
Bigram Subnetworks: Mapping to Next Tokens in
Transformer Language Models

Tyler A. Chang
Department of Cognitive Science

University of California San Diego
tachang@ucsd.edu

Benjamin K. Bergen
Department of Cognitive Science

University of California San Diego
bkbergen@ucsd.edu

Abstract

In Transformer language models, activation vectors transform from current token
embeddings to next token predictions as they pass through the model. To isolate
a minimal form of this transformation, we identify language model subnetworks
that make bigram predictions, naive next token predictions based only on the
current token. We find that bigram subnetworks can be found in fully trained
language models up to 1B parameters, and these subnetworks are critical for
model performance even when they consist of less than 0.2% of model parameters.
Bigram subnetworks are concentrated in the first Transformer MLP layer, and they
overlap significantly with subnetworks trained to optimally prune a given model.
Mechanistically, the bigram subnetworks often recreate a pattern from the full
models where the first layer induces a sharp change that aligns activations with next
token predictions rather than current token representations. Our results demonstrate
that bigram subnetworks comprise a minimal subset of parameters that are both
necessary and sufficient for basic next token predictions in language models,
and they help drive the transformation from current to next token activations in
the residual stream. These subnetworks can lay a foundation for studying more
complex language model circuits by building up from a minimal circuit.1

1 Introduction

Modern Transformer language models predict next tokens from text. However, developing reliable and
interpretable explanations for how they do this is an open area of research. In particular, mechanistic
interpretability research aims to identify features in model activations and operations in model
parameters that explain how language models process text to make predictions. Ideally, it would be
possible to decompose language model behavior into component circuits, each of which performs
some interpretable operation in the model that can be isolated from other operations. Indeed, an
extensive body of research has sought to identify interpretable circuits in language models, including
induction heads, name mover heads, copy suppression heads, indirect object identification (IOI)
circuits, and other types of reasoning circuits (Olsson et al., 2022; Wang et al., 2023; Geva et al.,
2023; Lepori et al., 2023b; McDougall et al., 2024; Merullo et al., 2024a,b; Lindsey et al., 2025).

Circuit behaviors are often verified through ablations or interventions, where a target behavior should
change when the circuit is ablated or modified in the full model (e.g. Finlayson et al., 2021; Meng
et al., 2022; Stolfo et al., 2023; McDougall et al., 2024; Tigges et al., 2024; Zhang et al., 2024; Todd
et al., 2024; Sankaranarayanan et al., 2024; AlKhamissi et al., 2025). This evaluates the necessity of
the circuit for the target behavior, but not its sufficiency: the circuit should also induce the behavior
when added to a minimal circuit whose behavior is already understood. Both necessity and sufficiency

1Code and trained bigram subnetworks at: https://github.com/tylerachang/bigram-subnetworks.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/tylerachang/bigram-subnetworks

are critical to delineating a circuit’s functional role. For example, a circuit that uniquely performs a
suboperation of the target behavior is necessary but not sufficient (Merullo et al., 2024a); a circuit
that redundantly performs the target behavior is sufficient but not necessary (Wang et al., 2023).2
Observing or ablating circuits in a full model does not permit evaluation of circuit sufficiency, because
the circuit might rely on features or suboperations performed by other parts of the model. To establish
both necessity and sufficiency, we must also observe the circuit’s behavior when operating only over
some well-understood minimal circuit. Previous work has used an empty circuit as the minimal
circuit (e.g. Wang et al., 2023; Conmy et al., 2023; Hanna et al., 2024; Nikankin et al., 2025; Marks
et al., 2025; Mueller et al., 2025), but this does not address how different circuits build upon one
another (Lepori et al., 2023b; Merullo et al., 2024a; Miller et al., 2024).

So where should we start when building language models up from minimal circuits? To start, we need
a simple and clearly interpretable behavior, but one that is well-defined over the entire input space (i.e.
a behavior that has a predicted output for every possible input). Bigram predictions P (wi|wi−1), next
token predictions conditioned only on the current token, are such a behavior. They are also arguably
the simplest nontrivial next token predictions, and there is evidence that Transformer language models
overfit to bigram predictions early in pretraining (Chang & Bergen, 2022; Choshen et al., 2022;
Chang et al., 2024). Isolating how Transformer language models make bigram predictions could help
researchers understand how language models make next token predictions at a basic and interpretable
level, and bigram subnetworks in larger models could serve as a basis upon which to study the effects
of more complex circuits in future work.

Thus, in this paper, we find subnetworks that recreate bigram predictions in Transformer language
models up to 1B parameters, and we find that they:

1. Consist of roughly 10M parameters regardless of model size, consistently reaching bigram
surprisal correlations of r > 0.95 (§3).

2. Are concentrated in the first MLP layer throughout pretraining (§4).
3. Recreate key properties of the residual stream, such as a rotation from current to next token

activations in the first Transformer layer (§5).
4. Drastically hurt language modeling performance when ablated, and overlap significantly with

subnetworks trained to optimally prune a given model (§6).

Our results suggest that bigram subnetworks comprise a minimal subset of parameters that serve as
the core of a Transformer language model. Concretely, despite being highly sparse, they are both
necessary and sufficient for basic next token predictions in language models.

2 Background and Related Work

There is good reason to expect Transformer language models to exhibit bigram subnetworks, based on
previous research drawing connections between Transformer language models and traditional n-gram
models. An n-gram model predicts each next token wi based only on the previous n − 1 tokens:
P (wi|wi−1, ...wi−n+1). Transformer models trained on formal languages or directly on n-grams can
learn n-gram distributions (Elhage et al., 2021; Svete & Cotterell, 2024; Svete et al., 2024), and they
can recognize n-grams in context using specialized attention heads (Akyürek et al., 2024). When
trained on natural language, Transformer models overfit to n-gram probabilities for increasing n
early in pretraining (Chang & Bergen, 2022; Choshen et al., 2022; Chang et al., 2024), and their
predictions can be approximated to some degree using n-gram rule sets (Nguyen, 2024). Smoothed
n-grams alone achieve fairly high next token prediction accuracy for large n (Liu et al., 2024).

To investigate how Transformer language models trained on the standard language modeling objective
make bigram predictions mechanistically, we find bigram subnetworks using continuous sparsification
(§3.1; Savarese et al., 2020; Lepori et al., 2023b,a). Lepori et al. (2023b) apply this method to find
subject-verb agreement and reflexive anaphor agreement subnetworks in BERT-small; we extend
this approach to larger autoregressive models and the more general function of bigram prediction. In
analyzing the subnetworks we find, we draw on work studying the residual stream in Transformer

2We define circuit necessity and sufficiency in more detail in §A.1. There, we also compare to the comple-
mentary notions of circuit faithfulness, completeness, and minimality from Wang et al. (2023). Notions of circuit
necessity and sufficiency are also closely related to task demands in language models, where certain capabilities
are necessary but not sufficient for some tasks (Hu & Frank, 2024).

2

4 5 6 7 8 9
Active parameters (log10)

0.80

0.84

0.88

0.92

0.96

1.00

Bi
gr

am
 c

or
re

la
tio

n
(s

ca
le

d
to

 b
es

t)
Pythia 70M
Pythia 160M
Pythia 410M
Pythia 1B

4 5 6 7 8 9
Active parameters (log10)

0.84

0.88

0.92

0.96

1.00

GPT-2 small*
GPT-2 small
GPT-2 medium
GPT-2 large

Model Bigram Full
r model

Pythia 70M 0.961 0.737
Pythia 160M 0.964 0.690
Pythia 410M 0.983 0.650
Pythia 1B 0.987 0.632
GPT-2 small* 0.987 0.680
GPT-2 small 0.979 0.624
GPT-2 medium 0.985 0.582
GPT-2 large 0.986 0.583

Figure 1: Left, center: bigram surprisal correlations for subnetworks with different numbers of active
parameters (excluding embedding parameters), for different models. Bigram correlations are scaled
to the highest bigram correlation for any subnetwork trained for that model. Correlations plateau at
roughly 10M active parameters regardless of model size. Right: bigram surprisal correlation r for the
highest-correlation subnetwork vs. the full model for each model. GPT-2 small* indicates the GPT-2
small replication from Chang et al. (2024).

language models. The residual stream hypothesis theorizes that Transformer models read from
and write to an activation space that remains relatively stable across layers (Nostalgebraist, 2020;
Geva et al., 2021, 2022; Dar et al., 2023; Belrose et al., 2023). This shared activation space is often
thought to align roughly with next token embedding space after the first layer, an observation we
quantify in §5. Interestingly, this transformation to next token space seems to occur much earlier than
suggested by Voita et al. (2024), who find neurons across all layers that activate for specific tokens to
promote corresponding next token (bigram) predictions. In our work, we precisely identify language
model parameters that are necessary and sufficient for bigram predictions, and we highlight their
importance to a language model’s performance.

3 Finding Bigram Subnetworks

We define a bigram subnetwork as a subset of language model parameters such that if all other
parameters are set to zero, then the model mimics the bigram prediction P (wi|wi−1).3 In other
words, bigram subnetworks are sufficient for bigram predictions. In this section, we find that such
bigram subnetworks exist even in language models over 1B parameters, and they consistently plateau
in bigram reconstruction ability at roughly 10M active parameters (§3.2). In future sections, we
verify the validity and consistency of these bigram subnetworks through structural analyses across
checkpoints (§4), mechanistic analyses (§5), and subnetwork ablations (§6).

3.1 Method: Continuous Sparsification

We focus on Pythia (Biderman et al., 2023) and GPT-2 models (Radford et al., 2019), with sizes up to
Pythia 1B and GPT-2 large (1.01B and 774M parameters respectively). For analyses across check-
points, we focus on Pythia 160M, Pythia 1B, and a re-trained GPT-2 small model with checkpoints
from Chang et al. (2024). All bigram subnetworks are trained and evaluated using English web text
data from OSCAR (Abadji et al., 2021).

