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Abstract

How does the training data affect a model’s behavior? This is the question we seek
to answer with data attribution. The leading practical approaches to data attribution
are based on influence functions (IF). IFs utilize a first-order Taylor approximation
to efficiently predict the effect of removing a set of samples from the training set
without retraining the model, and are used in a wide variety of machine learning
applications. However, especially in the high-dimensional regime (# params ≥ Ω(#
samples)), they are often imprecise and tend to underestimate the effect of sample
removals, even for simple models such as logistic regression. We present rescaled
influence functions (RIF), a tool for data attribution which can be used as a drop-
in replacement for influence functions, with little computational overhead but
significant improvement in accuracy. We compare IF and RIF on a range of real-
world datasets, showing that RIFs offer significantly better predictions in practice,
and present a theoretical analysis explaining this improvement. Finally, we present
a simple class of data poisoning attacks that would fool IF-based detections but
would be detected by RIF.

1 Introduction

Data attribution aims to explain the behavior of a machine learning model in terms of its training
data. If θ is a model trained on a dataset {(xi, yi)}i∈[n], the fundamental algorithmic task in data
attribution is to answer the question:

Leave-T -Out Effect: How would θ have been different if some subset T ⊆ [n] of
the training set had been missing?

The ability to quickly and accurately predict a leave-T -out (LTO) effect, or to search for subsets
producing a large leave-out effect, unlocks extensive capabilities from classical statistical inference to
modern machine learning. For example, the jackknife, leave-k-out cross-validation, and bootstrap are
all widely used to quantify uncertainty and estimate generalization error or confidence intervals, and all
rely on the ability to quickly estimate LTO effects [Efr92, GSL+19, Jae72]. Machine learning has seen
an explosion of applications of data attribution, for dataset curation [KL17, KATL19], explainability
[KATL19, GBA+23], crafting and detection of data poisoning attacks [EIC+25, KSL22, SS19],
machine unlearning [SAKS21, GGHVDM19, IASCZ21], credit attribution [JDW+19, GZ19], bias
detection [BAHAZ19], and more.

Ascertaining the ground truth leave-T -out effect in general requires a full retrain of a model for each
T of interest, which is computationally intractable in all but the simplest settings. Consequently,
approximations to the leave-T -out effect are widely used. Key desiderata for such approximations
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are (1) accuracy, (2) computational efficiency even for large-scale models, and (3) additivity: the
predicted effect of removing T should be the sum of predicted effects of removing each element of T
individually. Additivity enables another important capability: search for the subset T of a given size
with the greatest predicted effect according to a given metric, by taking the k training data points
with largest predicted leave-one-out (LOO) effects [BGM20, IPE+22, HBN+24].

Influence functions (IF) [Ham74] are by far the most widely used and studied data attribution method.
The IF is a first-order approximation to the change in model parameters when infinitesimally down-
weighting an individual sample. IF approximations are well studied in classical, under-parameterized
settings, where they are typically accurate and enjoy solid theoretical foundations [GSL+19]. But,
despite widespread adoption for data attribution in high-dimensional/overparameterized models,
IF’s accuracy in the high-dimensional setting is comparatively poor. Empirical studies show that
IFs often underestimate the true magnitude of parameter changes, leading to potentially misleading
conclusions about data importance or model robustness [BPF21, KL17]. And, existing theoretical
analyses justifying IF approximations break down for overparametrized models. But, thus far, more
accurate alternatives to IFs have proved too computationally expensive to be practical.

We study a simple and fast-to-compute modification of the influence function, which we term the
rescaled influence function (RIF). RIFs improve accuracy by incorporating a limited amount of
higher-order information about the change in model parameters from sample removal, but retain the
additivity and in many settings also the computational efficiency of IFs. We show via experiments
and theoretical analysis that RIFs are accurate for data attribution in overparameterized models where
IFs struggle. Like IFs, RIFs are model and task agnostic, meaning that they can be applied to any
empirical risk minimization-based training method with smooth losses, and they can estimate the
leave-T -out effect according to any (smooth) measure of change to model parameters. We therefore
advocate using RIFs as a drop-in replacement for IFs across data attribution applications.

Organization In Section 1.1, we introduce RIFs formally. Section 2 presents our experimental
results, and Section 3 presents our theoretical analysis of RIF. We discuss context and conclusions in
Sections 4 and 5

1.1 Influence Functions, Newton Steps, and Rescaled Influence Functions

We now introduce the rescaled influence function formally. Suppose that {(xi, yi)}i∈[n] is a training
data set, Θ ⊆ Rd is a class of models, and ℓ(x, y, θ) is a twice-differentiable loss function; ℓ may
include a regularizer. For simplicity, we imagine that ℓ is convex, although the definition of RIFs
can be extended to the non-convex case. Let θ̂ = argminθ∈Θ

∑
i≤n ℓ(xi, yi, θ) be the empirical loss

minimizer (or, in the non-convex setting, any local minimum of the empirical loss).

Influence Functions The influence function IFi ∈ Rd associated to the i-th training sample is a
first-order estimate of the effect of dropping that sample.1 Introducing a weight wi ∈ [0, 1] associated
to each sample i and allowing θ̂ to depend on w via θ̂(w) = argminθ∈Θ

∑
i≤n wi · ℓ(xi, yi, θ),

IFi = −
[

d

dwi
· θ̂(w)

] ∣∣∣
w=1

= H−1 · ∇ℓ(xi, yi, θ̂) .

Here, H is the Hessian of
∑

i≤n ℓ(xi, yi, θ) evaluated at θ̂ (see e.g., [RHRS86] for a derivation). For
T ⊆ [n], the IF estimate of the leave-T -out model is

θ̂IF,T = θ̂ +
∑
i∈T

IFi .

We can obtain all the single-sample IF estimates IFi at the cost of a single Hessian inversion and n

gradient computations, which then suffice to obtain θ̂IF,T for any T via additivity.

Newton Steps IFs are additive and efficiently computable, but their accuracy suffers when n and
d are comparable, or, worse still, if d significantly exceeds n as in the overparameterized setting

1Some treatments replace dropping with up-weighting, with a resulting difference of sign compared to our
convention.
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([KATL19]; see also Section 2). A much more accurate approximation to the leave-T -out effect is
given by taking a single Newton step (NS) to optimize the leave-T -out loss

∑
i/∈T ℓ(xi, yi, θ), starting

from θ̂. The NS approximation to the leave-T -out effect is given by

θ̂NS,T = θ̂ −H−1
[n]\T

(∑
i/∈T

∇ℓ(xi, yi, θ̂)

)
= θ̂ +H−1

[n]\T

(∑
i∈T

∇ℓ(xi, yi, θ̂)

)
.

Here, H[n]\T is the Hessian of the leave-T -out loss, evaluated at θ̂, and the second equality follows
from the fact that θ is a local optimum of ℓ.

As early as 1981, Pregibon [Pre81] observes in the context of leave-one-out estimation for logistic
regression that the Newton step approximation is remarkably accurate. At a high level this is because,
unlike the IF approximation, the NS approximation takes into account the change to the Hessian from
removing the samples in T . For convex losses, the true leave-T -out effect can often be obtained by
Newton iteration – taking multiple Newton steps initialized with θ̂. The only differences we expect to
see between the one-step NS approximation and the result of Newton iteration would arise because
the Hessian may change from its value at θ̂. Thus, for problems with Lipschitz Hessians, we expect
NS to be a very accurate approximation to the true leave-T -out effect; [KATL19] offers experimental
validation of this idea for leave-k-out estimation in logistic regression, and some formal justification.

