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ABSTRACT

Existing time series forecasting methods primarily rely on the numerical data it-
self. However, real-world time series exhibit complex patterns associated with
multimodal information, making them difficult to predict with numerical data
alone. While several multimodal time series forecasting methods have emerged,
they either utilize text with limited supplementary information or focus merely
on representation extraction, extracting minimal textual information for forecast-
ing. To unlock the Value of Text, we propose VoT, a method with Event-driven
Reasoning and Multi-level Alignment. Event-driven Reasoning combines the rich
information in exogenous text with the powerful reasoning capabilities of LLMs
for time series forecasting. To guide the LLMs in effective reasoning, we propose
the Historical In-context Learning that retrieves and applies historical examples as
in-context guidance. To maximize the utilization of text, we propose Multi-level
Alignment. At the representation level, we utilize the Endogenous Text Align-
ment to integrate the endogenous text information with the time series. At the
prediction level, we design the Adaptive Frequency Fusion to fuse the frequency
components of event-driven prediction and numerical prediction to achieve com-
plementary advantages. Experiments on real-world datasets across 10 domains
demonstrate significant improvements over existing methods, validating the effec-
tiveness of our approach in the utilization of text. The code is made available at
https://anonymous.4open.science/r/VoT-465C.

1 INTRODUCTION
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Figure 1: Unemployment rate time series (Liu et al., 2024a)
(1970-2020). While certain patterns (pink) exhibit pre-
dictable temporal regularities, abrupt changes (green) driven
by external events necessitate the integration of textual in-
formation to complement numerical forecasting.

Time series forecasting is a funda-
mental task in numerous domains,
including financial market analysis,
climate monitoring, and healthcare
management. Deep learning–based
forecasting methods have achieved
competitive performance (Nie et al.,
2023; Liu et al., 2024b; Chang et al.,
2025) on this task. However, they
solely rely on numerical time series
data, limiting their ability to capture
more complex patterns.

Taking the unemployment rate data
(Liu et al., 2024a) as an example, Fig-
ure 1 illustrates that certain abrupt
changes in the time series are difficult
to predict solely from historical numerical patterns. However, by incorporating textual information,
the model may get crucial guidance that helps forecast sudden shifts, such as the unemployment rate
spikes triggered by the 2008 financial crisis and the COVID-19 pandemic in 2020. This demon-
strates that text serves as a valuable complementary modality, enriching time series forecasting with
event-driven guidance that is not easily inferred from numerical data alone. Moreover, textual in-
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formation predominantly contributes to capturing event-related dynamics, but lacks descriptions of
subtle fluctuations. However, this missing information can be supplemented through time series
modeling. By jointly leveraging these complementary strengths, the model can better integrate the
forecasting abilities of the two modalities, thereby breaking the limitations of single modality.

To explore the potential of textual information and effectively apply it in time series forecasting, there
exist two main challenges. The first challenge is insufficient text utilization. Some approaches in-
corporate prompts based on endogenous text (Kowsher et al., 2024), such as statistical summaries or
dataset-specific descriptions. While this text offers useful context, it largely overlaps with informa-
tion already present in the time series. Consequently, they are unable to effectively model external
drivers of temporal dynamics. On the other hand, some methods (Luo et al., 2023; Zhang et al.,
2024) leverage LLMs to embed exogenous text (Liu et al., 2024a), which has richer textual sources,
such as news and policy documents. These methods primarily focus on the representation-level fu-
sion and are difficult to explore the deep semantic information, leaving the potential value of textual
information untapped. The second challenge is effectively aligning two modalities to leverage their
complementary strengths. While text provides crucial guidance for sudden shifts and event-related
dynamics, time series modeling captures the subtle fluctuations and numerical trends that text can-
not describe. However, the considerable modality gap between these modalities prevents existing
methods from achieving effective cross-modal integration.

Based on these insights, we propose VoT, a novel multimodal time series forecasting method that
leverages Event-driven Reasoning and Multi-level Alignment to effectively unlock the value of tex-
tual information. Our approach employs a dual-branch architecture to integrate both exogenous
and endogenous text for comprehensive time series forecasting. Event-driven Reasoning is per-
formed through our Event-Driven Prediction Branch, which employs a generative pipeline that in-
cludes template generation, summarization, and reasoning. This pipeline enables LLMs to extract
more forecasting-related information from exogenous text. Additionally, we introduce Historical
In-Context Learning (HIC), which provides error-informed guidance from historical samples for
reasoning. Multi-level alignment is designed to fully integrate the predictive capabilities of time
series and text. At the representation level, we introduce the numerical prediction branch with an
Endogenous Text Alignment (ETA). The ETA first converts temporal statistics into textual descrip-
tions and then uses decomposed pattern extraction and decomposed contrastive learning to achieve
alignment between two modalities. At the prediction level, we introduce the Adaptive Frequency Fu-
sion (AFF) that dynamically adjusts importance and integrates the frequency components of outputs
from the event-driven prediction branch and the numerical prediction branch. Based on dynamic fre-
quency fusion, the AFF enables domain-driven optimization to achieve complementary advantages
and address the varying dependencies on textual and numerical information across different datasets.
Specifically, we make the following contributions:

• We introduce an event-driven reasoning method to extract the forecasting-related informa-
tion from exogenous text and obtain numerical predictions. It is enhanced by Historical
In-Context Learning (HIC), which retrieves historical reasoning examples as prompts to
provide error-informed guidance for reasoning. The method improves the reasoning ability
of LLMs and unlocks the value of text.

• We propose a multi-level alignment approach. Specifically, we introduce the Endogenous
Text Alignment (ETA) for representation-level alignment and the Adaptive Frequency Fu-
sion (AFF) for prediction-level alignment. Through comprehensive alignment, we achieve
complementary advantages across both modalities.

• We conduct extensive experiments on 10 real-world datasets from different domains and
achieve state-of-the-art prediction accuracy. Moreover, we conduct thorough ablation and
analysis experiments to demonstrate our effective utilization of text.

2 RELATED WORK

Time Series Forecasting Time series forecasting has evolved from traditional statistical methods
like exponential smoothing (Hyndman & Khandakar, 2008; Li et al., 2022a) to deep learning ap-
proaches. Deep learning methods have rapidly developed and can be broadly categorized into MLP-
based (Zeng et al., 2023), RNN-based (Chung et al., 2014; Kieu et al., 2022; Wen et al., 2017;
Cirstea et al., 2019), CNN-based (Sen et al., 2019; Liu et al., 2022; Wang et al., 2023), GNN-based
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Table 1: Comparison of multimodal time series forecasting methods with text incorporation

Sub-categories Ours GPT4TS TimeLLM TEST CALF CMIN Maformer DualTime Time-MMD TaTS FNSPID GPT4MTS CiK
(2025) (2023b) (2024) (2025a) (2023) (2024) (2024) (2024a) (2025) (2024) (2024) (2024)

LM Usage Feature Extraction ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Reasoning ✓ × × × × × × × × × × × ×

Text Type Endogenous ✓ ✓ ✓ ✓ ✓ × × × × × × × ✓
Exogenous ✓ × × × × ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

(Jin et al., 2023a; Cheng et al., 2024), and Transformer-based (Zhou et al., 2021; Nie et al., 2023;
Liu et al., 2024b; 2025b) models. These models primarily focus on the time series modality.

Multimodal Time Series Forecasting with Text Incorporation. The potential of leveraging textual
information through LLMs for time series prediction has been widely accepted. Some methods like
GPT4TS (Chang et al., 2023), TimeLLM (Jin et al., 2023b), and TEST (Sun et al., 2024) focus on en-
abling LLMs to understand time series through various encoding approaches, while CALF (Liu et al.,
2025a) aligns temporal and text token distributions, and TimeVLM (Zhong et al., 2025) extends to
visual modalities. However, these approaches primarily rely on temporal information without exten-
sive exogenous text utilization. In fields like finance and health with rich multimodal data, CMIN
(Luo et al., 2023), Modality-aware Transformer (Emami-Gohari et al., 2024), DualTime(Zhang et al.,
2024) et al. have started integrating exogenous texts and time series. MM-TSFLib(Liu et al., 2024a)
then extended such text utilization to more fields by collecting time-aligned text-time series datasets
across multiple domains. Building on this, TaTS (Li et al., 2025) discovered that time-aligned text
and time series exhibit similar periodicity. FNSPID (Dong et al., 2024) and GPT4MTS (Jia et al.,
2024) place greater emphasis on text processing, filtering and summarizing text to obtain effective
textual information. CiK (Williams et al., 2024) proposes metrics for textual utility evaluation. As
summarized in Table 1, existing methods either use LMs only for feature extraction or handle only
one text type (endogenous or exogenous). In contrast, our method VoT is the first to jointly leverage
LMs for both feature extraction and reasoning, while supporting both endogenous and exogenous
text, enabling more comprehensive multimodal forecasting.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

Consider a time series X = {x1,x2, ...,xL} ∈ RL×N , where L denotes the length of the look-back
window and N represents the number of variables. Each time point xt ∈ RN is associated with
textual information Tt. As mentioned in the introduction, we divide textual information Tt into two
categories based on their source and characteristics.

