
Under review as a conference paper at ICLR 2025

1

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

LARGE LANGUAGE MODEL COMPRESSION—
PART 1: WEIGHT QUANTIZATION

Anonymous Authors
Paper under double-blind review

ABSTRACT

In recent years, compression of large language models (LLMs) has emerged as an
important problem to enable language model deployment on resource-constrained
devices, reduce computational costs, and mitigate the environmental footprint of
large-scale AI infrastructure. In this paper, we lay down the foundations of LLM
quantization from a convex optimization perspective and propose a quantization
technique that builds on this foundation for optimum quantization outcomes. Our
quantization framework, CVXQ, scales to models containing hundreds of billions
of weight parameters and provides users with the flexibility to compress models
to any specified model size, post-training. A reference implementation of CVXQ
can be obtained from.

1 INTRODUCTION

Large Language Models (LLMs) have become a versatile framework for solving a large number of
problems in natural language processing, from text translation and summarization to conversational
AI and automatic generation of radiology reports. While LLMs have surpassed traditional methods
in many of these tasks, they can involve tens or hundreds of billions of weight parameters (!), and
this makes their deployment onto devices with limited resources challenging—model weights and
activations far exceed the available on-chip memory so that activations need to be loaded from and
saved to off-chip memory throughout inference, rendering LLM inference memory-bound (Yuan et
al., 2024). Xis greatly hinders the usability of LLMs particularly in time-sensitive applications and
exacerbates the environmental footprint of large-scale AI infrastructure required by LLMs.
One way to reduce the memory requirements of large models for inference is by compressing (that
(is, simplifying) the representation of the model weights and activations after training. Xis can be
achieved via weight pruning, quantization of activations and weights, or PCA-type dimensionality
reduction of weight matrices. Out of these, quantization of weights and activation has proven to be
particularly useful for compressing models to very low bit depths or arbitrary user-specified model
sizes (Dettmers et al., 2022; Yao et al., 2022; Frantar et al., 2022; Frantar & Alistarh, 2022; Kim et
al., 2024; Shao et al., 2024; Lee et al., 2024; Guan et al., 2024). Using state-of-the-art quantization
techniques, it is now possible to compress 10–100 billion-parameter LLMs to 3–4 bits per weight
on average with a negligible loss of model accuracy (Chee et al., 2024; Frantar et al., 2022; Lin et
al., 2024), facilitating LLM inference on a single consumer-grade GPU for example.
Although significant advances have been made in LLM quantization recently, current approaches to
model quantization still lead to considerably reduced model accuracy at low bit depths, with many
methods fine-tuning model weights during quantization (Frantar et al., 2022; Lee et al., 2024; Chee
et al., 2024). Xis makes such quantization methods less suitable for the quantization of activations
during inference, where fine-tuning would lead to unacceptable delays in the inference pipeline.
Given the symmetry between weights and hidden states in matrix multiplications, achieving fast and
accurate quantization of both weights and activations can be crucial for enhancing computational
efficiency and prediction accuracy of LLMs, as well as for informing hardware design. Xis work
aims to address gaps in the current model compression literature and advance compression methods
further to enable accurate and efficient inference on quantized LLMs.
In this paper—the first of a three-part series—we tackle the problem of LLM compression using the

Under review as a conference paper at ICLR 2025

2

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

framework of convex optimization. We begin with the problem of weight quantization and analyze
how a model’s weights should be quantized to maximize quantized model accuracy for a given bit
size. We then propose a stochastic gradient descent-type algorithm to solve this problem exactly and
efficiently, post-training—in minutes for billion-parameter models and in a few hours for 10–100-
billion-parameter models. Compared with the recent OPTQ family of quantization methods (Frantar
et al., 2022; Frantar & Alistarh, 2022; Huang et al., 2024; Lee et al., 2024; van Baalen et al., 2024)
in which weights are fine-tuned during quantization, our approach spends virtually zero time on the
actual quantization once the optimum bit depths have been determined. Xis makes our framework
also suited for quantizing intermediate activations, which can further reduce the memory footprint
of batched inference. Using our bespoke mixed precision CUDA kernel (see Appendix A), we also
accelerate matrix-vector multiply relative to the floating-point matrix-vector multiply of cuBLAS.

2 PREVIOUS WORK
Early work on neural network model quantization can be attributed to Vanhoucke et al. (2011), who
demonstrated that 8-bit integer arithmetic can be used for network training and inference without
incurring a significant loss of accuracy. More generally, quantization-aware training (QAT) (Zhou
et al., 2017; Jacob et al., 2018; D. Zhang et al., 2018; Esser et al., 2019; Y. Choi et al., 2017; Wang
et al., 2019) integrates the quantization process into training by allowing the model to adapt to the
reduced precision in weights (Esser et al., 2019; Jacob et al., 2018; D. Zhang et al., 2018; Zhou et
al., 2017) and activations (Y. Choi et al., 2017; Wang et al., 2019) by determining the optimum bit
depth (Wang et al., 2019; D. Zhang et al., 2018) and step size (Esser et al., 2019) using back-prop
to facilitate the gradient to flow through quantization operators. One shortcoming of QAT methods
is that model training needs to be repeated for different quantized model sizes and accuracy, which
makes them less suitable for quantizing larger models such as LLMs.
More recent quantization techniques for language and vision models aim to facilitate compression
of already trained models for rapid deployment without further training (Dong et al., 2019; Chen et
al., 2021; Dettmers et al., 2022; Yao et al., 2022; Frantar et al., 2022; Dettmers et al., 2023; Xiao et
al., 2023; Lin et al., 2024; Kim et al., 2024; Shao et al., 2024; Lee et al., 2024). Xese approaches
quantize model weights to 3–4 or 8 bits for integer-arithmetic-only inference (Jacob et al., 2018)
using mixed bit depth quantization (Wang et al., 2019; Chen et al., 2021) or by a separate handling
of outlier channels (Zhao et al., 2019) to improve the accuracy of the quantized model. Loss-aware
quantization techniques (Hou & Kwok, 2018; Nahshan et al., 2020; Qu et al., 2020) seek to minimize
accuracy loss in quantized models by calibrating quantization and biases on calibration data. Data-
free quantization methods (Nagel et al., 2019; Xu et al., 2020; K. Choi et al., 2021; Qian et al., 2023)
attempt to remove the need for real calibration data by matching the distribution of weights instead
(Nagel et al., 2019) or using synthetic data in place of real calibration data (K. Choi et al., 2021).
For LLM compression in particular, an extension to the Optimum Brain Surgeon (OBS) algorithm
(Hassibi & Stork, 1992) known as GPTQ (Frantar et al., 2022) was proposed for the quantization of
1–100 billion parameter models. Further recent extensions to GPTQ (Dettmers et al., 2023; Lee et
al., 2024) incorporate the handling of sensitive weights by scaling or simply by retaining the original
weight values similarly to (Lin et al., 2024; Xiao et al., 2023). Here, we use convex optimization for
fine-granularity mixed-precision weight quantization, overcoming the combinatorial nature of
determining the optimal bit depth (0, 1, …, 8 bits) per channel to better attend to channel sensitivity.

3 QUANTIZATION FRAMEWORK
Here, we use the task of next-token prediction in language modeling as a running example. For our
purposes, the end-to-end mapping of input token embeddings to predicted next-token embeddings
by a pretrained language model 𝑓 can be expressed in the most general form as

 𝐙 = 𝑓 (𝐗) = 𝑓 (𝐗, 𝚯1, 𝚯2, . . . , 𝚯𝑁) = 𝑓 (𝐗, 𝚯1, 𝚯2, . . . , 𝚯𝑁 , 𝐁1, 𝐁2, . . . , 𝐁𝑁) (1)

in which 𝐗 ∈ ℝ𝐿×𝐸 denotes a sequence of 𝐿 tokens, each of which resides in some 𝐸-dimensional
embedding space, and 𝐙 ∈ ℝ𝐿×𝐸 , embeddings of 𝐿 predicted next tokens. Xe 𝑚th block of weight
matrices 𝚯𝑚𝑀+1, . . . , 𝚯(𝑚+1)𝑀 and bias vectors 𝐁𝑚𝑀+1, . . . , 𝐁(𝑚+1)𝑀 jointly parameterize the 𝑚th
transformer block, which refines the embeddings produced by the (𝑚 − 1)th transformer block. In

Under review as a conference paper at ICLR 2025

3

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

practice, LLM frameworks used in language modeling also require an embedder 𝚯0 ∈ ℝ𝐸×𝑉 and a
prediction head 𝚯𝑁+1 ∈ ℝ𝑉 ×𝐸 to transform between embeddings and tokens from a vocabulary of
size 𝑉 , but for now, we focus on the compression of transformer block weights as is typically done
in model weight quantization work (Frantar et al., 2022; Lee et al., 2024; Lin et al., 2024).
To get a sense of the number of weight matrices and their sizes in a typical language model, the 13
billion-parameter model in the OPT family (OPT-13B) contains 𝑁 = 240 weight matrices in blocks
of 𝑀 = 6, with each block comprising 12𝐸2 weights in an embedding dimension of 𝐸 = 5120. Xe
embedder and prediction head are parameterized by a shared matrix containing 𝑉𝐸 weights, where
the vocabulary size 𝑉 = 50272. Note that each transformer block also contains 9𝐸 bias parameters
but due to their relative scarcity, bias parameters can be communicated losslessly and still have little
to no impact on the overall compression performance (Frantar et al., 2022).
Notionally, the elements of a weight matrix 𝚯 are continuously valued so they require quantization
for efficient communication and storage. Compared with vector and lattice quantization techniques
(Egiazarian et al., 2024; Gong et al., 2015; van Baalen et al., 2024), scalar quantization (Frantar et
al., 2022; Lin et al., 2024) can simplify decoding and even enable operations directly on quantization
indices, which obviates the need for a separate dequantization process. Xe mid-rise uniform scalar
quantization of a weight 𝜃 at a bit-depth of 𝐵 bits and a step size 𝐷 can be expressed as

 𝜃𝑞(𝐵, 𝐷) = 𝐷(clip(floor(𝐷−1𝜃) , −2𝐵−1, 2𝐵−1 − 1) + 2−1), 𝐵 = 0, 1, 2, . . . (2)

and 𝜃𝑞(𝐵, 𝐷) = 𝜃 if 𝐵 = ∞ (for notational convenience). Xe problem of compressing a model 𝑓
now amounts to determining the optimal bit depth 𝐵 and the associated quantization step size 𝐷 for
model weights. It would be impractical, however, to determine a separate (𝐵, 𝐷) for each weight 𝜃
in the model since the cost of signaling the choice of (𝐵, 𝐷) for each one would far outweigh the bit
savings derived from quantization. Typically, a single (𝐵, 𝐷) pair is used to quantize a small group
of weights (an entire matrix or rows or columns thereof) in which case the cost of signaling (𝐵, 𝐷)
can be borne by a group of quantized weight parameters as a negligible per-weight overhead.