Rescaled Influence Functions The accuracy of the NS approximation comes at significant cost,
since each fresh T requires a Hessian inversion, and additivity is lost. The RIF recovers additivity and
much of the computational efficiency of IF, but retains much of the accuracy of the NS approximation.
For sample i ∈ [n], let RIFi be the NS approximation to the leave-i-out effect, given by RIFi =

H−1
[n]\{i} · ∇ℓi(xi, yi, θ̂). Then for T ⊆ [n], we define the RIF approximation to the leave-T -out

effect to be
θ̂RIF,T = θ̂ +

∑
i∈T

RIFi .

RIF is additive by definition.

The computational overhead of RIF compared to IF depends in general on the cost of computing the
n leave-one-out Hessian inversions – once these are obtained, no fresh Hessian inversion is needed
to compute θ̂RIF,T for any T . RIF is especially attractive in generalized linear models and neural
networks with a ReLU activation function, where RIFi can be obtained from IFi by multiplying by a
rescale factor (1− hi)

−1, where hi is a (generalized) leverage score associated to the i-th sample,
which can be computed via a single matrix-vector product with H−1. Thus, for generalized linear
models, no additional Hessian inversion is needed. For example, in logistic regression, the formula
for RIFi uses the rescaling (1 − hi)

−1, where hi = ŷi(1 − ŷi) · x⊤
i H

−1xi; here ŷi ∈ [0, 1] is the
logistic predicted label of the i-th sample according to θ̂.

Beyond generalized linear models and ReLU neural networks, whenever each sample makes a low-
rank contribution the Hessian, the n leave-one-out Hessian inversions can be computed quickly via
the Sherman-Morrison/Woodbury formula. In all of our experiments, the running time overhead to
compute RIF is negligible (see Table 2).

In underparameterized settings, it is reasonable to expect that removing a single sample has a
negligible effect on the Hessian, and so IFi ≈ RIFi. But for high-dimensional or overparameterized
models, a single sample removal can have a significant effect on the Hessian. Our experiments and
theory demonstrate the significant accuracy improvement of RIF compared to IF in high-dimensional
and overparameterized models.

We note that the idea of summing over estimates of leave-one-out effects to estimate the leave-T -out
effect is not new, and has been a central component of many previous data models [IPE+22]. In
their seminal TRAK paper, Park et al. separately consider both the idea of combining LOO effects
additively [PGI+23a][Definition 2.3] and the idea of using a Newton step to estimate LOO effects of
a logistic regression [PGI+23a][Definition 3.1] but do not explicitly combine the rescaling effect in
their estimator except to note that the rescaling correction has little to no effect in their setting.

A similar approach that has been the focus of recent research is the Additive-One-Exact data model,
which estimates the LTO effect by summing over the exact LOO effects. This data model was
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Figure 1: Accuracy of IF versus RIF compared across datasets from image classification (DogFish,
Cat vs Dog, Truck vs Automobile), natural language (Spam vs Ham), and audio (ESC-50). In each
dataset, we study a binary classification task solved via logistic regression with frozen-embedding
features. Each point represents a single choice of subset T . The horizontal axis represents ground
truth leave-T -out effect as measured by changes to test predictions, test losses, and self-loss, computed
via refitting the logistic model. The vertical axis represents the prediction of this effect made by
IF/RIF/NS. A perfectly accurate prediction falls along the black diagonal line. In essentially every
case, the RIF prediction falls nicely along this “ground truth” line, agreeing with the NS prediction,
while IF typically underestimates the leave-T -out effect.

introduced by Kuschnig et al. [KZCC21] and further analyzed by Hu et al. [HHZM24] and by Huang
et al. [HBN+24]. Kuschnig et al., Hu et al. and Huang et al. study the accuracy of this method for
identifying sets of highly influential samples in ordinary least squares (OLS) regressions. Moreover,
Huang et al. also note that because a single Newton step is equivalent to a full retrain for the case of
OLS, a natural extension of the Additive-One-Exact data model is to sum over the single-Newton step
attributions of the individual samples [HBN+24][Appendix C.2], and Hu et al. [HHZM24][Section
3.1] hypothesize that an NS-like rescaling might explain some of the inaccuracy of the IF estimates in
Koh et al.’s experiments. However, the experiments and theoretical analyses of these previous works
focus on the case of OLS linear regression where RIF is equivalent to Additive-One-Exact and to
the best of our knowledge, no prior work offers quantitative experimental or theoretical comparisons
between RIF and other data attribution methods in the high-dimensional beyond this setting.2

2 Empirical Results

We now present empirical findings on the accuracy of RIF estimates for leave-T -out effects. Our
experimental setup is inspired by the seminal work of [KL17, KATL19], who assess the accuracy of
influence function estimates using logistic regression as a testbed.

We compare IF, NS, and RIF estimates across the first five datasets in Table 1, spanning vision, NLP,
and audio classification tasks. Each dataset is processed using a domain-specific embedding, and
we train a logistic regression model to solve a binary classification task on the embedded data. We
compare the actual vs predicted effect of removing a given set of samples T from the training set,
while varying:

2We are grateful to Tamara Broderick, Jenny Huang, Yuzheng Hu, and Jiaqi Ma for making us aware of these
prior works via personal communication.
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• Sample-removal strategy: Following [KATL19], we evaluate both random subsets and
more structured sets of training points, selected using heuristics such as clustering by a
random feature or by Euclidean distance in feature space.

• Accuracy metric: As in [KATL19], we assess accuracy by comparing predicted and actual
changes in three scalar quantities when a set T is removed: (1) the total predicted probability
for a target class over a subset of test samples, (2) the total test loss on this subset, and (3)
the loss on the training set including the removed samples (“self-loss”). The test subset is
selected to include a balanced mix of high-loss and randomly chosen test points.

• Size of removed subset: We consider values of |T | ranging from 0.1% to 5% of the training
set.

We illustrate our main findings in Figure 1. Across every dataset, fraction of sample removals, and
accuracy metric, we find that RIF significantly outperforms IF. For more details on our experimental
setup, see the supplemental material.

Table 1: Summary of datasets used in our experiments. Each dataset involves a binary classification
task which we solve using a regularized logistic regression with mild L2 regularization. We include
both datasets used in the [KATL19] benchmark (DogFish and Enron), as well as several new datasets
spanning a wide range of domains, including vision, natural language processing, and audio. For
more details about these datasets, see the supplementary material.

Name d n TestAccuracy Description

ESC-50 512 1600 83.0% ESC-50 dataset embedded using OpenL3; “artifi-
cial” vs “natural” classification [Pic15, CWSB19]

CatDog 2048 9600 80.9% ResNet-50 embeddings of CIFAR-10 cat and dog
classes [Kri09, Tor16]

AutoTruck 2048 9600 92.7% ResNet-50 embeddings of CIFAR-10 truck and au-
tomobile classes [Kri09, Tor16]

DogFish 2048 1800 98.3% Inception v3 embeddings of dog and fish images
from ImageNet [SVI+16, RDS+15]

Enron 3294 4137 96.1% Bag-of-words embeddings of the standard spam vs
ham dataset [KATL19, MAP06]

IMDB 512 40000 87.7% BERT embeddings of the IMDB sentiment
dataset [MDP+11, DCLT19]

Tradeoff: Dimension and Regularization As the number of samples n decreases compared to the
model dimension d, we expect the higher-order effect captured by RIF to be stronger. Figure 2 shows
this tradeoff, comparing the IF and RIF accuracy while varying the ratio of n and d by sub-sampling
a fixed dataset. A similar tradeoff appears when we add an L2 regularization term of 1

2λ∥θ∥
2 to the

loss for different values of λ > 0. Increasing λ dampens the higher-order effects captured by RIF –
in the limit λ → ∞ the Hessian does not vary as samples are removed. In Figure 2 we illustrate this
tradeoff by varying λ for a fixed dataset (DogFish), observing that IF and RIF agree for large λ but
not for small λ.