Exogenous text Tex (Liu et al., 2024a) originates from external sources such as news articles, policy
announcements, or social media posts, describing events, contexts, and factors that influence the time
series beyond the system itself. Endogenous text Ten (Kowsher et al., 2024) consists of structured
textual descriptions derived directly from time series statistics.

The objective of multimodal time series forecasting is to predict the future H time steps Y =
{xL+1,xL+2, ...,xL+H} ∈ RH×N by leveraging both historical observations and their associated
textual information:

Ŷ = F(X,Tex,Ten; θ) (1)

where Ŷ ∈ RH×N represents the predicted values, F denotes the multimodal forecasting model,
and θ encompasses all learnable parameters.

3.2 OVERVIEW

To maximize text utilization and enable mutual complementarity between textual and temporal infor-
mation, we propose a dual-branch architecture that comprehensively leverages both exogenous and
endogenous textual information. As illustrated in Figure 2, our method consists of two complemen-
tary branches that supports Event-driven Reasoning and Multi-level Alignment. The event-driven
prediction branch primarily focuses on extracting predictive information from the exogenous text
and the numerical prediction branch aligns time series with the generated endogenous text. For
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Figure 2: Overview of the proposed dual-branch multimodal forecasting framework. The event-
driven branch processes exogenous text through a three-step generative pipeline with the Historical
In-Context Learning (HIC). The numerical branch aligns endogenous text with time series via the
Endogenous Text Alignment (ETA). The Adaptive Frequency Fusion (AFF) combines both predic-
tions across frequency bands with adaptive weights.

Event-driven Reasoning, the event-driven prediction branch extracts contextual information from
exogenous text through a three-step generative pipeline. The pipeline is powered by the Historical
In-Context Learning (HIC). Multi-level Alignment is designed to fully integrate the predictive capa-
bilities of two modalities. At the representation level, the numerical prediction branch employs an
Endogenous Text Alignment (ETA) to extract textual features aligned with time series patterns. At
the prediction level, we introduce Adaptive Frequency Fusion (AFF). It fuses the frequency compo-
nents of event-driven prediction and numerical prediction. Rather than assuming fixed influence of
exogenous text on time series, AFF learns optimal fusion strategies directly from the dataset through
Fourier decomposition and learnable frequency-specific weights.

3.3 EVENT-DRIVEN REASONING

Retrieval

Prediction

Prediction

Correction
Knowledge Base

embedding

Correct

Training

Inference

Summary

Summary

Truth

Reasoning

Reasoning

Figure 3: The processing procedure of
the Historical In-Context Learning.

To strengthen the reasoning capabilities of LLMs for
time series forecasting, we propose a three-step genera-
tive pipeline including template generation, summariza-
tion, and reasoning. It converts exogenous text into event-
driven numerical predictions enriched with contextual in-
formation. Additionally, we propose the Historical In-
Context Learning (HIC) . It keeps historical reasoning
samples during training and retrieves similar examples
as error-informed guidance during inference, as shown in
Figure 3. The retrieved examples are corrected to provide
guidance that helps avoid similar errors. By integrating
these examples, LLMs are enhanced to generate accurate
and error-informed predictions.

3.3.1 GENERATIVE PIPELINE

To process exogenous text Tex into numerical predictions, we implement a three-step generative
pipeline. First, LM generates a dataset-specific template D based on the dataset description and
exogenous text-time series samples, which serves as a structured dictionary containing key-value
mappings that guide the extraction of predictive information. Second, we use this template D to
generate summaries Si from raw exogenous text Tex

i and time series Xi, filtering redundant infor-
mation while preserving the information influential to time series forecasting. Finally, we employ
the Reasoner, which is a reasoning model to process these summaries and generate predictions:

Ŷevent
i ,Ri = Reasoner(Preason,Si,Xi) (2)

The reasoning model Reasoner generates both the numerical prediction Ŷevent
i ∈ RH×N and the

explanatory reasoning process Ri. Preason is a carefully designed prompt that guides the LLM to per-
form structured reasoning from summaries Si and time series Xi to numerical predictions. However,
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this basic pipeline operates in an unsupervised manner, which may introduce suboptimal guidance
for numerical prediction patterns, potentially amplifying prediction errors. Accordingly, we design
the Historical In-Context Learning (HIC) to solve the problem.

3.3.2 HISTORICAL IN-CONTEXT LEARNING

To make the prediction more accurate, we introduce Historical In-Context Learning (HIC), which
synergizes historical reasoning information with In-Context Learning (ICL), as shown in Figure 3.
During training, it corrects the reasoning process with ground-truth and keeps the corrected samples.
The optimized reasoning process of the corrected samples keeps information about why errors exist
and correct reasoning strategies. During inference, it retrieves the most similar historical example
and integrates it into the reasoning prompt to obtain error-informed guidance and accurately forecast.

Knowledge Base Construction. During training, HIC builds a Knowledge Base K by learning from
prediction errors. As mentioned, the Reasoner generates initial predictions Ŷevent

i and reasoning
processes Ri. After that, the Reasoner creates corrected reasoning Ci using ground truth Yi:

Ci = Reasoner(Pcorrect, Ŷ
event
i ,Ri,Yi,Xi) (3)

where Pcorrect is the prompt that guides the Reasoner to identify and understand what caused the
error between the initial predictions Ŷevent

i and the ground-truth Yi. Correction Ci explains how
to accurately derive the actual values given the context, and crucially, it contains analysis of the
previous prediction errors, which helps Reasoner better understand and avoid similar errors in the
future. The Knowledge Base K stores pairs of summary embeddings of summaries {Si}Mi=1 and
their corresponding correction {Ci}Mi=1:

K = {(Embed(Si), Ci)}Mi=1 (4)
where M denotes the number of training samples, Embed is an embedding model.

Retrieval-Guided Prediction. During inference, HIC retrieves the most similar historical example
from K to obtain error-informed guidance for forecasting. Given a data pair (Xj ,T

ex
j ), first LM

generates the summary Sj . Then using the embedding of the summary Sj , HIC retrieves the most
similar example in the Knowledge Base:

ĩ = arg max
(Si,Ci)∈K

simi(Embed(Sj),Embed(Si)) (5)

where simi is the similarity metric. The retrieved corresponding correction Cĩ serves as an in-context
example, improving the reasoning accuracy with error-informed guidance:

Ŷevent
j = Reasoner(PICL, Cĩ,Sj ,Xj) (6)

where PICL is the prompt that combines the retrieved correction Cĩ as guidance for current inference.

By retrieving historically corrected reasoning patterns, HIC provides error-informed guidance for
LLMs. The error-informed learning helps the model understand how exogenous text impacts time
series, thereby improving predictions when similar event-driven fluctuations occur. Moreover, HIC
achieves this without requiring expensive fine-tuning, making it efficient and scalable across differ-
ent forecasting domains.

Event-driven Reasoning generates numerical predictions by leveraging semantic information in ex-
ogenous text and capturing event-driven dynamics. Through correcting the reasoning process, con-
structing a knowledge base, and implementing a retrieve-and-guide mechanism, our approach en-
hances the reasoning ability of LLM while maximizing text utilization.

