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ABSTRACT 

In recent years, compression of large language models (LLMs) has emerged as an 
important problem to enable language model deployment on resource-constrained 
devices, reduce computational costs, and mitigate the environmental footprint of 
large-scale AI infrastructure. In this paper, we lay down the foundations of LLM 
quantization from a convex optimization perspective and propose a quantization 
technique that builds on this foundation for optimum quantization outcomes. Our 
quantization framework, CVXQ, scales to models containing hundreds of billions 
of weight parameters and provides users with the flexibility to compress models 
to any specified model size, post-training. A reference implementation of CVXQ 
can be obtained from. 

1 INTRODUCTION 

Large Language Models (LLMs) have become a versatile framework for solving a large number of 
problems in natural language processing, from text translation and summarization to conversational 
AI and automatic generation of radiology reports. While LLMs have surpassed traditional methods 
in many of these tasks, they can involve tens or hundreds of billions of weight parameters (!), and 
this makes their deployment onto devices with limited resources challenging—model weights and 
activations far exceed the available on-chip memory so that activations need to be loaded from and 
saved to off-chip memory throughout inference, rendering LLM inference memory-bound (Yuan et 
al., 2024). Xis greatly hinders the usability of LLMs particularly in time-sensitive applications and 
exacerbates the environmental footprint of large-scale AI infrastructure required by LLMs. 
One way to reduce the memory requirements of large models for inference is by compressing (that 
(is, simplifying) the representation of the model weights and activations after training. Xis can be 
achieved via weight pruning, quantization of activations and weights, or PCA-type dimensionality 
reduction of weight matrices. Out of these, quantization of weights and activation has proven to be 
particularly useful for compressing models to very low bit depths or arbitrary user-specified model 
sizes (Dettmers et al., 2022; Yao et al., 2022; Frantar et al., 2022; Frantar & Alistarh, 2022; Kim et 
al., 2024; Shao et al., 2024; Lee et al., 2024; Guan et al., 2024). Using state-of-the-art quantization 
techniques, it is now possible to compress 10–100 billion-parameter LLMs to 3–4 bits per weight 
on average with a negligible loss of model accuracy (Chee et al., 2024; Frantar et al., 2022; Lin et 
al., 2024), facilitating LLM inference on a single consumer-grade GPU for example. 
Although significant advances have been made in LLM quantization recently, current approaches to 
model quantization still lead to considerably reduced model accuracy at low bit depths, with many 
methods fine-tuning model weights during quantization (Frantar et al., 2022; Lee et al., 2024; Chee 
et al., 2024). Xis makes such quantization methods less suitable for the quantization of activations 
during inference, where fine-tuning would lead to unacceptable delays in the inference pipeline. 
Given the symmetry between weights and hidden states in matrix multiplications, achieving fast and 
accurate quantization of both weights and activations can be crucial for enhancing computational 
efficiency and prediction accuracy of LLMs, as well as for informing hardware design. Xis work 
aims to address gaps in the current model compression literature and advance compression methods 
further to enable accurate and efficient inference on quantized LLMs. 
In this paper—the first of a three-part series—we tackle the problem of LLM compression using the 
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framework of convex optimization. We begin with the problem of weight quantization and analyze 
how a model’s weights should be quantized to maximize quantized model accuracy for a given bit 
size. We then propose a stochastic gradient descent-type algorithm to solve this problem exactly and 
efficiently, post-training—in minutes for billion-parameter models and in a few hours for 10–100-
billion-parameter models. Compared with the recent OPTQ family of quantization methods (Frantar 
et al., 2022; Frantar & Alistarh, 2022; Huang et al., 2024; Lee et al., 2024; van Baalen et al., 2024) 
in which weights are fine-tuned during quantization, our approach spends virtually zero time on the 
actual quantization once the optimum bit depths have been determined. Xis makes our framework 
also suited for quantizing intermediate activations, which can further reduce the memory footprint 
of batched inference. Using our bespoke mixed precision CUDA kernel (see Appendix A), we also 
accelerate matrix-vector multiply relative to the floating-point matrix-vector multiply of cuBLAS. 

2 PREVIOUS WORK 
Early work on neural network model quantization can be attributed to Vanhoucke et al. (2011), who 
demonstrated that 8-bit integer arithmetic can be used for network training and inference without 
incurring a significant loss of accuracy. More generally, quantization-aware training (QAT) (Zhou 
et al., 2017; Jacob et al., 2018; D. Zhang et al., 2018; Esser et al., 2019; Y. Choi et al., 2017; Wang 
et al., 2019) integrates the quantization process into training by allowing the model to adapt to the 
reduced precision in weights (Esser et al., 2019; Jacob et al., 2018; D. Zhang et al., 2018; Zhou et 
al., 2017) and activations (Y. Choi et al., 2017; Wang et al., 2019) by determining the optimum bit 
depth (Wang et al., 2019; D. Zhang et al., 2018) and step size (Esser et al., 2019) using back-prop 
to facilitate the gradient to flow through quantization operators. One shortcoming of QAT methods 
is that model training needs to be repeated for different quantized model sizes and accuracy, which 
makes them less suitable for quantizing larger models such as LLMs. 
More recent quantization techniques for language and vision models aim to facilitate compression 
of already trained models for rapid deployment without further training (Dong et al., 2019; Chen et 
al., 2021; Dettmers et al., 2022; Yao et al., 2022; Frantar et al., 2022; Dettmers et al., 2023; Xiao et 
al., 2023; Lin et al., 2024; Kim et al., 2024; Shao et al., 2024; Lee et al., 2024). Xese approaches 
quantize model weights to 3–4 or 8 bits for integer-arithmetic-only inference (Jacob et al., 2018) 
using mixed bit depth quantization (Wang et al., 2019; Chen et al., 2021) or by a separate handling 
of outlier channels (Zhao et al., 2019) to improve the accuracy of the quantized model. Loss-aware 
quantization techniques (Hou & Kwok, 2018; Nahshan et al., 2020; Qu et al., 2020) seek to minimize 
accuracy loss in quantized models by calibrating quantization and biases on calibration data. Data-
free quantization methods (Nagel et al., 2019; Xu et al., 2020; K. Choi et al., 2021; Qian et al., 2023) 
attempt to remove the need for real calibration data by matching the distribution of weights instead 
(Nagel et al., 2019) or using synthetic data in place of real calibration data (K. Choi et al., 2021).  
For LLM compression in particular, an extension to the Optimum Brain Surgeon (OBS) algorithm 
(Hassibi & Stork, 1992) known as GPTQ (Frantar et al., 2022) was proposed for the quantization of 
1–100 billion parameter models. Further recent extensions to GPTQ (Dettmers et al., 2023; Lee et 
al., 2024) incorporate the handling of sensitive weights by scaling or simply by retaining the original 
weight values similarly to (Lin et al., 2024; Xiao et al., 2023). Here, we use convex optimization for 
fine-granularity mixed-precision weight quantization, overcoming the combinatorial nature of 
determining the optimal bit depth (0, 1, …, 8 bits) per channel to better attend to channel sensitivity. 

3 QUANTIZATION FRAMEWORK 
Here, we use the task of next-token prediction in language modeling as a running example. For our 
purposes, the end-to-end mapping of input token embeddings to predicted next-token embeddings 
by a pretrained language model 𝑓  can be expressed in the most general form as 

 𝐙 = 𝑓 (𝐗) = 𝑓 (𝐗, 𝚯1, 𝚯2, . . . , 𝚯𝑁 ) = 𝑓 (𝐗, 𝚯1, 𝚯2, . . . , 𝚯𝑁 , 𝐁1, 𝐁2, . . . , 𝐁𝑁 ) (1) 

in which 𝐗 ∈ ℝ𝐿×𝐸  denotes a sequence of 𝐿 tokens, each of which resides in some 𝐸-dimensional 
embedding space, and 𝐙 ∈ ℝ𝐿×𝐸 , embeddings of 𝐿 predicted next tokens. Xe 𝑚th block of weight 
matrices 𝚯𝑚𝑀+1, . . . , 𝚯(𝑚+1)𝑀  and bias vectors 𝐁𝑚𝑀+1, . . . , 𝐁(𝑚+1)𝑀  jointly parameterize the 𝑚th 
transformer block, which refines the embeddings produced by the (𝑚 − 1)th transformer block. In 
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practice, LLM frameworks used in language modeling also require an embedder 𝚯0 ∈ ℝ𝐸×𝑉  and a 
prediction head 𝚯𝑁+1 ∈ ℝ𝑉 ×𝐸  to transform between embeddings and tokens from a vocabulary of 
size 𝑉 , but for now, we focus on the compression of transformer block weights as is typically done 
in model weight quantization work (Frantar et al., 2022; Lee et al., 2024; Lin et al., 2024). 
To get a sense of the number of weight matrices and their sizes in a typical language model, the 13 
billion-parameter model in the OPT family (OPT-13B) contains 𝑁 = 240 weight matrices in blocks 
of 𝑀 = 6, with each block comprising 12𝐸2 weights in an embedding dimension of 𝐸 = 5120. Xe 
embedder and prediction head are parameterized by a shared matrix containing 𝑉𝐸 weights, where 
the vocabulary size 𝑉 = 50272. Note that each transformer block also contains 9𝐸 bias parameters 
but due to their relative scarcity, bias parameters can be communicated losslessly and still have little 
to no impact on the overall compression performance (Frantar et al., 2022). 
Notionally, the elements of a weight matrix 𝚯 are continuously valued so they require quantization 
for efficient communication and storage. Compared with vector and lattice quantization techniques 
(Egiazarian et al., 2024; Gong et al., 2015; van Baalen et al., 2024), scalar quantization (Frantar et 
al., 2022; Lin et al., 2024) can simplify decoding and even enable operations directly on quantization 
indices, which obviates the need for a separate dequantization process. Xe mid-rise uniform scalar 
quantization of a weight 𝜃 at a bit-depth of 𝐵 bits and a step size 𝐷 can be expressed as 

 𝜃𝑞(𝐵, 𝐷) = 𝐷(clip(floor(𝐷−1𝜃) , −2𝐵−1, 2𝐵−1 − 1) + 2−1),   𝐵 = 0, 1, 2, . . .  (2) 

and 𝜃𝑞(𝐵, 𝐷) = 𝜃 if 𝐵 = ∞ (for notational convenience). Xe problem of compressing a model 𝑓  
now amounts to determining the optimal bit depth 𝐵 and the associated quantization step size 𝐷 for 
model weights. It would be impractical, however, to determine a separate (𝐵, 𝐷) for each weight 𝜃 
in the model since the cost of signaling the choice of (𝐵, 𝐷) for each one would far outweigh the bit 
savings derived from quantization. Typically, a single (𝐵, 𝐷) pair is used to quantize a small group 
of weights (an entire matrix or rows or columns thereof) in which case the cost of signaling (𝐵, 𝐷) 
can be borne by a group of quantized weight parameters as a negligible per-weight overhead. 