Detecting Data Poisonings with RIF One common use of additive data attributions such as
influence functions is to detect potential outliers contaminating a dataset [KL17, BGM20, RH25,
KLM+23]. We conduct a simple experiment to demonstrate the advantages of RIF over IF for this
task. We take a binary image classification problem (Truck vs Automobile), add an incorrectly-labeled
test sample to the training set, and train a logistic regression model on the resulting poisoned dataset.
We then compare the accuracy of IF and RIF estimates of the effect that removing the poisoned
sample would have on the model’s prediction for that test sample. RIF significantly outperforms IF.
See Figure 3.

3 Theoretical Results

We turn to a theoretical explanation of the effectiveness of RIF to estimate leave-T -out effects in high
dimensions. Prior work [KATL19] shows that under reasonable assumptions, the NS approximation
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Figure 2: First row: accuracy of IF versus RIF compared across differing ratios of n and d, for the
IMDB dataset, subsampled randomly to obtain datasets of varying sizes. IF and RIF are similar
when n ≫ d, but as n decreases, RIF remains accurate while IF degrades. Second row: A similar
comparison for the overparameterized DogFish dataset, where we vary the regularization strength λ.
IF becomes accurate only under strong regularization, while RIF remains robust across settings. In
all plots, we compare the predicted versus actual values of the self-loss metric. Blue points show the
RIF estimate, green points the IF estimate, and cyan points the Newton step. Point shapes indicate
different strategies for selecting training samples to remove, as in Figure 1.
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Figure 3: On the right we plot the actual vs predicted effect on a test samples logits from removing a
“poisoned” sample from the train set using both IF and RIF. On the left we show the poisoned image
corresponding to the leftmost point in the plot – an image of an automobile mislabeled as "Truck".
RIF predictions (blue) align much more closely with the actual effects, while IF predictions (green)
tend to underestimate these effects.

provides a very accurate approximation of the true leave-T -out effect; this is also easily visible in the
experiments we reproduced above. Importantly, the NS approximation remains accurate even when
the IF estimate is poor. Motivated by this, we focus our analysis on the gap between our RIF estimate
and the NS estimate. This leads to a comparatively simple theorem statement, avoiding too many
assumptions.

Our setting is as follows. We assume that a model is trained via minimization of a convex empirical
risk of the form:

θ̂ = arg min
θ∈Rd

n∑
i=1

ℓi(θ) .
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We think of each ℓi as a per-sample loss from the i-th sample in an underlying training set, although
we do not actually need to assume such a training set underlies the optimization problem. Let
gi := ∇ℓi(θ̂) and Hi := ∇2ℓi(θ̂) denote the gradient and Hessian of the ith sample at the solution
θ̂, and define the total Hessian H :=

∑n
i=1 Hi.

We make the following set of assumptions on the loss functions. Most of the assumptions are
parameterized quantitatively, and our final theorem bounding the quality of the RIF approximation
depends on these parameters. Crucially, these assumptions allow for n ≈ d (or even n ≪ d, if
regularization is added), so that our main theorem captures how RIF remains accurate for high-
dimensional barely-underparameterized or even overparameterized models. We discuss after our
main theorem statement how to interpret these assumptions quantitatively.
Assumption 1 (Positive Semidefiniteness/Convexity). We assume that each Hi is positive semidefi-
nite, or equivalently, that ℓi is convex.

The next two assumptions are the key quantitative ones. We offer some discussion now and more
after we state our main theorem.
Assumption 2 (No Single-Sample Gradient or Hessian Too Large). For all i ∈ {1, . . . , n}, we
assume ∥∥∥H−1/2gi

∥∥∥
2
≤ Cℓ and

∥∥∥H−1/2HiH
−1/2

∥∥∥
op

≤ 1− 1

CR
,

for some Cℓ, CR > 0. Here ∥·∥op is the operator norm/maximum singular value.

The second clause of Assumption 2 can be rewritten as Hi ⪯ CR(1 − C−1
R )

∑
j ̸=i H

⊤
j . This just

captures that no single-sample Hessian Hi is too much larger in any direction than the sum of all the
others. This is the key condition allowing for large dimension d: even if n ≈ d, this condition can be
satisfied (and indeed will be satisfied for, e.g., random low-rank Hi) without taking CR = ω(1).
Assumption 3 (Cross-Sample Incoherence). For some ε, δ > 0, and for all i ̸= j,∥∥∥H1/2

i H−1H
1/2
j

∥∥∥
op

≤ δ and
∥∥∥H1/2

i H−1gj

∥∥∥
2
≤ ε.

We expect ε, δ to be small because in high dimensions gradients and Hessians of distinct samples are
likely to point in close-to-orthogonal directions. We carry this intuition out in more detail below.

Ultimately, we use IF/RIF/NS to estimate the change to f(θ̂) for some evaluation function f . For
instance, in our experiments, f is typically test loss or a test prediction. To show that the RIF and NS
estimates are close, we require our evaluation function f to have bounded gradients:
Assumption 4 (Evaluation Gradient Projection Control). Let ∇f(θ) denote the gradient of an

evaluation function f : Rd → R. For all i,
∥∥∥H1/2

i H−1∇f(θ̂)
∥∥∥
2
≤ η for some η > 0.

Let w ∈ [0, 1]n be a weight change vector. We study the NS and RIF approximations to the optimum
of the weighted loss

∑
i≤n wiℓi(θ). (So, to capture leave-T -out, we set wi = 1 for i ∈ T and

otherwise wi = 0.) We define θ̂RIF,w and θ̂NS,w analogously to θ̂RIF,T , θ̂NS,T , respectively. We are
now ready to state our main theorem:
Theorem 3.1 (Accuracy of Rescaled Influence Function). Under Assumptions 1–4, for any k ≤ 1

2δCR
,

|⟨∇f(θ̂), θ̂NS,w − θ̂RIF,w⟩| ≤ k2η (1 + 2CR) (ε+ CRCℓδ)

The proof of Theorem 3.1 proceeds via a matrix-perturbation analysis which shows that the Hes-
sian inversion in the NS approximation can itself be approximated well without considering the
contributions to the inverse from ∇2ℓi’s interaction with ∇2ℓj when i ̸= j. We defer the proof to
supplemental material, and focus instead on interpreting Theorem 3.1, to illustrate how it captures
the improvement of RIF compared to IF.

Interpreting Assumptions and Theorem 3.1 Prior works [GSL+19, KATL19] prove similar-in-
spirit results to Theorem 3.1, but concerning IF rather than RIF. A direct comparison of Theorem 3.1
to those results in prior work is challenging, as each result is derived under different assumptions. So,
to better understand the practical significance of our bounds compared to those in prior work, and see
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why they capture the accuracy of RIF for overparameterized models, we analyze their asymptotic
behavior in a simplified setting. Since this is for illustration purposes only, we keep the analysis
informal.

Consider linear regression with square loss (ordinary least squares), where the data vectors are drawn
i.i.d. from a standard Gaussian distribution, xi ∼ N (0, I). And suppose n ≥ (1 + Ω(1))d, i.e., n
and d are comparable. In this case, we know that:

• Each individual Hessian contribution Hi = xix
⊤
i is low rank with rk (Hi) = 1 and

∥Hi∥op = O(d),

• The total Hessian is approximately isotropic: H ≈ nI,

• Gradient vectors are bounded in norm: ∥gi∥2 ≈
√
d.