3.4 MULTI-LEVEL ALIGNMENT

While the event-driven prediction branch excels at capturing external influences through exogenous
text, not all temporal variations are reflected in or captured by exogenous text. Some data follow
intrinsic patterns that are better captured through numerical analysis. To fully leverage the advan-
tages of both modalities, we design a Multi-level Alignment method. It performs representation-level
alignment with endogenous text via the Endogenous Text Alignment (ETA) of the numerical branch.
In the prediction level, it employs Adaptive Frequency Fusion (AFF) to align exogenous text predic-
tion with numerical prediction and integrate results from both branches . The outputs obtained after
deep alignment obtain the complementary advantages of both modalities.
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3.4.1 REPRESENTATION-LEVEL ALIGNMENT
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Figure 4: The processing procedure of the En-
dogenous Text Alignment (ETA).

To achieve representation-level alignment, the
numerical prediction branch employs an En-
dogenous Text Alignment (ETA), as shown in
Figure 4. This module establishes deep seman-
tic alignment between temporal patterns and
their textual representations using decomposed
pattern extraction and decomposed contrastive
learning. Considering that trend and seasonal-
ity are intrinsic properties of time series, ETA
similarly extracts corresponding textual repre-
sentations to achieve fine-grained alignment be-
tween endogenous text and temporal patterns.

Time Series and Text Encoding. We encode
the input time series X ∈ RL×N using an en-
coder to obtain temporal representations Hts ∈ RN×dts

. Simultaneously, we generate endogenous
text Ten by converting statistical descriptors such as mean and frequency into structured textual
descriptions, which are then encoded using a LM to obtain text embeddings Htext ∈ RLtext×dtext

,
where L and Ltext denote the sequence length and text token length respectively, N is the number of
variables, and dts, dtext are the embedding dimensions for time series and text respectively.

Decomposed Pattern Extraction. Our decomposed pattern extraction first employs the dual-query
attention to filter semantic components from text. First, we use learnable queries Qtr,Qse ∈ RN×dtext

to extract trend and seasonal information Etr,Ese ∈ RN×dtext
related to time series from textual

representations:

Etr = Attention(Qtr,Htext,Htext), Ese = Attention(Qse,Htext,Htext) (7)

Then, the ETA performs ts-text attention to align temporal representations with extracted textual
components, obtaining further aligned representations Ztr and Zse (cross-modal aligned features):

Z∗ = Cross-Attention(Proj(Hts),E∗,E∗), ∗ ∈ {tr, se} (8)

where Proj(·) : Rdts → Rdtext
projects time series embeddings to the text embedding space, and

Ztr,Zse ∈ RN×dtext
are the aligned trend and seasonal representations that combine information

from both modalities. To map these representations to the time series space for fusion, we apply:

Z̃∗ = Projinv(Z
∗), ∗ ∈ {tr, se} (9)

where Projinv(·) : Rdtext → Rdts
, yielding Z̃tr, Z̃se ∈ RN×dts

.

Deep Semantic Alignment via Decomposed Contrastive Learning. To achieve deep semantic
alignment between temporal patterns and textual representations, we employ contrastive learning
at the sample level. We first decompose the temporal representations Hts

i into trend and seasonal
components to obtain Htr

i and Hse
i . Then, we get the mean representation H̄tr

i , H̄
se
i ∈ Rdts

and
Z̄tr

i , Z̄
se
i ∈ Rdts

. We compute the contrastive loss for each component pair.

Lalign =
1

2

∑
(− log

exp(sim(H̄*
i , Z̄

*
i ))∑B

j=1 exp(sim(H̄*
i , Z̄

*
j))

− log
exp(sim(Z̄*

i , H̄
*
i ))∑B

j=1 exp(sim(Z̄*
i , H̄

*
j))

), ∗ ∈ {tr, se}

(10)
where sim(·, ·) denotes cosine similarity and B is the batch size. The total alignment loss combines
both trend and seasonal components. This objective ensures that corresponding trend and seasonal
components from both modalities are aligned in a shared representation space.

After completing the modal alignment, the numerical prediction output Ynum is generated by fus-
ing temporal and text representations. Specifically, the calculation formula of Ynum is defined as
Ynum = 1

2H
ts + 1

2 (Z̃
tr + Z̃se), where Hts represents the original temporal representation, and

(Z̃tr, Z̃se) denotes the text-derived representations corresponding to trend and seasonal components
respectively. The fusion process adopts equal weight allocation to balance the contributions of tem-
poral and textual information.
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3.4.2 PREDICTION-LEVEL ALIGNMENT

Event-driven predictions excel at capturing patterns influenced by external factors, while not all tem-
poral variations are reflected in or captured by textual information. These complementary strengths
can potentially be integrated through frequency-based approaches. Therefore, at the prediction level,
we introduce Adaptive Frequency Fusion (AFF) to dynamically adjust the importance of different
frequency components, thereby leveraging the complementary strengths of textual and numerical
information across frequency bands.

Adaptive Frequency Fusion. We decompose both branch predictions into frequency components:

Fnum = FFT(Ŷnum), F event = FFT(Ŷevent) (11)

The spectrum is partitioned into three bands based on frequency. We extract band-specific compo-
nents with mask M:

Fb
∗ = F∗ ⊙Mb, ∗ ∈ {num, event}, b ∈ {low,mid, high} (12)

Instead of using fixed fusion ratios, we introduce learnable weights w = wb
∗, ∗ ∈ {num, event}, b ∈

{low,mid, high} that adapt to data characteristics:

Ffused =
∑
∗

∑
b

wb
∗Fb

∗ , ∗ ∈ {num, event}, b ∈ {low,mid, high}, Ŷfinal = iFFT(Ffused) (13)

Training Objective. Our model is trained with a composite loss function:

Ltotal = Lts + Lalign + Lfinal (14)

where Lts = MSE(Ŷts,Y) maintains base temporal prediction capability and Ŷts is from the nu-
merical branch without ETA. Lalign enforces cross-modal alignment via contrastive learning, and
Lfinal = MSE(Ŷfinal,Y) optimizes the fused prediction accuracy.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate VoT on 10 real-world multimodal time series datasets. 9 datasets are sourced
from the MM-TSFLib benchmark (Liu et al., 2024a), covering diverse domains including Agricul-
ture, Climate, Economy, Energy, Public Health (United States), Environment, Traffic, and Security.
Notably, the original Economy dataset in MM-TSFLib is arranged in reverse temporal order. We
reorder this dataset temporally to align with the natural progression of events and maintain temporal
consistency. Additionally, we introduce a new Weather dataset containing multimodal meteorolog-
ical observations. We follow the experimental settings from MM-TSFlib (Liu et al., 2024a) for
dataset preprocessing and forecasting configurations. Detailed dataset descriptions are provided in
the Appendix A.1. Notably, we do not apply the “Drop Last” trick to ensure a fair comparison
following the settings (Qiu et al., 2024).

Baselines. We compare VoT against eleven representative baselines: three time series-only meth-
ods including iTransformer (Liu et al., 2024b), PatchTST (Nie et al., 2023), and RAFT (Han et al.,
2025); three text-enhanced variants iTransformer*, PatchTST*, and RAFT* that incorporate textual
information through the Time-MMD framework (Liu et al., 2024a); and five multimodal forecast-
ing methods including GPT4TS (Chang et al., 2023), GPT4MTS (Jia et al., 2024), TaTS (Li et al.,
2025), Time-VLM (Zhong et al., 2025) and CALF (Liu et al., 2025a). All baselines are imple-
mented using their official code repositories when available, with consistent experimental settings
and hyperparameter tuning on the validation set.

Metrics. We adopt two standard metrics in time series forecasting: Mean Squared Error (MSE)
and Mean Absolute Error (MAE). MSE emphasizes larger errors and is more sensitive to outliers,
while MAE provides a more interpretable measure of average prediction error. We report averaged
results across all prediction horizons for comprehensive evaluation in the 4.2, with detailed results
for individual horizons provided in the G.
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Table 2: Forecasting results of time series-only, text-enhanced, and our methods. The best results
are highlighted in bold, and the second-best results are underlined.