3.1  B I T  DE P T H  AS S I G N M E N T  
Suppose we want to compress 𝑓  by quantizing each matrix 𝚯𝑛 containing 𝑃𝑛 elements according to 
its own bit depth 𝐵𝑛 and step size 𝐷𝑛

∗(𝐵𝑛). How should 𝐵𝑛 be decided? Roughly speaking, weights 
that are more sensitive to output distortion should be allotted more bits to “balance the scales” while 
keeping the total number of bits under a given model bit budget. We can formalize this notion by 
expressing the weight quantization task at hand as a constrained non-linear least-squares problem: 

 
minimize 𝑑(𝐵1, . . . , 𝐵𝑁 ) = 𝔼𝐗‖𝑓 (𝐗, 𝚯1

𝑞(𝐵1, 𝐷1
∗(𝐵1)), . . . , 𝚯𝑁

𝑞 (𝐵𝑁 , 𝐷𝑁
∗ (𝐵𝑁 ))) − 𝑓 (𝐗)‖𝐹

2  

subject to  𝑟(𝐵1, . . . , 𝐵𝑁 ) = ∑ 𝑃𝑛𝐵𝑛 − (∑ 𝑃𝑛
𝑁
𝑛=1 )𝑅 = 0𝑁

𝑛=1    
(3) 

in which 𝑅 denotes a user-specified average model bit depth (bit rate). Xis problem is reminiscent 
of optimal resource allocation, where the objective is to maximize some utility (or minimize output 

Algorithm 1. CVXQ: Bit depth determination 
1 Input: f ( ⋅ ,Θ1, . . . ,ΘN) (model), {X} (calibration set), R (target bit rate), Bmax ← 8 (max bit depth) 
2 Output: B1, . . . ,BN (bit depths), S1, . . . ,SN (weight scales) , µ1, . . . ,µN (weight means) 
3 Initialize: U ← pca_basis ({X}) ∈ ℝE×E', S ← sub_sample(IL×L) ∈ ℝL×L', V  ← 10"6 
4  Bn ← ∞, Gn

2 ← 0,  µn ← mean(Θn), Sn ← std(Θn), Θn
q ← Θn, Bn

q ← Bn, X&n ← 0 for n in 1, . . . ,N 
5 for iter in 1, . . . ,max_iter do 
6  for X in minibatch do 
7   Z,X1, . . . ,XN ← f (X,Θ1

q, . . . ,ΘN
q ,B1

q, . . . ,BN
q ) 

8   X&n ← (1	–α)X&n+ (α/L)1TXn for n in 1, . . . ,N 
9   Γ1, . . . ,ΓN ← autograd(STZU, Θ1

q, . . . , ΘN
q )  

10   Gn
2  ← (1 –α)Gn

2 + (α/Pn)  trace (Γn
TΓn) for n in 1, . . . ,N 

11  for _ in 1, . . . ,10 do 
12   Bn ← clamp( 1

2 log2 (Gn
2Sn

2/V),0, Bmax) for n in 1, . . . ,N 
13   V    ← V+ β (sum(PnBn)− (sum(Pn))R)  
14  Θn

q ← compand_quantize (Θn,Bn,Sn,	µn), Bn
q   ← Bn + (Θn

q −Θn)X&n for n in 1, . . . ,N 
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distortion in our case) by optimally spending down a given budget (the total number of bits). In this 
section and next, we provide insights into problem (3) and discuss its solution; see Algorithm 1. 
To apply the machinery of numerical optimization to (3), we will relax the discrete constraint on the 
bit depths 𝐵1, . . . , 𝐵𝑁  while solving the problem and round the solution 𝐵1

∗, . . . , 𝐵𝑁
∗  to the nearest 

integers after they have been obtained. Let us write the Lagrangian of (3) as ℒ (𝐵1, . . . , 𝐵𝑁 , 𝑉 ) =
𝑑(𝐵1, . . . , 𝐵𝑁 ) + 𝑉𝑟(𝐵1, . . . , 𝐵𝑁 ), where 𝑉  is a dual variable associated with the equality constraint 
of (3). Setting to 0 the partials of ℒ  with respect to 𝐵1, . . . , 𝐵𝑁 , 𝑉  yields the optimality conditions 

 1
𝑃1

𝜕𝑑(𝐵1, 𝐵2, . . . , 𝐵𝑁 )
𝜕𝐵1

= ⋅ ⋅ ⋅ = 1
𝑃𝑁

𝜕𝑑(𝐵1, 𝐵2, . . . , 𝐵𝑁 )
𝜕𝐵𝑁

= −𝑉 ,         𝑟(𝐵1, . . . , 𝐵𝑁 ) = 0 (4) 

so, problem (3) can be solved by alternately updating the bit depths 𝐵1, . . . , 𝐵𝑁  (primal variables) 
and the trade-off 𝑉  (dual variable) until all optimality conditions are met. In words, the optimality 
conditions are reached once the marginal decrease in the output distortion from an infinitesimal bit 
is equal across layers at −𝑉  and once we have assigned exactly 𝑅 bits per weight on average. 
Since the quantization function (2) is constant almost everywhere, a naive computation of the partial 
derivatives of 𝑑 with respect to 𝐵1, . . . , 𝐵𝑁  using the chain rule of differentiation does not provide 
a useful direction for descent. One result from rate–distortion theory (Gersho & Gray, 1991) is that 
for any random variable of finite variance, quantization error decreases by half with every additional 
bit at a sufficiently high bit depth. More specifically to our problem, we can write (Appendix B) 

 − 1
2 ln 2

𝜕𝑑(𝐵1, . . . , 𝐵𝑁 )
𝜕𝐵𝑛

≈ 𝔼𝐗 ‖

𝜕𝑓 (𝚯1
𝑞(𝐵1), . . . , 𝚯𝑁

𝑞 (𝐵𝑁 ))
𝜕𝚯𝑛

Δ𝑛
 𝑞 (𝐵𝑛)

‖
𝐹

2

≈ 𝑃𝑛𝐻𝑛 𝐺𝑛
2𝑆𝑛

22−2𝐵𝑛⏟⏟⏟⏟⏟⏟⏟
= 𝑑𝑛(𝐵𝑛)

 (5) 

in which 𝚯𝑛
𝑞(𝐵𝑛) = 𝚯𝑛

𝑞(𝐵𝑛, 𝐷𝑛
∗(𝐵𝑛)) for brevity, 𝐺𝑛

2 and 𝑆𝑛
2 represent the variances of the elements 

of 𝜕𝚯𝑛𝑓 (𝐗, 𝚯1
𝑞, . . . , 𝚯𝑁

𝑞 ), and of 𝚯𝑛
𝑞, respectively, and 𝐻𝑛 is a quantization coefficient that depends 

on the type of weight distribution, with 𝐻𝑛 = 1.42 for Gaussian, 0.72 for Laplace, etc. (Gersho & 
Gray, 1991). Assuming weights are distributed similarly across layers with 𝐻1 = ⋅ ⋅ ⋅ = 𝐻𝑁 , factors 
𝐻𝑛 and constant − 1

2 ln 2 can be removed the above expression without affecting the solution of (3). 
Coupled with the above closed-form expression for the partial derivatives, optimality conditions (4) 
naturally lend themselves to dual ascent-type methods for solving problem (3). Xe idea behind dual 
ascent (Boyd et al., 2011) is to alternately update the primal 𝐵1, . . . , 𝐵𝑁 , and dual 𝑉  variables, with 
one set held fixed while updating the other. After initializing 𝐵1 = ⋅ ⋅ ⋅ 𝐵𝑁 = ∞, 𝑉  to some small 
positive number, and computing 𝐺1

2, . . . , 𝐺𝑁
2 , we update the bit depths and trade-off iteratively via  

 
𝐵𝑛 ← clamp (

1
2

log2 (
𝐺𝑛

2𝑆𝑛
2

𝑉 ) , 0, 𝐵max = 8)      for 𝑛 = 1, . . . , 𝑁   

𝑉    ← 𝑉 + 𝛼(∑ 𝑃𝑛𝐵𝑛
𝑁
𝑛=1 − (∑ 𝑃𝑛

𝑁
𝑛=1 )𝑅)  

(6) 

in which 𝛼 denotes a step size for dual update. Figure 1 illustrates the optimality conditions for bit 

Figure 1: Optimal bit depths. Consider two weight matrices whose distortion functions are given 
by 𝑑1 and 𝑑2, where 𝑑𝑛(𝐵𝑛) = 𝐺𝑛

2𝑆𝑛
22−2𝐵𝑛. For any given value of the dual variable 𝑉 , optimal bit 

depths 𝐵1
∗  and 𝐵2

∗  are found where the derivative of 𝑑1  and 𝑑2  is −𝑉 , respectively (left). Xese 
points correspond to the intersections between 𝑉  and −𝑑𝑛

′ = (2 ln 2) 𝑑𝑛  (center). Integerized bit 
depths occur on the rounded curves −𝑑�̂�

′ (right). 
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depths. With 𝐺𝑛
2 and 𝑆𝑛

2 fixed, dual ascent steps (6) typically converge within a few iterations (tol =
10−6 bit, step size α = 2) after which the obtained 𝐵𝑛 are rounded to integers. Xe non-linear nature 
of the least squares objective 𝑑 (3) means that iteration (6) should be repeated after the bit depths 
𝐵𝑛 are updated. Using the updated 𝐵𝑛, we first obtain the re-quantized weights 𝚯𝑛

𝑞(𝐵𝑛) along with 
the re-computed gradient variances 𝐺𝑛

2, based on which 𝐵𝑛 can be further updated via (6).  
Evaluating 𝜕𝚯𝑛𝑓 (𝐗, 𝚯1

𝑞(𝐵1), . . . , 𝚯𝑁
𝑞 (𝐵𝑁 )) across the entire calibration dataset at every iteration is 

prohibitively expensive given the dimensionality of the output 𝑓 (𝐗) ∈ ℝ𝐿×𝐸  and the cost of back-
propagating each element through 𝑓 . To overcome this difficulty, we perform PCA on 𝑓 (𝐗) along 
the embedding dimension (of 𝐸) and sub-sample along the token dimension (of 𝑇 ), and accumulate 
gradient variances by back-propagating only a mini-batch of calibration examples every time: 

 𝐺𝑛
2 ← (1 − 𝛽)𝐺𝑛

2 + 𝛽 𝔼𝐗∼batch ‖

𝜕𝐒𝑇 𝑓 (𝚯1
𝑞(𝐵1), . . . , 𝚯𝑁

𝑞 (𝐵𝑁 ))𝐔
𝜕𝚯𝑛 ‖

𝐹

2

  for 𝑛 = 1, . . . , 𝑁  (7) 

in which 𝛽 denotes the learning rate, and 𝐒𝑇  and 𝐔 represent the PCA projection and sub-sampling 
operators, respectively. In practice, we further accelerate variance accumulation by cycling through 
PCA coefficients and back-propagating only one coefficient per sample in every minibatch. 

