe paths to the
goal will have more accurate value estimates, guiding the lookahead search. LWM-Planner’s value estimation is
directly informed by a growing, precise map.

• Propose better actions: The action proposer is less likely to suggest actions leading directly into known holes
because the facts make these outcomes predictable during the lookahead.

3. Achieve Consistent Optimal Behavior More Quickly: By building a sufficiently accurate and granular fact-based
abstraction (Ψ) of the environment, LWM-Planner converges to an optimal policy for this TextFrozenLake instance
more rapidly and consistently than Reflexion, and vastly outperforms ReAct. The agent’s performance, in terms of
steps to goal, rapidly improves and stabilizes at the optimal 6 steps after a few initial exploratory episodes.

4. Leverage In-Context Learning with Structured Knowledge: All learning occurs via prompt augmentation with
dynamically generated, structured atomic facts, without any LLM weight updates. This showcases the power of
in-context learning when guided by distilled, experience-derived knowledge that is directly usable for building an
internal model of the environment.

The conciseness and specificity of atomic facts (e.g., ’(1,0) is a hole.’) provide verifiable information that is
directly usable by the LLM during its lookahead search. This contrasts with ReAct’s inability to form such a persistent
representation and Reflexion’s more general textual advice.

This progression from exploration and failure to consistent, optimal task completion highlights the effectiveness of combining
online atomic fact augmentation with LLM-driven lookahead search for adaptive planning and decision-making, particularly
when compared to methods with less structured or less persistent learning mechanisms.

40

Improving LLM Agent Planning with In-Context Learning via Atomic Fact Augmentation and Lookahead Search

J. Additional Results
J.1. ALFWorld Full Results

In the main paper we evaluate on three ALFWORLD environments, of ALFWORLD-A, ALFWORLD-B, ALFWORLD-C
which correspond to tasks 90, 3, and 5 respectively. To ensure exhuasitve evaluation we compare against all the ALFWORLD
evaluation environments (Shinn et al., 2023). We tabulate these in Tables 3 to 6.

Table 3: Aggregated performance across all ALFWORLD 134 eval environments (single-seed runs, 95% CIs). Higher
cumulative return ↑ is better.

Method (metric) ALFWORLD Aggregate

LWM-Planner (Cum. return ↑) 10.42±1.43

ReAct + FEC (Cum. return ↑) 8.53±0.93

ReAct (Cum. return ↑) 5.00±0.09

Reflexion (Cum. return ↑) 4.36±0.10

Random (Cum. return ↑) 0.00±0.00

41

Improving LLM Agent Planning with In-Context Learning via Atomic Fact Augmentation and Lookahead Search

Table 4: Cumulative return per ALFWorld task (0–50). Higher ↑ is better. Single-seed runs (no CI).