We can apply the heuristic that random vectors u, v ∈ Rd are likely to have |⟨u, v⟩| ≈ ∥u∥∥v∥/
√
d,

and so long as n ≥ (1 + Ω(1))d, we expect the key variables in Theorem 3.1 to scale as:

• Cℓ := maxi∈[n]

∥∥H−1/2gi

∥∥
2
≈

√
d√
n
= O(1),

• CR := maxi∈[n]
1

1−∥H−1/2HiH−1/2∥
op

≈ n
n−d = O(1),

• δ := maxi ̸=j

∥∥∥H1/2
i H−1H

1/2
j

∥∥∥
op

= Õ
(√

d
n

)
,

• ε := maxi̸=j

∥∥∥H1/2
i H−1gj

∥∥∥
2
= Õ

(√
d

n

)
,

• η := maxi∈[n]

∥∥∥H1/2
i H−1∇θf

∥∥∥
2
= maxi∈[n]

∣∣x⊺
i H

−1∇θf
∣∣ = Õ

(
∥∇θf∥2

n

)
.

Under these conditions, Theorem 3.1 guarantees that for any set of at most k ≤ kthreshold = Ω̃
(

n√
d

)
removed samples, the discrepancy between the RIF and Newton step estimates is bounded by:

|⟨∇f(θ̂), θ̂NS,w − θ̂RIF,w⟩| ≤ k2η (1 + 2CR) (ε+ CRCℓδ) = Õ

(
k2

√
d ∥∇θf∥2
n2

)
.

The scaling rate n−2 in the denominator matches what we expect for influence functions, as estab-
lished in [GSL+19]. But influence function approximations incur significantly worse dimension
dependence in the numerator, meaning that n must be much larger than d (indeed, quadratic in
d or even larger) to obtain nontrivial guarantees. For comparison, in supplemental material, we
analyze the bounds proved by [GSL+19, KATL19] for influence functions to the same random-design
ordinary-least-squares setting and show that they guarantee influence function accuracy only for much
larger n or smaller d. For example, the bounds of [GSL+19] are only applicable for k ≤ Õ

(
n
d2

)
, and

yield an error bound that scales as Õ
(

k2d4∥∇θf∥2

n2

)
.

Finally, to assess the tightness of our result relative to the RIF magnitude itself, we note that under
the same random-design least-squares setup and the same heuristics about inner products of high-
dimensional random vectors, the RIF estimate for the removal of the top-k most influential samples
scales as

max
{
|⟨∇f(θ̂), θ̂RIF,w⟩| : ∥w∥1 = k

}
= Ω

(
k ∥∇θf∥2

n

)
.

Hence, the ratio of the RIF estimate ("signal") to the RIF–NS error ("noise") is

SNR :=
max

{
|⟨∇f(θ̂), θ̂RIF,w⟩| : ∥w∥1 = k

}
max

{
|⟨∇f(θ̂), θ̂NS,w − θ̂RIF,w⟩| : ∥w∥1 = k

} = Ω̃

(
n

k
√
d

)
.

This implies that RIF provides a good relative-error approximation to NS even in high dimensions,
provided k ≪ n√

d
.
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4 Related Work

Influence functions were introduced by Hampel in the context of robust statistics [Ham74], and in
the context of estimation of standard errors via the infinitesimal jackknife by Jaeckel [Jae72], with
a broad ensuing literature in statistics; see e.g., [Law86, GSL+19]. Recent work in econometrics
[BGM20] uses influence functions to uncover robustness issues in large empirical studies.

The seminal work [KL17] introduced the modern use of influence functions to study the rela-
tionship between training data and model behavior in modern machine learning. Ensuing works
[BNL+22, BPF21, GBA+23, FZ20] study influence functions for neural networks, and use them
as a tool to study and interpret model behavior. [GJB19, BYF20] propose second and higher-order
approximations to leave-one-out and leave-T -out effects, but these approximations sacrifice linearity
and efficiency. Many applications of influence functions have appeared recently, e.g., machine
unlearning [GGHVDM19, SAKS21, SW22], data valuation [JDW+19], robustness quantification
[SS19], and fairness [LL22]. To scale influence functions up to very large models and datasets, where
Hessian inversion becomes infeasible, several works develop sketching/random projection techniques
to approximate influence functions, e.g., [WCZ+16, PGI+23b, SZVS22].

Data attribution – tracing model behavior back to subsets of training data – has become a major
industry in machine learning; see the recent survey [HL24] and extensive citations therein, as well as
the NeurIPS 2024 workshop [NMI+24] and ICML 2024 tutorial [MIE+24].

Newton-step approximations to the leave-1-out error have been studied since at least 1981 [Pre81].
Cross-validation is an especially important application [RM18, WKM20]. Additionally, several
recent works consider data models that additively combine estimates of leave-one-out effects to
compute a leave-T -out effect [KZCC21, IPE+22, PGI+23a, HHZM24, HBN+24]. However, to the
best of our knowledge no previous work provides an empirical or theoretical evaluation of the RIF
method beyond low-dimensional least-squares regression.

5 Discussion and Conclusion

IFs and Importance-Ordering: Revisiting the Common Wisdom Common wisdom regarding
IF approximations to leave-T -out effects for high-dimensional models holds that the approximations
typically underestimate the true leave-T -out effect, but that there is a strong correlation between
the influence-function approximation to the leave-T -out effects and the true leave-T -out effects,
especially measured in terms of the ordering of subsets based on their predicted/actual leave-T -out
effect. The seminal [KATL19] even phrases this as an outstanding open question, writing that their
work “opens up the intriguing question of why we observe [correlation and underestimation] across a
wide range of empirical settings”.

Our work sheds significant light on this question. First of all, it explains why we see such correlation
in a great many cases – if most samples have a similar “rescale factor” relating IF and RIF (which we
would expect to happen for e.g., random data), this induces a linear relationship between RIF and IF
estimates. Since RIF is an excellent approximation to the true leave-T -out effect, this explains the
correlation between IF and the ground truth, and explains why IF typically underestimates the truth –
the rescale factors are always larger than 1.

[KATL19] also note that this IF/ground-truth correlation phenomenon need not be universal, and
indeed we observe several experiments where it does not hold. For instance, in the first row of
Figure 1, in the Cat vs Dog dataset, we see a dramatically non-linear and even non-monotone
relationship between IF and ground truth, since different subset-selection strategies yield very
different relationships between IF and ground truth. Even the ordering of subsets by IF-predicted
effect is not accurate in this example, but RIF remains accurate.

Limitations Although much more accurate than IFs, RIFs are still imperfect predictors of ground-
truth – see e.g., the ESC-50 dataset in Figure 1 or the rightmost variants of the IMBD dataset
in Figure 2. We expect high-dimensional logistic regression to be a good “model organism” for
high-dimensional machine learning, so our experiments are limited to that setting. RIF also still
requires inverting the Hessian; as discussed in related work for very large-scale models this can be
computationally infeasible, and approximate techniques are required. While we show that RIFs are
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preferable to IFs for detecting certain simple data-poisoning attacks, we do not expect that RIFs are a
secure general defense against data poisoning.

Conclusion We show that RIFs are an appealing drop-in replacement for IFs, with little compu-
tational overhead in generalized linear models (or whenever individual training samples contribute
low-rank terms to the Hessian), but dramatically improved accuracy. Both experiments and theory
support this conclusion. Furthermore, the fact that RIFs and IFs differ by a per-sample scaling factor
helps to resolve an open question from prior work, showing that the correlation between IF and
ground truth leave-T -out occurs when the per-sample scalings all (approximately) agree.
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Compute Resources

All experiments were conducted on a server equipped with 64GB RAM, 2 IBM POWER9 CPU cores,
and 4 NVIDIA Tesla V100 SXM2 GPUs (each with 32GB memory).

Table 2 details the computational cost of training the base models and computing their IF and RIF data
attribution. Another major computational overhead was in retraining the model to obtain ground-truth
values for the retrain effect. Despite this, compute resources were not a bottleneck for our work. The
total wall-clock time for all experiments reported in the paper was under 100 hours.

Table 2: Comparison of runtime components across datasets. The rescaling step consistently added
negligible overhead across all experiments.