To find bigram subnetworks, we use continuous sparsification (Savarese et al., 2020; Lepori et al.,
2023b), which optimizes a mask M over frozen model parameters to minimize a given loss function.
Continuous sparsification optimizes one real-valued parameter m ∈ (−∞,+∞) per original model
parameter; each m is mapped into the interval (0, 1) using a sigmoid function, to create entries in
the mask M . The temperature of the sigmoid function is decreased throughout subnetwork training
such that mask values approach 0 and 1, eventually resulting in a mask M that can be converted to a
binary mask. Then, M defines a subset of model parameters that approximately minimizes the target
loss function. To optimize M to mimic the bigram distribution P , we use the following loss function
for model input x:

Loss(M,x) = CrossEntropy
(
P (x),MaskedModelM (x)

)
+ λ

||M ||1
|M |

(1)

3We call this a “subnetwork” rather than a “circuit” to emphasize that bigram subnetworks are not necessarily
localized to specific attention heads and layers that execute intermediate suboperations.

3

As in Savarese et al. (2020), λ weights the L1 penalty term ||M ||1, which enforces sparsity in the mask
M . We normalize by the total number of trainable mask parameters |M |, and we train subnetworks
for λ ∈ [0, 1, 5, 10, 50, 100, 500, 1000] to evaluate the effects of sparsity on subnetwork performance.
We learn the mask M over all model parameters except input and output embedding parameters and
layernorm parameters. We train each subnetwork on sequences of 128 tokens with batch size 32 and
learning rate 5e-5, and we set the mask sigmoid temperature to divide by 1.001 per training step
(dictating how fast M approaches a binary mask). We find that these hyperparameters generally allow
subnetwork training to converge for all models tested, and the resulting subnetworks have similar
evaluation loss to subnetworks trained under different hyperparameter settings. Subnetwork training
and convergence details are in §A.2.

3.2 Existence of Bigram Subnetworks

As shown in Figure 1, for all models, continuous sparsification is able to find subnetworks whose
surprisals (i.e. token-level losses or negative log-probabilities) correlate highly with those of bigrams
(Pearson’s r > 0.95). We measure surprisal correlations rather than cross-entropies themselves
because they are more interpretable across models, they are more efficient to compute when bigram
surprisals can be cached, and we find that they produce similar patterns of results. Notably, we
find that bigram correlations plateau at roughly 10M active non-embedding parameters regardless
of model size (Figure 1, left, center).4 This suggests that bigram subnetwork “size” is roughly
independent of full model size, and thus the bigram subnetwork comprises a much smaller proportion
of model parameters in larger models. For example, in Pythia 1B, a subnetwork containing only
0.17% of non-embedding parameters reaches a bigram surprisal correlation of r = 0.959.

4 Persistence and Structure Throughout Pretraining

We now study the distribution and structure of the active parameters found in bigram subnetworks.
Because language models have been found to overfit to bigram predictions early in pretraining (Chang
& Bergen, 2022; Choshen et al., 2022; Chang et al., 2024), we particularly consider whether this
structure changes throughout pretraining. We find that bigram subnetworks persist during pretraining
long after the full model has diverged from bigram predictions (§4.1), and they consist primarily of
MLP parameters in the first Transformer layer (§4.2).

4.1 Bigram Subnetworks Persist but Decompress Throughout Pretraining

We start by investigating whether the number of parameters required for bigram subnetworks changes
throughout pretraining. To do this, we train bigram subnetworks as in §3.1 with sparsity term λ ∈
[0, 1, 10, 100, 500] for 16 checkpoints in Pythia 160M and 1B, and for 21 GPT-2 small checkpoints
from Chang et al. (2024). We fit a power law approximating bigram surprisal correlation from number
of active parameters (as in Figure 1) for each checkpoint; we use this curve to estimate the bigram
correlation that can be achieved using 500K, 1M, or 10M active parameters at each checkpoint.

Results for Pythia 1B are in Figure 2 (left), with qualitatively similar results for other models in §A.6.
We find that bigram subnetworks exist long after the models begin to diverge from bigram predictions,
demonstrated by high bigram correlations even after the full model exhibits a drop in bigram surprisal
correlation. Notably, bigram subnetworks peak in bigram correlation over two thousand steps after
the full model overfits to bigram predictions, suggesting that language models continue to learn
bigram distributions even after that behavior becomes less observable from the full model.

However, once the bigram subnetworks peak in their ability to recreate the bigram distribution
(roughly step 4K in Figure 2, left), they start to take more parameters to reach such high bigram
correlations. For example, 500K active parameters can reach a bigram surprisal correlation of
r = 0.949 at checkpoint 4K but only r = 0.919 at checkpoint 143K (Figure 2, left). This suggests
that while bigram subnetworks exist throughout pretraining, they are most efficiently represented
earlier in pretraining. One potential explanation may be that the parameters involved in the bigram
subnetwork are partially exapted to make more nuanced predictions later in pretraining, making the

4In §A.3, we discuss why we would expect bigram correlations to plateau with more allowed parameters.
Of course, as subnetworks approach the full models, bigram correlations will return to the lower full model
correlations (Figure 1, right).

4

2 3 4 5
Checkpoint (log10)

0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Bi
gr

am
 c

or
re

la
tio

n

Pythia 1B
Active parameters

5e5
1e6
1e7
Unenforced
Full model

0
12

8
25

6
51

2
10

00
20

00
30

00
40

00
60

00
10

00
0

16
00

0
25

00
0

40
00

0
63

00
0

10
00

00
14

30
00

Checkpoint

0

2

4

6

8

10

12

14

La
ye

r

Pythia 1B, MLP

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0
12

8
25

6
51

2
10

00
20

00
30

00
40

00
60

00
10

00
0

16
00

0
25

00
0

40
00

0
63

00
0

10
00

00
14

30
00

Checkpoint

0

2

4

6

8

10

12

14

La
ye

r

Pythia 1B, attention

0.00

0.01

0.02

0.03

0.04

Figure 2: Left: estimated bigram surprisal correlation for bigram subnetworks with different numbers
of active parameters (excluding embedding parameters) for Pythia 1B at different checkpoints (§4.1).
Center, right: proportions of parameters in the Pythia 1B bigram subnetwork that are in each MLP
and attention layer throughout pretraining (§4.2). Note that the color bar scale is 10× larger for MLP
proportions, as a far greater proportion of bigram subnetwork parameters are in the MLP layers.

bigram information less efficient to extract. Thus, the bigram distribution is optimally represented
relatively early in pretraining, although still considerably after the full model overfits to bigrams.
This optimal point might be characterized as the time when a model has fully “learned” bigrams.

4.2 Bigram Subnetworks Are Concentrated in the First MLP Layer

Next, we consider the distribution of active parameters in bigram subnetworks at different checkpoints.
We report results for the subnetworks trained with sparsity term λ = 100 for Pythia 1B, but other
models produce similar results (§A.6). As shown in Figure 2 (center, right), the plurality of bigram
subnetwork parameters are in the first Transformer MLP layer, for all pretraining checkpoints. We
later find that this concentration in the first Transformer layer seems to reflect an early transformation
from current to next token representations in the model (§5).

Interestingly, this concentration in the first MLP layer is true even at checkpoint zero, when the model
is randomly initialized. This may be because even though the model at checkpoint zero is randomly
initialized, next token cross-entropy loss is used both to train the language model originally and to
train all bigram subnetworks. Thus, it may be that bigram distribution learning in the first Transformer
layer is an inherent property of the Transformer architecture combined with next token prediction loss,
potentially due to larger gradients in earlier layers (Shleifer et al., 2021). We note that while finding
bigram subnetworks in randomly initialized models might suggest that the bigram subnetworks are
just arbitrary sets of parameters that happen to recreate the desired bigram predictions, the bigram
correlations are lower at random initialization (Figure 2, left).5 Furthermore, bigram subnetworks
recreate important properties of the residual stream (§5), and ablating bigram subnetworks in fully
trained models drastically hurts model performance (§6), suggesting that they do play an important
role in language model processing.

Finally, later in training, we find that bigram subnetworks become more distributed across layers, and
they have an increasing presence in attention layers (Figure 2, right; results for other models in §A.6).
By the last checkpoint in Pythia 1B, 17.9% of bigram subnetwork parameters are in attention layers
(82.1% in MLP). These bigram subnetwork parameters are generally spread across attention heads in
each layer, but they are slightly more concentrated in attention value and output matrices (11.6% of
subnetwork parameters) rather than query and key matrices (6.3% of subnetwork parameters). This is
somewhat intuitive, as a bigram prediction has no reason to look back to previous tokens (the primary
function of query and key matrices) because it is only dependent on the current token. The presence
of bigram subnetwork parameters in attention value and output matrices might indicate that relevant
bigram information is stored in those matrices (e.g. in a similar way to subject-attribute mappings
that have been found in language model attention parameters; Geva et al., 2023), or it could be that
these attention parameters are necessary to align the bigram subnetworks with general patterns of
activation in the full language model, as we discuss in the next section.

5We find that subnetworks with high bigram surprisal correlations can be found in randomly-initialized
models particularly if fully-trained token embeddings and unembeddings are patched in (§A.4).

5

0 10 20 30
Layer

0

20

40

60

80

M
ed

ia
n

ro
ta

tio
n

GPT-2 large, full

To input token
To output distribution

0 10 20 30
Layer

0

20

40

60

80

M
ed

ia
n

ro
ta

tio
n

GPT-2 large, bigram subnetwork
To input token
To output distribution

0 10 20 30
Layer

0

20

40

60

80

M
ed

ia
n

ro
ta

tio
n

GPT-2 large, random subnetwork
To input token
To output distribution

0 2 4 6 8 10 12
Layer

0

20

40

60

80

M
ed

ia
n

ro
ta

tio
n

Pythia 160M, full

To input token
To output distribution

0 2 4 6 8 10 12
Layer

0

20

40

60

80

M
ed

ia
n

ro
ta

tio
n

Pythia 160M, bigram subnetwork
To input token
To output distribution

0 2 4 6 8 10 12
Layer

0

20

40

60

80

M
ed

ia
n

ro
ta

tio
n

Pythia 160M, random subnetwork
To input token
To output distribution

Figure 3: Median rotation to input (current token) activations and to output (next token) activations at
each layer in GPT-2 large and Pythia 160M, for the full model, the bigram subnetwork, and a random
subnetwork with the same size and structure as the bigram subnetwork (§5.1). In full models and their
bigram subnetworks, the first layer induces a notable rotation towards next token representations.