Environment LWM-Planner ReAct + FEC ReAct Reflexion Random
↑ ↑ ↑ ↑ ↑

ALFWORLD-0 12.00 5.00 4.00 4.00 0.00
ALFWORLD-1 2.00 16.00 6.00 4.00 0.00
ALFWORLD-2 10.00 5.00 4.00 4.00 0.00
ALFWORLD-3 10.00 2.00 5.00 4.00 0.00
ALFWORLD-4 8.00 8.00 5.00 4.00 0.00
ALFWORLD-5 4.00 0.00 4.00 4.00 0.00
ALFWORLD-6 12.00 14.00 6.00 4.00 0.00
ALFWORLD-7 4.00 17.00 5.00 5.00 0.00
ALFWORLD-8 0.00 12.00 5.00 5.00 0.00
ALFWORLD-9 6.00 5.00 5.00 5.00 0.00
ALFWORLD-10 12.00 8.00 5.00 5.00 0.00
ALFWORLD-11 12.00 4.00 5.00 4.00 0.00
ALFWORLD-12 0.00 8.00 5.00 4.00 0.00
ALFWORLD-13 7.00 7.00 5.00 4.00 0.00
ALFWORLD-14 0.00 15.00 5.00 5.00 0.00
ALFWORLD-15 1.00 6.00 5.00 5.00 0.00
ALFWORLD-16 11.00 2.00 5.00 – 0.00
ALFWORLD-17 2.00 15.00 5.00 4.00 0.00
ALFWORLD-18 18.00 9.00 5.00 4.00 0.00
ALFWORLD-19 6.00 11.00 5.00 5.00 0.00
ALFWORLD-20 8.00 9.00 5.00 4.00 0.00
ALFWORLD-21 0.00 3.00 5.00 – 0.00
ALFWORLD-22 9.00 3.00 4.00 5.00 0.00
ALFWORLD-23 8.00 12.00 5.00 5.00 0.00
ALFWORLD-24 4.00 4.00 5.00 4.00 0.00
ALFWORLD-25 7.00 10.00 5.00 5.00 0.00
ALFWORLD-26 9.00 13.00 5.00 4.00 0.00
ALFWORLD-27 24.00 8.00 6.00 4.00 0.00
ALFWORLD-28 6.00 3.00 5.00 4.00 0.00
ALFWORLD-29 13.00 11.00 5.00 5.00 0.00
ALFWORLD-30 3.00 1.00 4.00 4.00 0.00
ALFWORLD-31 8.00 11.00 5.00 5.00 0.00
ALFWORLD-32 11.00 7.00 6.00 4.00 0.00
ALFWORLD-33 1.00 8.00 4.00 4.00 0.00
ALFWORLD-34 1.00 5.00 5.00 5.00 0.00
ALFWORLD-35 26.00 3.00 6.00 4.00 0.00
ALFWORLD-36 5.00 7.00 6.00 4.00 0.00
ALFWORLD-37 14.00 3.00 5.00 4.00 0.00
ALFWORLD-38 10.00 6.00 5.00 4.00 0.00
ALFWORLD-39 23.00 3.00 5.00 5.00 0.00
ALFWORLD-40 2.00 13.00 5.00 4.00 0.00
ALFWORLD-41 2.00 16.00 5.00 4.00 0.00
ALFWORLD-42 20.00 12.00 4.00 4.00 0.00
ALFWORLD-43 5.00 4.00 6.00 4.00 0.00
ALFWORLD-44 11.00 10.00 5.00 5.00 0.00
ALFWORLD-45 7.00 6.00 5.00 5.00 0.00
ALFWORLD-46 1.00 8.00 5.00 5.00 0.00
ALFWORLD-47 4.00 8.00 5.00 5.00 0.00
ALFWORLD-48 13.00 4.00 5.00 4.00 0.00
ALFWORLD-49 0.00 2.00 5.00 5.00 0.00
ALFWORLD-50 3.00 5.00 5.00 3.00 0.00

42

Improving LLM Agent Planning with In-Context Learning via Atomic Fact Augmentation and Lookahead Search

Table 5: Cumulative return per ALFWorld task (51–100). Higher ↑ is better. Single-seed runs (no CI).