3.1 B I T DE P T H AS S I G N M E N T
Suppose we want to compress 𝑓 by quantizing each matrix 𝚯𝑛 containing 𝑃𝑛 elements according to
its own bit depth 𝐵𝑛 and step size 𝐷𝑛

∗(𝐵𝑛). How should 𝐵𝑛 be decided? Roughly speaking, weights
that are more sensitive to output distortion should be allotted more bits to “balance the scales” while
keeping the total number of bits under a given model bit budget. We can formalize this notion by
expressing the weight quantization task at hand as a constrained non-linear least-squares problem:

minimize 𝑑(𝐵1, . . . , 𝐵𝑁) = 𝔼𝐗‖𝑓 (𝐗, 𝚯1

𝑞(𝐵1, 𝐷1
∗(𝐵1)), . . . , 𝚯𝑁

𝑞 (𝐵𝑁 , 𝐷𝑁
∗ (𝐵𝑁))) − 𝑓 (𝐗)‖𝐹

2

subject to  𝑟(𝐵1, . . . , 𝐵𝑁) = ∑ 𝑃𝑛𝐵𝑛 − (∑ 𝑃𝑛
𝑁
𝑛=1)𝑅 = 0𝑁

𝑛=1
(3)

in which 𝑅 denotes a user-specified average model bit depth (bit rate). Xis problem is reminiscent
of optimal resource allocation, where the objective is to maximize some utility (or minimize output

Algorithm 1. CVXQ: Bit depth determination
1 Input: f ( ⋅ ,Θ1, . . . ,ΘN) (model), {X} (calibration set), R (target bit rate), Bmax ← 8 (max bit depth)
2 Output: B1, . . . ,BN (bit depths), S1, . . . ,SN (weight scales) , µ1, . . . ,µN (weight means)
3 Initialize: U ← pca_basis ({X}) ∈ ℝE×E', S ← sub_sample(IL×L) ∈ ℝL×L', V  ← 10"6
4 Bn ← ∞, Gn

2 ← 0, µn ← mean(Θn), Sn ← std(Θn), Θn
q ← Θn, Bn

q ← Bn, X&n ← 0 for n in 1, . . . ,N
5 for iter in 1, . . . ,max_iter do
6 for X in minibatch do
7 Z,X1, . . . ,XN ← f (X,Θ1

q, . . . ,ΘN
q ,B1

q, . . . ,BN
q)

8 X&n ← (1	–α)X&n+ (α/L)1TXn for n in 1, . . . ,N
9 Γ1, . . . ,ΓN ← autograd(STZU, Θ1

q, . . . , ΘN
q)

10 Gn
2  ← (1 –α)Gn

2 + (α/Pn)  trace (Γn
TΓn) for n in 1, . . . ,N

11 for _ in 1, . . . ,10 do
12 Bn ← clamp(1

2 log2 (Gn
2Sn

2/V),0, Bmax) for n in 1, . . . ,N
13 V    ← V+ β (sum(PnBn)− (sum(Pn))R)
14 Θn

q ← compand_quantize (Θn,Bn,Sn,	µn), Bn
q   ← Bn + (Θn

q −Θn)X&n for n in 1, . . . ,N

Under review as a conference paper at ICLR 2025

4

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

distortion in our case) by optimally spending down a given budget (the total number of bits). In this
section and next, we provide insights into problem (3) and discuss its solution; see Algorithm 1.
To apply the machinery of numerical optimization to (3), we will relax the discrete constraint on the
bit depths 𝐵1, . . . , 𝐵𝑁 while solving the problem and round the solution 𝐵1

∗, . . . , 𝐵𝑁
∗ to the nearest

integers after they have been obtained. Let us write the Lagrangian of (3) as ℒ (𝐵1, . . . , 𝐵𝑁 , 𝑉) =
𝑑(𝐵1, . . . , 𝐵𝑁) + 𝑉𝑟(𝐵1, . . . , 𝐵𝑁), where 𝑉 is a dual variable associated with the equality constraint
of (3). Setting to 0 the partials of ℒ with respect to 𝐵1, . . . , 𝐵𝑁 , 𝑉 yields the optimality conditions

 1
𝑃1

𝜕𝑑(𝐵1, 𝐵2, . . . , 𝐵𝑁)
𝜕𝐵1

= ⋅ ⋅ ⋅ = 1
𝑃𝑁

𝜕𝑑(𝐵1, 𝐵2, . . . , 𝐵𝑁)
𝜕𝐵𝑁

= −𝑉 , 𝑟(𝐵1, . . . , 𝐵𝑁) = 0 (4)

so, problem (3) can be solved by alternately updating the bit depths 𝐵1, . . . , 𝐵𝑁 (primal variables)
and the trade-off 𝑉 (dual variable) until all optimality conditions are met. In words, the optimality
conditions are reached once the marginal decrease in the output distortion from an infinitesimal bit
is equal across layers at −𝑉 and once we have assigned exactly 𝑅 bits per weight on average.
Since the quantization function (2) is constant almost everywhere, a naive computation of the partial
derivatives of 𝑑 with respect to 𝐵1, . . . , 𝐵𝑁 using the chain rule of differentiation does not provide
a useful direction for descent. One result from rate–distortion theory (Gersho & Gray, 1991) is that
for any random variable of finite variance, quantization error decreases by half with every additional
bit at a sufficiently high bit depth. More specifically to our problem, we can write (Appendix B)

 − 1
2 ln 2

𝜕𝑑(𝐵1, . . . , 𝐵𝑁)
𝜕𝐵𝑛

≈ 𝔼𝐗 ‖

𝜕𝑓 (𝚯1
𝑞(𝐵1), . . . , 𝚯𝑁

𝑞 (𝐵𝑁))
𝜕𝚯𝑛

Δ𝑛
 𝑞 (𝐵𝑛)

‖
𝐹

2

≈ 𝑃𝑛𝐻𝑛 𝐺𝑛
2𝑆𝑛

22−2𝐵𝑛⏟⏟⏟⏟⏟⏟⏟
= 𝑑𝑛(𝐵𝑛)

 (5)

in which 𝚯𝑛
𝑞(𝐵𝑛) = 𝚯𝑛

𝑞(𝐵𝑛, 𝐷𝑛
∗(𝐵𝑛)) for brevity, 𝐺𝑛

2 and 𝑆𝑛
2 represent the variances of the elements

of 𝜕𝚯𝑛𝑓 (𝐗, 𝚯1
𝑞, . . . , 𝚯𝑁

𝑞), and of 𝚯𝑛
𝑞, respectively, and 𝐻𝑛 is a quantization coefficient that depends

on the type of weight distribution, with 𝐻𝑛 = 1.42 for Gaussian, 0.72 for Laplace, etc. (Gersho &
Gray, 1991). Assuming weights are distributed similarly across layers with 𝐻1 = ⋅ ⋅ ⋅ = 𝐻𝑁 , factors
𝐻𝑛 and constant − 1

2 ln 2 can be removed the above expression without affecting the solution of (3).
Coupled with the above closed-form expression for the partial derivatives, optimality conditions (4)
naturally lend themselves to dual ascent-type methods for solving problem (3). Xe idea behind dual
ascent (Boyd et al., 2011) is to alternately update the primal 𝐵1, . . . , 𝐵𝑁 , and dual 𝑉 variables, with
one set held fixed while updating the other. After initializing 𝐵1 = ⋅ ⋅ ⋅ 𝐵𝑁 = ∞, 𝑉 to some small
positive number, and computing 𝐺1

2, . . . , 𝐺𝑁
2 , we update the bit depths and trade-off iteratively via

𝐵𝑛 ← clamp (

1
2

log2 (
𝐺𝑛

2𝑆𝑛
2

𝑉) , 0, 𝐵max = 8) for 𝑛 = 1, . . . , 𝑁

𝑉    ← 𝑉 + 𝛼(∑ 𝑃𝑛𝐵𝑛
𝑁
𝑛=1 − (∑ 𝑃𝑛

𝑁
𝑛=1)𝑅)

(6)

in which 𝛼 denotes a step size for dual update. Figure 1 illustrates the optimality conditions for bit

Figure 1: Optimal bit depths. Consider two weight matrices whose distortion functions are given
by 𝑑1 and 𝑑2, where 𝑑𝑛(𝐵𝑛) = 𝐺𝑛

2𝑆𝑛
22−2𝐵𝑛. For any given value of the dual variable 𝑉 , optimal bit

depths 𝐵1
∗ and 𝐵2

∗ are found where the derivative of 𝑑1 and 𝑑2 is −𝑉 , respectively (left). Xese
points correspond to the intersections between 𝑉 and −𝑑𝑛

′ = (2 ln 2) 𝑑𝑛 (center). Integerized bit
depths occur on the rounded curves −𝑑�̂�

′ (right).

101

100

10–1
 0 1 2 3 4

Bit depth (𝐵)

D
er

iv
at

iv
e

of
 d

ist
or

tio
n

4

3

2

1

0
 0 1 2 3 4

N
or

m
al

iz
ed

 d
ist

or
tio

n

Bit depth (𝐵)

𝑑2

𝑑1

Feasible
region

𝑉 = 1

101

100

10–1
 0 1 2 3 4

D
er

iv
at

iv
e

of
 d

ist
or

tio
n

Bit depth (𝐵)

−𝑑2
′ −𝑑1

′

𝑉 = 1

𝑉 = 4

𝐵1
∗

𝐵2

∗

 𝐵2
∗

𝐵1

∗

𝑉 = 1

𝑉 = 4

𝐵2
∗

−𝑑2
′ −𝑑2̂

′

Under review as a conference paper at ICLR 2025

5

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

depths. With 𝐺𝑛
2 and 𝑆𝑛

2 fixed, dual ascent steps (6) typically converge within a few iterations (tol =
10−6 bit, step size α = 2) after which the obtained 𝐵𝑛 are rounded to integers. Xe non-linear nature
of the least squares objective 𝑑 (3) means that iteration (6) should be repeated after the bit depths
𝐵𝑛 are updated. Using the updated 𝐵𝑛, we first obtain the re-quantized weights 𝚯𝑛

𝑞(𝐵𝑛) along with
the re-computed gradient variances 𝐺𝑛

2, based on which 𝐵𝑛 can be further updated via (6).
Evaluating 𝜕𝚯𝑛𝑓 (𝐗, 𝚯1

𝑞(𝐵1), . . . , 𝚯𝑁
𝑞 (𝐵𝑁)) across the entire calibration dataset at every iteration is

prohibitively expensive given the dimensionality of the output 𝑓 (𝐗) ∈ ℝ𝐿×𝐸 and the cost of back-
propagating each element through 𝑓 . To overcome this difficulty, we perform PCA on 𝑓 (𝐗) along
the embedding dimension (of 𝐸) and sub-sample along the token dimension (of 𝑇), and accumulate
gradient variances by back-propagating only a mini-batch of calibration examples every time:

 𝐺𝑛
2 ← (1 − 𝛽)𝐺𝑛

2 + 𝛽 𝔼𝐗∼batch ‖

𝜕𝐒𝑇 𝑓 (𝚯1
𝑞(𝐵1), . . . , 𝚯𝑁

𝑞 (𝐵𝑁))𝐔
𝜕𝚯𝑛 ‖

𝐹

2

 for 𝑛 = 1, . . . , 𝑁 (7)

in which 𝛽 denotes the learning rate, and 𝐒𝑇 and 𝐔 represent the PCA projection and sub-sampling
operators, respectively. In practice, we further accelerate variance accumulation by cycling through
PCA coefficients and back-propagating only one coefficient per sample in every minibatch.

3.2 AC T U A L QU A N T I Z AT I O N

Suppose now the weight matrices 𝚯1, . . . , 𝚯𝑁 are to be assigned bit depths 𝐵1, . . . , 𝐵𝑁 (which are
not necessarily optimum.) We now investigate how the quantization step size 𝐷𝑛 should be decided
given bit depth 𝐵𝑛. In the round-to-nearest scheme (RTN, Figure 2, left), 𝐷𝑛 is always chosen such
that the quantizer’s 2𝐵𝑛 steps just cover the entire range of weight values, and this step size halves
as 𝐵𝑛 is increased by one. Xese criteria optimize step sizes when weights are distributed uniformly
across a range and the objective is to minimize distortion in quantized weights.
For LLMs, the elements 𝜃 of a weight matrix typically exhibit a light-tailed distribution 𝑝𝜃 (normal
or Laplace) (Zhao et al., 2019), which renders partitioning the entire weight range into 2𝐵𝑛 equal
steps sub-optimal especially at low bit depths (Cover & Xomas, 2006; Gersho & Gray, 1991). One
alternative to the computationally expensive Lloyd–Max algorithm (Lloyd, 1982; Max, 1960) is
companded quantization (Gray & Neuhoff, 1998), which applies a sigmoid transform to 𝜃 prior to
uniform quantization to achieve finer quantization in regions of larger 𝑝𝜃 and coarser quantization
in regions where 𝑝𝜃 is smaller; see Figure 2 (right). When the weights 𝜃 are Laplace-distributed with
mean 𝜇 and variance 𝑆2, an asymptotically optimal choice of sigmoid function is (Appendix C):

 𝜎(𝜃, 𝑆, 𝜇) =
1 + sgn(𝜃 − 𝜇)

2
exp

(
−

√2 abs(𝜃 − 𝜇)
3𝑆)

∈ (0, 1), 𝜃 ∈ (−∞, ∞), (8)

that is, the normalized cubic root of the cumulative distribution function for a Laplace distribution
of the same mean and variance. Companded weights 𝜃𝜎 = 𝜎(𝜃, 𝑆, 𝜇) are then quantized uniformly

Figure 2: Companding quantization. Illustrated for a 4-bit quantizer (16 quantization levels) on
Gaussian weights with zero mean and unit variance. Uniform quantization across the entire range
of weight values (left) leads to unduly large quantization bins (hence quantization errors) for more
probable weights. Companding the weights to the range (0,1) prior to uniform quantization (middle)
reduces quantization errors for more probable weights (right), reducing the mean square error.