5 Mapping to Next Tokens in the Residual Stream

Here, we consider how bigram subnetworks operate mechanistically in Transformer language models.
Specifically, we consider the residual stream, the pattern of model activations across layers. Previous
work has hypothesized that language models map from current to next token space in early layers
(Nostalgebraist, 2020; Belrose et al., 2023). Indeed, in this section, we show that the first Transformer
layer induces a sharp rotation that aligns activations with next token predictions rather than input
token embeddings (§5.1). This transformation is recreated in the bigram subnetworks (§5.1), and
we show that bigram subnetworks recreate many of the cross-layer similarities that characterize a
language model’s residual stream (§5.2).6

5.1 Rotations Induced by the First Transformer Layer

First, we consider the rotations required to map from activations at a given layer ℓ back to the input
token activations (i.e. current tokens, after embedding) vs. to the output layer activations (next token
predictions, before unembedding). Intuitively, these rotations quantify how much transformation
would be required to map each layer’s activations to current vs. next token representations.

For each layer, we compute activation vectors Xℓ ∈ Rn×d outputted by that layer for n =128K
tokens in context, using sequences from the OSCAR dataset as in §3. For each layer, we use ridge
regression to find a linear map Lin ∈ Rd×d that maps activations in layer ℓ to their original input token
embeddings Xin, and a linear map Lout ∈ Rd×d that maps activations in layer ℓ to their corresponding
output layer activations Xout.7 We then assess the structure of these linear transformations. A linear
transformation L ∈ Rd×d has d complex eigenvalues including multiplicity. Because L has only
real entries, the eigenvalues appear in complex conjugate pairs a± bi. Each eigenvalue magnitude
||a± bi|| corresponds to scaling a given input dimension, and the corresponding eigenvalue angle
(arctan(b/a)) corresponds to rotating that input dimension. We focus on the rotations induced by
each linear transformation L, because scalings are intuitively less consequential for representing
features in activation space; if a given feature is represented along a direction v, then scaling that

6Here and in later sections, we consider the bigram subnetwork trained with sparsity term λ = 100 for Pythia
1B and GPT-2 large, and λ = 10 for Pythia 160M and GPT-2 small (details in §A.3).

7We use ridge regression because the correlations between different activation dimensions make linear
regression coefficients (i.e. entries of L) unstable without normalization. We use L2 regularization term α = 1.

6

0 4 8 12 16
Layer j

0

2

4

6

8

10

12

14

16

La
ye

r i

Pythia 1B, full

0.0

0.2

0.4

0.6

0.8

1.0

Covariance sim
ilarity

0 4 8 12 16
Layer j

0

2

4

6

8

10

12

14

16

La
ye

r i

Pythia 1B, bigram subnetwork

0.0

0.2

0.4

0.6

0.8

1.0

Covariance sim
ilarity

0 4 8 12 16
Layer j

0

2

4

6

8

10

12

14

16

La
ye

r i

Pythia 1B, random subnetwork

0.0

0.2

0.4

0.6

0.8

1.0

Covariance sim
ilarity

Figure 4: Cross-layer covariance similarities for Pythia 1B in the full model, its bigram subnetwork,
and a random subnetwork with the same size and structure as the bigram subnetwork (§5.2). The
bigram subnetwork recreates many of the patterns from the full model, despite consisting of only
0.17% of non-embedding parameters.

dimension will still encode the same information along the same direction, just multiplied by a scalar.
Thus for each layer in each model, we compute the median rotation r ∈ [0, 180] degrees for the
transformation Lin to input activations and for the transformation Lout to output activations. Loosely,
these median rotations quantify the “transformation distance” from a layer’s activations to current vs.
next token representations.

Rotations from Current to Next Tokens in the First Layer. Median rotations for Lin and Lout

for all layers in GPT-2 large and Pythia 160M are shown in Figure 3, with results for other models in
§A.7. In the full models, there is a large rotation at the first layer that aligns activations with output
(next token) activations rather than input (current token) activations. For example, in GPT-2 large, the
first layer increases the median rotation to the input activations from 0.0 to 56.2 degrees; it decreases
the median rotation to the output activations from 70.5 to 46.3 degrees. These results align with
previous work suggesting that the first layer immediately converts input token embeddings to naive
next token predictions (Nostalgebraist, 2020); we quantify this effect using linear transformations
fitted to many token activations.

In Figure 3 (center column), we observe that bigram subnetworks recreate this first layer transforma-
tion from current to next token space. This effect is particularly noticeable in the bigram subnetwork
for Pythia 160M, where the first layer increases the median rotation to the input activations from 0.0
to 47.0 degrees; it decreases the median rotation to the output activations from 68.5 to 34.5 degrees.
Importantly, a random subnetwork with the same size (and the same parameter distribution over
layers and parameter blocks) does not show nearly the same degree of effect. While we observe a
small first layer effect in the random subnetwork in Pythia 160M, this is likely because the Pythia
bigram subnetwork is proportionally larger (8.5% of non-embedding parameters) than that of GPT-2
large (0.10% of non-embedding parameters). A larger random subnetwork is more likely to recreate
some properties of the full model. Our results demonstrate that bigram subnetworks recreate the first
layer transformation from current to next token space far more than would be expected from chance,
even when they comprise an extremely small proportion of model parameters.

5.2 Covariance Similarities Between Layers

We further verify that bigram subnetworks recreate key properties of the full model’s residual stream
using activation covariances at each layer. Following Belrose et al. (2023), we compute pairwise
similarities between covariance matrices at different layers.8 As in Belrose et al. (2023), we drop
the top singular value dimension when computing activation covariances (because this is often an
outlier dimension that dominates the covariance), and we use Frobenius cosine similarity between
matrices. Results for Pythia 1B are shown in Figure 4, with other models in §A.8. Not only does the
bigram subnetwork recreate the discontinuity between layer zero and layer one activations (i.e. the

8While we do not expect bigram subnetwork activation covariances to mimic full model covariances them-
selves (because they omit many features and model operations by design), we assess whether their covariance
cross-layer similarity matrices are similar to that of the full model.

7

5.5 6.0 6.5 7.0 7.5 8.0 8.5
Active parameters (log10)

0.6

0.7

0.8

0.9

1.0

Su
rp

ris
al

 c
or

re
la

tio
n

Pythia 1B, optimal subnetwork

With original model
With bigram

GPT-2 small0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Ev
al

ua
tio

n
lo

ss

GPT-2 large0

2

4

6

8

10

12

14

Pythia 160M0

20

40

60

80

Pythia 1B0

2

4

6

8

10

12

14 Full model
Ablate
random
Ablate
bigram
Ablate
optimal

Figure 5: Left: surprisal correlations between optimal subnetworks and the original model, and
between optimal subnetworks and bigram predictions, for different numbers of active parameters in
Pythia 1B (§6.1). Right: language modeling evaluation loss when ablating a random subnetwork with
the same size and structure as the bigram subnetwork, the bigram subnetwork itself, or an optimal
subnetwork of similar size to the bigram subnetwork (§6.3).

layer zero embeddings exhibit low similarity with all other layers), the bigram subnetwork recreates
patterns where certain layers block together in the full model (brighter squares in Figure 4). This is
particularly notable because the Pythia 1B bigram subnetwork in Figure 4 consists of only 0.17% of
model parameters. A random subnetwork of the same size (and the same distribution over parameter
blocks) produces a similarity matrix with all values close to 1.0, because the subnetwork contains
so few parameters that activations pass through it essentially unchanged, leading to near-perfect
similarities across layers. This provides further evidence that bigram subnetworks are a minimal
subset of parameters that drive core features of a language model’s residual stream. We do not claim
that bigram subnetworks are the only subset of parameters that could recreate this structure, but in the
next section, we demonstrate that even if bigram subnetworks are not unique in this way, they are
critical to model performance, and optimal subnetworks converge on a similar choice of parameters.

6 Bigram Subnetworks Approximate Optimal Subnetworks

Finally, we demonstrate through ablations that bigram subnetworks are critical to language modeling
performance. We find that bigram subnetworks overlap significantly with subnetworks trained to
optimally prune a model (§6.2), and ablating the bigram subnetwork hurts performance to a degree
similar to ablating an “optimal” subnetwork (§6.3). This indicates that the bigram subnetworks are
not just arbitrary subsets of parameters that recreate bigram probabilities by chance. Rather, they play
an important functional role in making next token predictions in language models. Framed another
way, bigram subnetworks are not only sufficient for basic next token predictions, but they are also
necessary for reasonable next token predictions.

6.1 Training Optimal Subnetworks

To compare to bigram subnetworks, we train “optimal” subnetworks that seek to optimally prune a
language model. We again use continuous sparsification (§3.1), but we minimize cross-entropy with
the original language model output distribution rather than with the bigram distribution. As before,
we train these optimal subnetworks with different sparsity terms λ ∈ [1, 5, 10, 50, 100, 500, 1000].
Shown in Figure 5 (left), when optimal subnetworks have more enforced sparsity (fewer active
parameters), they correlate more with bigram predictions than with the original model. This indicates
that bigram predictions are an efficient way to minimize next token prediction loss in constrained
scenarios, even when not optimizing specifically for bigram cross-entropy. This aligns with previous
work demonstrating that language models overfit to bigram predictions early in pretraining (Chang
& Bergen, 2022; Choshen et al., 2022). In the next sections, when comparing bigram and optimal
subnetworks, we always consider the sparsest optimal subnetwork that still contains more active
parameters than the bigram subnetwork of interest.9

9We cannot enforce the exact same parameter counts as bigram subnetworks just using the sparsity term λ.
As noted previously, we focus on bigram subnetworks trained with λ = 100 for Pythia 1B and GPT-2 large, and
λ = 10 for Pythia 160M and GPT-2 small (details in §A.3).

8

6.2 Optimal Subnetworks Overlap Significantly with Bigram Subnetworks

Highly sparse optimal subnetworks thus approach bigram predictions in behavior. We now show
that these optimal subnetworks in fact contain many of the same individual parameters as the bigram
subnetworks in §3 and §4. Specifically, we compare the overlap in active parameters for optimal
subnetworks and bigram subnetworks to the expected overlaps if the same number of parameters
were randomly selected within each parameter block. This allows us to consider parameter overlaps
after accounting for the fact that optimal and bigram subnetworks might have systematic biases to
keep parameters in similar blocks.

We report results for Pythia 1B here, and we report similar results for other models in §A.9. In
Pythia 1B, the bigram subnetwork and optimal subnetwork parameter overlap is 15.3× greater than
would be expected from chance (p < 0.0001; details in §A.9). In that model, 38.0% of the bigram
subnetwork is contained in the optimal subnetwork, even though the optimal subnetwork is only
0.93% of model parameters and the bigram subnetwork is 0.17% of model parameters (excluding
embedding parameters). This indicates that sparse optimal subnetworks are not only similar to bigram
subnetworks in behavior, but they also identify similar individual model parameters.