Environment LWM-Planner ReAct + FEC ReAct Reflexion Random
↑ ↑ ↑ ↑ ↑

ALFWORLD-51 12.00 9.00 5.00 4.00 0.00
ALFWORLD-52 28.00 4.00 5.00 4.00 0.00
ALFWORLD-53 13.00 12.00 5.00 4.00 0.00
ALFWORLD-54 5.00 4.00 5.00 – 0.00
ALFWORLD-55 19.00 6.00 6.00 4.00 0.00
ALFWORLD-56 10.00 9.00 5.00 5.00 0.00
ALFWORLD-57 17.00 4.00 5.00 5.00 0.00
ALFWORLD-58 9.00 13.00 5.00 4.00 0.00
ALFWORLD-59 26.00 9.00 6.00 4.00 0.00
ALFWORLD-60 29.00 0.00 5.00 5.00 0.00
ALFWORLD-61 23.00 8.00 6.00 5.00 0.00
ALFWORLD-62 7.00 8.00 5.00 4.00 0.00
ALFWORLD-63 12.00 21.00 5.00 4.00 0.00
ALFWORLD-64 7.00 14.00 4.00 5.00 0.00
ALFWORLD-65 25.00 5.00 5.00 5.00 0.00
ALFWORLD-66 18.00 7.00 5.00 3.00 0.00
ALFWORLD-67 5.00 2.00 5.00 5.00 0.00
ALFWORLD-68 25.00 8.00 5.00 4.00 0.00
ALFWORLD-69 1.00 20.00 5.00 4.00 0.00
ALFWORLD-70 23.00 3.00 5.00 3.00 0.00
ALFWORLD-71 7.00 10.00 4.00 4.00 0.00
ALFWORLD-72 8.00 18.00 6.00 5.00 0.00
ALFWORLD-73 4.00 8.00 5.00 5.00 0.00
ALFWORLD-74 26.00 6.00 4.00 5.00 0.00
ALFWORLD-75 6.00 25.00 5.00 5.00 0.00
ALFWORLD-76 21.00 7.00 5.00 – 0.00
ALFWORLD-77 7.00 2.00 5.00 5.00 0.00
ALFWORLD-78 28.00 3.00 6.00 5.00 0.00
ALFWORLD-79 12.00 16.00 5.00 4.00 0.00
ALFWORLD-80 10.00 15.00 5.00 5.00 0.00
ALFWORLD-81 11.00 1.00 5.00 5.00 0.00
ALFWORLD-82 5.00 3.00 5.00 5.00 0.00
ALFWORLD-83 8.00 1.00 5.00 4.00 0.00
ALFWORLD-84 6.00 10.00 5.00 5.00 0.00
ALFWORLD-85 7.00 3.00 5.00 – 0.00
ALFWORLD-86 33.00 9.00 5.00 5.00 0.00
ALFWORLD-87 1.00 7.00 5.00 4.00 0.00
ALFWORLD-88 28.00 14.00 4.00 4.00 0.00
ALFWORLD-89 12.00 5.00 5.00 4.00 0.00
ALFWORLD-90 27.00 20.00 5.00 4.00 0.00
ALFWORLD-91 0.00 8.00 5.00 4.00 0.00
ALFWORLD-92 7.00 10.00 5.00 4.00 0.00
ALFWORLD-93 4.00 2.00 5.00 5.00 0.00
ALFWORLD-94 5.00 11.00 5.00 5.00 0.00
ALFWORLD-95 14.00 8.00 5.00 4.00 0.00
ALFWORLD-96 23.00 9.00 6.00 – 0.00
ALFWORLD-97 8.00 10.00 5.00 5.00 0.00
ALFWORLD-98 1.00 13.00 4.00 4.00 0.00
ALFWORLD-99 24.00 4.00 5.00 4.00 0.00
ALFWORLD-100 5.00 13.00 6.00 4.00 0.00

43

Improving LLM Agent Planning with In-Context Learning via Atomic Fact Augmentation and Lookahead Search

Table 6: Cumulative return per ALFWorld task (101–134). Higher ↑ is better. Single-seed runs (no CI).

Environment LWM-Planner ReAct + FEC ReAct Reflexion Random
↑ ↑ ↑ ↑ ↑

ALFWORLD-101 7.00 20.00 5.00 4.00 0.00
ALFWORLD-102 30.00 4.00 5.00 5.00 0.00
ALFWORLD-103 4.00 12.00 4.00 4.00 0.00
ALFWORLD-104 9.00 7.00 5.00 4.00 0.00
ALFWORLD-105 11.00 10.00 5.00 4.00 0.00
ALFWORLD-106 8.00 5.00 5.00 – 0.00
ALFWORLD-107 17.00 3.00 5.00 4.00 0.00
ALFWORLD-108 – 14.00 4.00 4.00 0.00
ALFWORLD-109 10.00 2.00 5.00 4.00 0.00
ALFWORLD-110 9.00 12.00 5.00 5.00 0.00
ALFWORLD-111 24.00 7.00 6.00 – 0.00
ALFWORLD-112 14.00 10.00 5.00 4.00 0.00
ALFWORLD-113 7.00 1.00 6.00 – 0.00
ALFWORLD-114 6.00 9.00 5.00 4.00 0.00
ALFWORLD-115 0.00 10.00 5.00 – 0.00
ALFWORLD-116 22.00 6.00 5.00 4.00 0.00
ALFWORLD-117 0.00 28.00 5.00 4.00 0.00
ALFWORLD-118 0.00 8.00 5.00 5.00 0.00
ALFWORLD-119 2.00 12.00 5.00 – 0.00
ALFWORLD-120 5.00 7.00 6.00 5.00 0.00
ALFWORLD-121 28.00 12.00 5.00 4.00 0.00
ALFWORLD-122 3.00 7.00 5.00 5.00 0.00
ALFWORLD-123 10.00 4.00 5.00 4.00 0.00
ALFWORLD-124 4.00 4.00 5.00 4.00 0.00
ALFWORLD-125 4.00 15.00 6.00 4.00 0.00
ALFWORLD-126 22.00 9.00 4.00 4.00 0.00
ALFWORLD-127 20.00 2.00 4.00 5.00 0.00
ALFWORLD-128 6.00 13.00 4.00 5.00 0.00
ALFWORLD-129 0.00 12.00 4.00 5.00 0.00
ALFWORLD-130 0.00 13.00 5.00 4.00 0.00
ALFWORLD-131 18.00 4.00 5.00 3.00 0.00
ALFWORLD-132 8.00 6.00 5.00 5.00 0.00
ALFWORLD-133 3.00 9.00 5.00 4.00 0.00
ALFWORLD-134 18.00 30.00 5.00 4.00 0.00