1

0
 –6 –3 0 3 6

4

2

0

–2

–4

0.2

0.1

 0
 –4 –2 0 2 4

Pr
ob

ab
ili

ty

Q
ua

nt
iz

ed
 v

al
ue

Co
m

pa
nd

ed
 v

al
ue

4

2

0

–2

–4
 –4 –2 0 2 4

Pr
ob

ab
ili

ty

Co
m

pa
nd

-q
ua

nt
iz

ed
 v

al
ue

 0.2

0.1

 0

Original weight Original weight Original weight

Under review as a conference paper at ICLR 2025

6

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

in the range (0, 1) and signaled with bit depth 𝐵, scale 𝑆, and mean 𝜇 for efficient dequantization
using lookup tables. In practice, 𝑆, 𝜇 are treated as hyper-parameters and fine-tuned efficiently on
coarse 1D grids as a post-processing step (Young et al., 2021) once Algorithm 1 has completed.
Quantization invariably causes small deterministic differences to arise between the original (non-
quantized) 𝚯 and quantized 𝚯𝑞 weights. While these errors are often modeled as zero-mean noise
in theoretical analyses, they are seldom zero-mean in practice and can lead to systematically biased
model output, which significantly reduces prediction accuracy. To compensate for these non-zero
differences, we compute new bias vectors for the model as 𝐁𝑛

𝑞 ← 𝐁𝑛 + (𝚯𝑛
𝑞 − 𝚯𝑛) X!n each time the

matrix 𝚯𝑛 is quantized. Here, X!n is a vector of running means of the inputs to the 𝑛th layer, which
is accumulated during the forward pass in a manner analogous to the accumulation of 𝐺𝑛

2 during the
backward pass. Xe corrected biases 𝐁𝑛

𝑞 are then used whenever the corresponding quantized weight
matrices 𝚯𝑛

𝑞 are used during gradient variance accumulation and inference.

3.3 MAT R I X PA RT I T I O N I N G

Rather than quantize optimally at the granularity of a whole weight matrix, we can split each matrix
into a collection of row or column matrices, assigning optimum bit depth and step size to each sub-
matrix. In this case, the total number of matrices 𝑁 in (3) can be reinterpreted as the total number
of sub-matrices collected across all layers, with the quantities 𝐵𝑛, 𝐷𝑛 and 𝑃𝑛, similarly interpreted
as the bit-depth, step size and number of elements of the 𝑛th sub-matrix. Note that quantizing at the
granularity of row or column sub-matrices does not noticeably increase the complexity of variance
accumulation, as the same squared gradients computed via back-propagation can be averaged per
sub-matrix to produce the corresponding sub-matrix variances. Here, without loss of generality, we
assume that each matrix is split into a collection of column matrices.
For a weight matrix 𝚯 with gradient and weight variances 𝐺2 and 𝑆2, whose per-column variances
are 𝐺1

2, . . . , 𝐺𝑁
2 and 𝑆1

2, . . . , 𝑆𝑁
2 , respectively, the theoretical gain (average bit depth savings) from

partitioning can be expressed as

 𝛾partition = 1
2 (log2(𝐺2𝑆2) − 1

𝑁 ∑ log2(𝐺𝑛
2𝑆𝑛

2)
𝑁
𝑛=1), (9)

a non-negative quantity as a direct result of Jensen’s inequality. Xis quantity represents the bit-rate
(average bit-depth) savings when the 𝑛th column is assigned 𝐵𝑛 = 1

2 log2(𝐺𝑛
2𝑆𝑛

2) + 𝐵 bits for some
𝐵, compared to assigning a uniform bit depth 𝐵𝑛 = 1

2 log2(𝐺2𝑆2) + 𝐵 bits across all columns under
the assumption that the weights of its 𝑁 columns are identically distributed. Figure 3 (left) plots the
per-matrix bit-depth savings derived by partitioning the (𝑄, 𝐾, 𝑉 and 𝑂) projection matrices of the
OPT-125m model by rows or columns. Xe per-channel breakdown of the savings is also shown.
In addition to primary splitting of matrices into columns, we may want to further split each column
into a fixed number of groups of weight elements given the presence of row bit savings as well. To
split the columns of a weight matrix 𝚯 ∈ ℝ𝑁×𝑁 , one can simply cluster its rows into 𝑀 similarly

Figure 3: Bit savings from partition. Plotted for OPT-125m. Savings are derived by partitioning
each weight matrix into a collection of row or column matrices and assigning each sub-matrix its
own bit depth. Savings differ across the (𝑄, 𝐾, 𝑉 and 𝑂) projection matrices of the model’s 12
transformer blocks (left). Per-column (middle) and row (right) bit savings (shown for block 3, 𝑂-
proj) can dip below zero but are always positive on average due to Jensen’s inequality (see text).

4

3

2

1

0
 0 1 2 3 4 5 6 7 8 9 1011

Pe
r-m

at
rix

 b
it

sa
vi

ng
s

Transformer block index

 Row
Column

Pe
r-c

ol
um

n
bi

t s
av

in
gs

 0 192 384 576 768

6

4

2

0

–2

Sorted column index

Column partition

Average

𝑉 proj (block 0)

6

4

2

0

–2
 0 192 384 576 768

Pe
r-r

ow
 b

it
sa

vi
ng

s

Sorted row index

Row partition

Average

𝑉 proj (block 0)

Under review as a conference paper at ICLR 2025

7

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

sized groups based on their row variances 𝐺1
2𝑆1

2, . . . , 𝐺𝑁
2 𝑆𝑁

2 . By applying the same clustering to all
columns of a matrix, we can signal the cluster index for each row using ⌈log2 𝑀⌉ bits—a negligible
per-weight overhead for a typical number of columns in a large weight matrix and number of groups
used in practice. We illustrate partitioning and subdivision in Figure 4. Later in Section 4, we show
the accuracy of OPT models quantized using different numbers of row clusters, demonstrating that
the clustering idea used in AWQ and GPTQ similarly improves quantized model accuracy.

4 QUANTIZATION EXPERIMENTS
To study the behavior of quantized LLMs, we apply CVXQ (Algorithm 1) to the quantization of the
Meta Open Pretrained Transformer (OPT) (S. Zhang et al., 2022) and Llama-2 (Touvron et al., 2023)
families of language models (from the Hugging Face Hub), comparing the performance of CVXQ
against other model quantization methods on language modeling and question answering tasks. For
calibration data, we source 128 examples from the training split of the C4 dataset (Raffel et al., 2020)
and test using the test split of WikiText2 (Merity et al., 2022) for language modeling and the test
splits of GSM8K (Cobbe et al., 2021), ARC (Easy and Challenge) (Clark et al., 2018), HellaSwag
(Zellers et al., 2019), PIQA (Bisk et al., 2019) and Winogrande (Sakaguchi et al., 2021) for question
answering tasks.
Language Modeling. As our main set of experiments, we quantize Meta’s OPT and Llama 2 models
to 3 and 4 bits and measure the performance of the quantized models using perplexity, a stringent
accuracy metric. We use row clustering with a cluster size of 512 for OPT (768 for 125M, 66B) and
256 for Llama 2 models, accumulation batch size of 16, and 17 tokens from each sequence of tokens
of length 2048, and optimize for 64 iterations maximum. Table 1 lists the perplexity of our quantized
models (CVXQ) on the WikiText2 test set. We select the final quantized model based on WikiText2
(validation) but selecting the last quantized model produces similar test accuracy (within 1% of the
unquantized model’s perplexity). For comparison, we include the perplexities of the same models
quantized using round-to-nearest, GPTQ (Frantar et al., 2022), OWQ (Lee et al., 2024), AWQ (Lin
et al., 2024) and QuIP (Chee et al., 2024) based on the code provided by the respective authors; see
Appendix D for details. Relative to the next best performing methods, the proposed method provides
a perplexity reduction of up to 4.55 for the 3-bit OPT-125M model but minor perplexity gains (0.00–
0.01) are observed for the 3-bit OPT-66B and Llama 2 70B models. In this comparison, AWQ uses
a group size of 128, incurring 2–4 times as many overhead bits as the proposed method, and OWQ
by its nature operates at average per-weight bit depths that are 0.01–0.05 bits higher than proposed.
Hyperparameters/Ablations. To study the effect of CVXQ hyperparameters on the accuracy of the
quantized models, we quantize the OPT-1.3B and -13B models over a range of minibatch sizes and
token counts (optimization hyperparameters) and cluster sizes (quantization hyperparameter), with
each hyperparameter varied while keeping the others fixed at their optimized values. (Xe optimal
hyperparameter values are batch size: 16, token count: 17, and cluster size: 512.) Xe perplexity of
the quantized models is then measured on the C4 test data. Table 2 (a–b) demonstrates that CVXQ
is largely insensitive to the values of optimization hyperparameters over a wide range. From Table
2 (c), we see that smaller cluster sizes generally improve the performance of the quantized models
at lower average bit depths, but this also leads to higher overheads (discussed later). Figure 5 plots
quantized model accuracy across optimization iterations when the baseline hyperparameter values

𝐵0 = 5 bits

𝐵
:,1

=
2

bi
ts

𝐵
:,2

=
6

bi
ts

𝐵
:,1

=
2

bi
ts

𝐵
:,2

=
6

bi
ts

𝐵1,1 𝐵1,2 𝐵1,1 𝐵1,2

𝐵2,1 𝐵2,2 𝐵2,1 𝐵2,2

𝐵3,1 𝐵3,2 𝐵3,1 𝐵3,2

𝐵4,1 𝐵4,2 𝐵4,1 𝐵4,2

𝐵1,: = 4 bits

𝐵2,: = 1 bits

𝐵3,: = 3 bits

𝐵4,: = 2 bits

 (a) No partitions or clusters (b) Row partitioning (c) Column clustering (d) Partition and cluster
 No clusters No clusters Clusters 1 2 1 2 Clusters 1 2 1 2

1

2

3

4

1

2

3

4

Ro
w

 p
ar

tit
io

n

Ro
w

 p
ar

tit
io

n

N
o

pa
rti

tio
ns

N
o

pa
rti

tio
ns

Figure 4: Partitioning and clustering. Illustrated for a 4 × 4 weight matrix. Rather than assign the
same bit depth to all elements of a weight matrix (a), we can assign a separate bit depth to each row
of weights (b), or to a cluster of columns (c), and even combine partitioning and clustering (d) to
realize row- and column-based bit savings. Clustering with a cluster size of 2 illustrated for clarity.