6.3 Ablating Bigram Subnetworks

Finally, we evaluate language modeling loss for models when ablating the bigram subnetwork, in
order to assess the necessity of bigram subnetworks for next token predictions. We evaluate this loss
on a held out subset of 1.2M tokens from OSCAR (Abadji et al., 2021). We compare the increase
in loss from ablating the bigram subnetwork to the increase in loss when ablating (1) a random
subnetwork with the same size and distribution over parameter blocks as the bigram subnetwork or
(2) an optimal subnetwork as described in previous sections. Shown in Figure 5 (right), ablating
the bigram subnetwork results in a similar (and sometimes larger) degradation in performance to
ablating an optimal subnetwork. This occurs even though we ensure that the optimal subnetworks we
compare to are slightly larger than the corresponding bigram subnetworks (§6.1), i.e. the optimal
subnetworks actually ablate slightly more parameters. Ablating a random subnetwork of the same
size has almost no effect on language modeling performance (Figure 5, right). This indicates that
bigram subnetworks are critical to language modeling performance, particularly for their small size.
Sample text generations when ablating different subnetworks are reported in §A.10; ablating the
bigram subnetwork leads to incoherent text generations that simply repeat a single frequent token.

7 Discussion and Conclusion

Our results suggest that bigram subnetworks are core components of language models. Bigram sub-
networks are highly sparse, they recreate bigram predictions with r > 0.95, they overlap significantly
with subnetworks trained to optimally prune a model, they dramatically hurt performance when
ablated, and they recreate key properties of the full model’s residual stream. Specifically, when added
to an empty subnetwork, bigram subnetworks are sufficient to induce basic next token predictions (i.e.
in isolation, they produce bigram predictions). Based on our ablation results, bigram subnetworks
are also necessary for reasonable next token predictions. Finally, our enforcement of subnetwork
sparsity using λ in continuous sparsification ensures that the bigram subnetworks are minimal (i.e.
they do not contain extraneous parameters; §A.1; §A.3; Wang et al., 2023). Together, these results
provide a comprehensive view of bigram subnetworks as key language model subnetworks that are
both interpretable and critical to model performance.

Speculatively, we hypothesize that bigram subnetworks emerge because early in training (or for
low-performing models), bigram heuristics near-optimally decrease the language modeling loss
overall, so the optimizer pushes parameters towards recreating a similar distribution. Thus, early in
training (e.g. when the model overall approximates the bigram distribution), the primary function of
the bigram subnetwork is likely to actually make a prediction similar to a bigram prediction. Later
in training, we speculate that the model scaffolds off of these bigram predictions and subnetworks,
adapting the early layers to perform generally useful early-layer computations (e.g. transforming to
next token space) that still maintain some similarity to bigram predictions. It remains ambiguous
whether these early-layer computations constitute “intermediate bigram predictions” (e.g. preliminary
predictions before refinement by later layers; §A.5), or whether the bigram subnetwork becomes
a more deeply integrated part of model processing, not separable as an “intermediate prediction”.

9

Regardless, the persisting similarity to bigram-like computations in early layers is likely what makes
it possible to extract bigram subnetworks even late in training, when these subnetworks have adapted
to scaffold other computational roles as well.

Notably, even in fully trained models, the minimal and interpretable properties of bigram subnetworks
make them ideal starting points from which to build language models up from component circuits.
By adding specific circuits to bigram subnetworks and evaluating how model predictions change
from bigram predictions, researchers can evaluate the sufficiency of those circuits for performing
hypothesized functions. Due to the sparsity of the bigram subnetworks and the relative simplicity
of the bigram function, we can be more confident that the added circuits are leveraging their own
suboperations and intermediate features rather than scaffolding off of preprocessed features in an
opaque language model. To facilitate these lines of research, we publicly release bigram subnetworks
for GPT-2 and Pythia models up to 1B parameters. As researchers un-ablate interpretable circuits,
we can aim to shrink the performance gap between fully interpretable model subnetworks (i.e.
subnetworks built up from interpretable circuits) and their corresponding full models, setting concrete
targets for mechanistic interpretability research.

Acknowledgments and Disclosure of Funding

We would like to thank the UCSD Language and Cognition Lab for valuable discussion and feedback.
Subnetworks were trained on hardware provided by the NVIDIA Corporation as part of an NVIDIA
Academic Hardware Grant. Some models were also trained on the UCSD Social Sciences Research
and Development Environment (SSRDE).

References
Julien Abadji, Pedro Javier Ortiz Suárez, Laurent Romary, and Benoît Sagot. Ungoliant: An optimized

pipeline for the generation of a very large-scale multilingual web corpus. In Proceedings of the
Workshop on Challenges in the Management of Large Corpora (CMLC-9), pp. 1 – 9, 2021. URL
https://nbn-resolving.org/urn:nbn:de:bsz:mh39-104688.

Ekin Akyürek, Bailin Wang, Yoon Kim, and Jacob Andreas. In-context language learning: architec-
tures and algorithms. In Proceedings of the 41st International Conference on Machine Learning,
2024. URL https://arxiv.org/abs/2401.12973.

Badr AlKhamissi, Greta Tuckute, Antoine Bosselut, and Martin Schrimpf. The LLM language
network: A neuroscientific approach for identifying causally task-relevant units. In Proceedings of
the Conference of the North American Chapter of the Association for Computational Linguistics,
2025. URL https://arxiv.org/abs/2411.02280.

Nora Belrose, Zach Furman, Logan Smith, Danny Halawi, Igor Ostrovsky, Lev McKinney, Stella
Biderman, and Jacob Steinhardt. Eliciting latent predictions from transformers with the tuned lens.
arXiv, 2023. URL https://arxiv.org/abs/2303.08112.

Stella Biderman, Hailey Schoelkopf, Quentin Anthony, Herbie Bradley, Kyle O’Brien, Eric Hallahan,
Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, Aviya Skowron,
Lintang Sutawika, and Oskar Van Der Wal. Pythia: A suite for analyzing large language models
across training and scaling. In Proceedings of the 40th International Conference on Machine
Learning, 2023. URL https://arxiv.org/abs/2304.01373.

Tyler A. Chang and Benjamin K. Bergen. Word acquisition in neural language models. Transactions
of the Association for Computational Linguistics, 10:1–16, 2022. URL https://aclanthology.
org/2022.tacl-1.1/.

Tyler A. Chang, Zhuowen Tu, and Benjamin K. Bergen. Characterizing learning curves during
language model pre-training: Learning, forgetting, and stability. Transactions of the Association
for Computational Linguistics, 12:1346–1362, 2024. URL https://aclanthology.org/2024.
tacl-1.74/.

10

https://nbn-resolving.org/urn:nbn:de:bsz:mh39-104688
https://arxiv.org/abs/2401.12973
https://arxiv.org/abs/2411.02280
https://arxiv.org/abs/2303.08112
https://arxiv.org/abs/2304.01373
https://aclanthology.org/2022.tacl-1.1/
https://aclanthology.org/2022.tacl-1.1/
https://aclanthology.org/2024.tacl-1.74/
https://aclanthology.org/2024.tacl-1.74/

Leshem Choshen, Guy Hacohen, Daphna Weinshall, and Omri Abend. The grammar-learning
trajectories of neural language models. In Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1: Long Papers), pp. 8281–8297, 2022. URL
https://aclanthology.org/2022.acl-long.568/.

Arthur Conmy, Augustine N. Mavor-Parker, Aengus Lynch, Stefan Heimersheim, and Adrià Garriga-
Alonso. Towards automated circuit discovery for mechanistic interpretability. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023. URL https://openreview.net/
forum?id=89ia77nZ8u.

Guy Dar, Mor Geva, Ankit Gupta, and Jonathan Berant. Analyzing transformers in embedding
space. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 16124–16170, 2023. URL https://aclanthology.org/2023.
acl-long.893/.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep Ganguli, Zac
Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal Ndousse,
Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris Olah. A
mathematical framework for Transformer circuits. Transformer Circuits Thread, 2021. URL
https://transformer-circuits.pub/2021/framework/index.html.

Matthew Finlayson, Aaron Mueller, Sebastian Gehrmann, Stuart Shieber, Tal Linzen, and Yonatan
Belinkov. Causal analysis of syntactic agreement mechanisms in neural language models. In
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pp. 1828–1843, 2021. URL https://aclanthology.org/2021.acl-long.144/.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers
are key-value memories. In Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing, pp. 5484–5495, 2021. URL https://aclanthology.org/2021.
emnlp-main.446/.

Mor Geva, Avi Caciularu, Kevin Wang, and Yoav Goldberg. Transformer feed-forward layers
build predictions by promoting concepts in the vocabulary space. In Proceedings of the 2022
Conference on Empirical Methods in Natural Language Processing, pp. 30–45, 2022. URL
https://aclanthology.org/2022.emnlp-main.3/.

Mor Geva, Jasmijn Bastings, Katja Filippova, and Amir Globerson. Dissecting recall of factual
associations in auto-regressive language models. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing, pp. 12216–12235, 2023. URL https:
//aclanthology.org/2023.emnlp-main.751/.

Michael Hanna, Sandro Pezzelle, and Yonatan Belinkov. Have faith in faithfulness: Going beyond
circuit overlap when finding model mechanisms. In ICML 2024 Workshop on Mechanistic
Interpretability, 2024. URL https://openreview.net/forum?id=grXgesr5dT.

Jennifer Hu and Michael Frank. Auxiliary task demands mask the capabilities of smaller language
models. In First Conference on Language Modeling, 2024. URL https://openreview.net/
forum?id=U5BUzSn4tD.

Michael A. Lepori, Ellie Pavlick, and Thomas Serre. NeuroSurgeon: A toolkit for subnetwork
analysis. arXiv, 2023a. URL https://arxiv.org/abs/2309.00244.

Michael A. Lepori, Thomas Serre, and Ellie Pavlick. Break it down: Evidence for structural compo-
sitionality in neural networks. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023b. URL https://openreview.net/forum?id=rwbzMiuFQl.