44

Improving LLM Agent Planning with In-Context Learning via Atomic Fact Augmentation and Lookahead Search

J.2. Ablation Study - LWM-Planner Variants

We investigate the impact of the depth d, and branching factor b in our method on our main table of environments presented.
We find that the ablations reveal that we fit to the text frozen lake searching MDP environment that having a depth of d = 3
and b = 4 performs best, which validates our initial choice of parameters.

Table 7: Cumulative return (0 = Random, 100 = Expert/best). Higher ↑ is better.

Method alfworld_task_3 ↑ alfworld_task_5 ↑ alfworld_task_90 ↑ crafter_mini_5_s_0 ↑ grid_4_h_9_s_0 ↑
LWM-Planner (d=3, b=4) 15.33±39.62 21.00±228.71 34.67±85.20 119.33±124.34 32.00±nan
LWM-Planner (d=3, b=2) 1.33±3.79 29.33±44.81 11.00±14.90 334.00±17.91 15.00±25.41
LWM-Planner (d=1, b=4) 27.00±60.29 5.50±6.35 15.00±26.29 294.00±327.46 6.00±165.18
LWM-Planner (d=2, b=4) 1.50±6.35 19.50±120.71 12.67±12.25 217.67±249.46 0.00±nan

J.3. Main Table Results Un-Normalized

Table 8: Cumulative return (higher better) and steps per success (lower better); mean± 95% CI, for each benchmark
method across each environment. Bold indicates the best performing method for that metric and environment. LWM-Planner
is also referred to as Wolrd_parallel. Results are averaged over ten random seeds.

Method (metric) TextFrozenLake (4×4; h=0.9) CrafterMini (5×5) ALFWORLD-A ALFWORLD-B ALFWORLD-C

LWM-Planner (Wolrd_parallel) (Cum. return ↑) 31.80±20.39 150.30±44.94 21.33±9.53 22.89±12.11 19.50±8.37
(Steps/Success ↓) 6.00±0.00 46.50±7.32 8.44±1.46 7.56±0.97 7.55±1.10

ReAct + FEC (Cum. return ↑) 20.20±12.19 149.70±55.50 4.70±2.46 15.50±6.51 10.60±3.71
(Steps/Success ↓) – 41.35±5.72 14.55±12.27 5.75±2.87 9.35±5.35

ReAct (Cum. return ↑) -265.20±33.59 92.00±57.16 12.60±0.37 12.80±0.45 12.50±0.38
(Steps/Success ↓) – 50.70±5.47 24.70±0.96 23.80±1.29 25.05±0.52

Reflexion (Cum. return ↑) -61.10±4.80 87.20±51.45 11.00±0.00 11.00±0.45 11.33±0.38
(Steps/Success ↓) 23.20±3.97 80.05±39.46 25.67±0.77 26.19±0.77 25.94±0.95

Random (Cum. return ↑) -80.00±4.49 -289.00±8.56 0.00±0.00 0.00±0.00 0.00±0.00
(Steps/Success ↓) – – – – –

45

Improving LLM Agent Planning with In-Context Learning via Atomic Fact Augmentation and Lookahead Search

K. Discussion of Limitations
While LWM-Planner demonstrates a promising approach to enhancing LLM agent planning capabilities through in-context
learning via atomic fact augmentation and lookahead search, it is important to acknowledge several limitations. These
limitations, detailed below, also point towards avenues for future research and refinement.