Under review as a conference paper at ICLR 2025

8

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

are used, showing that about 20 iterations are needed for quantization parameters (clustering and bit
depth decisions) to reach their optima. Table 2 (d) shows ablations of our quantized OPT models by
starting with RTN and adding different components (Jeon et al., 2023). See Table 3 for C4 results.
Pruning Due to Quantization. CVXQ quantizes low-variance weights of weight matrices to zero
and effects a form of weight pruning, which has been shown to improve generalization (Hassibi &
Stork, 1992). Table 4 (a) lists the percentages of zero-quantized weights in the OPT-1.3B and 13B
models quantized to 3 and 4 bits per weight on average. We observe that using smaller cluster sizes
increases the number of pruned weights since this enables low-variance weights in each column to
be clustered together and quantized to zero. However, smaller clusters lead to higher overheads so

Figure 5: Test perplexity across iterations. Calibrated on C4 (train) using a batch size of 16. Row
clusters of size 512 used. Perplexity decreases rapidly within the first 30 iterations, monotonically
for C4 (test), whose distribution is similar to the calibration data.

Te
st

Pe
rp

le
xi

ty

16

15

14

13

12
 0 10 20 30 Iter

C4

WT2

C4 (Full)

OPT-2.7B (4 bits)

WT2 (Full) Te
st

Pe
rp

le
xi

ty

13

12

11

10

9
 0 10 20 30 Iter

OPT-30B (3 bits)

WT2

C4
C4 (Full)

WT2 (Full)

Perplexity (PPL)
WikiText2 (↓)

Meta OPT (Open Pretrained Transformer) Meta Llama 2
 125M 350M 1.3B 2.7B 6.7B 13B 30B 66B 7B 13B 70B

 Full precision (FP16) 27.65 22.00 14.63 12.47 10.86 10.13 9.56 9.34 5.47 4.88 3.32

4
bi

ts

RTN 37.28 25.94 48.17 16.92 12.10 11.32 10.98 111.36 5.73 4.98 3.46
GPTQ 32.05 23.87 15.47 12.83 11.14 10.29 9.57 9.34 6.07 5.20 3.59
GPTQ/256 30.53 23.83 14.91 12.52 11.02 10.22 9.60 9.46 5.69 5.02 3.44
QuIP 35.93 23.15 15.96 12.67 11.10 10.33 9.60 9.40 – – 3.53
OWQ (4.01 bits) 29.47 23.19 15.01 12.39 10.87 10.26 9.50 9.25 5.63 5.01 3.43
AWQ/128 29.11 – 14.95 12.74 10.93 10.22 9.59 9.39 5.60 4.97 3.41
CVXQ (Ours) 27.23 22.89 14.20 12.12 10.52 10.08 9.45 9.13 5.57 4.97 3.40

3
bi

ts

RTN 1.3e3 64.57 119.47 298.00 23.54 46.04 18.80 6.1e3 6.66 5.52 3.98
GPTQ 53.43 32.28 20.90 16.55 12.88 11.58 10.29 9.90 9.23 6.69 3.87
GPTQ/256 41.22 29.96 16.98 13.94 11.39 10.41 9.81 11.13 6.75 5.59 4.00
QuIP 34.43 26.02 17.33 13.84 12.35 10.57 9.92 9.46 – – 3.85
OWQ (3.01 bits) 35.26 26.59 16.40 13.21 11.21 11.48 9.59 9.28 6.21 5.36 3.77
AWQ/128 36.77 – 16.32 13.54 11.41 10.67 9.85 9.63 6.24 5.32 3.74
CVXQ (Ours) 30.71 25.94 14.83 12.42 11.07 10.28 9.56 9.24 6.04 5.25 3.72

Table 1: WikiText2 perplexity (test). We quantize the Meta OPT and Llama 2 families of LLMs
to 3–4 bits per weight on average using the proposed quantization method, reporting the perplexity
of each quantized model on the WikiText2 dataset (test). For comparison, we also include the
perplexities of models quantized using RTN, GPTQ, QuIP, OWQ, and AWQ.

Table 2: Effect of hyperparameters on quantized model accuracy. Quantized model accuracy is
relatively insensitive to the minibatch size (a) and number of tokens per sequence (b) used for the
optimization. Smaller clusters improve quantized model accuracy at low average bit depths (c). Xe
gain from mixed precision and companding components are also shown in ablations (d).
 (a) Minibatch size and PPL (b) Number of tokens and PPL (c) Cluster size and PPL

 PPL
C4 (↓)

OPT (4 bits) OPT (3 bits)
1.3B 13B 1.3B 13B

FP16 16.07 12.06 16.07 12.06

Ba
tc

h
si

ze
 2 16.24 12.12 16.94 12.36

4 16.24 12.12 16.94 12.35
8 16.25 12.11 16.90 12.34

16 16.22 12.11 16.86 12.32
32 16.24 12.12 16.88 12.36

PPL
C4 (↓)

OPT (4 bits) OPT (3 bits)
1.3B 13B 1.3B 13B

FP16 16.07 12.06 16.07 12.06

Cl
us

te
r s

iz
e 64 16.16 12.10 16.62 12.26

128 16.17 12.10 16.70 12.29
256 16.20 12.10 16.77 12.32
512 16.22 12.11 16.86 12.32

1024 16.23 12.11 16.99 12.42

PPL
C4 (↓)

OPT (4 bits) OPT (3 bits)
1.3B 13B 1.3B 13B

FP16 16.07 12.06 16.07 12.06

N
um

 to
ke

ns
 3 16.40 12.29 17.05 12.47

5 16.28 12.18 16.93 12.37
9 16.24 12.12 16.91 12.35

17 16.22 12.11 16.86 12.32
33 16.21 12.10 16.87 12.34

PPL
C4 (↓)

OPT (4 bits) OPT (3 bits)
1.3B 13B 1.3B 13B

FP16 16.07 12.06 16.07 12.06
RTN 24.51 13.36 4.2e3 3.2e3

+ MSE 16.98 12.26 21.64 13.34
+ Mixed 16.29 12.12 18.48 12.80
+ Comp 16.22 12.11 16.86 12.32
= Ours 16.22 12.11 16.86 12.32

 (d) Ablation (Mixed prec. / Compand)

Under review as a conference paper at ICLR 2025

9

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

that small improvements in generalization due to pruning come at the cost of signaling the overhead
bits. Table 4 (b) lists the number of overhead bits (cluster indices and FP16 encodings of the location
and scale parameters of each weight cluster) as a percentage of the total quantized weight bits. Xese
overheads are in line with those of other algorithms which must similarly signal zero points and step
sizes of the quantization grid (Lee et al., 2024).
2.x-bit Llama-2. We study the accuracy of Llama 2 models quantized to 2.x bits using CVXQ and
OWQ, both of which are capable of quantizing models to fractional average bit depths. To enable a
more comprehensive study, we compare against OWQ with no grouping, as well as with group sizes
of 128 and 256. We see from Table 4 (a) that CVXQ-quantized Llama-2 models are considerably
more accurate at these bit depths than their OWQ counterparts. Xis is expected since CVXQ assigns
bit depths from the range (0, 𝐵max) commensurately with gradient variances whereas OWQ opts to
preserve the most sensitive (highest-variance) weights in FP16 and quantize the rest to 2 bits (Lee
et al., 2024). In terms of execution time, CVXQ (64 iterations) and OWQ/GPTQ require 47 minutes
and 18 minutes, respectively (excluding validation), to quantize the 7B model on Nvidia A100.
Downstream Tasks (Common Sense QA, GSM8K). To show the impact of model quantization on
downstream tasks, we list in Table 5 (b) the accuracy of CVXQ-quantized Llama-2 models on the
ARC (Clark et al., 2018), HellaSwag (Zellers et al., 2019), PIQA (Bisk et al., 2019) and Winogrande
(Sakaguchi et al., 2021) common sense question answering, and GSM8K (Cobbe et al., 2021) math
problem solving tasks. We set our cluster size and the group size of GPTQ and AWQ to 256. We
observe that CVXQ produces slightly higher scores than the GPTQ and AWQ quantized 3-bit
models while RTN leads to severely diminished scores despite having similar perplexity scores as
CVXQ on WikiText2 (Table 1). We include example responses to GSM8K questions produced by
different 3-bit quantized Llama-2-70B models in Appendix E.

5 DISCUSSION
Formulating weight quantization as a convex optimization problem, as we have done here, bestows
several benefits. First, it explicates the objective we seek to optimize (minimizing output distortion
in our case) and sets us on a path to solve the right problem using modern automatic differentiation
tools e.g. PyTorch’s autograd package. Second, our formulation enables us to interpret many earlier
Hessian-based methods (Frantar et al., 2022; Lee et al., 2024; Dong et al., 2019; Chen et al., 2021)
as heuristics for approximate optimization of the true underlying quantization objective. Note that
(2) is a nonlinear system of equations in the bit depth variables, so that any non-iterative solution is
necessarily only an approximate one if one’s goal is to optimize an objective similar to (2). Recent
high-performance model quantization methods (Chee et al., 2024; Frantar et al., 2022; Frantar &

Perplexity (PPL)
C4 (↓)

Meta OPT (Open Pretrained Transformer) Meta Llama 2
 125M 350M 1.3B 2.7B 6.7B 13B 30B 66B 7B 13B 70B

 Full precision (FP16) 26.56 22.59 16.07 14.34 12.71 12.06 11.44 10.99 6.97 6.46 5.52

4
bi

ts

RTN 33.91 16.21 24.51 18.43 14.36 13.36 13.46 283.31 7.86 7.16 6.01
GPTQ 29.42 24.14 16.73 14.85 12.99 12.24 11.56 11.08 7.86 7.06 5.90
GPTQ/256 28.36 24.18 16.47 14.64 12.88 12.15 11.50 11.12 7.58 6.88 5.79
QuIP 27.85 23.39 17.20 14.58 12.87 12.17 11.51 11.03 – – 5.87
OWQ (4.01 bits) 27.93 23.37 16.49 14.60 12.83 12.17 11.49 11.02 7.59 6.94 5.81
AWQ 27.79 – 16.42 14.58 12.84 12.15 11.50 11.04 7.44 6.84 5.77
CVXQ (Ours) 27.27 23.20 16.24 14.44 12.79 12.11 11.48 11.01 7.40 6.83 5.76

3
bi

ts

RTN 839.97 55.96 4.2e3 1.1e4 4.4e3 3.2e3 1.1e3 3.5e3 521.22 14.01 11.06
GPTQ 42.64 29.90 20.46 17.48 14.56 13.16 12.14 11.53 11.44 8.98 7.12
GPTQ/256 35.00 28.84 18.07 15.84 13.50 12.57 11.78 12.29 8.92 7.65 6.21
QuIP 31.37 25.58 18.15 15.92 13.66 12.40 11.67 11.16 – – 6.14
OWQ (3.01 bits) 31.28 26.40 17.69 15.36 13.23 13.29 11.69 11.17 8.59 7.65 6.16
AWQ 32.91 – 17.81 15.49 13.34 12.55 11.75 11.26 8.30 7.31 6.04
CVXQ (Ours) 30.05 26.20 16.88 14.91 13.14 12.35 11.62 11.19 8.04 7.22 5.99

Table 3: C4 perplexity (validation). We quantize the Meta OPT and Llama 2 families of LLMs to
3–4 bits per weight on average using the proposed quantization method, reporting the perplexity of
each quantized model on the C4 dataset. For comparison, we also include the perplexities of models
quantized using RTN, GPTQ, QuIP, OWQ, and AWQ.