Jack Lindsey, Wes Gurnee, Emmanuel Ameisen, Brian Chen, Adam Pearce, Nicholas L. Turner,
Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael Sklar, Adly
Templeton, Trenton Bricken, Callum McDougall, Hoagy Cunningham, Thomas Henighan, Adam
Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben Thompson, Sam Zimmerman, Kelley
Rivoire, Thomas Conerly, Chris Olah, and Joshua Batson. On the biology of a large language

11

https://aclanthology.org/2022.acl-long.568/
https://openreview.net/forum?id=89ia77nZ8u
https://openreview.net/forum?id=89ia77nZ8u
https://aclanthology.org/2023.acl-long.893/
https://aclanthology.org/2023.acl-long.893/
https://transformer-circuits.pub/2021/framework/index.html
https://aclanthology.org/2021.acl-long.144/
https://aclanthology.org/2021.emnlp-main.446/
https://aclanthology.org/2021.emnlp-main.446/
https://aclanthology.org/2022.emnlp-main.3/
https://aclanthology.org/2023.emnlp-main.751/
https://aclanthology.org/2023.emnlp-main.751/
https://openreview.net/forum?id=grXgesr5dT
https://openreview.net/forum?id=U5BUzSn4tD
https://openreview.net/forum?id=U5BUzSn4tD
https://arxiv.org/abs/2309.00244
https://openreview.net/forum?id=rwbzMiuFQl

model. Transformer Circuits Thread, 2025. URL https://transformer-circuits.pub/
2025/attribution-graphs/biology.html.

Jiacheng Liu, Sewon Min, Luke Zettlemoyer, Yejin Choi, and Hannaneh Hajishirzi. Infini-gram:
Scaling unbounded n-gram language models to a trillion tokens. In First Conference on Language
Modeling, 2024. URL https://openreview.net/forum?id=u2vAyMeLMm.

Samuel Marks, Can Rager, Eric J Michaud, Yonatan Belinkov, David Bau, and Aaron Mueller.
Sparse feature circuits: Discovering and editing interpretable causal graphs in language models.
In The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=I4e82CIDxv.

Callum Stuart McDougall, Arthur Conmy, Cody Rushing, Thomas McGrath, and Neel Nanda. Copy
suppression: Comprehensively understanding a motif in language model attention heads. In
Proceedings of the 7th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for
NLP, pp. 337–363, 2024. URL https://aclanthology.org/2024.blackboxnlp-1.22/.

Kevin Meng, David Bau, Alex J Andonian, and Yonatan Belinkov. Locating and editing factual
associations in GPT. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho
(eds.), Advances in Neural Information Processing Systems, 2022. URL https://openreview.
net/forum?id=-h6WAS6eE4.

Jack Merullo, Carsten Eickhoff, and Ellie Pavlick. Circuit component reuse across tasks in Trans-
former language models. In The Twelfth International Conference on Learning Representations,
2024a. URL https://openreview.net/forum?id=fpoAYV6Wsk.

Jack Merullo, Carsten Eickhoff, and Ellie Pavlick. Talking heads: Understanding inter-layer commu-
nication in Transformer language models. In The Thirty-eighth Annual Conference on Neural Infor-
mation Processing Systems, 2024b. URL https://openreview.net/forum?id=LUsx0chTsL.

Joseph Miller, Bilal Chughtai, and William Saunders. Transformer circuit evaluation metrics are not
robust. In First Conference on Language Modeling, 2024. URL https://openreview.net/
forum?id=zSf8PJyQb2.

Aaron Mueller, Atticus Geiger, Sarah Wiegreffe, Dana Arad, Iván Arcuschin, Adam Belfki, Yik Siu
Chan, Jaden Fiotto-Kaufman, Tal Haklay, Michael Hanna, Jing Huang, Rohan Gupta, Yaniv
Nikankin, Hadas Orgad, Nikhil Prakash, Anja Reusch, Aruna Sankaranarayanan, Shun Shao,
Alessandro Stolfo, Martin Tutek, Amir Zur, David Bau, and Yonatan Belinkov. Mib: A mechanistic
interpretability benchmark. arXiv, 2025. URL https://arxiv.org/abs/2504.13151.

Timothy Nguyen. Understanding transformers via n-gram statistics. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024. URL https://openreview.net/
forum?id=WCc440cUhX.

Yaniv Nikankin, Anja Reusch, Aaron Mueller, and Yonatan Belinkov. Arithmetic without algorithms:
Language models solve math with a bag of heuristics. In The Thirteenth International Conference
on Learning Representations, 2025. URL https://openreview.net/forum?id=O9YTt26r2P.

Nostalgebraist. Interpreting GPT: The logit lens. LessWrong, 2020. URL https://www.lesswrong.
com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom
Henighan, Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn
Drain, Deep Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones,
Jackson Kernion, Liane Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark,
Jared Kaplan, Sam McCandlish, and Chris Olah. In-context learning and induction heads.
Transformer Circuits Thread, 2022. URL https://transformer-circuits.pub/2022/
in-context-learning-and-induction-heads/index.html.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. OpenAI, 2019. URL https:
//cdn.openai.com/better-language-models/language_models_are_unsupervised_
multitask_learners.pdf.

12

https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://openreview.net/forum?id=u2vAyMeLMm
https://openreview.net/forum?id=I4e82CIDxv
https://openreview.net/forum?id=I4e82CIDxv
https://aclanthology.org/2024.blackboxnlp-1.22/
https://openreview.net/forum?id=-h6WAS6eE4
https://openreview.net/forum?id=-h6WAS6eE4
https://openreview.net/forum?id=fpoAYV6Wsk
https://openreview.net/forum?id=LUsx0chTsL
https://openreview.net/forum?id=zSf8PJyQb2
https://openreview.net/forum?id=zSf8PJyQb2
https://arxiv.org/abs/2504.13151
https://openreview.net/forum?id=WCc440cUhX
https://openreview.net/forum?id=WCc440cUhX
https://openreview.net/forum?id=O9YTt26r2P
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf

Aruna Sankaranarayanan, Dylan Hadfield-Menell, and Aaron Mueller. Disjoint processing mecha-
nisms of hierarchical and linear grammars in large language models. In ICML 2024 Workshop on
LLMs and Cognition, 2024. URL https://openreview.net/forum?id=qg2TJ3eKOr.

Pedro Savarese, Hugo Silva, and Michael Maire. Winning the lottery with continuous sparsification.
Advances in neural information processing systems, 33:11380–11390, 2020. URL https://
arxiv.org/abs/1912.04427.

Sam Shleifer, Jason Weston, and Myle Ott. Normformer: Improved transformer pretraining with
extra normalization. arXiv, 2021. URL https://arxiv.org/abs/2110.09456.

Alessandro Stolfo, Yonatan Belinkov, and Mrinmaya Sachan. A mechanistic interpretation of
arithmetic reasoning in language models using causal mediation analysis. In Proceedings of the
2023 Conference on Empirical Methods in Natural Language Processing, pp. 7035–7052, 2023.
URL https://aclanthology.org/2023.emnlp-main.435/.

Anej Svete and Ryan Cotterell. Transformers can represent n-gram language models. In Proceedings
of the 2024 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (Volume 1: Long Papers), pp. 6845–6881, 2024. URL
https://aclanthology.org/2024.naacl-long.381/.

Anej Svete, Nadav Borenstein, Mike Zhou, Isabelle Augenstein, and Ryan Cotterell. Can transformers
learn n-gram language models? In Proceedings of the 2024 Conference on Empirical Methods in
Natural Language Processing, pp. 9851–9867, 2024. URL https://aclanthology.org/2024.
emnlp-main.550/.

Curt Tigges, Michael Hanna, Qinan Yu, and Stella Biderman. LLM circuit analyses are consis-
tent across training and scale. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024. URL https://openreview.net/forum?id=3Ds5vNudIE.

Eric Todd, Millicent Li, Arnab Sen Sharma, Aaron Mueller, Byron C Wallace, and David Bau.
Function vectors in large language models. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=AwyxtyMwaG.

Elena Voita, Javier Ferrando, and Christoforos Nalmpantis. Neurons in large language models: Dead,
n-gram, positional. In Findings of the Association for Computational Linguistics: ACL 2024, pp.
1288–1301, 2024. URL https://aclanthology.org/2024.findings-acl.75/.

Kevin Ro Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt.
Interpretability in the wild: A circuit for indirect object identification in GPT-2 small. In
The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=NpsVSN6o4ul.

Wei Zhang, Chaoqun Wan, Yonggang Zhang, Yiu ming Cheung, Xinmei Tian, Xu Shen, and Jieping
Ye. Interpreting and improving large language models in arithmetic calculation. In Forty-first
International Conference on Machine Learning, 2024. URL https://openreview.net/forum?
id=CfOtiepP8s.

13

https://openreview.net/forum?id=qg2TJ3eKOr
https://arxiv.org/abs/1912.04427
https://arxiv.org/abs/1912.04427
https://arxiv.org/abs/2110.09456
https://aclanthology.org/2023.emnlp-main.435/
https://aclanthology.org/2024.naacl-long.381/
https://aclanthology.org/2024.emnlp-main.550/
https://aclanthology.org/2024.emnlp-main.550/
https://openreview.net/forum?id=3Ds5vNudIE
https://openreview.net/forum?id=AwyxtyMwaG
https://aclanthology.org/2024.findings-acl.75/
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=CfOtiepP8s
https://openreview.net/forum?id=CfOtiepP8s

A Appendix

A.1 Circuit Necessity, Sufficiency, Faithfulness, Completeness, and Minimality

Although circuit necessity and sufficiency are defined briefly in §1, we define them more clearly here:

• For a circuit C ⊆ model M , circuit necessity requires that ablating C from M removes the target
behavior from M . Ideally, if M has some more complex behavior f0, and C is hypothesized to
perform target behavior f1, then M\C should ideally perform f0 − f1 if there is some intuitive
and well-defined way to “subtract” behavior f1 from f0.

• Circuit sufficiency requires that C exhibits the target behavior when added to some minimal sub-
network Mmin ⊆ M (potentially with Mmin = ∅). Specifically, if Mmin has some interpretable
behavior f0, and circuit C is hypothesized to perform target behavior f1, then Mmin ∪ C should
perform f0 + f1 if there is some intuitive and well-defined way to “add” the behaviors f0 and
f1. This definition relates to a more general discussion of compositionality in language model
circuits (e.g. Lepori et al., 2023b).