K.1. Fact Management and Quality

The efficacy of LWM-Planner is significantly predicated on the quality, relevance, and atomicity of the facts extracted by the
fθ component.

• Quality and Relevance of Extracted Facts: The process for extracting facts is guided by LLM-based interpretation
of episodic trajectories (see Appendix B.1). While the aim is to identify “minimal new atomic facts” critical for
improving future predictions (as per the motivation in Section 3.4), the current mechanism relies on the LLM’s
heuristic understanding. There is no formal guarantee that the extracted facts are indeed optimally atomic, critical, or
non-redundant with prior knowledge or the environment description. Suboptimal facts could lead to inefficient use
of the context window or, in worse cases, mislead the planning process, thereby affecting the practical realization of
minimizing ϵsim and δmodel.

• Scalability of Fact Memory: The set of atomic facts,Mt, is managed using a deque and an optional LLM-based
compression step (Appendix B.1). However, in very long-running deployments or exceedingly complex environments,
the number of unique, relevant facts might still grow substantially. This could eventually strain the LLM’s context
window capacity, potentially leading to a performance bottleneck or the loss of older, still relevant facts if the deque’s
maximum length is exceeded or compression is overly aggressive. The impact on achieving a small |ZF | ≪ |S|
(Section 3.1) in such scenarios needs further investigation.

• Nature of Atomic Facts: The current framework operates on textual atomic facts. While flexible, this lacks a formal
grounding typically found in symbolic AI systems where predicates have precise semantics and grounding in an
ontology or logical theory. The definition of “atomic” is operational (minimal useful textual statements) rather than tied
to a formal decomposition of the state space or transition dynamics. This could limit the systematicity and verifiability
of the learned knowledge.

K.2. Planning and Simulation

The lookahead search mechanism, while powerful, also introduces certain limitations.

• Computational Cost: The recursive lookahead search (Algorithm 2) involves multiple LLM calls for action proposal
(gpropose

ϕ), state simulation (gsimulate
ϕ), and value estimation (gvalue

ϕ) at each search node. The computational cost can
therefore be considerable, scaling with search depth (Ds) and branching factor (kB). While memoization within a
single planning step helps (as mentioned in Section 4), the overall latency might be prohibitive for environments
requiring very rapid decision-making. Future work could explore how to hybridize some of these components to reduce
the computational burden.

• Fidelity of LLM-based World Model and Value Function: The core assumption is that an LLM, augmented with
relevant atomic facts, can serve as an accurate latent world model (minimizing δmodel) and a reliable value estimator
(contributing to minimizing ϵplan). While LLMs have shown impressive reasoning capabilities, their simulations
of environmental dynamics or estimations of long-term value can be imperfect, especially in novel situations not
well-covered by the current fact set or for states requiring deep causal reasoning beyond the LLM’s inherent capabilities.
Errors in simulation or value estimation can directly lead to suboptimal planning.

• Fixed Search Parameters: The current LWM-Planner employs a fixed search depth (Ds) and branching factor (kB).
This is a simplification, as optimal search effort can vary significantly depending on the current state’s complexity
or uncertainty. A more adaptive search control mechanism, potentially guided by confidence scores from the LLM
components, could improve both performance and efficiency.

46

Improving LLM Agent Planning with In-Context Learning via Atomic Fact Augmentation and Lookahead Search

K.3. In-Context Learning Constraints

The reliance on in-context learning, while avoiding weight updates, has its own set of challenges (Dong et al., 2024).

• Context Window Capacity: The primary constraint is the finite context window of current LLMs. All learned
knowledge (atomic facts) and recent interaction history must fit within this window to inform the LLM’s operations.
This inherently limits the total amount of experience that can be directly brought to bear at any single decision point or
during fact extraction.