Under review as a conference paper at ICLR 2025

10

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Alistarh, 2022; Lee et al., 2024) can ultimately trace their lineage back to the classic Optimal Brain
Surgeon algorithm (Hassibi & Stork, 1992), which is a convex formulation for weight pruning, not
quantization (see Appendix F). As a result, these methods inherit the need for fine-tuning as part of
the quantization process, making them less suitable for the quantization of activations at inference
time, where fine-tuning would lead to unacceptable delays in the inference pipeline.
Our experimental results indicate that an accurate characterization of the quantization problem can
indeed lead to better compression outcomes. While the smaller OPT-125M model is too limited for
practical use in many situations, its relative incompressibility helps contrast the performance of the
different weight quantization methods themselves (Table 1). With larger models like OPT-66B and
Llama 2-66B, most approaches (including RTN) perform similarly, suggesting that larger language
models are more compressible in general. At first glance, RTN may seem sufficient for quantizing
larger models. However, RTN-quantized models lead to severely reduced accuracy on downstream
tasks such as GSM8K (Table 4 (a)), which highlights the importance of validating the accuracy of
quantized models across multiple tasks and datasets (Jaiswal et al., 2024). Increasing the number of
calibration examples (from 128 to 1024) did not noticeably affect the quantized model’s perplexity
on C4 (± 0.01), which agrees with findings from previous reports (Hubara et al., 2021).
Our CUDA matmul kernel (Appendix A) accelerates matrix-vector multiplication by dequantizing
mixed precision weights to floating point representation dynamically and multiplying with a floating
point activation vector. For the 12288 × 49152 weight matrix of OPT-175B at 3 bits per weight on
average, our kernel provides a 3.8x speed up over FP16 matrix-vector multiplication using cuBLAS
matmul on Nvidia A6000. Accelerated matrix-vector multiplication, along with our low complexity
quantization approach (once the optimal bit depths have been determined) allows us to apply CVXQ
also to activation quantization, where quantization efficiency becomes paramount. Joint quantization
of activation and weights is discussed in Part 2.

Table 4: Pruning and overhead bits. A small fraction of weights is quantized to zero and pruned
away due to low variance, with smaller clusters increasing the degree of pruning (a). Quantization
incurs overhead bits for signaling cluster indices and location and scale parameters of clusters (b).
 (a) Pruned columns (%) in quantized models (b) Overhead bits (%) from quantization parameters

 Overhead
bits (%)

OPT (4 bits) OPT (3 bits)
350M 1.3B 13B 350M 1.3B 13B 30B

Cl
us

te
r s

iz
e 64 10.33 10.30 10.28 13.77 13.73 13.71 13.70

128 5.18 5.16 5.15 6.91 6.88 6.87 6.86
256 2.60 2.59 2.58 3.47 3.45 3.44 3.44
512 1.30 1.30 1.30 1.73 1.73 1.73 1.72

1024 0.64 0.65 0.65 0.85 0.87 0.87 0.86

Pruned
(%)

OPT (4 bits) OPT (3 bits)
350M 1.3B 13B 350M 1.3B 13B

Cl
us

te
r s

iz
e 64 0.57 2.13 2.18 0.64 3.70 3.12

128 0.61 2.19 2.31 0.68 3.81 3.04
256 0.67 2.10 2.16 0.69 3.06 2.69
512 0.68 2.07 2.00 0.70 2.85 2.57

1024 0.68 2.08 1.92 0.70 2.39 2.26

Table 5: 2.x-bit quantization and downstream tasks. Quantized to 2.x bits per weight, CVXQ
reduces perplexity considerably compared with OWQ models quantized to the same (a). Quantized
model accuracy measured by performance on tasks such as GSM8K (b). Cluster size of 256 is used.
 (a) Perplexity of 2.1–2.8 bit Llama 2 models (b) Scores for 3-bit Llama-2 models on GSM8K and QA

Score (%)
Llama-2 (↑)

GSM8K Average QA
7B 13B 70B 7B 13B 70B

FP16 64.83 67.82 72.36 14.10 23.43 53.90
RTN 1.82 1.67 6.14 39.32 52.15 58.22
GPTQ/256 6.60 14.48 46.47 61.40 64.94 70.58
AWQ/256 6.97 16.76 48.07 62.48 65.95 71.29
CVXQ/256 7.81 18.20 49.81 62.82 66.37 71.87

Perplexity
WikiText2 (↓)

Llama 2 7B (2.1–2.8 bits)
2.1 2.2 2.4 2.6 2.8

FP16 5.47 5.47 5.47 5.47 5.47
OWQ 39.56 11.25 10.79 10.43 10.24
OWQ/256 10.34 10.01 9.98 9.50 9.26
OWQ/128 10.01 9.66 9.42 9.38 9.14
CVXQ/256 9.47 8.39 7.05 6.56 6.21

Score (%)
Llama-2 (↑)

Arc (Challenge) Arc (Easy) HellaSwag PIQA Winogrande
7B 13B 70B 7B 13B 70B 7B 13B 70B 7B 13B 70B 7B 13B 70B

FP16 43.34 48.38 54.27 76.30 79.42 82.74 57.13 60.04 64.76 78.07 79.05 82.15 69.30 72.22 77.90
RTN 20.73 30.63 37.20 34.97 60.65 65.66 31.09 43.73 51.01 57.34 70.40 73.12 52.49 55.33 64.09
GPTQ/256 38.23 43.34 52.13 72.26 76.64 80.85 53.02 57.65 62.60 75.63 77.48 80.52 67.88 69.61 76.80
QuIP – – – – – 79.31 – – – – – 80.25 – – –
AWQ/256 41.13 45.05 53.24 73.36 77.95 81.69 54.06 57.83 63.64 75.84 77.26 81.66 68.03 71.67 76.24
CVXQ/256 41.21 45.73 53.84 72.60 77.95 82.32 53.95 58.55 63.86 77.20 78.51 81.88 69.14 71.11 77.43

(c) Scores for 3-bit Llama-2 models on common sense QA (Arc C, Arc E, HellaSwag, PIQA, Winogrande)

Under review as a conference paper at ICLR 2025

11

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REPRODUCIBILITY STATEMENT
To ensure the reproducibility of results in this work, we make our PyTorch CVXQ code available
on our GitHub project website, where readers can also ask questions about this work. Appendix A
lists our CUDA kernel. Appendices B–C provide derivations for our main theoretical results and
Appendix D additionally details the code and command line options used to obtain the results of
GPTQ (Frantar et al., 2022), OWQ (Lee et al., 2024), and AWQ (Lin et al., 2024).

REFERENCES
Mart van Baalen, Andrey Kuzmin, Markus Nagel et al. GPTVQ: Xe blessing of dimensionality for

LLM quantization. https://doi.org/10.48550/arXiv.2402.15319, 2024.
Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed

optimization and statistical learning via the alternating direction method of multipliers. Found.
Trends® Mach. Learn., 3(1):1–122, 2011.

Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, Christopher De Sa. QuIP: 2-bit quantization of large
language models with guarantees. In Proc. NeurIPS, 2023.

Weihan Chen, Peisong Wang, and Jian Cheng. Towards mixed-precision quantization of neural
networks via constrained optimization. In Proc ICCV, 2021.

Kanghyun Choi, Deokki Hong, Noseong Park, Youngsok Kim, and Jinho Lee. Qimera: Data-free
quantization with synthetic boundary supporting samples. In Proc. NeurIPS, 2021.

Yoojin Choi, Mostafa El-Khamy, and Jungwon Lee. Towards the limits of network quantization. In
Proc. ICLR, 2017.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Taword. Xink you have Solved Question Answering? Try ARC, the AI2 Reasoning
Challenge. http://arxiv.org/abs/1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian et al. Training verifiers to solve math word
problems. http://arxiv.org/abs/2110.14168, 2021.

Xomas M. Cover, and Joy A. Xomas. Elements of Information Xeory (Wiley Series in
Telecommunications and Signal Processing). Wiley-Interscience, USA 2006.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. GPT3.int8(): 8-bit matrix
multiplication for transformers at scale. In Proc. NeurIPS, 2022.

Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian et al. SpQR: A Sparse-Quantized
Representation for near-lossless LLM weight compression. http://arxiv.org/abs/2306.03078,
2023.

Zhen Dong, Zhewei Yao, Amir Gholami, Michael W. Mahoney, and Kurt Keutzer. HAWQ: Hessian
AWare Quantization of neural networks with mixed precision. In Proc. ICCV, 2019.

Vage Egiazarian, Andrei Panferov, Denis Kuznedelev, Elias Frantar, Artem Babenko, and Dan
Alistarh. Extreme compression of large language models via additive quantization. In Proc.
ICML, 2024.

Steven K. Esser, Jeffrey L. McKinstry, Deepika Bablani, Rathinakumar Appuswamy, and
Dharmendra S. Modha. Learned step size quantization. In Proc. ICLR, 2019.

Elias Frantar, and Dan Alistarh. Optimal Brain Compression: A framework for accurate post-training
quantization and pruning. In Proc. NeurIPS, 2022.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. OPTQ: Accurate quantization for
generative pre-trained transformers. In Proc. ICLR, 2022.

Allen Gersho, and Robert M. Gray. Vector Quantization and Signal Compression. Kluwer, Norwell,

Under review as a conference paper at ICLR 2025

12

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

MA, USA 1991.
Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev. Compressing deep convolutional

networks using vector quantization. In Proc. ICLR, 2015.
R.M. Gray, and D.L. Neuhoff. Quantization. IEEE Trans. Inf. Peory, 44(6):2325–2383, 1998.
Ziyi Guan, Hantao Huang, Yupeng Su, Hong Huang, Ngai Wong, and Hao Yu. APTQ: Attention-

aware post-training mixed-precision quantization for large language models. In Proc. DAC, 2024.
Babak Hassibi, and David Stork. Second order derivatives for network pruning: Optimal Brain

Surgeon. In Proc. NIPS, 1992.
Lu Hou, and James T. Kwok. Loss-aware weight quantization of deep networks. In Proc. ICLR,

2018.
Wei Huang, Haotong Qin, Yangdong Liu et al. SliM-LLM: Salience-driven mixed-precision

quantization for large language models, https://arxiv.org/abs/2405.14917v1, 2024.
Itay Hubara, Yury Nahshan, Yair Hanani, Ron Banner, and Daniel Soudry. Accurate post training

quantization with small calibration sets. In Proc. ICML, 2021.
Benoit Jacob, Skirmantas Kligys, Bo Chen et al. Quantization and training of neural networks for

efficient integer-arithmetic-only inference. In Proc. CVPR, 2018.

Ajay Jaiswal, Zhe Gan, Xianzhi Du, Bowen Zhang, Zhangyang Wang, Yinfei Yang. Compressing
LLMs: the truth is rarely pure and never simple. In Proc. ICLR, 2024.

Yongkweon Jeon, Chungman Lee, Kyungphil Park, Ho-young Kim. A Frustratingly Easy Post-
Training Quantization Scheme for LLMs. In Proc. EMMLP, 2023.
Sehoon Kim et al. SqueezeLLM: Dense-and-sparse quantization. In Proc. ICML, 2024.
Changhun Lee, Jungyu Jin, Taesu Kim, Hyungjun Kim, and Eunhyeok Park. OWQ: Outlier-aware

weight quantization for efficient fine-tuning and inference of large language models. In Proc.
AAAI, 2024.

Ji Lin, Jiaming Tang, Haotian Tang et al. AWQ: Activation-aware Weight Quantization for on-device
LLM compression and acceleration. In Proc. MLSys, 2024.

S. Lloyd. Least squares quantization in PCM. IEEE Trans. Inf. Peory, 28(2):129–137, 1982.
J. Max. Quantizing for minimum distortion. IRE Trans. Inf. Peory, 6(1):7–12, 1960.
Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture

models. In Proc. ICLR, 2022.
Markus Nagel, Mart van Baalen, Tijmen Blankevoort, and Max Welling. Data-free quantization

through weight equalization and bias correction. In Proc. CVPR, 2019.
Yury Nahshan, Brian Chmiel, Chaim Baskin, Evgenii Zheltonozhskii, Ron Banner, Alex M.

Bronstein, and Avi Mendelson. Loss aware post-training quantization. In Mach Learn 110 3245–
3262, Springer, 2020.

Jorge Nocedal, and Stephen J. Wright. Numerical Optimization. Springer, New York, NY, USA 2009.
Biao Qian, Yang Wang, Richang Hong, and Meng Wang. Adaptive data-free quantization. In Proc.

CVPR, 2023.
Zhongnan Qu, Zimu Zhou, Yun Cheng, and Lothar Xiele. Adaptive loss-aware quantization for

multi-bit networks. In Proc. CVPR, 2020.
Colin Raffel, Noam Shazeer, Adam Roberts et al. Exploring the limits of transfer learning with a

unified text-to-text transformer. J. Mach. Learn. Res., 21(140):1–67, 2020.
Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. WinoGrande: an

adversarial Winograd schema challenge at scale. Commun. ACM, 64(9):99–106, 2021.
Wenqi Shao et al. OmniQuant: Omnidirectionally calibrated quantization for large language models.