3.2  AC T U A L QU A N T I Z AT I O N  

Suppose now the weight matrices 𝚯1, . . . , 𝚯𝑁  are to be assigned bit depths 𝐵1, . . . , 𝐵𝑁  (which are 
not necessarily optimum.) We now investigate how the quantization step size 𝐷𝑛 should be decided 
given bit depth 𝐵𝑛. In the round-to-nearest scheme (RTN, Figure 2, left), 𝐷𝑛 is always chosen such 
that the quantizer’s 2𝐵𝑛 steps just cover the entire range of weight values, and this step size halves 
as 𝐵𝑛 is increased by one. Xese criteria optimize step sizes when weights are distributed uniformly 
across a range and the objective is to minimize distortion in quantized weights.  
For LLMs, the elements 𝜃 of a weight matrix typically exhibit a light-tailed distribution 𝑝𝜃 (normal 
or Laplace) (Zhao et al., 2019), which renders partitioning the entire weight range into 2𝐵𝑛 equal 
steps sub-optimal especially at low bit depths (Cover & Xomas, 2006; Gersho & Gray, 1991). One 
alternative to the computationally expensive Lloyd–Max algorithm (Lloyd, 1982; Max, 1960) is 
companded quantization (Gray & Neuhoff, 1998), which applies a sigmoid transform to 𝜃 prior to 
uniform quantization to achieve finer quantization in regions of larger 𝑝𝜃 and coarser quantization 
in regions where 𝑝𝜃 is smaller; see Figure 2 (right). When the weights 𝜃 are Laplace-distributed with 
mean 𝜇 and variance 𝑆2, an asymptotically optimal choice of sigmoid function is (Appendix C): 

 𝜎(𝜃, 𝑆, 𝜇) =
1 + sgn(𝜃 − 𝜇) 

2
exp

(
−

√2 abs(𝜃 − 𝜇)
3𝑆 )

∈ (0, 1),    𝜃 ∈ (−∞, ∞), (8) 

that is, the normalized cubic root of the cumulative distribution function for a Laplace distribution 
of the same mean and variance. Companded weights 𝜃𝜎 = 𝜎(𝜃, 𝑆, 𝜇) are then quantized uniformly 

Figure 2: Companding quantization. Illustrated for a 4-bit quantizer (16 quantization levels) on 
Gaussian weights with zero mean and unit variance. Uniform quantization across the entire range 
of weight values (left) leads to unduly large quantization bins (hence quantization errors) for more 
probable weights. Companding the weights to the range (0,1) prior to uniform quantization (middle) 
reduces quantization errors for more probable weights (right), reducing the mean square error. 
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in the range (0, 1) and signaled with bit depth 𝐵, scale 𝑆, and mean 𝜇 for efficient dequantization 
using lookup tables. In practice, 𝑆, 𝜇 are treated as hyper-parameters and fine-tuned efficiently on 
coarse 1D grids as a post-processing step (Young et al., 2021) once Algorithm 1 has completed. 
Quantization invariably causes small deterministic differences to arise between the original (non-
quantized) 𝚯 and quantized 𝚯𝑞 weights. While these errors are often modeled as zero-mean noise 
in theoretical analyses, they are seldom zero-mean in practice and can lead to systematically biased 
model output, which significantly reduces prediction accuracy. To compensate for these non-zero 
differences, we compute new bias vectors for the model as 𝐁𝑛

𝑞 ← 𝐁𝑛 + (𝚯𝑛
𝑞 − 𝚯𝑛) X!n each time the 

matrix 𝚯𝑛 is quantized. Here, X!n is a vector of running means of the inputs to the 𝑛th layer, which 
is accumulated during the forward pass in a manner analogous to the accumulation of 𝐺𝑛

2 during the 
backward pass. Xe corrected biases 𝐁𝑛

𝑞 are then used whenever the corresponding quantized weight 
matrices 𝚯𝑛

𝑞 are used during gradient variance accumulation and inference. 

3.3  MAT R I X  PA RT I T I O N I N G  

Rather than quantize optimally at the granularity of a whole weight matrix, we can split each matrix 
into a collection of row or column matrices, assigning optimum bit depth and step size to each sub-
matrix. In this case, the total number of matrices 𝑁  in (3) can be reinterpreted as the total number 
of sub-matrices collected across all layers, with the quantities 𝐵𝑛, 𝐷𝑛 and 𝑃𝑛, similarly interpreted 
as the bit-depth, step size and number of elements of the 𝑛th sub-matrix. Note that quantizing at the 
granularity of row or column sub-matrices does not noticeably increase the complexity of variance 
accumulation, as the same squared gradients computed via back-propagation can be averaged per 
sub-matrix to produce the corresponding sub-matrix variances. Here, without loss of generality, we 
assume that each matrix is split into a collection of column matrices. 
For a weight matrix 𝚯 with gradient and weight variances 𝐺2 and 𝑆2, whose per-column variances 
are 𝐺1

2, . . . , 𝐺𝑁
2  and 𝑆1

2, . . . , 𝑆𝑁
2 , respectively, the theoretical gain (average bit depth savings) from 

partitioning can be expressed as 

 𝛾partition = 1
2 (log2(𝐺2𝑆2) − 1

𝑁 ∑ log2(𝐺𝑛
2𝑆𝑛

2)
𝑁
𝑛=1 ), (9) 

a non-negative quantity as a direct result of Jensen’s inequality. Xis quantity represents the bit-rate 
(average bit-depth) savings when the 𝑛th column is assigned 𝐵𝑛 = 1

2 log2(𝐺𝑛
2𝑆𝑛

2) + 𝐵 bits for some 
𝐵, compared to assigning a uniform bit depth 𝐵𝑛 = 1

2 log2(𝐺2𝑆2) + 𝐵 bits across all columns under 
the assumption that the weights of its 𝑁  columns are identically distributed. Figure 3 (left) plots the 
per-matrix bit-depth savings derived by partitioning the (𝑄, 𝐾, 𝑉  and 𝑂) projection matrices of the 
OPT-125m model by rows or columns. Xe per-channel breakdown of the savings is also shown. 
In addition to primary splitting of matrices into columns, we may want to further split each column 
into a fixed number of groups of weight elements given the presence of row bit savings as well. To 
split the columns of a weight matrix 𝚯 ∈ ℝ𝑁×𝑁 , one can simply cluster its rows into 𝑀  similarly 

Figure 3: Bit savings from partition. Plotted for OPT-125m. Savings are derived by partitioning 
each weight matrix into a collection of row or column matrices and assigning each sub-matrix its 
own bit depth. Savings differ across the (𝑄, 𝐾, 𝑉  and 𝑂) projection matrices of the model’s 12 
transformer blocks (left). Per-column (middle) and row (right) bit savings (shown for block 3, 𝑂- 
proj) can dip below zero but are always positive on average due to Jensen’s inequality (see text). 
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sized groups based on their row variances 𝐺1
2𝑆1

2, . . . , 𝐺𝑁
2 𝑆𝑁

2 . By applying the same clustering to all 
columns of a matrix, we can signal the cluster index for each row using ⌈log2 𝑀⌉ bits—a negligible 
per-weight overhead for a typical number of columns in a large weight matrix and number of groups 
used in practice. We illustrate partitioning and subdivision in Figure 4. Later in Section 4, we show 
the accuracy of OPT models quantized using different numbers of row clusters, demonstrating that 
the clustering idea used in AWQ and GPTQ similarly improves quantized model accuracy. 

4 QUANTIZATION EXPERIMENTS 
To study the behavior of quantized LLMs, we apply CVXQ (Algorithm 1) to the quantization of the 
Meta Open Pretrained Transformer (OPT) (S. Zhang et al., 2022) and Llama-2 (Touvron et al., 2023) 
families of language models (from the Hugging Face Hub), comparing the performance of CVXQ 
against other model quantization methods on language modeling and question answering tasks. For 
calibration data, we source 128 examples from the training split of the C4 dataset (Raffel et al., 2020) 
and test using the test split of WikiText2 (Merity et al., 2022) for language modeling and the test 
splits of GSM8K (Cobbe et al., 2021), ARC (Easy and Challenge) (Clark et al., 2018), HellaSwag 
(Zellers et al., 2019), PIQA (Bisk et al., 2019) and Winogrande (Sakaguchi et al., 2021) for question 
answering tasks.  
Language Modeling. As our main set of experiments, we quantize Meta’s OPT and Llama 2 models 
to 3 and 4 bits and measure the performance of the quantized models using perplexity, a stringent 
accuracy metric. We use row clustering with a cluster size of 512 for OPT (768 for 125M, 66B) and 
256 for Llama 2 models, accumulation batch size of 16, and 17 tokens from each sequence of tokens 
of length 2048, and optimize for 64 iterations maximum. Table 1 lists the perplexity of our quantized 
models (CVXQ) on the WikiText2 test set. We select the final quantized model based on WikiText2 
(validation) but selecting the last quantized model produces similar test accuracy (within 1% of the 
unquantized model’s perplexity). For comparison, we include the perplexities of the same models 
quantized using round-to-nearest, GPTQ (Frantar et al., 2022), OWQ (Lee et al., 2024), AWQ (Lin 
et al., 2024) and QuIP (Chee et al., 2024) based on the code provided by the respective authors; see 
Appendix D for details. Relative to the next best performing methods, the proposed method provides 
a perplexity reduction of up to 4.55 for the 3-bit OPT-125M model but minor perplexity gains (0.00–
0.01) are observed for the 3-bit OPT-66B and Llama 2 70B models. In this comparison, AWQ uses 
a group size of 128, incurring 2–4 times as many overhead bits as the proposed method, and OWQ 
by its nature operates at average per-weight bit depths that are 0.01–0.05 bits higher than proposed. 
Hyperparameters/Ablations. To study the effect of CVXQ hyperparameters on the accuracy of the 
quantized models, we quantize the OPT-1.3B and -13B models over a range of minibatch sizes and 
token counts (optimization hyperparameters) and cluster sizes (quantization hyperparameter), with 
each hyperparameter varied while keeping the others fixed at their optimized values. (Xe optimal 
hyperparameter values are batch size: 16, token count: 17, and cluster size: 512.) Xe perplexity of 
the quantized models is then measured on the C4 test data. Table 2 (a–b) demonstrates that CVXQ 
is largely insensitive to the values of optimization hyperparameters over a wide range. From Table 
2 (c), we see that smaller cluster sizes generally improve the performance of the quantized models 
at lower average bit depths, but this also leads to higher overheads (discussed later). Figure 5 plots 
quantized model accuracy across optimization iterations when the baseline hyperparameter values 
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Figure 4: Partitioning and clustering. Illustrated for a 4 × 4 weight matrix. Rather than assign the 
same bit depth to all elements of a weight matrix (a), we can assign a separate bit depth to each row 
of weights (b), or to a cluster of columns (c), and even combine partitioning and clustering (d) to 
realize row- and column-based bit savings. Clustering with a cluster size of 2 illustrated for clarity. 
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are used, showing that about 20 iterations are needed for quantization parameters (clustering and bit 
depth decisions) to reach their optima. Table 2 (d) shows ablations of our quantized OPT models by 
starting with RTN and adding different components (Jeon et al., 2023). See Table 3 for C4 results. 
Pruning Due to Quantization. CVXQ quantizes low-variance weights of weight matrices to zero 
and effects a form of weight pruning, which has been shown to improve generalization (Hassibi & 
Stork, 1992). Table 4 (a) lists the percentages of zero-quantized weights in the OPT-1.3B and 13B 
models quantized to 3 and 4 bits per weight on average. We observe that using smaller cluster sizes 
increases the number of pruned weights since this enables low-variance weights in each column to 
be clustered together and quantized to zero. However, smaller clusters lead to higher overheads so 