Dataset Training Hessian Inversion Influence Rescaling
ESC50 1.8 s 0.056 s 0.0005 s 0.051 s 0.0033 s (0.2%)
CatDog 76 s 4.9 s 0.010 s 4.8 s 0.087 s (0.1%)
AutoTruck 48 s 4.9 s 0.0094 s 4.8 s 0.087 s (0.2%)
DogFish 0.43 s 0.92 s 0.0095 s 0.89 s 0.015 s (0.7%)
Enron 6.7 s 15 s 0.065 s 15 s 0.095 s (0.3%)
IMDB (n=16d) 20 s 0.92 s 0.0012 s 0.87 s 0.044 s (0.2%)
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A Proof of Theorem 3.1

Recall our main theoretical result from Section 3:

Theorem A.1 (Theorem 3.1 (restated)). Under Assumptions 1–4, for any k ≤ 1
2δCR

,

|⟨∇f(θ̂), θ̂NS,w − θ̂RIF,w⟩| ≤ k2η (1 + 2CR) (ε+ CRCℓδ)

Before delving into the proof of Theorem 3.1, we introduce a useful technical lemma:

Lemma A.2. Let A1, . . . ,Ak ∈ Rd×d and let H ∈ Rd×d be positive semidefinite. Suppose:

•
∥∥H−1/2AiH

−1/2
∥∥
op

≤ σ for all i,

•
∥∥√AiH

−1
√
Aj

∥∥
op

≤ δij for all i ̸= j.

Then, ∥∥∥∥∥
k∑

i=1

H−1/2AiH
−1/2

∥∥∥∥∥
op

≤ σ +

√∑
i ̸=j

δ2ij .

Proof of Theorem 3.1. We begin by analyzing the difference between the Newton step and the
rescaled influence function (RIF) approximation.

Recall that the Newton step is defined as:

Newton Step = (∇f)
⊤

H−
n∑

j=1

wjHj

−1
n∑

i=1

wigi,

where each gi ∈ Rd is the ith gradient component, and Hi is the ith contribution to the Hessian.
Define the weighted Hessian:

Hw := H−
n∑

j=1

wjHj .

For each i ∈ {1, . . . , n}, define w(i) := w · 1{i} to isolate the i-th coordinate. The RIF estimator is
given by:

RIFi =

n∑
i=1

(∇f)
⊤
H−1

w(i)wigi .

Our goal is to bound the difference between the Newton step and RIF estimators and we do this by
bounding the contribution of each individual sample. That is, for each i ∈ [n], we will try to bound

(∇f)
⊤ (

H−1
w −H−1

w(i)

)
gi .
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To do so, we begin by expressing each matrix in terms of H and its perturbations. Observe:

Hw = H1/2 (I −Gw)H1/2, where Gw :=
∑
j

H−1/2wjHjH
−1/2.

Moreover, we define R := (I −Gw(i))
−1, where Gw(i) = H−1/2wiHiH

−1/2. We have

Hw(i) = H1/2 (I −Gw(i))H1/2.

Using the matrix identity:

(A−B)
−1

= A−1 + (A−B)
−1

BA−1,

with A = Hw(i) , B = Hw(i) −Hw, we obtain:

H−1
w = H−1

w(i) +H−1
w (Hw(i) −Hw)H−1

w(i) .

We now expand the correction term on the right-hand side further by applying the same identity again,
this time expanding Hw = H− (H−Hw),

H−1
w (Hw(i) −Hw)H−1

w(i) = H−1 (Hw(i) −Hw)H−1
w(i)+H−1 (H−Hw)H−1

w (Hw(i) −Hw)H−1
w(i) ,

where the second term reflects higher-order correction contributions due to recursive matrix inversion.

To bound the full error

(∇f)
⊤ (

H−1
w −H−1

w(i)

)
gi =(∇f)

⊤
H−1 (Hw(i) −Hw)H−1

w(i)gi+

+ (∇f)
⊤
H−1 (H−Hw)H−1

w (Hw(i) −Hw)H−1
w(i)gi .

It suffices to control the size of each of these terms separately. In other words, we will proceed to
bound:

1. The first order correction (∇f)
⊤
H−1 (Hw(i) −Hw)H−1

w(i)gi,

2. The higher order terms(∇f)
⊤
H−1 (H−Hw)H−1

w (Hw(i) −Hw)H−1
w(i)gi.

Bounding the First Order Correction

To bound the first order correction, we use the same formula above to split H−1
w(i) into a leading term

and higher order terms. The goal of this separation is to show that this update to the Hessian does not
rotate too much of the weight of gi onto the eigenspace of Hj for any j ̸= i

We have H−1
w(i) = H−1 +H−1wiHiH

−1
w(i) .

Therefore, for any j ̸= i,∥∥∥H1/2
j H−1

w(i)gi

∥∥∥
2
≤
∥∥∥H1/2

j H−1gi

∥∥∥
2︸ ︷︷ ︸

≤ε

+
∥∥∥wiH

1/2
j H−1HiH

−1/2RH−1/2gi

∥∥∥
2︸ ︷︷ ︸

≤|wi|δCRCℓ≤δCRCℓ

≤ ε+ δCRCℓ

Therefore, this first order correction is at most∑
j ̸=i

wj∇f⊺H−1HjH
−1
w(i)gi ≤

∑
j ̸=i

wj

∥∥∥∇f⊺H−1H
1/2
j

∥∥∥
2︸ ︷︷ ︸

≤η

∥∥∥H1/2
j H−1

w(i)gi

∥∥∥
2︸ ︷︷ ︸

≤ε+CRCℓδ

≤ kη (ε+ CRCℓδ)

Bounding the Higher Order Corrections

We next bound the second (higher-order) term using the Cauchy-Schwarz inequality.∣∣∣(∇f)
⊤
H−1 (H−Hw)H−1

w (Hw(i) −Hw)H−1
w(i)gi

∣∣∣ ≤
≤
∥∥∥(∇f)

⊤
H−1 (H−Hw)H−1/2

∥∥∥
2
×
∥∥∥(I−Gw)

−1
∥∥∥
op

×
∥∥∥H−1/2 (Hw(i) −Hw)H−1

w(i)gi

∥∥∥
2
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We will bound each of these terms independently.

The right-most multiplicand is bounded using the analysis of the first order term∥∥∥H−1/2 (Hw(i) −Hw)H−1
w(i)gi

∥∥∥
2
≤
∑
j ̸=i

∥∥∥H−1/2wjH
1/2
j H

1/2
j H−1

w(i)gi

∥∥∥
2
≤

≤
∑
j ̸=i

∥∥∥wjH
1/2
j H−1

w(i)gi

∥∥∥
2
≤ k (ε+ CRCℓδ)

From the triangle inequality,∥∥∥∥∥∥
∑
j ̸=i

∇f⊤H−1HjH
−1/2

∥∥∥∥∥∥ ≤
∑
j ̸=i

|wj | ·
∥∥∥∇f⊤H−1H

1/2
j

∥∥∥ · ∥∥∥H1/2
j H−1/2

∥∥∥
op

.

Using the assumption
∥∥H−1/2HjH

−1/2
∥∥
op

≤ 1, it follows that∥∥∥H1/2
j H−1/2

∥∥∥
op

≤ 1,

and from Assumption 5, we also have∥∥∥∇f⊤H−1H
1/2
j

∥∥∥ ≤ η.

Therefore, ∥∥∥∥∥∥
∑
j ̸=i

∇f⊤H−1HjH
−1/2

∥∥∥∥∥∥ ≤ η
∑
j ̸=i

|wj | ≤ η ∥w∥1 = ηk.