These definitions of necessity and sufficiency are closely related to the definitions of faithfulness,
completeness, and minimality in Wang et al. (2023):

• Circuit faithfulness requires that C replicate the target behavior as observed in the full model M .
This is close to our definition of sufficiency, which requires that C exhibit the target behavior
when added to some minimal subnetwork Mmin ⊆ M .

• For completeness and minimality, a parameter v ∈ M is considered relevant to the target behavior
iff there exists some Mablation ⊆ M such that changing v affects the target behavior in Mablation.
In other words, there exists some model ablation such that v affects the target behavior. We note
that when there is redundancy between circuits, v might affect affect target behavior only when
the primary circuit is ablated, but not in the full model.
Then, circuit completeness requires that all relevant parameters v are included in circuit C. Circuit
completeness implies both sufficiency and necessity. Ablating a complete circuit will remove the
target behavior (necessity), because by definition, the complete circuit contains all parameters that
affect the target behavior. A complete circuit alone will retain the target behavior (sufficiency),
because it contains all parameters that affect the target behavior. However, completeness is
difficult to evaluate in practice, because evaluating every possible subset Mablation ⊆ M is often
intractable (Wang et al., 2023). Thus, it may be helpful to instead consider the weaker criteria of
circuit sufficiency and necessity.

• Circuit minimality requires that C contains only relevant parameters v as defined above (i.e. it
does not contain extraneous parameters). This is independent of both circuit sufficiency and
circuit necessity. For example, the full model M itself is technically both necessary and sufficient
for all observed behaviors in M . However, the full model M is not minimal for many target
behaviors. This is because while M overall is necessary for each target behavior, not all of its
component subcircuits are necessary for each target behavior. An ideal circuit would be necessary,
sufficient, and minimal for a target behavior.

Using these criteria, bigram subnetworks are necessary for next token predictions (ablating them
drastically hurts language modeling performance; §6.3), sufficient for bigram predictions (in isolation,
they produce bigram predictions; §3.2), faithful to bigram predictions (bigram surprisal correlations
r > 0.95; §3.2), and minimal with respect to bigram predictions (enforced sparsity λ in continuous
sparsification optimizes the subnetwork to drop irrelevant parameters; §A.3). However, the bigram
subnetworks are not necessarily complete. There may be other redundant parameters in the model that
could also recreate bigram predictions. Luckily, to use bigram subnetworks as minimal subnetworks
onto which to add other circuits (e.g. to evaluate the sufficiency of other circuits for other behaviors;
§7), we do not need the bigram subnetworks to be complete as in Wang et al. (2023). We simply
need a single (potentially not unique) subnetwork that produces interpretable and minimal next token
predictions and that recreates key internal structures from the full model.

A.2 Subnetwork Training Details

As described in §3.1, we use continuous sparsification (Savarese et al., 2020; Lepori et al., 2023b) to
identify subsets of model parameters that minimize cross-entropy loss with the bigram distribution.

14

We estimate the bigram distribution by counting bigram frequencies in 1.28B tokens of OSCAR web
text (10M sequences of 128 tokens; Abadji et al., 2021), tokenized with the corresponding model
tokenizer. Because the corpus is large enough that all tokens appear at least once (i.e. all possible
bigram “prefixes”), there are no undefined bigram probabilities in our experiments, and we do not
need to smooth the bigram distribution estimate.

To train the subnetworks themselves, we build upon the implementation in Lepori et al. (2023a). For
all fully trained models (§3) and when training “optimal” subnetworks (§6), we train subnetworks with
sparsity terms λ ∈ [0, 1, 5, 10, 50, 100, 500, 1000] (Equation 1). For checkpoints during pretraining
(§4), we train subnetworks with λ ∈ [0, 1, 10, 100, 500]. Subnetworks are trained on sequences of
128 tokens with batch size 32 and learning rate 5e-5, with a multiplicative sigmoid temperature
decrease of 1.001 per training step (dictating how fast the continuous mask approaches a binary
mask). We learn the subnetwork mask over all model parameters except the token embedding, token
unembedding, and layernorm parameters.10 All mask parameters are initialized at 0.0 before the
sigmoid (0.50 after the sigmoid).

For each subnetwork, we stop training when the number of mask parameters in [0.10, 0.90] (i.e.
“undecided” mask parameters) is less than 1% of the number of mask parameters greater than 0.90
(i.e. parameters to be included in the subnetwork). This ensures that the number of “undecided”
parameters will not change the learned subnetwork by more than 1% when the continuous mask
is converted to a binary mask. In practice, it takes roughly 5K to 10K training steps to reach this
convergence criterion. To verify training stability, we check for any spikes in cross-entropy loss of
+0.25 or ×1.25. If such a spike is not recovered at least 100 steps before the end of training, we
re-train the subnetwork. Each subnetwork takes approximately four to twelve hours to train on a
single NVIDIA RTX A6000 (48GB) GPU, depending primarily on model size. Subnetwork training
costs make up the vast majority of computational costs to produce the results in this paper.

A.3 Bigram Subnetwork Selection

In §4.2, §5, and §6, when analyzing the bigram subnetwork for a specific model, we focus on the
bigram subnetwork with maximal sparsity but before any notable drop in bigram surprisal correlation.
Our analyses in those sections include GPT-2 small, GPT-2 small re-trained (checkpoints from Chang
et al., 2024), GPT-2 large, Pythia 160M, and Pythia 1B. For each fully trained model, of the bigram
subnetworks trained with different sparsity terms λ, we select the sparsest subnetwork (highest λ)
that is still within 0.04 correlation of the subnetwork trained with λ = 0 (no sparsity enforced).

This aims to ensure that the subnetworks we analyze only contain parameters that actually contribute
to the subnetwork’s behavior, even if these are before the subnetwork has fully plateaued in bigram
surprisal correlations (around 10M active parameters; Figure 1). With more allowed parameters
(lower λ), the subnetwork has more flexibility to optimize the bigram cross-entropy loss (Equation 1),
but it is also more likely to include extraneous parameters that have little effect on the subnetwork’s
behavior regardless of whether they are included or not. For example, in a sparse subnetwork, it
would not matter whether certain parameters θA are included if they only write some feature to a
subspace that is read by some parameters θB that are already ablated (Merullo et al., 2024b). Indeed,
when λ = 0 (no sparsity enforced), we find that most subnetworks consist of roughly 50% of model
parameters, indicating that most parameters do not have a significant pressure to be included or not
included in the subnetwork.

Thus in our analyses in §4.2, §5, and §6, for GPT-2 (re-trained), GPT-2 small, and Pythia 160M,
we use the bigram subnetwork trained with λ = 10. For GPT-2 large and Pythia 1B, we use the
bigram subnetwork trained with λ = 100. The parameter counts and bigram surprisal correlations for
these subnetworks are reported in Table 1. As noted in §6, for optimal subnetworks, we consider the
sparsest optimal subnetwork that still contains more active parameters than the bigram subnetwork
selected for that model. In general, we find that our results remain qualitatively similar for different
λ, as long as the bigram subnetworks are reasonably sparse (e.g. < 10% of parameters active).

10We do not include embedding and unembedding (language model head) parameters in the mask because
we hypothesize that embedding parameters for rare tokens might be highly likely to get masked. Specifically,
when optimizing for bigram cross-entropy loss and encouraging sparsity, the continuous sparsification method
might be likely to find it optimal to simply drop many embedding and unembedding parameters for rarer tokens,
because they contribute less to the loss.

15

Model Sparsity Active Total mask Bigram
λ parameters parameters correlation r

Pythia 160M 10 7238986 84934656 0.953
Pythia 1B 100 1378087 805306368 0.959
GPT-2 small* 10 924639 84934656 0.962
GPT-2 small 10 904866 84934656 0.952
GPT-2 large 100 727556 707788800 0.946

Table 1: Subnetwork parameter counts for the bigram subnetworks that we focus on for our analyses
in §4.2, §5, and §6. GPT-2 small* indicates the GPT-2 small replication from Chang et al. (2024).
Details in §A.3.

Model Full Bigram Subnetwork, Subnetwork, Embeddings, Embeddings,
model subnetwork at random random except empty linear

initialization embeddings subnetwork transform
Pythia 160M 0.690 0.964 0.787 0.965 0.305 0.615
Pythia 1B 0.632 0.987 0.896 0.986 0.628 0.936
GPT-2 small* 0.680 0.987 0.759 0.974 0.680 0.921

Table 2: For different models, we report bigram surprisal correlations for (1) the full model, (2) the
bigram subnetwork, (3) the bigram subnetwork found in a randomly initialized model, (4) the bigram
subnetwork found in a randomly initialized model with trained token embeddings and unembeddings
patched in, (5) the embeddings and unembeddings alone with an empty subnetwork, and (6) the
embeddings and unembeddings with a learned linear transformation between them. Subnetworks
here use λ = 0 (no sparsity enforced), to maximize bigram surprisal correlations. Correlations above
r = 0.90 are bolded. GPT-2 small* indicates the GPT-2 small replication from Chang et al. (2024).
Details in §A.4.

A.4 Importance of Trained Token Embeddings

Interestingly, we find that bigram subnetworks with high bigram surprisal correlations can be found in
randomly-initialized models, as long as fully-trained token embeddings and unembeddings are patched
in (Table 2; “subnetwork, random except embeddings”, c.f. “subnetwork, at random initialization”).
For example, we can find a subnetwork with bigram surprisal correlation r = 0.986 in Pythia
1B when all parameters are randomly initialized except the token embedding and unembedding
parameters. This suggests that trained token embeddings are much of the reason we can find bigram
subnetworks in fully trained models, but not in randomly initialized models.

However, keeping only the token embedding and unembedding parameters (and layernorm parame-
ters) does not result in high bigram surprisal correlations (Table 2; “embeddings, empty subnetwork”).
In other words, the embeddings do not recreate the WUWE embedding-unembedding bigram struc-
ture described for zero-layer Transformers in Elhage et al. (2021). This is not entirely surprising, but
it indicates that the bigram subnetwork parameters we find in Transformer layers are still necessary
for high bigram correlations. For example, these non-embedding subnetwork parameters might
be responsible for triggering the bigram information encoded in the embedding and unembedding
parameters, and thus these non-embedding parameters are still important components of the bigram
subnetwork.