In Proc. ICLR, 2024.

Under review as a conference paper at ICLR 2025

13

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Hugo Touvron, Louis Martin, Kevin Stone et al. Llama 2: Open foundation and fine-tuned chat
models. http://arxiv.org/abs/2307.09288, 2023.

Vincent Vanhoucke, Andrew Senior, and Mark Z. Mao. Improving the speed of neural networks on
CPUs. In Proc. NIPS Workshops, 2011.

Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. HAQ: Hardware-aware automated
quantization with mixed precision. In Proc. CVPR, 2019.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. SmoothQuant:
Accurate and efficient post-training quantization for large language models. In Proc. ICML, 2023.

Shoukai Xu, Haokun Li, Bohan Zhuang, Jing Liu, Jiezhang Cao, Chuangrun Liang, and Mingkui
Tan. Generative low-bitwidth data free quantization. In Proc. ECCV, 2020.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and Yuxiong He.
ZeroQuant: Efficient and affordable post-training quantization for large-scale transformers. In
Proc. NeurIPS, 2022.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. PIQA: Reasoning
about physical commonsense in natural language. http://arxiv.org/abs/1911.11641, 2019.

Sean I. Young, Wang Zhe, David Taubman, and Bernd Girod. Transform quantization for CNN
compression. IEEE Trans. Pattern Anal. Mach. Intell., 44(9):5700–5714, 2019.

Zhihang Yuan, Yuzhang Shang, Yang Zhou et al. LLM inference unveiled: Survey and roofline
model insights. https://arxiv.org/abs/2402.16363, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a
Machine Really Finish Your Sentence? http://arxiv.org/abs/1905.07830, 2019.

Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang Hua. LQ-Nets: Learned quantization
for highly accurate and compact deep neural networks. In Proc. ECCV, 2018.

Susan Zhang, Stephen Roller, Naman Goyal et al. OPT: Open Pre-trained Transformer Language
Models. http://arxiv.org/abs/2205.01068, 2022.

Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Chris De Sa, and Zhiru Zhang. Improving neural network
quantization without retraining using outlier channel splitting. In Proc. ICML, 2019.

Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen. Incremental Network
Quantization: towards lossless CNNs with low-precision weights. In Proc. ICLR, 2017.

A CVXQ KERNEL FOR MATRIX–VECTOR MULTIPLICATION
For completeness, we provide here a reference implementation for multiplication between a mixed-
precision quantized matrix and full-precision vector multiplication. Here, we assign a single bit
depth to each cluster of 4 rows, leading to e.g. 12288 different bit depths in the case of the
49152 × 12288 weight matrix (MLP layer) of the OPT-175B model. Consider a thread block size
of 256 × 256 . Each of 256 × 256 block, in turn, entails 1 × 256 threads, with each thread
dequantizing a 256 × 1 column of weights and multiplying them with the matching 1 × 256
segment of a vector input. Bit depth changes every 4 rows but every thread will go through the same
bit depth change in the course of multiplication, allowing divergence-free (and uniform memory
access) operations.

__constant__ float lutable[256] = { DEQUANT }; // dequantized values
defined in macros.h

template <typename scalar_t>
__global__ void VecQuant3MatMulKernel(
 const scalar_t* __restrict__ vec,
 const int* __restrict__ mat,
 scalar_t* __restrict__ mul,
 const uint8_t* __restrict__ depths,
 const scalar_t* __restrict__ scales,

Under review as a conference paper at ICLR 2025

14

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

 const int* __restrict__ i_s,
 const uint8_t* __restrict__ shifts,

 int height,
 int width) {
 int row = BLOCKHEIGHT * blockIdx.x;
 int col = BLOCKWIDTH * blockIdx.y + threadIdx.x;

 __shared__ scalar_t blockvec[BLOCKWIDTH];
 __shared__ scalar_t lut[BLOCKWIDTH];

 blockvec[threadIdx.x] = scales[threadIdx.x / 4] * vec[(row / BLOCKHEIGHT)
* BLOCKWIDTH + threadIdx.x];
 lut[threadIdx.x] = lutable[threadIdx.x];
 __syncthreads();

 scalar_t res = 0;
 int i = i_s[blockIdx.x * gridDim.y + blockIdx.y] + threadIdx.x;
 // int i = width * row + col;
 int shift = shifts[blockIdx.x * gridDim.y + blockIdx.y];

 uint64_t tmp_curr;
 uint32_t tmp_read;
 uint32_t depth_;

 int j = 0, k = 0;

 tmp_read = reinterpret_cast<const uint32_t*>(mat)[i];
 tmp_curr = static_cast<uint64_t>(tmp_read) << 32;
 shift += 32;
 i += width;

 while (k < BLOCKWIDTH) {
 depth_ = reinterpret_cast<const uint32_t*>(depths)[j];

 int depth, bmask;
 uint32_t index;
 scalar_t szero, *table;
 for (int d = 0; d < 32; d += 8) { // for each of the 4 depth clusters
(represented in 8 bits)
 depth = (depth_ >> (d + 0)) & 7;
 bmask = (1 << depth) - 1;

 szero = (static_cast<int>((depth_ >> (d + 3)) & 31) - 16) * 0.03125f;
 table = reinterpret_cast<scalar_t*>(lut + (1 << depth));

 if (shift + 4 * depth > 64) { // will run out of bits, read more
 tmp_read = reinterpret_cast<const uint32_t*>(mat)[i];
 tmp_curr = static_cast<uint64_t>(tmp_read) << 32 |
static_cast<uint64_t>(tmp_curr) >> 32;
 shift -= 32;
 i += width;
 }
 index = (static_cast<uint32_t>(tmp_curr >> shift) & bmask);
 res += blockvec[k + 0] * (szero + table[index]);
 shift += depth;
 index = (static_cast<uint32_t>(tmp_curr >> shift) & bmask);
 res += blockvec[k + 1] * (szero + table[index]);
 shift += depth;
 index = (static_cast<uint32_t>(tmp_curr >> shift) & bmask);
 res += blockvec[k + 2] * (szero + table[index]);
 shift += depth;
 index = (static_cast<uint32_t>(tmp_curr >> shift) & bmask);

Under review as a conference paper at ICLR 2025

15

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

 res += blockvec[k + 3] * (szero + table[index]);
 shift += depth;

 k += 4;
 }
 j += 1;
 }
 atomicAdd(&mul[col], res);
}

Under review as a conference paper at ICLR 2025

16

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

B DERIVATION OF EQUATION (5)
To derive our main equation (5), we appeal to a linearized relationship between model weights and
output, as well as standard results from rate–distortion theory (Gersho & Gray, 1991) that relate the
quantization error of a random source to output distortion at a high bit depth, where the linearized
model relationship is a good approximation. Let us start with our quantization objective

 𝑑(𝐵1, 𝐵2, . . . , 𝐵𝑁) = 𝔼𝐗‖𝑓 (𝐗, 𝚯1
𝑞(𝐵1), 𝚯2

𝑞(𝐵2), . . . , 𝚯𝑁
𝑞 (𝐵𝑁)) − 𝑓 (𝐗)‖𝐹

2 , (10)

in which 𝑓 (𝐗) = 𝑓 (𝐗, 𝚯1(𝐵1), 𝚯2(𝐵2), . . . , 𝚯𝑁 (𝐵𝑁)) denotes the output of the unquantized model
given input 𝐗. We can write the residual and Jacobian of 𝑓 at (𝐗, 𝚯1

𝑞(𝐵1), 𝚯2
𝑞(𝐵2), . . . , 𝚯𝑁

𝑞 (𝐵𝑁)) as
𝑟 (𝐗, 𝚯1

𝑞, 𝚯2
𝑞, . . . , 𝚯𝑁

𝑞)   = (𝑟1, . . . , 𝑟𝑀) (𝐗, 𝚯1
𝑞, 𝚯2

𝑞, . . . , 𝚯𝑁
𝑞) = 𝑓 (𝐗, 𝚯1

𝑞, 𝚯2
𝑞, . . . , 𝚯𝑁

𝑞) − 𝑓 (𝐗)
(11)

𝐽 (𝐗, 𝚯1
𝑞, 𝚯2

𝑞, . . . , 𝚯𝑁
𝑞) = (

𝜕𝑓 (𝐗, 𝚯1
𝑞, . . . , 𝚯𝑁

𝑞)
𝜕𝚯1

,
𝜕𝑓 (𝐗, 𝚯1

𝑞, . . . , 𝚯𝑁
𝑞)

𝜕𝚯2
, . . . ,

𝜕𝑓 (𝐗, 𝚯1
𝑞, . . . , 𝚯𝑁

𝑞)
𝜕𝚯𝑁)

and proceed to write the gradient and Hessian of the objective (10) in terms of the 𝑟 and 𝐽above as

  ∇𝑑(𝐗, 𝚯1
𝑞, 𝚯2

𝑞, . . . , 𝚯𝑁
𝑞) = (𝐽 𝑇 𝑟) (𝐗, 𝚯1

𝑞, 𝚯2
𝑞, . . . , 𝚯𝑁

𝑞)
(12)

∇2𝑑(𝐗, 𝚯1
𝑞, 𝚯2

𝑞, . . . , 𝚯𝑁
𝑞) = (𝐽 𝑇 𝐽)(𝐗, 𝚯1

𝑞, 𝚯2
𝑞, . . . , 𝚯𝑁

𝑞) + ∑ (𝑟𝑚∇2𝑟𝑚)(𝐗, 𝚯1
𝑞, 𝚯2

𝑞, . . . , 𝚯𝑁
𝑞)𝑀

𝑚=1⏟⏟⏟
≈ 0

in which the second term of ∇2𝑓 is approximately zero either because the residuals 𝑟𝑚 are relatively
small, or they are close to affine in (𝚫1

𝑞 , 𝚫2
𝑞 , . . . , 𝚫𝑁

𝑞) so that ∇2𝑟𝑚 are relatively small, which is the
case in the vicinity of the solution.
Using (12), we can now express the local quadratic approximation of (10) about (𝐵1, . . . , 𝐵𝑁) as

�̂�(𝐵1, . . . , 𝐵𝑁) =
(a)

𝔼𝐗 [(𝚫1
𝑞 (𝐵1), . . . , 𝚫𝑁

𝑞 (𝐵𝑁))((𝐽 𝑇 𝐽)(𝐗, 𝚯1
𝑞, . . . , 𝚯𝑁

𝑞))(𝚫1
𝑞 (𝐵1), . . . , 𝚫𝑁

𝑞 (𝐵𝑁))
𝑇

]

+ 𝔼𝐗 [(Δ1(𝐵1), . . . , Δ𝑁 (𝐵𝑁))

𝑇
((𝐽 𝑇 𝑟)(𝐗, 𝚯1

𝑞, 𝚯2
𝑞, . . . , 𝚯𝑁

𝑞))]⏟⏟⏟
= 0

 (13)

=
(b)

∑ 𝔼𝐗[(𝐽 𝑇 𝐽)𝑛𝑛(𝐗, 𝚯1
𝑞, . . . , 𝚯𝑁

𝑞)]𝔼[Δ𝑛
2 (𝐵𝑛)]

𝑁
𝑛=1

=
(c)

∑ 𝑃𝑛𝐺𝑛
2𝐻𝑛𝑆𝑛

22−2𝐵𝑛⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
= 𝑑𝑛(𝐵𝑛)

𝑁
𝑛=1

in which the zero expectation of the linear term in (a) follows from the zero means of quantization
errors Δ1, . . . , Δ𝑁 , (b) follows from the uncorrelatedness of Δ1, . . . , Δ𝑁 , and (c) follows from our
definition of gradient variance 𝐺𝑛

2 = 𝑃𝑛
−1𝔼𝐗[(𝐽 𝑇 𝐽)𝑛𝑛(𝐗, 𝚯1

𝑞, . . . , 𝚯𝑁
𝑞)] together with the result from

rate–distortion theory (Gersho & Gray, 1991) that relates the variance of random quantization error
𝔼[Δ𝑛

2 (𝐵𝑛)] = 𝐻𝑛𝑆𝑛
22−2𝐵𝑛 to the variance 𝑆𝑛

2 of the random source, and the coefficient 𝐻𝑛, and bit
depth 𝐵𝑛 of quantization. Expression (5) for the partial derivatives of 𝑑 with respect to 𝐵𝑛 follows
directly from the properties of the derivative of an exponential.
Since (10) is a non-linear least-squares objective and its gradient depends on the gradient variances
𝐺1

2, 𝐺2
2, . . . , 𝐺𝑁

2 , its minimization requires an iterative update of 𝚯1
𝑞, 𝚯2

𝑞, . . . , 𝚯𝑁
𝑞 via the choice of

𝐵1, 𝐵2, . . . , 𝐵𝑁 and re-evaluation of the gradient variances 𝐺1
2, 𝐺2

2, . . . , 𝐺𝑁
2 at 𝚯1

𝑞, 𝚯2
𝑞, . . . , 𝚯𝑁

𝑞 . Xis
is similar to the local Hessian evaluated by the Gauss–Newton method (Nocedal & Wright, 2006)
every time the descent direction is re-computed. One can think of 𝐺1

2, 𝐺2
2, . . . , 𝐺𝑁

2 as the diagonal
elements of a non-diagonal Hessian matrix used in e.g. the Gauss–Newton method, but whose off-
diagonal elements disappear in the expectation due to multiplication by uncorrelated quantization
errors 𝚫1

𝑞 , . . . , 𝚫𝑁
𝑞 .