Next, define Aj = wjH
−1/2HjH

−1/2. Then for all j,∥∥∥H−1/2AjH
−1/2

∥∥∥
op

= |wj | ·
∥∥∥H−1/2HjH

−1/2
∥∥∥
op

≤ 1− 1

CR
,

since ∥w∥∞ ≤ 1 and by Assumption 2
∥∥H−1/2HjH

−1/2
∥∥
op

≤ 1− 1
CR

.

Moreover, for all i ̸= j, we have∥∥∥√AiH
−1
√
Aj

∥∥∥
op

≤
√

|wi| ·
√
|wj | · δij .

So, ∑
i ̸=j

∥∥∥√AiH
−1
√
Aj

∥∥∥2
op

≤
∑
i̸=j

|wi||wj |δ2ij ≤ (∥w∥1)
2 · δ2 = k2δ2.

Applying Lemma A.2 to the collection {Aj}, we conclude that

∥Gw∥op ≤ 1− 1

CR
+ kδ.

For any k < 1
2δCR

, it follows that I −Gw is PSD and ∥Gw∥op < 1, so we have∥∥∥(I −Gw)
−1
∥∥∥
op

≤ 1
1

CR
− kδ

≤ 2CR .

Summary:

So far, we have show that for all i ∈ [n],∣∣∣(∇f)
⊤ (

H−1
w −H−1

w(i)

)
gi

∣∣∣ ≤ ηk (ε+ CRCℓδ) + ηk × 2CR × (ε+ CRCℓδ) .

Therefore,

|Newton Step − RIF| =

∣∣∣∣∣
n∑

i=1

wi (∇f)
⊤ (

H−1
w −H−1

w(i)

)
gi

∣∣∣∣∣ ≤ k2η (1 + 2CR) (ε+ CRCℓδ)
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Proof of Lemma A.2. We define the linear operator C : Rk×k×d×d → Rd×d to be

C(M) :=
∑
i,j

H−1/2
√
Ai Mij

√
AjH

−1/2,

where M ∈ Rk×k×d×d is a rank-4 tensor with Mij ∈ Rd×d.

For tensors M, N, define their contraction:

C(M)C(N) = C(L), where Lij =
∑
q,r

Miq ·
√
AqH

−1
√

Ar ·Nrj .

Define Σ : Rk×k×d×d → Rk×k as Σ(M)ij := ∥Mij∥op, and define ∆ ∈ Rk×k with entries
∆ij =

∥∥√AiH
−1
√
Aj

∥∥
op

. Then by the triangle inequality and submultiplicativity of the operator
norm, we have the point-wise inequality

Σ(L) ≤ Σ(M) ·∆ · Σ(N).

Applying this iteratively for a sequence M1, . . . ,Mℓ, we obtain:

Σ(N) ≤ Σ(M1) ·∆ · Σ(M2) ·∆ · · ·∆ · Σ(Mℓ).

Now consider the identity tensor M with Mii = Id and Mij = 0 for i ̸= j. Then:

C(M) =
∑
i

H−1/2
√

AiId
√
AiH

−1/2 =
∑
i

H−1/2AiH
−1/2.

Let C := C(M). Then:

Cℓ = C(M)ℓ = C(N), with Σ(N) ≤ ∆ℓ.

By triangle inequality and bounding each tensor entry:∥∥Cℓ
∥∥
op

≤ k2d2 ·max
i

∥∥∥H−1/2A
1/2
i

∥∥∥2
op

·
∥∥∆ℓ

∥∥
op

≤ k2d2σ · ∥∆∥ℓop .

Taking ℓ-th roots:
∥C∥op ≤ (k2d2σ)1/ℓ · ∥∆∥op .

Letting ℓ → ∞, the prefactor tends to 1, giving:∥∥∥∥∥∑
i

H−1/2AiH
−1/2

∥∥∥∥∥
op

≤ ∥∆∥op .

Now bound ∥∆∥op. Each diagonal entry ∆ii =
∥∥√AiH

−1
√
Ai

∥∥
op

=
∥∥H−1/2AiH

−1/2
∥∥
op

≤ σ.
Thus,

∆ = D +R, with D = diag(
∥∥∥H−1/2A1H

−1/2
∥∥∥
op

, . . .), ∥D∥op ≤ σ.

Then:
∥∆∥op ≤ ∥D∥op + ∥R∥op ≤ σ + ∥R∥F ,

where R is the off-diagonal part of ∆ and ∥R∥2F =
∑

i̸=j δ
2
ij .

Hence: ∥∥∥∥∥
k∑

i=1

H−1/2AiH
−1/2

∥∥∥∥∥
op

≤ σ +

√∑
i ̸=j

δ2ij .
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B Asymptotic Analyses of the Bounds of [KATL19] and [GSL+19]

B.1 Analysis of [KATL19]

Koh et al. [KATL19] present two main theoretical results. The first bounds the difference between a
single Newton step and a full retrain, and the second bounds the difference between the Newton step
and the influence function estimate. We focus on the latter, since that is more directly comparable to
the guarantees of Theorem 3.1. To facilitate a direct comparison, we restate their Proposition 2 with
all assumptions made explicit below.
Proposition B.1 (Proposition 2 of [KATL19], rephrased). Assume the evaluation function f(θ) is
Cf -Lipschitz, the Hessian ∇2

θℓ(x, y, θ) is CH -Lipschitz, and the third derivative of f(θ) exists and
is bounded in norm by Cf,3. Let σmin and σmax be the smallest and largest eigenvalues of H1,
respectively, and define

Cℓ ≜ max
1≤i≤n

∥∥∥∇θℓ(xi, yi; θ̂(1))
∥∥∥
2
.

Then the Newton-influence error ErrNt-inf(w) is

ErrNt-inf(w) = ∇θf(θ̂(1))
⊤H

−1/2
λ,1 D(w)H

−1/2
λ,1 g(w)+

1

2
∆θNt(w)

⊤∇2
θf(θ̂(1))∆θNt(w) + Errf,3(w)︸ ︷︷ ︸

Error from the curvature of f(·)

,

where

D(w)
def
=
(
I −H

−1/2
λ,1 H1(w)H

−1/2
λ,1

)−1

− I, and H1(w)
def
=

n∑
i=1

wi∇2
θℓ(xi, yi; θ̂(1)).

The matrix D(w) has eigenvalues between 0 and σmax/λ. The residual term Errf,3(w) captures the
error due to third-order derivatives and is bounded by

|Errf,3(w)| ≤ ∥w∥31Cf,3C
3
ℓ /
(
6(σmin + λ)3

)
.

To compare this guarantee with Theorem 3.1, which bounds the inner product between the data
attribution error and ∇f , we focus on the first term in the bound from Proposition B.1. This term
quantifies the error in estimating the linear evaluation function f using influence functions.

Recall that in the simple linear regression setting we define for our simplified asymptotic analysis,
we have H ≈ nI, and this is also the case with Hλ,1. Using the bound D(w) ⪯ σmax

λ I from
Proposition B.1, the Cauchy–Schwarz inequality gives:∣∣∣∇θf(θ̂(1))

⊤H
−1/2
λ,1 D(w)H

−1/2
λ,1 g(w)

∣∣∣ ≲ σmax

nλ

∥∥∥∇θf(θ̂(1))
∥∥∥
2
∥g(w)∥2 .

The scaling of σmax/λ depends on the regime. Under strong regularization (e.g., bottom-right of
Figure 2), it may be O(1). However, as Koh et al. observe, this rarely happens in practice, suggesting
that it would be more reasonable to assume that σmax/λ = ω(1).

Let g denote the per-sample gradient, so that g(w) =
∑

i wigi represents the total gradient over
removed samples. Following Koh et al.’s approach in Proposition 1, we apply the triangle inequality
to bound

∥g(w)∥2 ≤ ∥w∥1 max
i∈[n]

{∥gi∥2} = Θ(k
√
d) .