The fact that much information is contained in token embeddings and unembeddings may also be
relevant for interpreting tuned lens results in other work. The tuned lens learns a linear transformation
between layer ℓ activations and the unembedding matrix, to elicit intermediate model predictions
from layer ℓ (Belrose et al., 2023). Equivalently, all remaining Transformer layers are replaced
with a learned linear transformation. However, we find that such a linear transformation can often
recreate bigram predictions even directly from the input embeddings (Table 2; “embeddings, linear
transform”; bigram surprisal correlation r > 0.90 for Pythia 1B and GPT-2 small), suggesting that
a linear transformation can sometimes extract desired predictions regardless of whether they are
truly “intermediate predictions” of the model (§A.5).11 This would make the tuned lens an overly

11For the linear transformation from input embeddings to bigram distribution activations (before unembedding),
we use the transformation Lout from §5.1 for layer zero activations in the bigram subnetwork. This transformation

16

strong probe with potential false positive “intermediate predictions”, because the learned linear
transformation can significantly rotate and rescale the input embeddings to match a target output
distribution. We note from Figure 3 in the main text that even if a linear transformation can recreate
the output distribution from layer zero, it requires a significant amount of rotation of the activations
to do so.

A.5 Do Language Models Make Intermediate Bigram Predictions?

While bigram subnetwork predictions are highly correlated with bigram predictions when other
parameters are set to zero, this does not necessarily mean that fully trained language models “make
bigram predictions” that are hidden within the full model. Defining whether a model makes an
“intermediate prediction” at some layer ℓ has often been cast as early-exiting from the model, where the
token unembedding matrix is applied directly to activations after layer ℓ. Unfortunately, this untuned
logit lens is relatively unreliable in early layers (Belrose et al., 2023), where bigram subnetworks
are concentrated. In contrast, a tuned lens (Belrose et al., 2023) that learns a linear transformation
between layer ℓ activations and the unembedding matrix might be too strong a probe: above, we
find that a tuned lens can reach bigram surprisal correlations of r > 0.90 even when applied directly
to input token embeddings, because the learned linear transformation is able to significantly rotate
and rescale the input embeddings to match a bigram output distribution (§A.4). In other words, an
untuned logit lens is too weak a probe to find many intermediate predictions (many false negatives),
but a tuned logit lens may be too strong a probe (many false positives); a clear definition of an
“intermediate prediction” after layer ℓ remains nebulous.12 In our work, we do not claim that language
models make intermediate bigram predictions in early layers, but we note that our results in §5
(demonstrating a transformation towards next token space in the first layer) would align with this
hypothesis. Determining where, if anywhere, intermediate next token predictions are encoded in
language model activations is an interesting direction for further research.

has been fitted to recreate the subnetwork output activations (before unembedding) from the layer zero input
embeddings; because the subnetwork is trained to recreate bigram predictions, the subnetwork output activations
are close to the bigram distribution. Thus, Lout approximately maps from input embeddings to bigram
distribution outputs before unembedding.

12In a similar way, one might consider continuous sparsification to be too strong a probe for finding bigram
subnetworks; however, our ablation and optimal pruning results (§6), along with mechanistic analyses (§5),
suggest that the bigram subnetworks we find are not just arbitrary subsets of parameters.

17

A.6 Checkpoint Results for Other Models

Results as in Figure 2 but for GPT-2 small (re-trained, checkpoints from Chang et al., 2024) and
Pythia 160M are shown in Figure 6. As in Pythia 1B in the main text (§4), the bigram subnetworks
peak in bigram surprisal correlations over one thousand steps after the full model begins to diverge
from bigram predictions, but the bigram subnetworks become less efficiently compressed later in
pretraining. Throughout pretraining, the plurality of subnetwork parameters are in the first MLP layer,
but the subnetworks spread more to other layers (including attention layers) later in pretraining.

2 3 4 5 6
Checkpoint (log10)

0.6

0.7

0.8

0.9

1.0

Bi
gr

am
 c

or
re

la
tio

n

GPT-2 small*
Active parameters

1e5
1e6
1e7
Unenforced
Full model

0

10
1

20
5

42
1

64
7

10
09

15
35

25
92

40
49

63
29

99
31

15
74

9

25
42

2

39
83

1

62
93

8

10
08

00

16
00

72

25
28

62

39
81

25

62
55

32

Checkpoint

0

2

4

6

8

10

La
ye

r

GPT-2 small*, MLP

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0

10
1

20
5

42
1

64
7

10
09

15
35

25
92

40
49

63
29

99
31

15
74

9

25
42

2

39
83

1

62
93

8

10
08

00

16
00

72

25
28

62

39
81

25

62
55

32

Checkpoint

0

2

4

6

8

10

La
ye

r

GPT-2 small*, attention

0.00

0.01

0.02

0.03

0.04

2 3 4 5
Checkpoint (log10)

0.70

0.75

0.80

0.85

0.90

0.95

Bi
gr

am
 c

or
re

la
tio

n

Pythia 160M
Active parameters

1e5
1e6
1e7
Unenforced
Full model

0

12
8

25
6

51
2

10
00

20
00

30
00

40
00

60
00

10
00

0

16
00

0

25
00

0

40
00

0

63
00

0

10
00

00

14
30

00

Checkpoint

0

2

4

6

8

10

La
ye

r

Pythia 160M, MLP

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
0

12
8

25
6

51
2

10
00

20
00

30
00

40
00

60
00

10
00

0

16
00

0

25
00

0

40
00

0

63
00

0

10
00

00

14
30

00
Checkpoint

0

2

4

6

8

10

La
ye

r
Pythia 160M, attention

0.00

0.02

0.04

0.06

0.08

Figure 6: Results as in Figure 2, but for GPT-2 small* and Pythia 160M. GPT-2 small* indicates
the GPT-2 small replication from Chang et al. (2024) with checkpoints. Left: estimated bigram
surprisal correlation for bigram subnetworks with different numbers of active parameters (excluding
embedding parameters) at different checkpoints. Right: proportions of parameters in the subnetwork
that are in each MLP and attention layer throughout pretraining. Note that the color bar scale is 5×
or 10× larger for MLP proportions, as a far greater proportion of bigram subnetwork parameters are
in the MLP layers.

18

A.7 Input and Output Rotation Results for Other Models

Results as in Figure 3 but for other models are shown in Figure 7. As in GPT-2 large and Pythia
160M in the main text (§5.1), in the full models, the first layer induces a large rotation that aligns
activations with output (next token) activations rather than input (current token) activations. This
effect is recreated in the bigram subnetworks, although to a smaller degree in Pythia 1B. However, in
all cases, the bigram subnetwork recreates the pattern from the full model to a much larger degree
than a random subnetwork (with the same size and the same distribution over parameter blocks as the
bigram subnetwork) does.

0 2 4 6 8 10 12
Layer

0

20

40

60

80

M
ed

ia
n

ro
ta

tio
n

GPT-2 small*, full

To input token
To output distribution

0 2 4 6 8 10 12
Layer

0

20

40

60

80

M
ed

ia
n

ro
ta

tio
n

GPT-2 small*, bigram subnetwork
To input token
To output distribution

0 2 4 6 8 10 12
Layer

0

20

40

60

80

M
ed

ia
n

ro
ta

tio
n

GPT-2 small*, random subnetwork
To input token
To output distribution

0 2 4 6 8 10 12
Layer

0

20

40

60

80

M
ed

ia
n

ro
ta

tio
n

GPT-2 small, full
To input token
To output distribution

0 2 4 6 8 10 12
Layer

0

20

40

60

80

M
ed

ia
n

ro
ta

tio
n

GPT-2 small, bigram subnetwork
To input token
To output distribution

0 2 4 6 8 10 12
Layer

0

20

40

60

80

M
ed

ia
n

ro
ta

tio
n

GPT-2 small, random subnetwork
To input token
To output distribution

0 5 10 15
Layer

0

20

40

60

80

M
ed

ia
n

ro
ta

tio
n

Pythia 1B, full

To input token
To output distribution

0 5 10 15
Layer

0

20

40

60

80

M
ed

ia
n

ro
ta

tio
n

Pythia 1B, bigram subnetwork
To input token
To output distribution

0 5 10 15
Layer

0

20

40

60

80

M
ed

ia
n

ro
ta

tio
n

Pythia 1B, random subnetwork
To input token
To output distribution

Figure 7: Results as in Figure 3, but for other models. These show the median rotation to input
(current token) activations and to output (next token) activations at each layer, for the full model,
the bigram subnetwork, and a random subnetwork with the same size and structure as the bigram
subnetwork. GPT-2 small* indicates the GPT-2 small replication from Chang et al. (2024).

19

A.8 Covariance Similarity Results for Other Models

Results as in Figure 4 but for other models are shown in Figure 8. As in Pythia 1B in the main
text (§5.2), the bigram subnetworks recreate many cross-layer covariance similarity patterns from
their corresponding full models, despite consisting of only a small proportion of model parameters.
Random subnetworks with the same size (and the same distributions over parameter blocks) as the
bigram subnetworks generally do not recreate these patterns, producing similarity matrices with
values almost entirely near 1.0 (consistent with results in the main text; §5.2). We do observe that the
discontinuity between layer zero and layer one is somewhat recreated in the random subnetworks
for smaller models. This is likely because the bigram subnetworks are a larger proportion of model
parameters in the smaller models; the corresponding random subnetworks (which are matched for
bigram subnetwork size) then contain more parameters and are thus more likely to recreate patterns
from the full models.