Figure 5: Test perplexity across iterations. Calibrated on C4 (train) using a batch size of 16. Row 
clusters of size 512 used. Perplexity decreases rapidly within the first 30 iterations, monotonically 
for C4 (test), whose distribution is similar to the calibration data. 
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C4 
C4 (Full) 

WT2 (Full) 

Perplexity (PPL) 
WikiText2 (↓) 

Meta OPT (Open Pretrained Transformer)  Meta Llama 2 
 125M  350M  1.3B  2.7B  6.7B  13B  30B 66B  7B 13B 70B 

 Full precision (FP16) 27.65  22.00 14.63 12.47 10.86 10.13 9.56 9.34  5.47 4.88 3.32 

4 
bi

ts 

RTN 37.28 25.94 48.17 16.92 12.10 11.32 10.98 111.36  5.73 4.98 3.46 
GPTQ 32.05 23.87 15.47 12.83 11.14 10.29 9.57 9.34  6.07 5.20 3.59 
GPTQ/256 30.53 23.83 14.91 12.52 11.02 10.22 9.60 9.46  5.69 5.02 3.44 
QuIP 35.93 23.15 15.96 12.67 11.10 10.33 9.60 9.40  – – 3.53 
OWQ (4.01 bits) 29.47 23.19 15.01 12.39 10.87 10.26 9.50 9.25  5.63 5.01 3.43 
AWQ/128 29.11 – 14.95 12.74 10.93 10.22 9.59 9.39  5.60 4.97 3.41 
CVXQ (Ours) 27.23 22.89 14.20 12.12 10.52 10.08 9.45 9.13  5.57 4.97 3.40 

3 
bi

ts 

RTN 1.3e3 64.57 119.47 298.00 23.54 46.04 18.80 6.1e3  6.66 5.52 3.98 
GPTQ 53.43 32.28 20.90 16.55 12.88 11.58 10.29 9.90  9.23 6.69 3.87 
GPTQ/256 41.22 29.96 16.98 13.94 11.39 10.41 9.81 11.13  6.75 5.59 4.00 
QuIP 34.43 26.02 17.33 13.84 12.35 10.57 9.92 9.46  – – 3.85 
OWQ (3.01 bits) 35.26 26.59 16.40 13.21 11.21 11.48 9.59 9.28  6.21 5.36 3.77 
AWQ/128 36.77 – 16.32 13.54 11.41 10.67 9.85 9.63  6.24 5.32 3.74 
CVXQ (Ours) 30.71 25.94 14.83 12.42 11.07 10.28 9.56 9.24  6.04 5.25 3.72 

Table 1: WikiText2 perplexity (test). We quantize the Meta OPT and Llama 2 families of LLMs 
to 3–4 bits per weight on average using the proposed quantization method, reporting the perplexity 
of each quantized model on the WikiText2 dataset (test). For comparison, we also include the 
perplexities of models quantized using RTN, GPTQ, QuIP, OWQ, and AWQ. 

Table 2: Effect of hyperparameters on quantized model accuracy. Quantized model accuracy is 
relatively insensitive to the minibatch size (a) and number of tokens per sequence (b) used for the 
optimization. Smaller clusters improve quantized model accuracy at low average bit depths (c). Xe 
gain from  mixed precision and companding components are also shown in ablations (d). 
 (a) Minibatch size and PPL (b) Number of tokens and PPL (c) Cluster size and PPL 

 PPL 
C4 (↓) 

OPT (4 bits)  OPT (3 bits) 
1.3B 13B  1.3B 13B 

FP16 16.07 12.06  16.07 12.06 

Ba
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 2 16.24 12.12  16.94 12.36 

4 16.24 12.12  16.94 12.35 
8 16.25 12.11  16.90 12.34 

16 16.22 12.11  16.86 12.32 
32 16.24 12.12  16.88 12.36 

 

PPL 
C4 (↓) 

OPT (4 bits)  OPT (3 bits) 
1.3B 13B  1.3B 13B 

FP16 16.07 12.06  16.07 12.06 

Cl
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te
r s

iz
e 64 16.16 12.10  16.62 12.26 

128 16.17 12.10  16.70 12.29 
256 16.20 12.10  16.77 12.32 
512 16.22 12.11  16.86 12.32 

1024 16.23 12.11  16.99 12.42 
 

PPL 
C4 (↓) 

OPT (4 bits)  OPT (3 bits) 
1.3B 13B  1.3B 13B 

FP16 16.07 12.06  16.07 12.06 

N
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 to
ke

ns
  3 16.40 12.29  17.05 12.47 

5 16.28 12.18  16.93 12.37 
9 16.24 12.12  16.91 12.35 

17 16.22 12.11  16.86 12.32 
33 16.21 12.10  16.87 12.34 

 

PPL 
C4 (↓) 

OPT (4 bits)  OPT (3 bits) 
1.3B 13B  1.3B 13B 

FP16 16.07 12.06  16.07 12.06 
RTN 24.51 13.36  4.2e3 3.2e3 

+ MSE 16.98 12.26  21.64 13.34 
+ Mixed 16.29 12.12  18.48 12.80 
+ Comp 16.22 12.11  16.86 12.32 
= Ours 16.22 12.11  16.86 12.32 
 

    (d) Ablation (Mixed prec. / Compand) 
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that small improvements in generalization due to pruning come at the cost of signaling the overhead 
bits. Table 4 (b) lists the number of overhead bits (cluster indices and FP16 encodings of the location 
and scale parameters of each weight cluster) as a percentage of the total quantized weight bits. Xese 
overheads are in line with those of other algorithms which must similarly signal zero points and step 
sizes of the quantization grid (Lee et al., 2024). 
2.x-bit Llama-2. We study the accuracy of Llama 2 models quantized to 2.x bits using CVXQ and 
OWQ, both of which are capable of quantizing models to fractional average bit depths. To enable a 
more comprehensive study, we compare against OWQ with no grouping, as well as with group sizes 
of 128 and 256. We see from Table 4 (a) that CVXQ-quantized Llama-2 models are considerably 
more accurate at these bit depths than their OWQ counterparts. Xis is expected since CVXQ assigns 
bit depths from the range (0, 𝐵max) commensurately with gradient variances whereas OWQ opts to 
preserve the most sensitive (highest-variance) weights in FP16 and quantize the rest to 2 bits (Lee 
et al., 2024). In terms of execution time, CVXQ (64 iterations) and OWQ/GPTQ require 47 minutes 
and 18 minutes, respectively (excluding validation), to quantize the 7B model on Nvidia A100. 
Downstream Tasks (Common Sense QA, GSM8K). To show the impact of model quantization on 
downstream tasks, we list in Table 5 (b) the accuracy of CVXQ-quantized Llama-2 models on the 
ARC (Clark et al., 2018), HellaSwag (Zellers et al., 2019), PIQA (Bisk et al., 2019) and Winogrande 
(Sakaguchi et al., 2021) common sense question answering, and GSM8K (Cobbe et al., 2021) math 
problem solving tasks. We set our cluster size and the group size of GPTQ and AWQ to 256. We 
observe that CVXQ produces slightly higher scores than the GPTQ and AWQ quantized 3-bit 
models while RTN leads to severely diminished scores despite having similar perplexity scores as 
CVXQ on WikiText2 (Table 1). We include example responses to GSM8K questions produced by 
different 3-bit quantized Llama-2-70B models in Appendix E. 

5 DISCUSSION 
Formulating weight quantization as a convex optimization problem, as we have done here, bestows 
several benefits. First, it explicates the objective we seek to optimize (minimizing output distortion 
in our case) and sets us on a path to solve the right problem using modern automatic differentiation 
tools e.g. PyTorch’s autograd package. Second, our formulation enables us to interpret many earlier 
Hessian-based methods (Frantar et al., 2022; Lee et al., 2024; Dong et al., 2019; Chen et al., 2021) 
as heuristics for approximate optimization of the true underlying quantization objective. Note that 
(2) is a nonlinear system of equations in the bit depth variables, so that any non-iterative solution is 
necessarily only an approximate one if one’s goal is to optimize an objective similar to (2). Recent 
high-performance model quantization methods (Chee et al., 2024; Frantar et al., 2022; Frantar & 

Perplexity (PPL) 
C4 (↓) 

Meta OPT (Open Pretrained Transformer)  Meta Llama 2 
 125M  350M  1.3B  2.7B  6.7B  13B  30B 66B  7B 13B 70B 

 Full precision (FP16) 26.56 22.59 16.07 14.34 12.71 12.06 11.44 10.99  6.97 6.46 5.52 

4 
bi

ts 

RTN 33.91 16.21 24.51 18.43 14.36 13.36 13.46 283.31  7.86 7.16 6.01 
GPTQ 29.42 24.14 16.73 14.85 12.99 12.24 11.56 11.08  7.86 7.06 5.90 
GPTQ/256 28.36 24.18 16.47 14.64 12.88 12.15 11.50 11.12  7.58 6.88 5.79 
QuIP 27.85 23.39 17.20 14.58 12.87 12.17 11.51 11.03  – – 5.87 
OWQ (4.01 bits) 27.93 23.37 16.49 14.60 12.83 12.17 11.49 11.02  7.59 6.94 5.81 
AWQ 27.79 – 16.42 14.58 12.84 12.15 11.50 11.04  7.44 6.84 5.77 
CVXQ (Ours) 27.27 23.20 16.24 14.44 12.79 12.11 11.48 11.01  7.40 6.83 5.76 