C DERIVATION OF EQUATION (8)
To derive our sigmoid companding function (8), we turn to results from rate–distortion theory that
relate the mean square error of quantization of weights 𝜃 to the density 𝑝𝜃 of 𝜃 and the density 𝜆(𝜃)
of quantization levels, where 2𝐵 ∫ 𝜆(𝜃) d𝜃𝑏

𝑎 expresses the number of quantization levels of a 𝐵-bit

Under review as a conference paper at ICLR 2025

17

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

quantizer within any interval [𝑎, 𝑏]. Writing Π𝑖 for the 𝑖th quantization cell and Π(𝜃) for the width
of the cell containing 𝜃, we can write the mean square error of quantized weights as

𝔼|𝜃 − 𝜃𝑞|2 = ∑ ℙ[𝜃 ∈ Π𝑖]
2𝐵

𝑖=1
𝔼[|𝜃 − 𝜃𝑖

𝑞|2 | 𝜃 ∈ Π𝑖]

(14) ≈
(a)

∑ ℙ[𝜃 ∈ Π𝑖]
|Π𝑖|2

12
2𝐵

𝑖=1
≈
(b)

∫ 𝑝𝜃(𝜃) Π2(𝜃)
12

d𝜃

 ≈
(c) 1

22𝐵 ∫ 𝑝𝜃(𝜃) 𝜆−2(𝜃)
12

d𝜃

in which (a) follows from our assumption that weight distribution is approximately uniform within
each quantization cell, (b) follows from an integral approximation of the finite sum, and (c) follows
from the relationship 2𝐵𝜆−1(𝜃) = Π(𝜃), all of which hold approximately when 𝐵 is sufficiently large.
To find the density 𝜆 of quantization levels that leads to the minimum quantization error when 𝜃 has
density 𝑝𝜃, we use Hölder’s inequality: ∫ 𝑝𝜃

1/3 ≤ (∫ 𝑝𝜃𝜆−2)1/3(∫ 𝜆)2/3. Since ∫ 𝜆 = 1, we have that
∫ 𝑝𝜃𝜆−2 ≥ (∫ 𝑝𝜃

1/3)3, which sets a lower bound on the last term of (14). Xis lower bound and hence
minimum quantization error is attained iff 𝑝𝜃𝜆−2 ∝ 𝜆. Xe optimal density for quantization levels is
therefore given by

 𝜆(𝜃) ∝ 𝑝𝜃
1/3(𝜃) ⟺ Π−1(𝜃) ∝ 𝑝𝜃

1/3(𝜃). (15)

Rather than optimize the density 𝜆 to minimize the quantization error for a given 𝑝𝜃 , we could
equivalently transform the weights 𝜃 as 𝜃𝜎 = 𝜎(𝜃) via a non-linear 𝜎, so that uniform quantization
applied to 𝜃𝜎 ∼ 𝑝𝜃𝜎 leads to the same minimum quantization error. Xe width Π(𝜃) of non-uniform
quantization cells quantizing 𝜃 relates to the width of uniform quantization cells of the companded
(transformed) weights 𝜃𝜎 = 𝜎(𝜃) as

 d𝜎(𝜃) = d𝜃
Π(𝜃)

∝ 𝑝𝜃
1/3(𝜃) d𝜃 ⟹ 𝜎′(𝜃) ∝ 𝑝𝜃

1/3(𝜃), (16)

in which the first proportionality follows from (15). We can find the optimal nonlinear transform 𝜎
by integrating 𝑝𝜃

1/3(𝜃) and normalizing (for convenience) the range of the integral to [0, 1]:

 𝜎(𝜃) = (∫ 𝑝𝜃
1/3(𝑡) d𝑡

∞

−∞)

−1

(∫ 𝑝𝜃
1/3(𝑡) d𝑡

𝜃

−∞) (17)

(Gersho & Gray, 1991). Finally, we obtain (8) by substituting the expression for the density of a
Laplace distribution (parameterized by mean 𝜇 and standard deviation 𝑆) into 𝑝! above. Transform
𝜎 is asymptotically optimal as 𝐵 → ∞ in (14).

D ALGORITHM PARAMETERS
To aid the reproducibility of the results in Table 1, we document the code we used for all algorithms
(RTN, GPTQ, OWQ, and AWQ) along with the command line arguments.
RTN. We use the OWQ code from https://github.com/xvyaward/owq/tree/03cfc99 in
the provided owq conda environment. In the case of e.g. Llama-2-7b-hf quantized to 3 bits, we run
python main.py meta-llama/Llama-2-7b-hf c4 --wbits 3 --nearest.
GPTQ. We use the OWQ code from https://github.com/xvyaward/owq/tree/03cfc99 in
the provided owq conda environment. In the case of e.g. Llama-2-7b-hf quantized to 3 bits, we run
the provided command python main.py meta-llama/Llama-2-7b-hf c4 --wbits 3. For
results based on the group size of 256, we run python main.py meta-llama/Llama-2-7b-hf
c4 --wbits 3 –groupsize 256.
OWQ. We use the OWQ code from https://github.com/xvyaward/owq/tree/03cfc99 in
the provided owq conda environment. In the case of e.g. Llama-2-7b-hf quantized to 3.01 bits, we

Under review as a conference paper at ICLR 2025

18

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

run the provided command python main.py meta-llama/Llama-7b-hf c4 --wbits 3 --
target_bit 3.01.
AWQ. We use the AWQ code https://github.com/mit-han-lab/llm-awq/tree/3665e1a
in the provided awq conda environment. In the case of e.g. Llama-2-7b-hf quantized to 3 bits, we
run the provided command python -m awq.entry –model_path meta-llama/Llama-7b-
hf --w_bit 3 --q_group_size 128 --run_awq --tasks wikitext.

E OUTPUT PRODUCED BY DIFFERENT QUANTIZED MODELS
Table 5 lists output produced by different quantized Llama-2-70b models in response to questions
taken from the GSM8K dataset. For each question, a prompt is created by prepending the question
text with five other question and target pairs from the dataset (known as a 5-shot evaluation). Xis
allows the model to establish a context for the required output and format. It is interesting to note
that severe quantization errors (as in the case of RTN) manifest as non sequiturs and errors in logic
rather than unintelligible output.

F CONVEX WEIGHT PRUNING (HASSIBI & STORK, 1992)
To facilitate comparison between convex weight quantization (this work) and the convex weight
pruning work of Hassibi & Stork (1992), we provide a derivation of Hassibi & Stork’s Optimum
Brain Surgeon (OBS) algorithm (presented slightly differently), together with our commentary for
additional clarification.
For simplicity, let us rewrite model (4) as 𝑓 (⋅ , 𝚯1, 𝚯2, . . . , 𝚯𝑁) = 𝑓 (⋅ , 𝚯), where 𝚯 is a vector of
all model weights across different layers of the model. Xe objective of convex weight pruning is to
set some number of elements of 𝚯 to zero while fine-tuning the remaining elements to minimize the
difference between the output of the pruned model 𝑓 (⋅ , 𝚯𝑝) and the output of the unpruned model
𝑓 (⋅ , 𝚯). Writing the pruned weights as 𝚯𝑝 = 𝚯 + 𝚫𝑝, where 𝚫𝑝 is a vector of updates to be made
to weights 𝚯, it is apparent that 𝛥𝑖

𝑝 = −𝜃𝑖 if the 𝑖th weight is to be pruned, otherwise 𝛥𝑖
𝑝 should be

chosen to maximally compensate for the effect of other pruned weights on the output. Suppose we
have decided to prune the 𝑝th element of 𝚯. Xe updated set of weights 𝚯𝑝 can be found by solving

 minimize 𝑑(𝚫𝑝) = 𝔼𝐗‖𝑓 (𝐗, 𝚯 + 𝚫𝑝) − 𝑓 (𝐗)‖2
2 ≈ 𝔼𝐗[𝚫𝑝𝑇 (𝐽 𝑇 𝐽)(𝐗, 𝚯)𝚫𝑝]

(18)
 subject to 𝑟(𝚫𝑝)   = 𝐞𝑝

𝑇 𝚫𝑝 − 𝜃𝑝 = 0

in which 𝐽 (𝐗, 𝚯) represents the Jacobian of 𝑓 (𝐗, 𝚯) with respect to 𝚯, and 𝐞𝑝
𝑇 is an operator that

picks out the 𝑝th element of a vector. Xe Lagrangian of this problem becomes

 ℒ (𝚫𝑝, λ) = 1
2

𝔼𝐗[𝚫𝑝𝑇 (𝐽 𝑇 𝐽)(𝐗, 𝚯)𝚫𝑝] + λ(𝐞𝑝
𝑇 𝚫𝑝 − 𝜃𝑝) (19)

in which λ represents the dual variable associated with the equality constraint 𝐞𝑝
𝑇 𝚫𝑝 − 𝜃𝑝 = 0.

To solve (18), we differentiate ℒ with respect to 𝚫𝑝, λ and set all obtained derivatives equal to 0 to
obtain the first-order optimality conditions 𝔼𝐗[(𝐽 𝑇 𝐽)(𝐗, 𝚯)]𝚫𝑝 + 𝐞𝑝λ = 𝟎 and 𝐞𝑝

𝑇 𝚫𝑝 − 𝜃𝑝 = 0. After
some algebraic manipulations, we obtain the optimizing values

 𝚫𝑝 = −𝔼𝐗[(𝐽 𝑇 𝐽)(𝐗, 𝚯)]
−1𝐞𝑝λ, λ = −

𝜃𝑝

𝔼𝐗[(𝐽 𝑇 𝐽)(𝐗, 𝚯)]𝑝𝑝
−1, (20)

in which the expression for λ is obtained by substituting the expression for 𝚫𝑝 above into the second
optimality condition 𝐞𝑝

𝑇 𝚫𝑝 − 𝜃𝑝 = 0 and solving for λ. Combining both expressions finally produces
an update 𝚫𝑝 that minimizes the objective in (18):

 𝚫𝑝 = −
𝜃𝑝

𝔼𝐗[(𝐽 𝑇 𝐽)(𝐗, 𝚯)]𝑝𝑝
−1 𝔼𝐗[(𝐽 𝑇 𝐽)(𝐗, 𝚯)]

−1𝐞𝑝, 𝑑(𝚫𝑝) = 1
2

𝜃𝑝
2

𝔼𝐗[(𝐽 𝑇 𝐽)(𝐗, 𝚯)]𝑝𝑝
−1. (21)

So far, we assumed that we were given the index 𝑝 of the weight to prune from 𝚯. To actually pick
the best weights to prune away, we can compute the pruning loss 𝑑(𝚫𝑖) for all indices 𝑖, picking the

Under review as a conference paper at ICLR 2025

19

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

index 𝑖 associated with minimum loss. Xat is,

 𝑝 = argmin
𝑖

1
2

𝜃𝑖
2

𝔼𝐗[(𝐽 𝑇 𝐽)(𝐗, 𝚯)]𝑖𝑖
−1, (22)

after which 𝚫𝑝 can be calculated (and consequently 𝚯𝑝), and further weights to prune can be picked
by initializing 𝚯 ← 𝚯𝑝 and repeating the process until some pruning criterion has been met.