• Knowledge Retention and “Forgetting”: The management of the atomic fact set via a deque and optional compression
aims to keep the most relevant information. However, there’s a potential for “forgetting” older facts that might still
be crucial if they are pushed out of the deque or overly compressed. The efficacy of the LLM-based compression in
preserving all and only essential information is heuristic.

• Rate of Learning and Adaptation: Learning occurs implicitly through the curation and augmentation of the fact set.
While this allows for online adaptation, the rate of learning or the ultimate performance ceiling might be constrained
by the LLM’s inherent in-context learning capabilities compared to methods that can fine-tune model weights on
accumulating experience.

K.4. Theoretical Framework and Assumptions

The theoretical motivation in Section 3 provides a valuable formal basis but relies on certain idealizations.

• Idealized Abstraction: The framework assumes the possibility of an ϵsim-approximate bisimulation via fact-based
abstraction Ψ∗. In practice, the LLM-driven fact extractor fθ approximates this ideal, and the quality of this ap-
proximation directly impacts the bounds. Achieving and verifying such a bisimulation with textual facts is an open
challenge.

• Perfect Abstract Model Assumption (Initially): Theorem 3.4 assumes a perfect model MΨ∗ of the abstract MDP.
While Equation (6) accounts for model learning error δmodel, the practical estimation and minimization of this error
when the model is implicitly defined by an LLM conditioned on facts are complex.

• Measurability: Directly measuring quantities like ϵsim or δmodel for the LWM-Planner in practical settings is difficult,
making it challenging to empirically verify the tightness of the derived theoretical bounds.

K.5. Broader Considerations and Future Work

• Dependence on Foundational LLM Capabilities: The performance of LWM-Planner is intrinsically linked to the
capabilities of the chosen LLM (e.g., its reasoning, simulation, and instruction-following fidelity). Limitations in the
base LLM will propagate to the agent (Hager et al., 2024).

• Prompt Sensitivity: Like many LLM-based systems, the performance of LWM-Planner’s components can be sensitive
to the precise phrasing and structure of the prompts (examples in Appendix B and C). Ensuring robustness and
generalizability of these prompts across diverse tasks and environments may require significant engineering or meta-
learning.

• Generalization to Diverse Environments: The current empirical evaluation focuses on text-based environments.
Extending LWM-Planner to handle environments with continuous state/action spaces, partial observability, or multi-
modal inputs would require adaptations, particularly in how atomic facts are defined, extracted, and utilized by the
LLM components.

• Exploration-Exploitation Balance: LWM-Planner’s current lookahead search is primarily geared towards exploitation
of its current knowledge (facts and LLM capabilities). A more explicit mechanism for exploration, perhaps by using
uncertainty in LLM-generated values or simulations to guide the search towards informative regions or to trigger
targeted fact-finding actions, could further enhance learning and performance.

• Cost of LLM Usage: The reliance on multiple LLM calls, especially within the lookahead search, can lead to significant
computational and API costs, which might be a practical concern for widespread deployment or very long-running
experiments.

47

Improving LLM Agent Planning with In-Context Learning via Atomic Fact Augmentation and Lookahead Search

Addressing these limitations offers rich avenues for future research, potentially leading to even more robust, efficient, and
broadly applicable LLM agents capable of sophisticated online learning and planning.

48

Improving LLM Agent Planning with In-Context Learning via Atomic Fact Augmentation and Lookahead Search

L. Ethical Considerations and Broader Impact
The LWM-Planner framework, while aimed at advancing AI planning capabilities, introduces several ethical considerations
and potential broader impacts that warrant careful discussion. Our approach relies on Large Language Models (LLMs) for
core functionalities such as fact extraction, latent world model simulation, and value estimation. Consequently, it inherits
both the strengths and weaknesses inherent in current LLM technology (Gallegos et al., 2024; Hager et al., 2024).

L.1. Ethical Considerations

• Factual Accuracy and Reliability of Learned Knowledge: A core component of LWM-Planner is the extraction and
utilization of "atomic facts." The veracity and relevance of these facts are paramount. If the ΨLLM component (Fact
Extractor) erroneously extracts incorrect facts or misinterprets trajectory data, the agent’s world model and subsequent
planning can become flawed. This could lead to suboptimal or even detrimental behavior, particularly if the agent is
deployed in safety-critical applications. While our approach aims for "atomic" and verifiable facts, the LLM’s generation
process is not infallible, and mechanisms for fact validation and retraction may be necessary for robust real-world
deployment.