3 
bi

ts 

RTN 839.97 55.96 4.2e3 1.1e4 4.4e3 3.2e3 1.1e3 3.5e3  521.22 14.01 11.06 
GPTQ 42.64 29.90 20.46 17.48 14.56 13.16 12.14 11.53  11.44 8.98 7.12 
GPTQ/256 35.00 28.84 18.07 15.84 13.50 12.57 11.78 12.29  8.92 7.65 6.21 
QuIP 31.37 25.58 18.15 15.92 13.66 12.40 11.67 11.16  – – 6.14 
OWQ (3.01 bits) 31.28 26.40 17.69 15.36 13.23 13.29 11.69 11.17  8.59 7.65 6.16 
AWQ 32.91 – 17.81 15.49 13.34 12.55 11.75 11.26  8.30 7.31 6.04 
CVXQ (Ours) 30.05 26.20 16.88 14.91 13.14 12.35 11.62 11.19  8.04 7.22 5.99 

 

Table 3: C4 perplexity (validation). We quantize the Meta OPT and Llama 2 families of LLMs to 
3–4 bits per weight on average using the proposed quantization method, reporting the perplexity of 
each quantized model on the C4 dataset. For comparison, we also include the perplexities of models 
quantized using RTN, GPTQ, QuIP, OWQ, and AWQ. 
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Alistarh, 2022; Lee et al., 2024) can ultimately trace their lineage back to the classic Optimal Brain 
Surgeon algorithm (Hassibi & Stork, 1992), which is a convex formulation for weight pruning, not 
quantization (see Appendix F). As a result, these methods inherit the need for fine-tuning as part of 
the quantization process, making them less suitable for the quantization of activations at inference 
time, where fine-tuning would lead to unacceptable delays in the inference pipeline. 
Our experimental results indicate that an accurate characterization of the quantization problem can 
indeed lead to better compression outcomes. While the smaller OPT-125M model is too limited for 
practical use in many situations, its relative incompressibility helps contrast the performance of the 
different weight quantization methods themselves (Table 1). With larger models like OPT-66B and 
Llama 2-66B, most approaches (including RTN) perform similarly, suggesting that larger language 
models are more compressible in general. At first glance, RTN may seem sufficient for quantizing 
larger models. However, RTN-quantized models lead to severely reduced accuracy on downstream 
tasks such as GSM8K (Table 4 (a)), which highlights the importance of validating the accuracy of 
quantized models across multiple tasks and datasets (Jaiswal et al., 2024). Increasing the number of 
calibration examples (from 128 to 1024) did not noticeably affect the quantized model’s perplexity 
on C4 (± 0.01), which agrees with findings from previous reports (Hubara et al., 2021). 
Our CUDA matmul kernel (Appendix A) accelerates matrix-vector multiplication by dequantizing 
mixed precision weights to floating point representation dynamically and multiplying with a floating 
point activation vector. For the 12288 ×  49152 weight matrix of OPT-175B at 3 bits per weight on 
average, our kernel provides a 3.8x speed up over FP16 matrix-vector multiplication using cuBLAS 
matmul on Nvidia A6000. Accelerated matrix-vector multiplication, along with our low complexity 
quantization approach (once the optimal bit depths have been determined) allows us to apply CVXQ 
also to activation quantization, where quantization efficiency becomes paramount. Joint quantization 
of activation and weights is discussed in Part 2.  

Table 4: Pruning and overhead bits. A small fraction of weights is quantized to zero and pruned 
away due to low variance, with smaller clusters increasing the degree of pruning (a). Quantization 
incurs overhead bits for signaling cluster indices and location and scale parameters of clusters (b). 
 (a) Pruned columns (%) in quantized models (b) Overhead bits (%) from quantization parameters 

 Overhead 
bits (%) 

OPT (4 bits)  OPT (3 bits) 
350M 1.3B 13B  350M 1.3B 13B 30B 

Cl
us

te
r s

iz
e 64 10.33 10.30 10.28  13.77 13.73 13.71 13.70 

128  5.18  5.16  5.15   6.91  6.88  6.87  6.86 
256  2.60  2.59  2.58   3.47  3.45  3.44  3.44 
512  1.30  1.30  1.30   1.73  1.73  1.73  1.72 

1024  0.64  0.65  0.65   0.85  0.87  0.87  0.86 
 

Pruned 
(%) 

OPT (4 bits)  OPT (3 bits) 
350M 1.3B 13B  350M 1.3B 13B 

Cl
us

te
r s

iz
e 64 0.57 2.13 2.18  0.64 3.70 3.12 

128 0.61 2.19 2.31  0.68 3.81 3.04 
256 0.67 2.10 2.16  0.69 3.06 2.69 
512 0.68 2.07 2.00  0.70 2.85 2.57 

1024 0.68 2.08 1.92  0.70 2.39 2.26 
 
Table 5: 2.x-bit quantization and downstream tasks. Quantized to 2.x bits per weight, CVXQ 
reduces perplexity considerably compared with OWQ models quantized to the same (a). Quantized 
model accuracy measured by performance on tasks such as GSM8K (b). Cluster size of 256 is used. 
 (a) Perplexity of 2.1–2.8 bit Llama 2 models (b) Scores for 3-bit Llama-2 models on GSM8K and QA  

Score (%) 
Llama-2 (↑) 

GSM8K  Average QA 
7B 13B 70B  7B 13B 70B 

FP16 64.83 67.82 72.36  14.10 23.43 53.90 
RTN 1.82 1.67 6.14  39.32 52.15 58.22 
GPTQ/256 6.60 14.48 46.47  61.40 64.94 70.58 
AWQ/256 6.97 16.76 48.07  62.48 65.95 71.29 
CVXQ/256 7.81 18.20 49.81  62.82 66.37 71.87 

 

Perplexity 
WikiText2 (↓)  

Llama 2 7B (2.1–2.8 bits) 
2.1 2.2 2.4  2.6  2.8 

FP16 5.47 5.47 5.47 5.47 5.47 
OWQ 39.56 11.25 10.79 10.43 10.24 
OWQ/256 10.34 10.01 9.98 9.50 9.26 
OWQ/128 10.01 9.66 9.42 9.38 9.14 
CVXQ/256 9.47 8.39 7.05 6.56 6.21 
 

Score (%) 
Llama-2 (↑) 

Arc (Challenge)  Arc (Easy)  HellaSwag  PIQA  Winogrande  
7B 13B 70B  7B 13B 70B  7B 13B 70B  7B 13B 70B  7B 13B 70B  

FP16 43.34 48.38 54.27  76.30 79.42 82.74  57.13 60.04 64.76  78.07 79.05 82.15  69.30 72.22 77.90  
RTN 20.73 30.63 37.20  34.97 60.65 65.66  31.09 43.73 51.01  57.34 70.40 73.12  52.49 55.33 64.09  
GPTQ/256 38.23 43.34 52.13  72.26 76.64 80.85  53.02 57.65 62.60  75.63 77.48 80.52  67.88 69.61 76.80  
QuIP – – –  – – 79.31  – – –  – – 80.25  – – –  
AWQ/256 41.13 45.05 53.24  73.36 77.95 81.69  54.06 57.83 63.64  75.84 77.26 81.66  68.03 71.67 76.24  
CVXQ/256 41.21 45.73 53.84  72.60 77.95 82.32  53.95 58.55 63.86  77.20 78.51 81.88  69.14 71.11 77.43  

 

(c) Scores for 3-bit Llama-2 models on common sense QA (Arc C, Arc E, HellaSwag, PIQA, Winogrande)  
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REPRODUCIBILITY STATEMENT 
To ensure the reproducibility of results in this work, we make our PyTorch CVXQ code available 
on our GitHub project website, where readers can also ask questions about this work. Appendix A 
lists our CUDA kernel. Appendices B–C provide derivations for our main theoretical results and  
Appendix D additionally details the code and command line options used to obtain the results of 
GPTQ (Frantar et al., 2022), OWQ (Lee et al., 2024), and AWQ (Lin et al., 2024). 
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A CVXQ KERNEL FOR MATRIX–VECTOR MULTIPLICATION 
For completeness, we provide here a reference implementation for multiplication between a mixed-
precision quantized matrix and full-precision vector multiplication. Here, we assign a single bit 
depth to each cluster of 4 rows, leading to e.g. 12288 different bit depths in the case of the 
49152 ×  12288 weight matrix (MLP layer) of the OPT-175B model. Consider a thread block size 
of 256 ×  256 . Each of 256 ×  256  block, in turn, entails 1 ×  256  threads, with each thread 
dequantizing a 256 × 1  column of weights and multiplying them with the matching 1 ×  256 
segment of a vector input. Bit depth changes every 4 rows but every thread will go through the same 
bit depth change in the course of multiplication, allowing divergence-free (and uniform memory 
access) operations. 
 
__constant__ float lutable[256] = { DEQUANT }; // dequantized values 
defined in macros.h  
 
template <typename scalar_t> 
__global__ void VecQuant3MatMulKernel( 
    const  scalar_t* __restrict__ vec, 
    const       int* __restrict__ mat, 
           scalar_t* __restrict__ mul, 
    const   uint8_t* __restrict__ depths, 
    const  scalar_t* __restrict__ scales, 
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    const       int* __restrict__ i_s, 
    const   uint8_t* __restrict__ shifts, 
 
    int height, 
    int width) { 
  int row = BLOCKHEIGHT * blockIdx.x; 
  int col =  BLOCKWIDTH * blockIdx.y + threadIdx.x; 
 