Category Time series-only Text-enhanced
Models Ours PatchTST (2023) iTransformer (2024b) RaFT (2025) PatchTST* iTransformer* RaFT*
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Agriculture 0.209 0.302 0.228 0.303 0.220 0.308 0.226 0.322 0.232 0.316 0.229 0.310 0.246 0.333
Climate 1.078 0.840 1.184 0.888 1.135 0.865 1.289 0.926 1.178 0.887 1.117 0.858 1.342 0.944

Economy 0.201 0.353 0.210 0.363 0.222 0.378 0.265 0.411 0.219 0.370 0.213 0.367 0.275 0.420
Energy 0.222 0.343 0.250 0.363 0.269 0.382 0.254 0.367 0.253 0.365 0.265 0.383 0.246 0.360

Environment 0.268 0.380 0.317 0.395 0.276 0.386 0.339 0.423 0.318 0.397 0.278 0.390 0.337 0.422
Health 1.205 0.714 1.432 0.804 1.519 0.833 1.833 0.975 1.360 0.768 1.713 0.915 1.788 0.963

Security 70.117 3.937 72.027 4.062 75.042 4.217 77.204 4.473 72.721 4.177 74.032 4.154 76.587 4.448
Social Good 0.804 0.389 0.944 0.475 0.961 0.463 0.968 0.484 0.909 0.427 1.027 0.515 0.970 0.477

Traffic 0.169 0.232 0.176 0.234 0.184 0.238 0.288 0.382 0.174 0.239 0.184 0.237 0.300 0.394
Weather 0.968 0.706 1.145 0.751 1.231 0.803 1.099 0.746 1.036 0.707 1.004 0.709 1.096 0.745

1st counts 20 0 0 0 0 0 0

Table 3: Forecasting results of multimodal methods and ours. The best results are highlighted in
bold, and the second-best results are underlined.

Models Ours GPT4TS (2025) GPT4MTS (2024) TaTS (2025) Time-VLM (2025) CALF (2025a)
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Agriculture 0.209 0.302 0.220 0.294 0.225 0.298 0.215 0.301 0.238 0.303 0.250 0.315
Climate 1.078 0.840 1.184 0.891 1.182 0.889 1.180 0.887 1.195 0.899 1.286 0.922

Economy 0.201 0.353 0.217 0.371 0.208 0.363 0.215 0.368 0.229 0.384 0.207 0.357
Energy 0.222 0.343 0.260 0.376 0.262 0.380 0.255 0.368 0.260 0.374 0.244 0.365

Environment 0.268 0.380 0.322 0.393 0.323 0.400 0.319 0.396 0.320 0.398 0.325 0.387
Health 1.205 0.714 1.341 0.777 1.464 0.799 1.356 0.767 1.490 0.835 1.491 0.775

Security 70.117 3.937 71.165 4.047 71.487 4.068 72.406 4.097 73.731 4.182 76.376 4.300
Social Good 0.804 0.389 0.917 0.476 0.920 0.450 0.918 0.428 0.869 0.444 0.906 0.401

Traffic 0.169 0.232 0.206 0.266 0.203 0.261 0.179 0.238 0.217 0.320 0.222 0.293
Weather 0.968 0.706 1.048 0.708 0.986 0.711 1.037 0.706 1.061 0.717 1.098 0.714

1st counts 19 1 0 1 0 0

4.2 MAIN RESULTS

Tables 2 and 3 present the outcomes of our comprehensive evaluation across 10 real-world multi-
modal time series datasets. Our method achieves the best performance on nearly all datasets, ranking
first in all 20 metrics against time series-only and text-enhanced baselines, and 19 out of 20 met-
rics against multimodal methods. This dominant performance across diverse domains demonstrates
the effectiveness of our Event-driven Reasoning and Multi-level Alignment approach in leveraging
both exogenous and endogenous textual information. Notably, our method demonstrates superior
performance across diverse domains, particularly excelling on datasets that are susceptible to event
influence and rich in exogenous textual information, such as Energy and Social Good.

4.3 MODEL ANALYSIS

4.3.1 ABLATION STUDIES

To validate the effectiveness of each component in our model, we conduct ablation studies on the En-
ergy and Social Good datasets. Table 4 presents the ablation results. The TS-only baseline achieves
0.250/0.944 MSE on Energy/Social Good, demonstrating significant performance gaps compared
to our full method (0.222/0.804). Removing ETA (w/o ETA) degrades performance to 0.241/0.840
MSE, confirming that structured textual descriptions enhance pattern recognition. Without HIC (w/o
HIC), performance drops to 0.238/0.845 MSE, with more significant degradation on Social Good,
validating that the retrieve-and-guide mechanism is crucial for event-driven forecasting. Without
it, the LLM cannot be effectively guided in its reasoning process. Notably, removing HIC results
in worse performance than removing the entire event-driven branch (w/o Event), suggesting that
unguided LLM reasoning can be more detrimental than no reasoning at all. When equipped with
proper guidance, the event-driven branch becomes highly effective, as evidenced by the significant
performance gap between our full model (0.222/0.804) and the w/o Event baseline (0.232/0.841).

4.3.2 TEXT ANALYSIS

To verify whether the event-driven branch of VoT truly captures semantic information from text to
enhance time series forecasting, we conduct a text replacement experiment. Specifically, we compare
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TS-

only

w/o 

ETA

w/o 

HIC

w/o 

Event
ours

Energy
MSE 0.250 0.241 0.238 0.243 0.222 

MAE 0.363 0.355 0.363 0.360 0.343 

Social

Good

MSE 0.944 0.840 0.845 0.876 0.804 

MAE 0.475 0.424 0.410 0.436 0.389

HIC

ETA

AFF

Event

Num

Table 4: Ablation study results on Energy and
Social Good datasets

0.222 

0.272 

0.306 

0.343 

0.379 

0.400 

Exogenous

Statistics

Random text

Energy

0.804 

0.899 

0.923 

0.389 

0.475 

0.463 

Social Good

0MAE MSE

Figure 5: Ablation study on different text sources
for event-driven reasoning.

our approach using exogenous text with two alternatives: randomly generated text and statistics-
based text derived from the time series. As shown in Figure 5, results clearly demonstrate the
superiority of exogenous text across both datasets. On the Energy dataset, exogenous text achieves
27.5% lower MSE and 14.3% lower MAE compared to random text. Similar improvements are
observed on the Social Good dataset with 12.8% MSE reduction and 16.0% MAE reduction. The
statistics show intermediate performance, suggesting that while time series-derived features provide
some value, they cannot match the rich contextual information from real-world exogenous sources.
This confirms that it is of great significance for us to propose an event-driven prediction branch and
incorporate exogenous texts into the multimodal time series forecasting methods.

4.3.3 ADAPTIVE FREQUENCY FUSION ANALYSIS

To further validate the necessity of the AFF, we conduct frequency-domain analysis on the Social
Good dataset, as shown in Figure 6. We apply different frequency filters to analyze the frequency
characteristics of each branch. In Figure 6 (b), the low-pass filtered signals (0-10% frequencies), the
event-driven branch aligns more closely with the ground truth than the TS-only branch, demonstrat-
ing its strength in capturing trend patterns and event-induced shifts; In Figure 6 (c), the high-pass
filtered signals (70-100% frequencies), the TS-only method better matches the ground truth, effec-
tively capturing short-term fluctuations and periodic patterns; In Figure 6 (d), the band-pass filtered
signals (10-70% frequencies) reveal increased similarity among all methods, indicating dissimilarity
is much more prevalent in high and low frequencies. These observations empirically confirm that
different prediction branches excel in distinct frequency bands, highlighting the need for frequency
fusion methods. Since different datasets exhibit varying degrees of correlation with events, result-
ing in different frequency component distributions, adaptive fusion is necessary. This validates the
necessity and effectiveness of our AFF over fixed combination strategies.