• Bias in LLM Components: The underlying LLMs (gϕ and ΨLLM) are pre-trained on vast datasets, which may contain
societal biases. These biases could manifest in how facts are interpreted or generated, how states are valued, or how actions
are proposed and simulated. For example, an LLM might exhibit biases in simulated interactions involving representations
of different demographic groups if such biases were present in its training data. This could lead to unfair or inequitable
agent behavior if deployed in human-interactive settings. Ongoing research into bias detection and mitigation in LLMs is
crucial for addressing these concerns.

• Autonomy, Control, and Oversight: LWM-Planner enhances agent autonomy by enabling online, in-context learning
and adaptation without direct weight updates. While this is a research goal, increased autonomy necessitates robust
mechanisms for human oversight, control, and the ability to intervene if the agent learns undesirable facts or behaviors.
The "atomic facts" provide a degree of transparency into the agent’s learned knowledge, which can aid in debugging and
oversight, but ensuring safe and aligned behavior in complex, long-horizon tasks remains a significant challenge.

• Computational Resources and Environmental Impact: Training and deploying large-scale LLMs, even without fine-
tuning for each task, requires significant computational resources, contributing to energy consumption and environmental
concerns. While LWM-Planner aims for sample efficiency in terms of environment interactions, the LLM inference calls
during planning (especially with lookahead search) can be computationally intensive. Future work should consider the
efficiency of the planning and fact management processes to mitigate these impacts.

• Explainability and Trust: While the use of explicit "atomic facts" is intended to make the agent’s reasoning more
transparent than end-to-end black-box models, the internal decision-making of the LLM components themselves (e.g.,
how gsimulate

ϕ predicts a next state based on facts and observation) remains complex. Building trust in such systems requires
further advancements in methods for interpreting and explaining LLM-driven reasoning processes, even when augmented
with symbolic facts.

L.2. Broader Impact

• Advancing AI Planning and Adaptability: This research contributes to developing more capable AI agents that can
learn from experience in-context and adapt their plans in dynamic environments. This could have positive implications for
various fields requiring sophisticated planning, such as logistics, robotics, personalized education, and scientific discovery,
by enabling agents to more efficiently tackle complex, long-horizon tasks.

• Reduced Dependence on Extensive Fine-Tuning: The LWM-Planner’s ability to learn online through fact augmentation
reduces the need for repeated, task-specific fine-tuning of the base LLM. This can lower the barrier to applying powerful
LLMs to new sequential decision-making problems, saving data and computational resources typically associated with
training specialized models.

• Potential for Misuse or Unintended Consequences: As with any advanced AI technology, more autonomous and
adaptive agents could potentially be misused if deployed without appropriate safeguards. An agent learning incorrect
or malicious "facts" in an unconstrained environment could lead to undesirable outcomes. Furthermore, the increasing
capability of autonomous agents raises long-term questions about their role in society and the workforce.

49

Improving LLM Agent Planning with In-Context Learning via Atomic Fact Augmentation and Lookahead Search

• Scalability and Generalization Challenges: While LWM-Planner shows promise, scaling the approach to vastly more
complex, open-ended, or partially observable environments presents significant challenges. The manageability of the
"atomic fact" base, the combinatorial explosion of lookahead search (even if depth-limited), and the LLM’s ability to
accurately simulate highly novel scenarios are areas requiring further research. Overcoming these challenges is crucial for
realizing the broader positive impacts of such agents.

• Interaction with Humans: If LWM-Planner or similar agents are deployed in scenarios involving human interaction,
the nature of fact extraction and utilization becomes particularly sensitive. Facts learned from human interactions must
be handled with care to ensure privacy, fairness, and to avoid perpetuating harmful stereotypes or misinformation. The
design of human-agent interaction protocols that allow for collaborative fact validation and refinement will be important.

Continued research, alongside open discussion and the development of robust safety and ethical guidelines, will be essential
to navigate the challenges and harness the benefits of increasingly autonomous and adaptive LLM-based agents like
LWM-Planner.

50