  __shared__ scalar_t blockvec[BLOCKWIDTH]; 
  __shared__ scalar_t lut[BLOCKWIDTH]; 
 
  blockvec[threadIdx.x] = scales[threadIdx.x / 4] * vec[(row / BLOCKHEIGHT) 
* BLOCKWIDTH + threadIdx.x]; 
  lut[threadIdx.x] = lutable[threadIdx.x]; 
  __syncthreads(); 
 
  scalar_t res = 0; 
  int i = i_s[blockIdx.x * gridDim.y + blockIdx.y] + threadIdx.x; 
  // int i = width * row + col; 
  int shift = shifts[blockIdx.x * gridDim.y + blockIdx.y]; 
 
  uint64_t tmp_curr; 
  uint32_t tmp_read; 
  uint32_t depth_; 
 
  int j = 0, k = 0; 
 
  tmp_read = reinterpret_cast<const uint32_t*>(mat)[i]; 
  tmp_curr = static_cast<uint64_t>(tmp_read) << 32; 
  shift += 32; 
  i += width; 
 
  while (k < BLOCKWIDTH) { 
    depth_ = reinterpret_cast<const uint32_t*>(depths)[j]; 
 
    int depth, bmask; 
    uint32_t index; 
    scalar_t szero, *table; 
    for (int d = 0; d < 32; d += 8) { // for each of the 4 depth clusters 
(represented in 8 bits)        
      depth = (depth_ >> (d + 0)) &  7; 
      bmask = (1 << depth) - 1; 
 
      szero = (static_cast<int>((depth_ >> (d + 3)) & 31) - 16) * 0.03125f; 
      table = reinterpret_cast<scalar_t*>(lut + (1 << depth)); 
 
      if (shift + 4 * depth > 64) { // will run out of bits, read more  
        tmp_read = reinterpret_cast<const uint32_t*>(mat)[i]; 
        tmp_curr = static_cast<uint64_t>(tmp_read) << 32 | 
static_cast<uint64_t>(tmp_curr) >> 32; 
        shift -= 32; 
        i += width; 
      } 
      index = (static_cast<uint32_t>(tmp_curr >> shift) & bmask); 
      res += blockvec[k + 0] * (szero + table[index]); 
      shift += depth; 
      index = (static_cast<uint32_t>(tmp_curr >> shift) & bmask); 
      res += blockvec[k + 1] * (szero + table[index]); 
      shift += depth; 
      index = (static_cast<uint32_t>(tmp_curr >> shift) & bmask); 
      res += blockvec[k + 2] * (szero + table[index]); 
      shift += depth; 
      index = (static_cast<uint32_t>(tmp_curr >> shift) & bmask); 
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      res += blockvec[k + 3] * (szero + table[index]); 
      shift += depth; 
 
      k += 4; 
    } 
    j += 1; 
  } 
  atomicAdd(&mul[col], res); 
} 
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B DERIVATION OF EQUATION (5) 
To derive our main equation (5), we appeal to a linearized relationship between model weights and 
output, as well as standard results from rate–distortion theory (Gersho & Gray, 1991) that relate the 
quantization error of a random source to output distortion at a high bit depth, where the linearized 
model relationship is a good approximation. Let us start with our quantization objective 

 𝑑(𝐵1, 𝐵2, . . . , 𝐵𝑁 ) = 𝔼𝐗‖𝑓 (𝐗, 𝚯1
𝑞(𝐵1), 𝚯2

𝑞(𝐵2), . . . , 𝚯𝑁
𝑞 (𝐵𝑁 )) − 𝑓 (𝐗)‖𝐹

2 , (10) 

in which 𝑓 (𝐗) = 𝑓 (𝐗, 𝚯1(𝐵1), 𝚯2(𝐵2), . . . , 𝚯𝑁 (𝐵𝑁 )) denotes the output of the unquantized model 
given input 𝐗. We can write the residual and Jacobian of 𝑓  at (𝐗, 𝚯1

𝑞(𝐵1), 𝚯2
𝑞(𝐵2), . . . , 𝚯𝑁

𝑞 (𝐵𝑁 )) as 
𝑟 (𝐗, 𝚯1

𝑞, 𝚯2
𝑞, . . . , 𝚯𝑁

𝑞 )   = (𝑟1, . . . , 𝑟𝑀 ) (𝐗, 𝚯1
𝑞, 𝚯2

𝑞, . . . , 𝚯𝑁
𝑞 ) = 𝑓 (𝐗, 𝚯1

𝑞, 𝚯2
𝑞, . . . , 𝚯𝑁

𝑞 ) − 𝑓 (𝐗) 
(11) 

𝐽 (𝐗, 𝚯1
𝑞, 𝚯2

𝑞, . . . , 𝚯𝑁
𝑞 ) = (

𝜕𝑓 (𝐗, 𝚯1
𝑞, . . . , 𝚯𝑁

𝑞 )
𝜕𝚯1

,
𝜕𝑓 (𝐗, 𝚯1

𝑞, . . . , 𝚯𝑁
𝑞 )

𝜕𝚯2
, . . . ,

𝜕𝑓 (𝐗, 𝚯1
𝑞, . . . , 𝚯𝑁

𝑞 )
𝜕𝚯𝑁 ) 

and proceed to write the gradient and Hessian of the objective (10) in terms of the 𝑟 and 𝐽above as 

  ∇𝑑(𝐗, 𝚯1
𝑞, 𝚯2

𝑞, . . . , 𝚯𝑁
𝑞 ) = (𝐽 𝑇 𝑟) (𝐗, 𝚯1

𝑞, 𝚯2
𝑞, . . . , 𝚯𝑁

𝑞 ) 
(12) 

∇2𝑑(𝐗, 𝚯1
𝑞, 𝚯2

𝑞, . . . , 𝚯𝑁
𝑞 ) = (𝐽 𝑇 𝐽 )(𝐗, 𝚯1

𝑞, 𝚯2
𝑞, . . . , 𝚯𝑁

𝑞 ) + ∑ (𝑟𝑚∇2𝑟𝑚)(𝐗, 𝚯1
𝑞, 𝚯2

𝑞, . . . , 𝚯𝑁
𝑞 )𝑀

𝑚=1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≈ 0

 

in which the second term of ∇2𝑓  is approximately zero either because the residuals 𝑟𝑚 are relatively 
small, or they are close to affine in (𝚫1

𝑞 , 𝚫2
𝑞 , . . . , 𝚫𝑁

𝑞 ) so that ∇2𝑟𝑚 are relatively small, which is the 
case in the vicinity of the solution. 
Using (12), we can now express the local quadratic approximation of (10) about (𝐵1, . . . , 𝐵𝑁 ) as 

�̂�(𝐵1, . . . , 𝐵𝑁 ) =
(a)

𝔼𝐗 [(𝚫1
𝑞 (𝐵1), . . . , 𝚫𝑁

𝑞 (𝐵𝑁 ))((𝐽 𝑇 𝐽 )(𝐗, 𝚯1
𝑞, . . . , 𝚯𝑁

𝑞 ))(𝚫1
𝑞 (𝐵1), . . . , 𝚫𝑁

𝑞 (𝐵𝑁 ))
𝑇

] 

 
+ 𝔼𝐗 [(Δ1(𝐵1), . . . , Δ𝑁 (𝐵𝑁 ))

𝑇
((𝐽 𝑇 𝑟)(𝐗, 𝚯1

𝑞, 𝚯2
𝑞, . . . , 𝚯𝑁

𝑞 ))]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
= 0

 (13) 

=
(b)

∑ 𝔼𝐗[(𝐽 𝑇 𝐽 )𝑛𝑛(𝐗, 𝚯1
𝑞, . . . , 𝚯𝑁

𝑞 )]𝔼[Δ𝑛
2 (𝐵𝑛)]

𝑁
𝑛=1

=
(c)

∑ 𝑃𝑛𝐺𝑛
2𝐻𝑛𝑆𝑛

22−2𝐵𝑛⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
= 𝑑𝑛(𝐵𝑛)

𝑁
𝑛=1

  

in which the zero expectation of the linear term in (a) follows from the zero means of quantization 
errors Δ1, . . . , Δ𝑁 , (b) follows from the uncorrelatedness of Δ1, . . . , Δ𝑁 , and (c) follows from our 
definition of gradient variance 𝐺𝑛

2 = 𝑃𝑛
−1𝔼𝐗[(𝐽 𝑇 𝐽 )𝑛𝑛(𝐗, 𝚯1

𝑞, . . . , 𝚯𝑁
𝑞 )] together with the result from 

rate–distortion theory (Gersho & Gray, 1991) that relates the variance of random quantization error 
𝔼[Δ𝑛

2 (𝐵𝑛)] = 𝐻𝑛𝑆𝑛
22−2𝐵𝑛 to the variance 𝑆𝑛

2 of the random source, and the coefficient 𝐻𝑛, and bit 
depth 𝐵𝑛 of quantization. Expression (5) for the partial derivatives of 𝑑 with respect to 𝐵𝑛 follows 
directly from the properties of the derivative of an exponential. 
Since (10) is a non-linear least-squares objective and its gradient depends on the gradient variances 
𝐺1

2, 𝐺2
2, . . . , 𝐺𝑁

2 , its minimization requires an iterative update of 𝚯1
𝑞, 𝚯2

𝑞, . . . , 𝚯𝑁
𝑞  via the choice of 

𝐵1, 𝐵2, . . . , 𝐵𝑁  and re-evaluation of the gradient variances 𝐺1
2, 𝐺2

2, . . . , 𝐺𝑁
2  at 𝚯1

𝑞, 𝚯2
𝑞, . . . , 𝚯𝑁

𝑞 . Xis 
is similar to the local Hessian evaluated by the Gauss–Newton method (Nocedal & Wright, 2006) 
every time the descent direction is re-computed. One can think of 𝐺1

2, 𝐺2
2, . . . , 𝐺𝑁

2  as the diagonal 
elements of a non-diagonal Hessian matrix used in e.g. the Gauss–Newton method, but whose off-
diagonal elements disappear in the expectation due to multiplication by uncorrelated quantization 
errors 𝚫1

𝑞 , . . . , 𝚫𝑁
𝑞 .  

C DERIVATION OF EQUATION (8) 
To derive our sigmoid companding function (8), we turn to results from rate–distortion theory that 
relate the mean square error of quantization of weights 𝜃 to the density 𝑝𝜃 of 𝜃 and the density 𝜆(𝜃) 
of quantization levels, where 2𝐵 ∫ 𝜆(𝜃) d𝜃𝑏

𝑎  expresses the number of quantization levels of a 𝐵-bit 
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quantizer within any interval [𝑎, 𝑏]. Writing Π𝑖 for the 𝑖th quantization cell and Π(𝜃) for the width 
of the cell containing 𝜃, we can write the mean square error of quantized weights as 

 

𝔼|𝜃 − 𝜃𝑞|2 = ∑ ℙ[𝜃 ∈ Π𝑖]
2𝐵

𝑖=1
𝔼[|𝜃 − 𝜃𝑖

𝑞|2 | 𝜃 ∈ Π𝑖] 

(14)  ≈
(a)

∑ ℙ[𝜃 ∈ Π𝑖]
|Π𝑖|2

12
2𝐵

𝑖=1
≈
(b)

∫ 𝑝𝜃(𝜃) Π2(𝜃)
12

d𝜃 

 ≈
(c) 1

22𝐵 ∫ 𝑝𝜃(𝜃) 𝜆−2(𝜃)
12

d𝜃 

in which (a) follows from our assumption that weight distribution is approximately uniform within 
each quantization cell, (b) follows from an integral approximation of the finite sum, and (c) follows 
from the relationship 2𝐵𝜆−1(𝜃) = Π(𝜃), all of which hold approximately when 𝐵 is sufficiently large. 
To find the density 𝜆 of quantization levels that leads to the minimum quantization error when 𝜃 has 
density 𝑝𝜃, we use Hölder’s inequality: ∫ 𝑝𝜃