(a) Original (b) Low-pass (c) High-pass (d) Band-pass

Figure 6: Frequency domain analysis of time series predictions (Social Good). (a)Original signals
comparing ground truth. (b)-(d) Frequency-filtered components: (b) Low-pass filtered signals, (c)
High-pass filtered signals, and (d) Band-pass filtered signals. Ground Truth (blue), Time series-only
prediction (pink), and event-driven prediction (green)

.5 CONCLUSION
In this paper, we presented VoT, a multimodal time series forecasting method that unlocks the
value of textual information through Event-driven Reasoning and Multi-level Alignment. Our ap-
proach leverages both exogenous and endogenous text via a dual-branch architecture, where His-
torical In-Context Learning enables LLMs to learn from historical prediction errors, Endogenous
Text Alignment bridges the semantic gap between modalities, and Adaptive Frequency Fusion dy-
namically combines their complementary strengths. Extensive experiments across 10 real-world
datasets demonstrate that VoT achieves state-of-the-art performance, particularly excelling on event-
influenced domains. Our work establishes that textual information provides irreplaceable contextual
guidance for time series forecasting, and that effectively integrating these textual contexts with nu-
merical patterns is crucial for advancing beyond the limitations of single-modality approaches.
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A EXPERIMENTAL DETAILS

A.1 DATASETS

Our experiments utilize 10 multimodal time series datasets from two sources: MM-TSFLib
Datasets (Liu et al., 2024a): We adopt 9 datasets from the MM-TSFLib benchmark, maintaining
their original preprocessing and alignment procedures. These datasets span:

• Agriculture: USDA broiler market prices with weekly market reports

• Climate: NOAA drought indices with monthly climate reports

• Economy: US international trade balance (chronologically reordered for our experiments)

• Energy: Weekly US gasoline prices from EIA

• Health: CDC influenza-like illness statistics

• Environment: New York EPA air quality measurements

• Traffic: FHWA vehicle miles traveled statistics

• Security: FEMA disaster declarations

Weather Dataset: We introduce a new multimodal dataset containing hourly observations of
weather. Each data point includes four numeric variables (MINTEMP, MAXTEMP, HUMIDITY,
MAXHUMIDITY(OT)) aligned with natural language weather descriptions. The OT variable rep-
resents the maximum humidity in local regions.

We follow the experimental settings from MM-TSFLib (Liu et al., 2024a), with configurations vary-
ing based on data reporting frequency:

For Environment and Weather datasets, we use a lookback window of L = 96 time steps, with
forecasting horizons H ∈ {48, 96, 192, 336} and a label window size of 48 for the decoder.

For Health and Energy datasets, the lookback window is set to L = 36, with forecasting horizons
H ∈ {12, 24, 36, 48} and a label window size of 18.

For Agriculture, Climate, Economy, Security, Social Good, and Traffic datasets, we employ a look-
back window of L = 8, forecasting horizons H ∈ {6, 8, 10, 12}, and a label window size of 4.

A.2 DATASET SPLIT AND TIME LEAKAGE MITIGATION

Our dataset split is time-based. The first 70% of the data in temporal order serves as the training set,
the 70%-80% segment serves as the validation set, and the latest 20% serves as the test set. There is
no temporal overlap between the training, validation, and test sets. When constructing the knowledge
base, we exclusively use relevant data from the training set. During the inference phase, that is, when
the input is from the validation or test set, retrieving examples from the knowledge database only
returns training-set data. All these data are temporally prior to the data in the validation and test sets,
so no time leakage occurs.

A.3 BASELINES

We evaluate our approach against nine representative baselines spanning from pure time series meth-
ods to multimodal forecasting approaches. The baselines are selected based on their state-of-the-art
performance and represent diverse architectural designs from recent years. The specific code repos-
itories for each model are shown in Table 5

For the text-enhanced variants (marked with *), we integrate textual information following the Time-
MMD framework implementation, which concatenates text embeddings with time series representa-
tions before the prediction layer. All models are evaluated under identical experimental conditions
with consistent data preprocessing and hyperparameter tuning protocols.
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Table 5: Implementation details and code repositories for baseline methods

Category Method Repository

Time Series
Only

iTransformer https://github.com/thuml/iTransformer
PatchTST https://github.com/yuqinie98/PatchTST
RAFT https://github.com/archon159/RAFT

Text-Enhanced
(Time-MMD)

iTransformer* Based on iTransformer with Time-MMD text integration
PatchTST* Based on PatchTST with Time-MMD text integration
RAFT* Based on RAFT with Time-MMD text integration
Time-MMD https://github.com/AdityaLab/MM-TSFlib

Multimodal
Forecasting

GPT4TS https://github.com/blacksnail789521/LLM4TS
GPT4MTS https://github.com/Flora-jia-jfr/GPT4MTS-Prompt-based-

Large-Language-Model-for-Multimodal-timeseries-Forecasting
TaTS https://github.com/iDEA-iSAIL-Lab-UIUC/TaTS
TimeVLM https://github.com/CityMind-Lab/ICML25-TimeVLM
CALF https://github.com/Hank0626/CALF

A.4 DETAILED IMPLEMENTATION SETTINGS

Software Environment. Our implementation uses PyTorch 2.5.0+cu121 with Python 3.10. All
experiments are conducted on Ubuntu 20.04 with CUDA 12.1.

Event-Driven Branch Configuration.

• Template Generation and Summarization: We employ Ollama-wrapped Meta-Llama-3-
8B-Instruct for generating dataset-specific templates and extracting event summaries from
exogenous text.

• Knowledge Base Construction: Historical patterns are embedded using Qwen2-
Embedding-0.6B (768-dimensional vectors) for efficient similarity retrieval.

• Reasoning and Optimization: During inference, we utilize the DeepSeek API for gener-
ating predictions and performing reasoning correction. The most similar historical patterns
is retrieved based on cosine similarity.

Numerical Branch Configuration.

• Backbone Architecture: PatchTST with 2-layer encoder (e layers=2).
• Endogenous Text Generation: GPT-2 converts structured textual descriptions into repre-

sentation.

Adaptive Frequency Fusion Settings.

• Band Partition: Initial partition uses Low (0-10%), Mid (10-70%), High (70-100%) fre-
quency bands. The actual boundaries are adaptively adjusted based on the frequency spec-
trum characteristics of each dataset to ensure effective separation between Low, Mid, and
High components.
We conducted tests under different boundary conditions to evaluate the sensitivity of the
model and presented the results in Figure 7 of the updated version. The figure displays a
heat map of MSE or MAE values with respect to different low- and high-frequency bound-
aries. Through analysis of the results, we observe that with the change of low and high
frequency bounds, the results do not change significantly when the boundary selection is
reasonable. which means low sensitivity.

• Weight Initialization: All six fusion weights w = [0.5, 0.5, 0.5, 0.5, 0.5, 0.5] for balanced
initial contributions from both branches across all frequency bands.

Multi-Stage Training Protocol.

• Stage 1 (Pre-training): Train PatchTST backbone for 10 epochs with MSE loss, learning
rate 1e-4, cosine annealing scheduler.

• Stage 2 (Alignment): Train alignment module for 10 epochs with contrastive loss, learning
rate 1e-3, encoder weights frozen.
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Figure 7: Heat Map of MSE/MAE Values Based on Low-Frequency and High-Frequency Percentage
Cutoffs. The x-axis represents the percentage cutoffs for the low-frequency range, varying from 10%
to 40% of the low-frequency spectrum. The y-axis represents the percentage cutoffs for the high-
frequency range, ranging from 10% to 40% of the high-frequency spectrum. The color intensity in
the map indicates the magnitude of the Mean Squared Error (MSE) or Mean Absolute Error (MAE)

• Stage 3 (Joint Optimization): Fine-tune all components for 30 epochs, learning rate se-
lected from {5e-4, 1e-5} based on validation performance.

Code Availability. The code is made available at https://anonymous.4open.science/
r/VoT-465C.

A.5 EFFCIENCY ANALYSIS

As shown in the Table 6, the total latency is about 5.9s, which is mainly due to the Event-driven
branch. LLM indeed brings additional cost. However, text analysis can bring abundant and valuable
information which can help break the bottleneck of time series forecasting. That’s why we need to
investigate multimodal and additional cost brought by LLM is inevitable. But in most domains where
multimodal is needed, the data is always sampled at a low frequency due to the fact that the collection
of text needs time. And the time gap is enough for us to do the next value prediction. Therefore,
second-level latency is acceptable. And when there is a high demand for real-time performance, we
can use only the numerical branch, which is much faster and also effective.

Table 6: Inference Latency of Main Model Components

Branch / Module Inference Time (s)
Event-driven Branch 5.9
Numerical Branch 0.002
AFF 0.0005

B HISTORICAL IN-CONTEXT LEARNING DESIGN DESCRIPTION

B.1 THE ABLATION OF HIC

We compare our HIC method with simpler retrieval-based approaches and presented the results in the
Table 7. In the Table 7, ”No Retrieval” represents the baseline case where no retrieval mechanism is
used. ”Retrieve TS” refers to the time series retrieval method, where the retrieval score is calculated
as the cosine similarity between time series and the recalled data is time series. ”Retrieve Summary”
is the summary-based retrieval method, comparing the summary embedding similarity and recalling
the summary. ”Full HIC” indicates our complete HIC method.