Altogether, the Koh et al. bound on the difference between the IF and the NS estimations for the 1st
order change in f comes out to

σmax

nλ

∥∥∥∇θf(θ̂(1))
∥∥∥
2
∥g(w)∥2 = ω

(
k
√
d

n

)
×
∥∥∥∇θf(θ̂(1))

∥∥∥
2

To get a sense for the scaling of this bound, as with the bound of Theorem 3.1, we compare it to the
actual IF estimate to obtain an estimate of signal-to-noise-ratio between IF and its distance from NS

SNR =
max∥w∥1≤k

{∣∣⟨∇θf,θ
IF
w − θw⟩

∣∣}
ErrNt-inf(w)

= Θ

(
λ

σmax

)
= o(1) .

Therefore, the guarantee of Koh et al. do not rule out the possibility of the difference between the
NS estimate and the IF estimate completely dominating the removal effects even in simple scenarios
(regardless of how k, d may scale with n).
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B.2 Analysis of [GSL+19]

B.2.1 Assumptions and Statement

We now summarize the theoretical guarantees provided by Giordano et al., which underlie their
infinitesimal jackknife approximation for estimating the effect of data perturbations.
Assumption 5 (Smoothness; Assumption 1 of [GSL+19]). For all θ ∈ Ωθ, each gn(θ) is continuously
differentiable in θ.
Assumption 6 (Non-degeneracy; Assumption 2 of [GSL+19]). For all θ ∈ Ωθ, the Hessian H(θ,1w)
is non-singular, with

sup
θ∈Ωθ

∥∥H(θ,1w)
−1
∥∥

op ≤ Cop < ∞.

Assumption 7 (Bounded averages; Assumption 3 of [GSL+19]). There exist finite constants Cg and
Ch such that

sup
θ∈Ωθ

1√
N

∥g(θ)∥2 ≤ Cg and sup
θ∈Ωθ

1√
N

∥h(θ)∥2 ≤ Ch.

Assumption 8 (Local smoothness; Assumption 4 of [GSL+19]). There exists ∆θ > 0 and a finite
constant Lh such that for all θ with ∥θ − θ̂1∥2 ≤ ∆θ,

1√
N

∥∥∥h(θ)− h(θ̂1)
∥∥∥
2
≤ Lh

∥∥∥θ − θ̂1

∥∥∥
2
.

Assumption 9 (Bounded weight averages; Assumption 5 of [GSL+19]). The weighted norm
1√
N
∥w∥2 is uniformly bounded for w ∈ W by a constant Cw < ∞.

Condition 1 (Set complexity; Condition 1 of [GSL+19]). There exists a δ ≥ 0 and a corresponding
subset Wδ ⊆ W such that:

max
w∈Wδ

sup
θ∈Ωθ

∥∥∥∥∥ 1

N

N∑
n=1

(wn − 1)gn(θ)

∥∥∥∥∥
1

≤ δ, and max
w∈Wδ

sup
θ∈Ωθ

∥∥∥∥∥ 1

N

N∑
n=1

(wn − 1)hn(θ)

∥∥∥∥∥
1

≤ δ.

Definition 1 (Constants from Assumptions). Define

CIJ := 1 +DCwLhCop, and ∆δ := min
{
∆θC

−1
op , 1

2C
−1
IJ C−1

op

}
.

Theorem B.2 (Error bound for the approximation; Theorem 1 of [GSL+19]). Under Assumptions 5–9,
if δ ≤ ∆δ , then

max
w∈Wδ

∥∥∥θ̂IJ(w)− θ̂(w)
∥∥∥
2
≤ 2C2

opCIJδ
2.

B.2.2 Analysis

We now analyze the guarantees provided by Giordano et al. [GSL+19] in the context of our linear
regression setting.

In our setup with squared loss and a linear model, the first- and second-order statistics become:

gi(θ) = xi(yi − ⟨xi, θ⟩), hi(θ) = xix
⊤
i .

Note that hi(θ) does not depend on θ, and thus the local smoothness constant Lh (Assumption 8) is
zero. Further, the Hessian takes the form

H(θ, w) =
1

n

n∑
i=1

wixix
⊤
i ,

so assuming the data is appropriately scaled, we expect the spectrum of its Hessian to be somewhat
clustered and hence Cop = O(1) (Assumption 6).

Assumption 7 requires bounds on ∥g(θ)∥2 and ∥h(θ)∥2. In general, linear regression does not
admit uniform convergence over θ due to unbounded gradients as θ → ∞, but if we fix ∥θ∥ to a
moderate scale by limiting the scope of Ωθ, we can reasonably assume that ∥gi(θ)∥2 ≈ σ

√
d, giving

Cg ≈ σ
√
d = O(

√
d) and Ch ≈ d.
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We now turn to Condition 1, which controls how large the weighted deviations can be. In particular,
we focus on the second half of this condition, which requires that

max
w∈Wδ

sup
θ∈Ωθ

∥∥∥∥∥ 1

N

N∑
n=1

(wn − 1)hn(θ)

∥∥∥∥∥
1

≤ δ .

When removing a set of k points (i.e., w = 1 − 1T ), the deviation includes k terms of magnitude
∥hi(θ)∥1 ≈ d2, resulting in ∥∥∥∥ 1n∑(wi − 1)hi(θ)

∥∥∥∥
1

≈ kd2

n
.

The bound in Theorem B.2 requires this to be at most ∆δ = O(1), so we obtain the constraint:

kd2

n
≲ 1 ⇒ k ≲

n

d2
.

This represents the main constraint required for Theorem B.2 to apply.

Finally, recall that in the main result of Theorem B.2, the error is bounded by

ErrIJ =
∥∥∥θ̂IJ(w)− θ̂(w)

∥∥∥
2
≲ C2

opCIJδ
2.

Given δ ≈ kd2

n , and Cop = CIJ = O(1), we conclude:

ErrIJ ≲

(
kd2

n

)2

=
k2d4

n2
.

C Experimental Details

We based our experimental design on that of Koh et al. [KATL19] who evaluate standard influence
functions in a similar setting in order to have a clearer benchmark for comparison.

C.1 Model Training

We fit all the logistic regression models using the scipy.optimize.minimize function to train the
model using L-BFGS-B, and set a very strict stopping criterion to ensure that we converge to the
global optimum and suppress dependencies on the initial weights when using a warm-start retrain.

For the DogFish and Enron datasets also considered by Koh et al., we used the same L2 regularization
parameter, and for all new datasets, we set the regularization to 1E − 5.

C.2 Removal Set Construction

Similar to Koh et al., we evaluate our data attribution methods on removals of “correlated” sets of
samples from every regression. We focus on relatively fewer sample removals, varying the number
of samples linearly along the range from 0.1% to 5% of the training set. For each dataset and each
group construction strategy, we select 40 such sets of samples (1 for each size).

For each such size k, we construct removal sets of size k using the following strategies

1. Clustered Samples: we construct sets of samples clustered either by a single feature or by
L2 distance. When clustering by a single feature, for each set of samples to remove, we
select a random sample i ∈ [n] and a random feature j ∈ [d], and output the k samples for
which Xi′,j is closest to Xi,j . When clustering by L2 distance, we select the center sample
i ∈ [n] uniformly at random and output the k samples closest to it in L2 norm.

2. Top Percentile Samples: For each of the metrics, we construct a top-percentile set of samples
of size k, by selecting first selecting the top 2k samples and outputting a random subset
of half of them. We consider the metrics of: high positive / negative influence on test loss
and high positive / negative influence on test predictions, both computed using the standard
influence function to keep our benchmark comparable with that of Koh et al.

3. Random Subsets: k samples selected uniformly at random.
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C.3 Datasets and Embeddings

We consider several classification tasks in this paper. For each, we extract features from a particular
modality (vision, NLP, or audio), embed them into a d-dimensional representation using a frozen
pretrained model, and train a logistic regression classifier on a relevant 2-class classification problem.