1/3 ≤ (∫ 𝑝𝜃𝜆−2)1/3(∫ 𝜆)2/3. Since ∫ 𝜆 = 1, we have that 
∫ 𝑝𝜃𝜆−2 ≥ (∫ 𝑝𝜃

1/3)3, which sets a lower bound on the last term of (14). Xis lower bound and hence 
minimum quantization error is attained iff 𝑝𝜃𝜆−2 ∝ 𝜆. Xe optimal density for quantization levels is 
therefore given by 

 𝜆(𝜃) ∝ 𝑝𝜃
1/3(𝜃) ⟺ Π−1(𝜃) ∝ 𝑝𝜃

1/3(𝜃). (15) 

Rather than optimize the density 𝜆 to minimize the quantization error for a given 𝑝𝜃 , we could 
equivalently transform the weights 𝜃 as 𝜃𝜎 = 𝜎(𝜃) via a non-linear 𝜎, so that uniform quantization 
applied to 𝜃𝜎 ∼ 𝑝𝜃𝜎  leads to the same minimum quantization error. Xe width Π(𝜃) of non-uniform 
quantization cells quantizing 𝜃 relates to the width of uniform quantization cells of the companded 
(transformed) weights 𝜃𝜎 = 𝜎(𝜃) as 

 d𝜎(𝜃) = d𝜃
Π(𝜃)

∝ 𝑝𝜃
1/3(𝜃) d𝜃 ⟹ 𝜎′(𝜃) ∝ 𝑝𝜃

1/3(𝜃), (16) 

in which the first proportionality follows from (15). We can find the optimal nonlinear transform 𝜎 
by integrating 𝑝𝜃

1/3(𝜃) and normalizing (for convenience) the range of the integral to [0, 1]: 

 𝜎(𝜃) = (∫ 𝑝𝜃
1/3(𝑡) d𝑡

∞

−∞ )

−1

( ∫ 𝑝𝜃
1/3(𝑡) d𝑡

𝜃

−∞ ) (17) 

(Gersho & Gray, 1991). Finally, we obtain (8) by substituting the expression for the density of a 
Laplace distribution (parameterized by mean 𝜇 and standard deviation 𝑆) into 𝑝! above. Transform 
𝜎 is asymptotically optimal as 𝐵 → ∞ in (14). 

D ALGORITHM PARAMETERS 
To aid the reproducibility of the results in Table 1, we document the code we used for all algorithms 
(RTN, GPTQ, OWQ, and AWQ) along with the command line arguments. 
RTN. We use the OWQ code from https://github.com/xvyaward/owq/tree/03cfc99 in 
the provided owq conda environment. In the case of e.g. Llama-2-7b-hf quantized to 3 bits, we run 
python main.py meta-llama/Llama-2-7b-hf c4 --wbits 3 --nearest. 
GPTQ. We use the OWQ code from https://github.com/xvyaward/owq/tree/03cfc99 in 
the provided owq conda environment. In the case of e.g. Llama-2-7b-hf quantized to 3 bits, we run 
the provided command python main.py meta-llama/Llama-2-7b-hf c4 --wbits 3. For 
results based on the group size of 256, we run python main.py meta-llama/Llama-2-7b-hf 
c4 --wbits 3 –groupsize 256. 
OWQ. We use the OWQ code from https://github.com/xvyaward/owq/tree/03cfc99 in 
the provided owq conda environment. In the case of e.g. Llama-2-7b-hf quantized to 3.01 bits, we 
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run the provided command python main.py meta-llama/Llama-7b-hf c4 --wbits 3 --
target_bit 3.01. 
AWQ. We use the AWQ code https://github.com/mit-han-lab/llm-awq/tree/3665e1a 
in the provided awq conda environment. In the case of e.g. Llama-2-7b-hf quantized to 3 bits, we 
run the provided command python -m awq.entry –model_path meta-llama/Llama-7b-
hf --w_bit 3 --q_group_size 128 --run_awq --tasks wikitext. 

E OUTPUT PRODUCED BY DIFFERENT QUANTIZED MODELS 
Table 5 lists output produced by different quantized Llama-2-70b models in response to questions 
taken from the GSM8K dataset. For each question, a prompt is created by prepending the question 
text with five other question and target pairs from the dataset (known as a 5-shot evaluation). Xis 
allows the model to establish a context for the required output and format. It is interesting to note 
that severe quantization errors (as in the case of RTN) manifest as non sequiturs and errors in logic 
rather than unintelligible output. 
 

F CONVEX WEIGHT PRUNING (HASSIBI & STORK, 1992) 
To facilitate comparison between convex weight quantization (this work) and the convex weight 
pruning work of Hassibi & Stork (1992), we provide a derivation of Hassibi & Stork’s Optimum 
Brain Surgeon (OBS) algorithm (presented slightly differently), together with our commentary for 
additional clarification. 
For simplicity, let us rewrite model (4) as 𝑓 ( ⋅ , 𝚯1, 𝚯2, . . . , 𝚯𝑁 ) = 𝑓 ( ⋅ , 𝚯), where 𝚯 is a vector of 
all model weights across different layers of the model. Xe objective of convex weight pruning is to 
set some number of elements of 𝚯 to zero while fine-tuning the remaining elements to minimize the 
difference between the output of the pruned model 𝑓 ( ⋅ , 𝚯𝑝) and the output of the unpruned model 
𝑓 ( ⋅ , 𝚯). Writing the pruned weights as 𝚯𝑝 = 𝚯 + 𝚫𝑝, where 𝚫𝑝 is a vector of updates to be made 
to weights 𝚯, it is apparent that 𝛥𝑖

𝑝 = −𝜃𝑖 if the 𝑖th weight is to be pruned, otherwise 𝛥𝑖
𝑝 should be 

chosen to maximally compensate for the effect of other pruned weights on the output. Suppose we 
have decided to prune the 𝑝th element of 𝚯. Xe updated set of weights 𝚯𝑝 can be found by solving 

 minimize  𝑑(𝚫𝑝) = 𝔼𝐗‖𝑓 (𝐗, 𝚯 + 𝚫𝑝) − 𝑓 (𝐗)‖2
2 ≈ 𝔼𝐗[𝚫𝑝𝑇 (𝐽 𝑇 𝐽 )(𝐗, 𝚯)𝚫𝑝] 

(18) 
 subject to  𝑟(𝚫𝑝)   = 𝐞𝑝

𝑇 𝚫𝑝 − 𝜃𝑝 = 0 

in which 𝐽 (𝐗, 𝚯) represents the Jacobian of 𝑓 (𝐗, 𝚯) with respect to 𝚯, and 𝐞𝑝
𝑇  is an operator that 

picks out the 𝑝th element of a vector. Xe Lagrangian of this problem becomes 

 ℒ (𝚫𝑝, λ) = 1
2

𝔼𝐗[𝚫𝑝𝑇 (𝐽 𝑇 𝐽 )(𝐗, 𝚯)𝚫𝑝] + λ(𝐞𝑝
𝑇 𝚫𝑝 − 𝜃𝑝) (19) 

in which λ represents the dual variable associated with the equality constraint 𝐞𝑝
𝑇 𝚫𝑝 − 𝜃𝑝 = 0.  

To solve (18), we differentiate ℒ  with respect to 𝚫𝑝, λ and set all obtained derivatives equal to 0 to 
obtain the first-order optimality conditions 𝔼𝐗[(𝐽 𝑇 𝐽 )(𝐗, 𝚯)]𝚫𝑝 + 𝐞𝑝λ = 𝟎 and 𝐞𝑝

𝑇 𝚫𝑝 − 𝜃𝑝 = 0. After  
some algebraic manipulations, we obtain the optimizing values 

 𝚫𝑝 = −𝔼𝐗[(𝐽 𝑇 𝐽 )(𝐗, 𝚯)]
−1𝐞𝑝λ, λ = −

𝜃𝑝

𝔼𝐗[(𝐽 𝑇 𝐽 )(𝐗, 𝚯)]𝑝𝑝
−1, (20) 

in which the expression for λ is obtained by substituting the expression for 𝚫𝑝 above into the second 
optimality condition 𝐞𝑝

𝑇 𝚫𝑝 − 𝜃𝑝 = 0 and solving for λ. Combining both expressions finally produces 
an update 𝚫𝑝 that minimizes the objective in (18):  

 𝚫𝑝 = −
𝜃𝑝

𝔼𝐗[(𝐽 𝑇 𝐽 )(𝐗, 𝚯)]𝑝𝑝
−1 𝔼𝐗[(𝐽 𝑇 𝐽 )(𝐗, 𝚯)]

−1𝐞𝑝, 𝑑(𝚫𝑝) = 1
2

𝜃𝑝
2

𝔼𝐗[(𝐽 𝑇 𝐽 )(𝐗, 𝚯)]𝑝𝑝
−1. (21) 

So far, we assumed that we were given the index 𝑝 of the weight to prune from 𝚯. To actually pick 
the best weights to prune away, we can compute the pruning loss 𝑑(𝚫𝑖) for all indices 𝑖, picking the 
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index 𝑖 associated with minimum loss. Xat is, 

 𝑝 = argmin
𝑖

1
2

𝜃𝑖
2

𝔼𝐗[(𝐽 𝑇 𝐽 )(𝐗, 𝚯)]𝑖𝑖
−1, (22) 

after which 𝚫𝑝 can be calculated (and consequently 𝚯𝑝), and further weights to prune can be picked 
by initializing 𝚯 ← 𝚯𝑝 and repeating the process until some pruning criterion has been met. 
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Table 5: Output to questions from the GSM8K dataset (test) by 3-bit-quantized Llama-2 70B. Scores computed across 1319 answers obtained using the flexible extract filter.  