As the results show, for the Climate dataset, the time series retrieval method slightly outperforms the
”No Retrieval” baseline, but the improvement is marginal. On the SocialGood dataset, the time series
retrieval method even leads to a performance degradation compared to the ”No Retrieval” baseline.
The summary-based retrieval method shows a more significant improvement over the time series
retrieval method in terms of performance metrics. However, our complete HIC method achieves
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the best performance, which indicates that the performance improvement is robust and primarily
attributed to the full HIC module.

Table 7: Ablation Comparison of HIC with Simplified Retrieval Methods

Dataset Method MSE MAE

Climate

No Retrieval 1.151 0.877
Retrieve TS Only 1.137 0.866
Retrieve Summary Only 1.091 0.846
Full HIC 1.078 0.840

SocialGood

No Retrieval 0.845 0.410
Retrieve TS Only 0.853 0.421
Retrieve Summary Only 0.822 0.395
Full HIC 0.804 0.389

B.2 ROBUSTNESS OF HIC WHEN RETRIEVING WITH LOW SIMILARITY

We conducted supplementary experiments to compare the results under different scenarios of similar
example selection. Specifically, we retrieved the 10th - most similar and 100th - most similar exam-
ples to simulate the scenario where there are no close historical examples. The results are shown in
the following Table 8

From these results, it can be observed that as the retrieval range of similar examples changes (from
the 1st-most to the 100th-most similar example), and in comparison with the no-retrieval case (equiv-
alent to disabling some functions of the HIC module), although the model performance fluctuates,
it generally remains relatively stable. This further demonstrates the effectiveness and robustness of
our design under different conditions.

Table 8: Model Robustness to Imperfect Retrieved Examples

Dataset Retrieved Example by Similarity Rank MSE MAE

Energy

1st-most Similar Example 0.222 0.343
10th-most Similar Example 0.229 0.348
100th-most Similar Example 0.233 0.348
No Retrieval 0.238 0.363

SocialGood

1st-most Similar Example 0.804 0.389
10th-most Similar Example 0.807 0.408
100th-most Similar Example 0.833 0.434
No Retrieval 0.865 0.410

B.3 ROBUSTNESS TO NOISY/SPARSE TEXT DATA

We manually created relevant datasets. In our experiments, we introduced two types of modifica-
tions to simulate different real-world scenarios. For the sparse scenarios, we applied 10% and 20%
masking to the text in the datasets. This included both discrete point masking (mask the text Tex

i )
and continuous point masking (mask {Tex

i ,Tex
i+1, ...}). To simulate noisy scenarios, we added 10%

and 20 noise to the text data. The experimental results, presented in the Table 9, show that while
the performance does decrease slightly, the decline is not substantial. Moreover, our method still
outperforms single-branch methods. These results demonstrate the robustness of our approach to
noisy or sparse exogenous text. However, in extreme cases where all data is noisy or there is no
valid text information available, the decline may be significant. In practice, severely degraded text
data can be flagged via quality checks, mitigating negative impacts.
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Table 9: Robustness Test of the Model Against Noisy and Sparse Text Data

Dataset Condition MSE MAE

Climate

Mask 10% (mask10) 1.099 0.850
Mask 20% (mask20) 1.109 0.854
Noise 10% (noise10) 1.098 0.850
Noise 20% (noise20) 1.103 0.854
Our Method (Original) 1.078 0.840

SocialGood

Mask 10% (mask10) 0.822 0.448
Mask 20% (mask20) 0.854 0.451
Noise 10% (noise10) 0.836 0.412
Noise 20% (noise20) 0.876 0.480
Our Method (Original) 0.804 0.389

C ENDOGENOUS TEXT ALIGNMENT DESIGN DESCRIPTION

C.1 ENDOGENOUS TEXT ALIGNMENT ABLATION

The reason for adopting this method is that decomposition is a simple and widely-used technique in
time series analysis. By decomposing the time series into trend and seasonal components, we can
enrich the semantic representation of the time series to a certain degree. This enrichment allows
for better alignment with textual information, facilitating more effective multi-modal interaction. To
further validate the effectiveness of this approach, we conducted supplementary ablation experiments
on the numerical branch. The ”w/o decomposition” condition indicates the absence of trend and
seasonal decomposition, with only standard TS-Text contrastive learning being performed. The
”w/o TS-Text CL” condition means that only time series decomposition is applied, without TS-
Text contrastive learning. The experimental results, as presented in Table 10, demonstrate that our
proposed method, ETA, achieves superior performance compared to alternative designs.

Table 10: Ablation Study on Components of the Event-based Temporal Alignment (ETA)

Dataset Fusion Method MSE MAE

Climate
w/o Decomposition 1.120 0.859
w/o TS-Text CL 1.184 0.888
ETA 1.092 0.848

Energy
w/o Decomposition 0.254 0.368
w/o TS-Text CL 0.250 0.363
ETA 0.232 0.350

SocialGood
w/o Decomposition 0.892 0.440
w/o TS-Text CL 0.944 0.475
ETA 0.841 0.410

C.2 COMPARISON WITH PARAMETER-MATCHED ALTERNATIVES

we use gated-residual, cross-attention and FiLM for representation alignment and compare with
ETA. The results are in Table 11. From these results, it is clear that methods like gated-residual and
FiLM and cross-attention have higher MSE and MAE than ETA. Which means the methods struggle
to effectively align the two highly distinct representation spaces of time series and text.
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Table 11: Ablation Study on Temporal Alignment Methods

Dataset Method MSE MAE

Climate

Gated-Residual 1.230 0.912
Cross-Attention 1.202 0.893
FiLM 1.211 0.897
ETA 1.092 0.848

Energy

Gated-Residual 0.248 0.360
Cross-Attention 0.254 0.369
FiLM 0.252 0.367
ETA 0.232 0.350

SocialGood

Gated-Residual 0.893 0.431
Cross-Attention 0.887 0.427
FiLM 0.894 0.431
ETA 0.841 0.410

D ADAPTIVE FREQUENCY FUSION DESIGN DESCRIPTION

D.1 WHY CHOOSE LEARNABLE WEIGHTS INSTEAD OF LINEAR METHODS

Non-linear methods always have better fit ability. But we use 6 learnable parameter in stead of most
non-linear method here for following reason. We need the Event-driven branch to forecast unseen
patterns that cannot be learned from historical time series data and correct the numerical prediction.
The unseen patterns always cause distribution shift. And we visualized the OT values of these
datasets as shown in the Figure 8. We observe obvious distribution shifts between the training data
and the test data. Therefore, non-linear methods may overfit the patterns learned from the training
data and generalize poorly on the test data. In contrast, AFF uses only 6 parameters and aims to
reflect the influence of text on time series, which generalizes better. We compare the results and
provide them in the table below. The results in Table 12 show our AFF performs better than the
non-linear methods, which support our analysis.

Figure 8: The visualization of the datasets

D.2 EVENT AND NON-EVENT PART ANALYSIS

To distinguish the event part and the non-event part in the data, we visualized the test datasets
of Energy and SocialGood dataset and visually identified event segments (sudden shifts) and non-
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Table 12: Performance Comparison of Fusion Methods on Multiple Datasets

Dataset Fusion Method MSE MAE

Climate
MLP 1.228 0.875
Cross-Attention 1.768 1.055
AFF 1.078 0.840

Energy
MLP 0.685 0.591
Cross-Attention 0.430 0.502
AFF 0.222 0.343

SocialGood
MLP 1.514 0.806
Cross-Attention 1.459 0.842
AFF 0.804 0.389

event segments (stable periods) in the test sets. Subsequently, we computed the MSE and MAE of
the predictions of the two periods from two branches (the event-driven branch and the numerical
branch), as well as the fused final prediction, in comparison with the ground truth. The results are
presented in the Table 13.