For the Enron and DogFish datasets, we try to keep to the same conventions as Koh et al. [KATL19]
for a clean comparison.

ESC-50 embedded using OpenL3 ESC-50 is a dataset of ≈ 5 second audio clips each correspond-
ing to one of 50 categories with 40 samples from each category [Pic15]. We convert this to a 2 class
classification problem by dividing the categories into “natural” sounds (breathing, cat, cow, etc.) and
“artificial” sounds (airplane, chainsaw, clapping etc.).

We embed these audio samples using last-layer embeddings of the OpenL3 python library [CWSB19].
This produces d = 512 dimensional embeddings, and we separate them into train and test samples
using a random 80− 20 train-test split.

CIFAR-2 embedded using ResNet-50 We consider 2 CIFAR-2 datasets generated by limiting the
CIFAR-10 dataset [Kri09] to 2 classes (Cat vs Dog, and Automobile vs Truck).

The photos from both train and test sets are embedded using the last-layer embeddings of the default
pretrained ResNet-50 model in the torchvision python library [Tor16].

DogFish embedded with Inception v3 We reproduce the DogFish dataset from Koh et
al. [KATL19].

This dataset contains photos of dogs and fish from the ImageNet dataset [RDS+15] embedded using
frozen last-layer embeddings of the Inception v3 network [SVI+16].

Enron embedded with Spacy We reproduce the Enron dataset from Koh et al. [KATL19].

This NLP dataset consists of Spam vs Ham emails [MAP06] embedded using a bag-of-words
embedding with the spacy python library using the “en_core_web_sm” dictionary. We note that our
embeddings for the Enron dataset may differ slightly from those of Koh et al. [KATL19], likely due
to version differences in the spacy library. However, our empirical results are consistent with theirs.

IMDB embedded with BERT We consider the NLP IMDB sentiment analysis dataset consisting
of 50000 movie reviews classified into positive and negative [MDP+11]. We embed the text reviews
using the BERT model [DCLT19].

C.4 Experiments

An implementation of our experiments is available at github.com/ittai-rubinstein/rescaled-influence-
functions. This appendix provides a concise overview of the procedures implemented in the accom-
panying code.

C.4.1 Comparison of Influence and Actual Effect

To produce Figure 1, we select sets of samples to remove based on the methods described in
Appendix C.2. For each set of samples we retrain the logistic regression model without these samples
to obtain the ground truth effect on the change in the metric f , and compare to the application of the
same metric f to the models predicted by each of the data attribution techniques.

Removal effect vs influence One minor distinction considered in the appendix of Koh et
al. [KATL19] is between the influence on a metric and the “parameter influence” on a metric.
They define the influence on a metric to be the inner product between the gradient of the metric and
the estimated change in model parameters

I inf
f,w = ⟨∇f,θinf

w − θ⟩ ,
and the parameter influence of a set of removals (which we simply call the “removal effect”) to be

Iparam. inf.
f,w = f

(
θinf
w

)
− f (θ) .
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Figure 4: Accuracy of IF versus RIF compared across datasets from image classification (DogFish,
Cat vs Dog, Truck vs Automobile), natural language (Spam vs Ham), and audio (ESC-50). Each data-
point in this experiment is generated as its equivalent in Figure 1, except that instead of evaluating the
metric f (e.g., test-loss) on the retrained model or the data model prediction of the retrain effect, we
use the leading order Taylor approximation of the change in this metric. There is no major qualitative
difference between the results of this experiment and the ones reported in Figure 1, so we decided to
keep the original evaluation for a clearer apples-to-apples comparison.

We use the latter method to produce all the data points in Figures 1 and 2 (the metric considered in
Figure 3 is linear so it is not affected by this distinction). However, similar to Koh et al., we observe
very little effect to using the linear method instead.

C.4.2 Varying n and λ

In these experiments we repeated the same experimental procedure as the one used to generate
Figure 1, but with varying levels of L2 regularization for the DogFish dataset and subsampling the
IMDB dataset to different numbers of samples (via uniformly random draws). We report the effect of
these removals on self-loss.

C.4.3 Data Poisoning

To ground our results we consider a particular application of data attribution for detecting data
poisoning attacks. We consider the simple data poisoning attack, where an adversary trying to flip
our models prediction on some test sample (selected uniformly at random) and adds this sample with
a flipped label to the train set. We then run IF and RIF data attributions on the poisoned dataset and
use them to predict the effect of the poisoned sample on its own logit (zi = ⟨θ,xi⟩) and compare this
to the ground truth of a full retrain.

C.5 Licensing of External Assets

We summarize the license information for all datasets and pretrained models used in our experiments.
All assets are cited in the main text.

Notes

Assets without explicit licenses (e.g., CIFAR-10, Enron, IMDB) are used strictly for non-commercial
research purposes. We do not redistribute any datasets or pretrained weights.
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Table 3: License summary for datasets used in our experiments. All assets are cited and used in
accordance with their respective terms.

Asset Source License Use / Notes
ESC-50 [Pic15] CC BY-NC

3.0
Freely available for non-commercial re-
search use

CIFAR-10 [Kri09] Not specified Widely used in academic settings; original
authors affiliated with the University of
Toronto

ImageNet [RDS+15] Custom terms Access requires agreement to ImageNet’s
non-commercial license

Enron Spam [MAP06] Not specified Used under standard academic fair use;
available via public research repositories

IMDB Reviews [MDP+11] Not specified Publicly downloadable from the Stanford
AI Lab; used for academic research

Table 4: License summary for pretrained models and libraries. All tools are used under compatible
terms for non-commercial research.

Model Version License Use / Notes
OpenL3 v0.4.2 MIT Permissive open-source license; commercial

use allowed
ResNet-50
(TorchVision)

v0.13.1 BSD 3-Clause Standard pretrained model from TorchVision;
license is permissive, but pretrained weights
originate from ImageNet

Inception v3 — Apache 2.0 Model license is permissive; weights trained
on ImageNet, which restricts downstream use

spaCy v3.8.2 MIT Freely usable model provided by spaCy; li-
cense allows commercial and academic use

BERT (Trans-
formers)

bert-base-
uncased
(v4.36.2)

Apache 2.0 Hugging Face model with a permissive li-
cense; trained on BookCorpus and Wikipedia,
which may have unclear redistribution terms

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We present the RIF method in Section 1.1. We compare IF and RIF and also
present our data poisoning example in Section 2. Finally, we present a theoretical analysis
of this comparison in Section 3.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
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Answer: [Yes]
Justification: We discuss the limitations of our work in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Section 3 contains a full list of the assumptions needed for our main theoretical
result (Theorem 3.1) as well as a detailed discussion of their meaning and the asymptotic
scaling of our bounds in a simple setting. Due to space limitations, we moved the proofs of
this theorem and its asymptotic analysis to the supplemental material.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
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Justification: In the supplemental material we give a detailed explanation of all of our
experimental procedures and also include a library that can be used to reproduce all the
figures and tables in our paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: In the supplemental material, we include a library that can be used to reproduce
all the experimental results in our paper and we plan to include a link to a public git repository
with the same library in the camera ready version of the paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
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• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We give a high-level overview of our experimental procedures in Section 2
and a more detailed explanation of all of our methods as well as an implementation of our
experimental procedures in the supplemental material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: None of the experiments reported in the paper require error bars, as all of the
reported datapoints are computed exactly.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
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Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We include a paragraph detailing the compute resources used for our experi-
ments at the end of the main text of our submission.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: Our submission is purely foundational and to the best of our knowledge there
is no clear path to any negative applications.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our submission uses only existing public datasets and models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Our submission utilizes some existing datasets and pretrained embeddings.
We cite the relevant sources in the main text and give additional details on licensing in the
supplemental material.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:
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• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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