Question Target FP16 (Score: 53.90%) RTN (Score: 6.14%) GPTQ (Score: 46.47%) CVXQ (Score: 48.60%) 
Question: Every day, Wendi 
feeds each of her chickens 
three cups of mixed chicken 
feed, containing seeds, 
mealworms and vegetables to 
help keep them healthy.  She 
gives the chickens their feed 
in three separate meals. In the 
morning, she gives her flock 
of chickens 15 cups of feed.  
In the afternoon, she gives 
her chickens another 25 cups 
of feed.  How many cups of 
feed does she need to give 
her chickens in the final meal 
of the day if the size of 
Wendi’s flock is 20 
chickens?\nAnswer: 
 

If each chicken eats 3 cups of 
feed per day, then for 20 
chickens they would need 
3*20=<<3*20=60>>60 cups 
of feed per day.\nIf she feeds 
the flock 15 cups of feed in 
the morning, and 25 cups in 
the afternoon, then the final 
meal would require 60-15-
25=<<60-15-25=20>>20 
cups of chicken feed.\n#### 
20 
 

Wendi feeds each chicken 3 
cups of feed per day.\nShe 
feeds her flock 15 cups of 
feed in the morning and 25 
cups of feed in the 
afternoon.\nke total amount 
of feed she gives her flock is 
15 cups + 25 cups = 
<<15+25=40>>40 
cups.\nSince each chicken 
gets 3 cups of feed per day, 
the total number of chickens 
in her flock is 40 cups / 3 
cups = 
<<40/3=13.33333333333333
33333333333333333333333
33333333333333333333333
33333333333333333333333
33333333333333333333333
3333333333333333333 

15 cups + 25 cups + 10 cups 
= <<15+25+10=50>>50 cups 
of feed.\n#### 50\n 

15 cups in the morning + 25 
cups in the afternoon = 
<<15+25=40>>40 cups of 
feed\nEach chicken gets 3 
cups of feed, so 40 cups of 
feed / 3 cups per chicken = 
<<40/3=13.33>>13.33 
chickens\nSince there are 20 
chickens, the number of cups 
of feed in the final meal is 20 
- 13.33 = <<20-
13.33=6.67>>6.67 
cups\n#### 6.67\n\n 

15 cups + 25 cups = 
<<15+25=40>>40 cups of 
feed\n20 chickens x 3 cups = 
<<20*3=60>>60 cups of 
feed\n60 cups - 40 cups = 
<<60-40=20>>20 cups of 
feed\n#### 20\n\n 

Question: A robe takes 2 
bolts of blue fiber and half 
that much white fiber.  How 
many bolts in total does it 
take?\nAnswer: 

It takes 2/2=<<2/2=1>>1 bolt 
of white fiber\nSo the total 
amount of fabric is 
2+1=<<2+1=3>>3 bolts of 
fabric\n#### 3 

2 + 2/2 = <<2+2/2=3>>3 
bolts\n#### 3\n\n 

2 blue bolts + 2 white bolts = 
<<2+2=4>>4 bolts in 
total.\n#### 4\np 

2 + 1 = <<2+1=3>>3 
bolts\n#### 3\n\n 

2 + 2/2 = <<2+2/2=3>>3 
bolts\n#### 3\n\n 

Question: Josh decides to try 
flipping a house.  He buys a 
house for $80,000 and then 
puts in $50,000 in repairs.  
kis increased the value of 
the house by 150%.  How 
much profit did he 
make?\nAnswer: 

ke cost of the house and 
repairs came out to 
80,000+50,000=$<<80000+5
0000=130000>>130,000\nHe 
increased the value of the 
house by 
80,000*1.5=<<80000*1.5=1
20000>>120,000\nSo the 
new value of the house is 
120,000+80,000=$<<120000
+80000=200000>>200,000\n
So he made a profit of 
200,000-
130,000=$<<200000-
130000=70000>>70,000\n##
## 70000 

ke house is now worth 
150% of $80,000, which is 
$80,000 * 150/100 = 
<<80000*150/100=120000>
>$120,000.\nSo he made 
$120,000 - $80,000 - $50,000 
= <<120000-80000-
50000=20000>>$20,000.\n##
## 20000\n\n 

Josh bought the house for 
$80,000 and spent $50,000 
on repairs. So he spent 
$80,000 + $50,000 = 
$<<80,000+50,000=130,000
>>$130,000 on the 
house.\nSo Josh spent 
$130,000 on the 
house.\n#### $130,000\n 

Josh bought the house for 
$80,000 and put in $50,000 
in repairs.\nke value of the 
house increased by 150%, so 
the new value is 
1.5*$80,000+$50,000 = 
$<<1.5*80,000+50,000=180,
000>>180,000.\nSo Josh 
made $180,000 - $80,000 - 
$50,000 = $<<180,000-
80,000-
50,000=50,000>>50,000 in 
profit.\n#### 50,000\n\n 

ke value of the house 
increased by 150%, so it’s 
now 150% of $80,000, which 
is $120,000.\nJosh spent 
$80,000 + $50,000 = 
<<80000+50000=130000>>$
130,000 on the house, so he 
made $120,000 - $130,000 = 
<<120000-130000=-
10000>>-$10,000.\n#### -
10000\n\n 
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Kylar went to the store to buy 
glasses for his new 
apartment. One glass costs 
$5, but every second glass 
costs only 60% of the price. 
Kylar wants to buy 16 
glasses. How much does he 
need to pay for them?", 
"answer 

ke discount price of one 
glass is 60/100 * 5 = 
$<<60/100*5=3>>3.\nIf 
every second glass is cheaper, 
that means Kylar is going to 
buy 16 / 2 = <<16/2=8>>8 
cheaper glasses.\nSo for the 
cheaper glasses, Kylar is 
going to pay 8 * 3 = 
$<<8*3=24>>24.\nAnd for 
the regular-priced glasses, 
Kylar will pay 8 * 5 = 
$<<8*5=40>>40.\nSo in total 
Kylar needs to pay 24 + 40 = 
$<<24+40=64>>64 for the 
glasses he wants to 
buy.\n#### 64 

ke first glass costs $5.\nke 
second glass costs $5 * 60% 
= $<<5*60%=3>>3.\nke 
third glass costs $5.\nke 
fourth glass costs $5 * 60% = 
$<<5*60%=3>>3.\nke fifth 
glass costs $5.\nke sixth 
glass costs $5 * 60% = 
$<<5*60%=3>>3.\nke 
seventh glass costs $5.\nke 
eighth glass costs $5 * 60% = 
$<<5*60%=3>>3.\nke ninth 
glass costs $5.\nke tenth 
glass costs $5 * 60% = 
$<<5*60%=3>>3.\nke 
eleventh glass costs $5.\nke 
twelfth glass costs $5 * 60% 
= $<<5*60%=3>>3.\nke 
thirteenth glass costs 
$5.\nke fourteenth glass 
costs $5 * 60% = 
$<<5*60%=3>>3.\nke 
fifteenth glass costs $5.\nke 
sixteenth glass costs $5 * 
60% 

ke cost of one glass is $5, 
and the cost of the second 
glass is $5 * 
$<<5*2=10>>10>>10 is the 
cost of the third glass.\nke 
cost of the fourth glass is $5 
* $<<5*3=15>>15 is the cost 
of the fifth glass.\nke cost of 
the sixth glass is $5 * 
$<<5*4=20>>20 is the cost 
of the seventh glass.\nke 
cost of the eighth glass is $5 
* $<<5*5=25>>25 is the cost 
of the ninth glass.\nke cost 
of the tenth glass is $5 * 
$<<5*6=30>>30 is the cost 
of the eleventh glass.\nke 
cost of the twelfth glass is $5 
* $<<5*7=35>>35 is the cost 
of the thirteenth glass.\nke 
cost of the fourteenth glass is 
$5 * $<<5*8=40>>40 is the 
cost of the fifteenth 
glass.\nke cost of the 
sixteenth glass is $5 * 
$<<5*9=45>>4 

ke first glass costs $5.\nke 
second glass costs $5 * 60% 
= $<<5*60%=3>>3.\nke 
third glass costs $5 * 60% * 
60% = 
$<<5*60%*60%=1.8>>1.8.\
nke fourth glass costs $5 * 
60% * 60% * 60% = 
$<<5*60%*60%*60%=1.08
>>1.08.\nke fifth glass costs 
$5 * 60% * 60% * 60% * 
60% = 
$<<5*60%*60%*60%*60%
=0.648>>0.648.\nke sixth 
glass costs $5 * 60% * 60% * 
60% * 60% * 60% = 
$<<5*60%*60%*60%*60%*
60%=0.3888>>0.3888.\nke 
seventh glass costs $5 * 6 

ke first glass costs $5.\nke 
second glass costs 60% of $5, 
which is 
$<<5*60%=3>>3.\nke third 
glass costs 60% of $5, which 
is $<<5*60%=3>>3.\nke 
fourth glass costs 60% of $5, 
which is 
$<<5*60%=3>>3.\nke fifth 
glass costs 60% of $5, which 
is $<<5*60%=3>>3.\nke 
sixth glass costs 60% of $5, 
which is 
$<<5*60%=3>>3.\nke 
seventh glass costs 60% of 
$5, which is 
$<<5*60%=3>>3.\nke 
eighth glass costs 60% of $5, 
which is 
$<<5*60%=3>>3.\nke ninth 
glass costs 60% of $5, which 
is $<<5*60%=3>>3.\nke 
tenth glass costs 60% of $5, 
which is 
$<<5*60%=3>>3.\nke 
eleventh glass costs 60% 

Question: Janet’s ducks lay 
16 eggs per day. She eats 
three for breakfast every 
morning and bakes muffins 
for her friends every day with 
four. She sells the remainder 
at the farmers’ market daily 
for $2 per fresh duck egg. 
How much in dollars does 
she make every day at the 
farmers’ market?\nAnswer: 

Janet sells 16 - 3 - 4 = <<16-
3-4=9>>9 duck eggs a 
day.\nShe makes 9 * 2 = 
$<<9*2=18>>18 every day at 
the farmer’s market.\n#### 
18 

Janet eats 3 eggs for 
breakfast and bakes 4 
muffins, so she uses 3 + 4 = 
<<3+4=7>>7 eggs.\nShe 
sells the remainder, so she 
sells 16 - 7 = <<16-7=9>>9 
eggs.\nShe sells each egg for 
$2, so she makes $2 * 9 = 
<<2*9=18>>18 
dollars.\n#### 18\n\n 

Janet sold 16 eggs per day. 
She sold three eggs for 
breakfast every morning, so 
she sold 16 - 3 = <<16-
3=13>>13 eggs for 
breakfast.\nShe sold four 
eggs for her friends every 
day, so she sold 16 - 4 = 
<<16-4=12>>12 eggs for her 
friends.\nShe sold twelve 
eggs at the farmers’ market 
daily, so she sold twelve eggs 
at the farmers’ market daily, 
so she sold twelve eggs at the 
farmers’ market daily, so she 
sold twelve eggs at the 
farmers’ market daily, so she 
sold twelve eggs at 

Janet eats 3 eggs and bakes 4, 
so she sells 16 - 3 - 4 = <<16-
3-4=9>>9 eggs.\nShe sells 9 
eggs for $2 each, so she 
makes $2 * 9 = 
<<2*9=18>>18 
dollars.\n#### 18\n\n 

Janet eats 3 eggs for 
breakfast and bakes 4 
muffins, so she uses 3 + 4 = 
<<3+4=7>>7 eggs.\nShe 
sells the remainder at $2 per 
egg, so she makes $2 * (16 - 
7) = <<2*(16-
7)=2*9=18>>$18 per 
day.\n#### 18\n\n 

 