Upon analyzing these results, we observed that during the event period, the event-driven branch
performs better than numerical predictions, and during the non-event period, numerical prediction
is better. During the event period, the fusion method outperforms the numerical method, and during
the non-event period, the fusion method is better than the event-driven method. This means the two
predictions are complementary. For both the event part and the non-event part, the fusion method
is better than both the event-driven and numerical prediction methods in some cases. For ’Overall’,
the fusion prediction is always better than the others, which is what we want. This can serve as
proof that event-driven reasoning brings greater benefits to the event-related part than the harm to
the non-event part, and ultimately leads to a better result.

Table 13: Prediction Performance Breakdown in Event and Non-Event Periods

Period Branch Energy SocialGood
MSE MAE MSE MAE

Event Part
Event-driven Branch 0.402 0.450 3.080 0.979
Numerical Branch 0.443 0.523 3.339 1.022
Fusion Result 0.362 0.460 3.084 0.969

Non-Event Part
Event-driven Branch 0.266 0.362 0.116 0.270
Numerical Branch 0.105 0.257 0.068 0.208
Fusion Result 0.125 0.269 0.066 0.205

Overall
Event-driven Branch 0.314 0.391 0.832 0.441
Numerical Branch 0.244 0.360 0.861 0.405
Fusion Result 0.222 0.343 0.804 0.389

Table 14: Pearson Correlation of Frequency Components (SocialGood)

Pred Length Comparison High Freq Low Freq

8 Event-driven vs Ground Truth 0.155412 0.497763
Numerical vs Ground Truth 0.423805 0.458464

10 Event-driven vs Ground Truth 0.265945 0.402431
Numerical vs Ground Truth 0.349408 0.381150

12 Event-driven vs Ground Truth 0.273838 0.466686
Numerical vs Ground Truth 0.310766 0.436835
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E LLM GENERATION EXAMPLES FOR EVENT-DRIVEN PREDICTION

This section demonstrates the complete event-driven prediction pipeline through concrete examples
from our US unemployment rate forecasting experiments.
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Figure 9: Illustration of the LLM generation pipeline for event-driven prediction. The process flows
from template generation through summarization to reasoning, enhanced by Historical In-Context
Learning that provides error-informed examples as guidance for improved forecasting accuracy.

E.1 DATASET TEMPLATE GENERATION

• Prompt Template:

prompt = f"""You are a professional data scientist. Based on the first 10 records
{sample data pairs} and dataset description{dataset description}, generate a
summary template for OT value prediction with domain knowledge..."""

• Generated Template (SocialGood Dataset):

{
"Dataset Name": "Unemployment Rate OT Value Prediction Dataset",
"Description": "Monthly unemployment statistics for the United States,

disaggregated by race",
"Data Type": "Time series data, text data",
"Data Source": "U.S. Department of Labor, BLS",
"Time Span": "1954 to present (monthly data), 1994 to present (annual

reports), 1979 to 1980 (text data)",
"Sampling Method": "Comprehensive data from official reports",
"OT Value": "Unemployment Rate",
"Significance": "Indicator of economic health and societal impact",
"Possible Relationships": {

"Temporal": "OT value changes over time",
"Spatial": "Racial disparities in unemployment rates",
"Causal": "Economic policies and demographic changes"

},
"Features for Prediction": {

"Trends in Time Series": "Historical trends and seasonality",
"Key Information in Text Content": "Economic indicators and policy

changes",
"Domain Knowledge": "Economics, labor markets, and demographic trends"

},
"Trend Analysis for Prediction": {

"Short-Term Trends": "Recent fluctuations in the OT value",
"Long-Term Trends": "Historical patterns and future projections",
"Cyclical Trends": "Business cycle impact",
"Demographic Trends": "Changes in population size and structure"

}
}

E.2 SUMMARY GENERATION

• Prompt Template:
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base_prompt = f"""You are a professional data scientist analyzing a specific time
window of data.
TASK
Generate a NEW and UNIQUE analytical summary for this specific time window
(start_time} to {end_time}) of the dataset_name dataset.
REFERENCE INFORMATION (DO NOT COPY-ONLY FOR CONTEXT)
{dataset description}
REQUIRED OUTPUT STRUCTURE
Your output must follow this JSON structure, but with YOUR OWN analysis:
{template}
INPUT DATA TO ANALYZE
Time Series Data for this window:
{time_series_str}
Text Data for this window:
{texts_str}
"""

instructions = """
IMPORTANT INSTRUCTIONS:
1. Your output must be a valid JSON object only.
2. DO NOT COPY descriptions from the reference information!
3. CREATE NEW analysis specific to THIS time window data.
4. Focus on the trends, patterns, and insights from THIS specific time period.
5. Your analysis should reflect what’s happening in the provided time series and
text data.
Respond with ONLY the requested JSON object."""

• Training Window #611 Summary (Dec 2000-Jul 2001):

{
"Dataset Name": "US Racial Unemployment OT Value Prediction Dataset",
"Description": "Monthly unemployment statistics for the United States,

disaggregated by racial groups",
"Data Type": "Time series data, text data",
"Data Source": "U.S. Bureau of Labor Statistics (BLS)",
"Time Span": "August 2001 to March 2002 (monthly data)",
"Sampling Method": "Comprehensive data from official employment reports",
"OT Value": "Average Unemployment Rate Across All Groups",
"Significance": "Indicator of workforce dynamics and policy implications",
"Possible Relationships": {

"Temporal": "Seasonal fluctuations influenced by macroeconomic factors",
"Spatial": "Regional differences impacted by industry composition and

skill requirements",
"Causal": "GDP changes, monetary policy, and post-9/11 economic impacts"

},
"Features for Prediction": {

"Trends in Time Series": "Historical seasonality and unemployment
patterns",

"Key Information in Text Content": "Macroeconomic indicators and industry
composition changes",

"Domain Knowledge": "Labor economics, racial demographics, and economic
shocks"

},
"Trend Analysis for Prediction": {

"Short-Term Trends": "Overall downward trend during specified period (90%
confidence)",

"Long-Term Trends": "Historical unemployment patterns across racial
groups",

"Cyclical Trends": "Increased variability post-9/11 attacks (80%
confidence)",

"Demographic Trends": "Variations in unemployment rates by racial group"
},
"OT": "[4.9, 4.7, 5.0, 5.3, 5.4, 6.3, 6.1, 6.1]"

}

• Test Window #719 Summary (Dec 2009-Jul 2010):
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{
"Dataset Name": "US Unemployment Trend Analysis",
"Description": "Analyzing the trend of unemployment rate in the US from Dec

2009 to Jul 2010.",
"Data Type": "Mixed time series and text data",
"Data Source": "Bureau of Labor Statistics (BLS)",
"Time Span": "Dec 2009-Jul 2010",
"Sampling Method": "Regular reporting from multiple sources including

government agencies and academic institutions",
"OT Value": "US Unemployment Rate",
"Significance": "Indicates the overall health of the US economy and potential

impact on society",
"Possible Relationships": {

"Temporal": "Seasonal fluctuations and historical trends influencing
current unemployment rate",

"Spatial": "Regional differences in unemployment rates indicating localized
economic conditions"

},
"Features for Prediction": {

"Trends in Time Series": "Identifying short-term and medium-term trends
based on past performance",

"Key Information in Text Content": "Understanding the underlying causes of
unemployment through contextual analysis",

"Domain Knowledge": "Familiarity with macroeconomic factors affecting
employment rates"

},
"Trend Analysis for Prediction": {

"Short-Term Trends": "Notable decline in unemployment rate after reaching
peak in Mar-Apr 2010 followed by slight rebound before stabilizing near initial
values",

"Long-Term Trends": "Gradual upward movement since Sep-Dec 2009 indicates
stabilization of workforce participation",

"Cyclical Trends": "Influence of business cycles contributing to periods of
accelerated hiring and layoffs throughout observation window",

"Demographic Trends": "Shift toward part-time/full-time employment
distributions possibly linked to seasonal variations in service sector
activities"

},
"OT": "[9.7, 10.6, 10.4, 10.2, 9.5, 9.3, 9.6, 9.7]"