Under review as a conference paper at ICLR 2025

20

Table 5: Output to questions from the GSM8K dataset (test) by 3-bit-quantized Llama-2 70B. Scores computed across 1319 answers obtained using the flexible extract filter.

Question Target FP16 (Score: 53.90%) RTN (Score: 6.14%) GPTQ (Score: 46.47%) CVXQ (Score: 48.60%)
Question: Every day, Wendi
feeds each of her chickens
three cups of mixed chicken
feed, containing seeds,
mealworms and vegetables to
help keep them healthy. She
gives the chickens their feed
in three separate meals. In the
morning, she gives her flock
of chickens 15 cups of feed.
In the afternoon, she gives
her chickens another 25 cups
of feed. How many cups of
feed does she need to give
her chickens in the final meal
of the day if the size of
Wendi’s flock is 20
chickens?\nAnswer:

If each chicken eats 3 cups of
feed per day, then for 20
chickens they would need
3*20=<<3*20=60>>60 cups
of feed per day.\nIf she feeds
the flock 15 cups of feed in
the morning, and 25 cups in
the afternoon, then the final
meal would require 60-15-
25=<<60-15-25=20>>20
cups of chicken feed.\n####
20

Wendi feeds each chicken 3
cups of feed per day.\nShe
feeds her flock 15 cups of
feed in the morning and 25
cups of feed in the
afternoon.\nke total amount
of feed she gives her flock is
15 cups + 25 cups =
<<15+25=40>>40
cups.\nSince each chicken
gets 3 cups of feed per day,
the total number of chickens
in her flock is 40 cups / 3
cups =
<<40/3=13.33333333333333
33333333333333333333333
33333333333333333333333
33333333333333333333333
33333333333333333333333
3333333333333333333

15 cups + 25 cups + 10 cups
= <<15+25+10=50>>50 cups
of feed.\n#### 50\n

15 cups in the morning + 25
cups in the afternoon =
<<15+25=40>>40 cups of
feed\nEach chicken gets 3
cups of feed, so 40 cups of
feed / 3 cups per chicken =
<<40/3=13.33>>13.33
chickens\nSince there are 20
chickens, the number of cups
of feed in the final meal is 20
- 13.33 = <<20-
13.33=6.67>>6.67
cups\n#### 6.67\n\n

15 cups + 25 cups =
<<15+25=40>>40 cups of
feed\n20 chickens x 3 cups =
<<20*3=60>>60 cups of
feed\n60 cups - 40 cups =
<<60-40=20>>20 cups of
feed\n#### 20\n\n

Question: A robe takes 2
bolts of blue fiber and half
that much white fiber. How
many bolts in total does it
take?\nAnswer:

It takes 2/2=<<2/2=1>>1 bolt
of white fiber\nSo the total
amount of fabric is
2+1=<<2+1=3>>3 bolts of
fabric\n#### 3

2 + 2/2 = <<2+2/2=3>>3
bolts\n#### 3\n\n

2 blue bolts + 2 white bolts =
<<2+2=4>>4 bolts in
total.\n#### 4\np

2 + 1 = <<2+1=3>>3
bolts\n#### 3\n\n

2 + 2/2 = <<2+2/2=3>>3
bolts\n#### 3\n\n

Question: Josh decides to try
flipping a house. He buys a
house for $80,000 and then
puts in $50,000 in repairs.
kis increased the value of
the house by 150%. How
much profit did he
make?\nAnswer:

ke cost of the house and
repairs came out to
80,000+50,000=$<<80000+5
0000=130000>>130,000\nHe
increased the value of the
house by
80,000*1.5=<<80000*1.5=1
20000>>120,000\nSo the
new value of the house is
120,000+80,000=$<<120000
+80000=200000>>200,000\n
So he made a profit of
200,000-
130,000=$<<200000-
130000=70000>>70,000\n##
70000

ke house is now worth
150% of $80,000, which is
$80,000 * 150/100 =
<<80000*150/100=120000>
>$120,000.\nSo he made
$120,000 - $80,000 - $50,000
= <<120000-80000-
50000=20000>>$20,000.\n##
20000\n\n

Josh bought the house for
$80,000 and spent $50,000
on repairs. So he spent
$80,000 + $50,000 =
$<<80,000+50,000=130,000
>>$130,000 on the
house.\nSo Josh spent
$130,000 on the
house.\n#### $130,000\n

Josh bought the house for
$80,000 and put in $50,000
in repairs.\nke value of the
house increased by 150%, so
the new value is
1.5*$80,000+$50,000 =
$<<1.5*80,000+50,000=180,
000>>180,000.\nSo Josh
made $180,000 - $80,000 -
$50,000 = $<<180,000-
80,000-
50,000=50,000>>50,000 in
profit.\n#### 50,000\n\n

ke value of the house
increased by 150%, so it’s
now 150% of $80,000, which
is $120,000.\nJosh spent
$80,000 + $50,000 =
<<80000+50000=130000>>$
130,000 on the house, so he
made $120,000 - $130,000 =
<<120000-130000=-
10000>>-$10,000.\n#### -
10000\n\n

Under review as a conference paper at ICLR 2025

21

Kylar went to the store to buy
glasses for his new
apartment. One glass costs
$5, but every second glass
costs only 60% of the price.
Kylar wants to buy 16
glasses. How much does he
need to pay for them?",
"answer

ke discount price of one
glass is 60/100 * 5 =
$<<60/100*5=3>>3.\nIf
every second glass is cheaper,
that means Kylar is going to
buy 16 / 2 = <<16/2=8>>8
cheaper glasses.\nSo for the
cheaper glasses, Kylar is
going to pay 8 * 3 =
$<<8*3=24>>24.\nAnd for
the regular-priced glasses,
Kylar will pay 8 * 5 =
$<<8*5=40>>40.\nSo in total
Kylar needs to pay 24 + 40 =
$<<24+40=64>>64 for the
glasses he wants to
buy.\n#### 64

ke first glass costs $5.\nke
second glass costs $5 * 60%
= $<<5*60%=3>>3.\nke
third glass costs $5.\nke
fourth glass costs $5 * 60% =
$<<5*60%=3>>3.\nke fifth
glass costs $5.\nke sixth
glass costs $5 * 60% =
$<<5*60%=3>>3.\nke
seventh glass costs $5.\nke
eighth glass costs $5 * 60% =
$<<5*60%=3>>3.\nke ninth
glass costs $5.\nke tenth
glass costs $5 * 60% =
$<<5*60%=3>>3.\nke
eleventh glass costs $5.\nke
twelfth glass costs $5 * 60%
= $<<5*60%=3>>3.\nke
thirteenth glass costs
$5.\nke fourteenth glass
costs $5 * 60% =
$<<5*60%=3>>3.\nke
fifteenth glass costs $5.\nke
sixteenth glass costs $5 *
60%

ke cost of one glass is $5,
and the cost of the second
glass is $5 *
$<<5*2=10>>10>>10 is the
cost of the third glass.\nke
cost of the fourth glass is $5
* $<<5*3=15>>15 is the cost
of the fifth glass.\nke cost of
the sixth glass is $5 *
$<<5*4=20>>20 is the cost
of the seventh glass.\nke
cost of the eighth glass is $5
* $<<5*5=25>>25 is the cost
of the ninth glass.\nke cost
of the tenth glass is $5 *
$<<5*6=30>>30 is the cost
of the eleventh glass.\nke
cost of the twelfth glass is $5
* $<<5*7=35>>35 is the cost
of the thirteenth glass.\nke
cost of the fourteenth glass is
$5 * $<<5*8=40>>40 is the
cost of the fifteenth
glass.\nke cost of the
sixteenth glass is $5 *
$<<5*9=45>>4

ke first glass costs $5.\nke
second glass costs $5 * 60%
= $<<5*60%=3>>3.\nke
third glass costs $5 * 60% *
60% =
$<<5*60%*60%=1.8>>1.8.\
nke fourth glass costs $5 *
60% * 60% * 60% =
$<<5*60%*60%*60%=1.08
>>1.08.\nke fifth glass costs
$5 * 60% * 60% * 60% *
60% =
$<<5*60%*60%*60%*60%
=0.648>>0.648.\nke sixth
glass costs $5 * 60% * 60% *
60% * 60% * 60% =
$<<5*60%*60%*60%*60%*
60%=0.3888>>0.3888.\nke
seventh glass costs $5 * 6

ke first glass costs $5.\nke
second glass costs 60% of $5,
which is
$<<5*60%=3>>3.\nke third
glass costs 60% of $5, which
is $<<5*60%=3>>3.\nke
fourth glass costs 60% of $5,
which is
$<<5*60%=3>>3.\nke fifth
glass costs 60% of $5, which
is $<<5*60%=3>>3.\nke
sixth glass costs 60% of $5,
which is
$<<5*60%=3>>3.\nke
seventh glass costs 60% of
$5, which is
$<<5*60%=3>>3.\nke
eighth glass costs 60% of $5,
which is
$<<5*60%=3>>3.\nke ninth
glass costs 60% of $5, which
is $<<5*60%=3>>3.\nke
tenth glass costs 60% of $5,
which is
$<<5*60%=3>>3.\nke
eleventh glass costs 60%

Question: Janet’s ducks lay
16 eggs per day. She eats
three for breakfast every
morning and bakes muffins
for her friends every day with
four. She sells the remainder
at the farmers’ market daily
for $2 per fresh duck egg.
How much in dollars does
she make every day at the
farmers’ market?\nAnswer:

Janet sells 16 - 3 - 4 = <<16-
3-4=9>>9 duck eggs a
day.\nShe makes 9 * 2 =
$<<9*2=18>>18 every day at
the farmer’s market.\n####
18

Janet eats 3 eggs for
breakfast and bakes 4
muffins, so she uses 3 + 4 =
<<3+4=7>>7 eggs.\nShe
sells the remainder, so she
sells 16 - 7 = <<16-7=9>>9
eggs.\nShe sells each egg for
$2, so she makes $2 * 9 =
<<2*9=18>>18
dollars.\n#### 18\n\n

Janet sold 16 eggs per day.
She sold three eggs for
breakfast every morning, so
she sold 16 - 3 = <<16-
3=13>>13 eggs for
breakfast.\nShe sold four
eggs for her friends every
day, so she sold 16 - 4 =
<<16-4=12>>12 eggs for her
friends.\nShe sold twelve
eggs at the farmers’ market
daily, so she sold twelve eggs
at the farmers’ market daily,
so she sold twelve eggs at the
farmers’ market daily, so she
sold twelve eggs at the
farmers’ market daily, so she
sold twelve eggs at

Janet eats 3 eggs and bakes 4,
so she sells 16 - 3 - 4 = <<16-
3-4=9>>9 eggs.\nShe sells 9
eggs for $2 each, so she
makes $2 * 9 =
<<2*9=18>>18
dollars.\n#### 18\n\n

Janet eats 3 eggs for
breakfast and bakes 4
muffins, so she uses 3 + 4 =
<<3+4=7>>7 eggs.\nShe
sells the remainder at $2 per
egg, so she makes $2 * (16 -
7) = <<2*(16-
7)=2*9=18>>$18 per
day.\n#### 18\n\n