}

E.3 INITIAL PREDICTION AND CORRECTED REASONING

• Prompt Template:

prompt = f"""<s>[INST] You are a quantitative analyst specializing in multimodal
time series forecasting.
- Window Length: {window_size}
- Prediction Length: {prediction_length}
TASK: Predict next {prediction_length} values for {dataset_name} using textual
summary and window data.
ANALYSIS:
1. Textual Intelligence: Extract insights from summary
2. Numerical Patterns: Identify trends and cycles
3. Domain Knowledge: Apply sector understanding
EXAMPLE: {fixed_example}
SUMMARY: {summary}
OUTPUT: JSON format exactly:
‘‘‘json

"Prediction": "",
"Reasoning": "Brief explanation of key factors driving the prediction"

‘‘‘
[/INST]</s>"""

• Initial Prediction for Window #611:
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{
"Summary..."
"predicted_values": [6.0, 5.8, 5.6, 5.5, 5.4, 5.3, 5.2, 5.1, 5.0, 4.9, 4.8,

4.7],
"actual_values": [5.7, 5.5, 6.0, 5.9, 5.7, 5.4, 5.3, 5.6, 5.7, 6.5, 6.4,

6.2],
"original_reasoning": "The prediction reflects a gradual downward trend in

unemployment rates, consistent with the 90% confidence level for an overall
decline. The initial higher values account for post-9/11 variability (80%
confidence), followed by stabilization as macroeconomic recovery takes effect.
Seasonal adjustments and improving economic indicators suggest a return to
pre-shock levels over the 12-month horizon.",

"ot_values": "[4.9, 4.7, 5.0, 5.3, 5.4, 6.3, 6.1, 6.1]"
}

• Prompt Template:

prompt = f"""<s>[INST] You are an expert analyst tasked with improving prediction
reasoning by learning from actual outcomes.
DATASET: dataset_name
WINDOW SUMMARY: {summary}
PREDICTION ANALYSIS:
- Original Prediction: {Original Prediction}
- Actual Values: actual_str
ORIGINAL REASONING: {original_reasoning}
TASK: Rewrite the reasoning process by incorporating insights from the actual
outcomes. Focus on:
1. Pattern Recognition: What patterns in the actual data were missed or correctly
identified?
2. Factor Analysis: Which factors had stronger/weaker impact than initially
predicted?
3. Trend Understanding: How did the actual trend differ from expectations?
4. Domain Insights: What domain-specific knowledge can be extracted from this
comparison?
OUTPUT: JSON format exactly:
‘‘‘json
{

"Improved_Reasoning": "Comprehensive analysis incorporating actual outcomes
and improved understanding",

"Key_Insights": "3-5 bullet points of key learnings from this prediction vs
reality comparison",

"Prediction_Factors": "Updated understanding of the most important prediction
factors"
}
‘‘‘
[/INST]</s>"""

• Corrected Reasoning:

{
"Summary..."
"original_reasoning..."
"improved_reasoning": "The original prediction anticipated a gradual

downward trend in unemployment rates, influenced by post-9/11 variability and
macroeconomic recovery. However, the actual data revealed a more complex pattern,
with fluctuations that did not align with the expected stabilization. Notably,
the actual unemployment rates showed heightened variability and an upward trend
toward the end of the period, contrary to the predicted decline. This discrepancy
suggests that the initial model underestimated the lingering effects of the 9/11
attacks and overestimated the speed of economic recovery. Incorporating these
insights, future predictions should account for prolonged external shocks and
their nonlinear impacts on unemployment trends.",

"key_insights": [
"The actual data exhibited more variability and an upward trend toward the

end of the period, contrary to the predicted gradual decline.",
"The lingering effects of the 9/11 attacks had a more prolonged and severe

impact on unemployment rates than initially anticipated.",
"Macroeconomic recovery was slower than predicted, highlighting the need

for more conservative estimates in post-crisis scenarios.",
"Seasonal adjustments and industry composition changes may have been less

influential than external shocks in this period."
],
"prediction_factors": "Updated understanding emphasizes the importance of:

1) accounting for prolonged external shocks (e.g., geopolitical events), 2)
adjusting recovery timelines based on real-time economic indicators, and 3)
incorporating nonlinear impacts of macroeconomic factors on unemployment rates."
}
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E.4 HIC-GUIDED PREDICTION (TEST PHASE)

• RAG Retrieval for Window #719:

{
"similar_example_window": 611,
"similarity_score": 0.8278101086616516,
"retrieval_method": "Summary_Based_RAG_Embedding"

}

• Prompt Template:

prompt = f"""<s>[INST] You are a quantitative analyst specializing in multimodal
time series forecasting.
- Window Length: {window_size}
- Prediction Length: {prediction_length}
TASK: Predict next {prediction_length} values for {dataset_name} using textual
summary and window data.
ANALYSIS:
1. Textual Intelligence: Extract insights from summary
2. Numerical Patterns: Identify trends and cycles
3. Domain Knowledge: Apply sector understanding
EXAMPLE: {retrieved_example}
SUMMARY: {summary}
OUTPUT: JSON format exactly:
‘‘‘json

"Prediction": "",
"Reasoning": "Brief explanation of key factors driving the prediction"

‘‘‘
[/INST]</s>"""

• Generated Prediction with HIC:
{

"prediction": [9.8, 9.9, 10.1, 10.2, 10.0, 9.8,
9.7, 9.6, 9.5, 9.4, 9.3, 9.2],

"reasoning": "Analysis suggests gradual stabilization following
pattern from similar historical window. Incorporates insights
about underestimating short-term fluctuations. Prediction reflects
balanced view considering cyclical nature and potential volatility
learned from Window #611’s error patterns."

}

E.5 ANALYSIS OF EVENT-DRIVEN DESIGN

The above examples vividly illustrate how our event-driven prediction approach transforms the chal-
lenge of multimodal time series forecasting into a continuous learning process. Consider the journey
of Window #611 during the 2000-2001 economic downturn: while the initial prediction correctly
identified an upward trend in unemployment, it projected a smooth, gradual increase from 4.8%
to 5.9%. Reality proved far more turbulent—unemployment spiked sharply to 6.3% following the
September 11 attacks before showing unexpected resilience in recovery. This discrepancy between
prediction and reality became a valuable learning opportunity. Through error analysis, the system
discovered that external shocks create discontinuities that pure trend analysis cannot capture, lead-
ing to a fundamental recalibration of prediction weights: historical trends were reduced from 40% to
30% importance while economic shock factors increased from 20% to 35%. This learned knowledge
proves its worth when the system encounters Window #719 during the 2009-2010 financial crisis
period. Through embedding similarity analysis, the system recognizes a kindred pattern between
these two economic downturns, achieving a similarity score of 0.8278. This recognition triggers the
retrieval of Window #611’s hard-won insights about volatility and recovery patterns. Rather than re-
peating the mistake of over-smooth predictions, the forecast for Window #719 now incorporates the
understanding that crisis periods exhibit both sharp fluctuations and surprising stabilization mecha-
nisms. The resulting prediction balances the observed stabilization trend with awareness of potential
volatility, producing a more nuanced trajectory from 9.8% gradually declining to 9.2%. What makes
this approach particularly compelling is how it mirrors human expert reasoning in economic fore-
casting. Just as economists draw parallels between historical crises to inform current predictions,
our HIC systematically captures and transfers these insights across similar economic conditions.
The system essentially builds a memory of how past events translated into numerical outcomes,
creating a bridge between the rich semantic information in news reports, policy announcements,
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and economic analyses, and the quantitative requirements of time series forecasting. This design
achieves what pure numerical models struggle with—understanding that a phrase like ”unprece-
dented economic shock” carries specific implications for unemployment volatility based on histori-
cal precedent—while avoiding the computational expense of fine-tuning large language models for
each specific domain.

F SUPPLEMENTARY

Table 15: Ablation study on different LLMs

LLM Energy Social Good
MSE MAE MSE MAE

DeepSeek 0.222 0.343 0.804 0.389
Zhipu 0.229 0.337 0.829 0.411
Qwen 0.226 0.341 0.773 0.427

We also attempted to conduct experiments using different models with various parameter quantities.
The experimental results showed in Table 15 indicated that under our method, LLMs could all
provide excellent assistance for time series forecasting and outperform other methods.

G COMPREHENSIVE EXPERIMENTAL RESULTS

This appendix provides comprehensive experimental results for all methods across different predic-
tion horizons on 10 multimodal time series datasets.
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Table 16: Model Performance Comparison Across Different Categories
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