0 2 4 6 8 10 12
Layer j

0

2

4

6

8

10

12

La
ye

r i

GPT-2 small*, full

0.0

0.2

0.4

0.6

0.8

1.0

Covariance sim
ilarity

0 2 4 6 8 10 12
Layer j

0

2

4

6

8

10

12

La
ye

r i

GPT-2 small*, bigram subnetwork

0.0

0.2

0.4

0.6

0.8

1.0

Covariance sim
ilarity

0 2 4 6 8 10 12
Layer j

0

2

4

6

8

10

12

La
ye

r i

GPT-2 small*, random subnetwork

0.0

0.2

0.4

0.6

0.8

1.0

Covariance sim
ilarity

0 2 4 6 8 10 12
Layer j

0

2

4

6

8

10

12

La
ye

r i

GPT-2 small, full

0.0

0.2

0.4

0.6

0.8

1.0

Covariance sim
ilarity

0 2 4 6 8 10 12
Layer j

0

2

4

6

8

10

12

La
ye

r i

GPT-2 small, bigram subnetwork

0.0

0.2

0.4

0.6

0.8

1.0

Covariance sim
ilarity

0 2 4 6 8 10 12
Layer j

0

2

4

6

8

10

12

La
ye

r i

GPT-2 small, random subnetwork

0.0

0.2

0.4

0.6

0.8

1.0

Covariance sim
ilarity

0 2 4 6 8 10 12
Layer j

0

2

4

6

8

10

12

La
ye

r i

Pythia 160M, full

0.0

0.2

0.4

0.6

0.8

1.0

Covariance sim
ilarity

0 2 4 6 8 10 12
Layer j

0

2

4

6

8

10

12

La
ye

r i

Pythia 160M, bigram subnetwork

0.0

0.2

0.4

0.6

0.8

1.0

Covariance sim
ilarity

0 2 4 6 8 10 12
Layer j

0

2

4

6

8

10

12

La
ye

r i

Pythia 160M, random subnetwork

0.0

0.2

0.4

0.6

0.8

1.0

Covariance sim
ilarity

0 5 10 15 20 25 30 35
Layer j

0

5

10

15

20

25

30

35

La
ye

r i

GPT-2 large, full

0.0

0.2

0.4

0.6

0.8

1.0

Covariance sim
ilarity

0 5 10 15 20 25 30 35
Layer j

0

5

10

15

20

25

30

35

La
ye

r i

GPT-2 large, bigram subnetwork

0.0

0.2

0.4

0.6

0.8

1.0

Covariance sim
ilarity

0 5 10 15 20 25 30 35
Layer j

0

5

10

15

20

25

30

35

La
ye

r i

GPT-2 large, random subnetwork

0.0

0.2

0.4

0.6

0.8

1.0

Covariance sim
ilarity

Figure 8: Results as in Figure 4, but for other models. These show cross-layer covariance similarities
for the full model, its bigram subnetwork, and a random subnetwork with the same size and structure
as the bigram subnetwork. The bigram subnetworks recreate many patterns from the full models,
much moreso than random subnetworks of the same size. GPT-2 small* indicates the GPT-2 small
replication from Chang et al. (2024).

20

A.9 Optimal Subnetwork Results for Other Models

Results as in Figure 5 (left) but for other models are shown in Figure 9. As in Pythia 1B in the
main text (§6.1), when more sparsity is enforced (fewer active parameters), optimal subnetwork
surprisals correlate more with bigram surprisals than with the original model surprisals. We do
observe a slight drop in bigram correlations for the sparsest optimal subnetworks in Pythia 160M;
this is somewhat expected, because in extremely sparse scenarios, bigram correlations drop even for
the bigram subnetworks themselves (Figure 1, left, center). Optimal subnetwork correlations with
bigram predictions still remain considerably higher than correlations with the full model in these
sparse scenarios.

In Table 3, we report the actual and expected (by chance) parameter overlaps between the bigram
subnetwork and the optimal subnetwork for each model, as described in §6.2 (with bigram sub-
networks selected as in §A.3). Concretely, when considering the parameter overlap between two
subnetworks C0 and C1, we generate 10K random subnetwork pairs (pairs of parameter masks) that
randomly select the same number of parameters as C0 and C1 respectively within each parameter
block. Then, we count the number of random pairs whose parameter overlap is greater than or equal
to the parameter overlap of C0 and C1. This gives us the probability that two random subnetworks
would have equal or greater overlap than C0 and C1, after accounting for the number of parameters
kept per block in C0 and C1. As in Pythia 1B in the main text (§6.2), for all models, the actual
overlaps between bigram subnetworks and optimal subnetworks are far larger than would be expected
by chance. Specifically, in all cases, none of the 10K randomly generated pairs have greater parameter
overlap than the bigram subnetwork and the optimal subnetwork (and thus p < 0.0001).

4.5 5.0 5.5 6.0 6.5 7.0 7.5
Active parameters (log10)

0.5

0.6

0.7

0.8

0.9

1.0

Su
rp

ris
al

 c
or

re
la

tio
n

GPT-2 small*, optimal subnetwork

With original model
With bigram

4.5 5.0 5.5 6.0 6.5 7.0 7.5
Active parameters (log10)

0.6

0.7

0.8

0.9

1.0

Su
rp

ris
al

 c
or

re
la

tio
n

GPT-2 small, optimal subnetwork

With original model
With bigram

5.5 6.0 6.5 7.0 7.5 8.0 8.5
Active parameters (log10)

0.6

0.7

0.8

0.9

1.0

Su
rp

ris
al

 c
or

re
la

tio
n

GPT-2 large, optimal subnetwork

With original model
With bigram

5.0 5.5 6.0 6.5 7.0 7.5
Active parameters (log10)

0.6

0.7

0.8

0.9

1.0

Su
rp

ris
al

 c
or

re
la

tio
n

Pythia 160M, optimal subnetwork

With original model
With bigram

Figure 9: Results as in Figure 5 (left), but for other models. These show surprisal correlations
between optimal subnetworks and the original model, and between optimal subnetworks and bigram
predictions, for different numbers of active parameters. GPT-2 small* indicates the GPT-2 small
replication from Chang et al. (2024).

21

Model Bigram Optimal Overlap Expected Actual / % bigram
subnetwork subnetwork overlap expected contained

Pythia 160M 8.52e-2 1.33e-1 5.23e-2 1.37e-2 3.81× 61.4%
Pythia 1B 1.71e-3 9.30e-3 6.51e-4 4.26e-5 15.27× 38.0%
GPT-2 small* 1.09e-2 1.77e-2 2.41e-3 3.43e-4 7.03× 22.1%
GPT-2 small 1.07e-2 1.37e-2 1.53e-3 2.10e-4 7.27× 14.3%
GPT-2 large 1.03e-3 7.06e-3 3.34e-4 2.63e-5 12.70× 32.5%

Table 3: Proportions of total model parameters (excluding embedding parameters) in (1) the bigram
subnetwork (selected as in §A.3), (2) an optimal subnetwork of roughly similar size (§6.1), (3) the
overlap between the two, and (4) the expected overlap between the two by chance, then (5) the
multiplier by which the actual overlap exceeds the expected overlap, and (6) the percentage of the
bigram subnetwork that is contained in the optimal subnetwork. GPT-2 small* indicates the GPT-2
small replication from Chang et al. (2024).

22

A.10 Text Generations After Subnetwork Ablations

In Table 4, we report sample text generations for Pythia 1B and GPT-2 large for (1) the original
model, (2) the bigram subnetwork, (3) ablating the bigram subnetwork, and (4) ablating a random
subnetwork with the same size (and the same distribution over parameter blocks) as the bigram
subnetwork. All text generations here use sampling temperature τ = 0.30. In line with the evaluation
loss results in §6.3, ablating the bigram subnetwork drastically hurts text generation performance.
Ablating a random subnetwork of the same size and structure has little, if any, noticeable effect. We
observe qualitatively similar results for the smaller models.

Model Subnetwork Text
Pythia 1B Full model This is a sentence that I have been told by my friends

and family members. It is a sentence that I have
heard from my teachers.

Bigram
subnetwork

This is a sentence that the most of the most popular
in the first time. The first time to be a few days,
and the best way to see the best way to the same time
to the first time.

Bigram
ablated

This is a sentence that
................
......

Random
ablated

This is a sentence that I have written in my own
words, and I have tried to express my thoughts in a
way that is understandable to you. I will not be able
to get over the fact that I have been a victim of the
system.

GPT-2 large Full model This is a sentence that is not true. The only thing
that is true is that the world is not a perfect place.
There are things that are not perfect.

Bigram
subnetwork

This is a sentence that the best way to be the best to
the same time. The most of the first time. The first
round and the best way to the best possible.

Bigram
ablated

This is a sentence that \n \n \n \n \n \n \n \n \n \n
\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
\n \n \n \n \n \n \n

Random
ablated

This is a sentence that is often used in the context
of the "right to be forgotten" in the EU. "The right
to be forgotten" is a legal right that allows you to
request that a website remove or obscure your personal
information from search results.

Table 4: Sample text generations for Pythia 1B and GPT-2 large for the full model, the bigram
subnetwork, ablating the bigram subnetwork, and ablating a random subnetwork with the same size
and structure as the bigram subnetwork (§A.10). Input prompt text is in purple. All generations use
sampling temperature τ = 0.30.

23

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See Abstract and §1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Limitations include the fact that bigram subnetworks might not be unique in
recreating properties of the residual stream (§5.2; §A.1). Our results also do not necessarily
imply that the models are making “intermediate bigram predictions” that are hidden within
the full model (§A.5). Due to computational limitations, we also only run English models
up to 1B parameters.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

24

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: See §3.1 and §A.2. Code is also publicly available.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

25

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code and trained subnetworks are publicly available at: https://github.
com/tylerachang/bigram-subnetworks. All subnetworks are trained on OSCAR
(Abadji et al., 2021; publicly available).

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See §3.1, §A.2, and §A.3. Code is also publicly available.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Statistical significance is reported where relevant and computationally tractable
(e.g. we cannot train many subnetworks for each model and hyperparameter configuration).
E.g. see significance testing in §6.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

26

https://github.com/tylerachang/bigram-subnetworks
https://github.com/tylerachang/bigram-subnetworks
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See §A.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This work is focused on interpretability and analysis of existing models (see
§1 and §7), which aim to make existing models more transparent and interpretable. No new
models are introduced.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

27

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No new models or datasets are released.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All models and datasets are properly cited, with licenses in the corresponding
citation links. The Pythia models have an Apache 2.0 license, the GPT-2 models have an
MIT license, and the OSCAR text corpus has a Creative Commons Zero v1.0 Universal
license.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

28

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Trained bigram subnetworks for existing models are publicly released with
documentation on Github.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

29

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

30

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background and Related Work
	Finding Bigram Subnetworks
	Method: Continuous Sparsification
	Existence of Bigram Subnetworks

	Persistence and Structure Throughout Pretraining
	Bigram Subnetworks Persist but Decompress Throughout Pretraining
	Bigram Subnetworks Are Concentrated in the First MLP Layer

	Mapping to Next Tokens in the Residual Stream
	Rotations Induced by the First Transformer Layer
	Covariance Similarities Between Layers

	Bigram Subnetworks Approximate Optimal Subnetworks
	Training Optimal Subnetworks
	Optimal Subnetworks Overlap Significantly with Bigram Subnetworks
	Ablating Bigram Subnetworks

	Discussion and Conclusion
	Appendix
	Circuit Necessity, Sufficiency, Faithfulness, Completeness, and Minimality
	Subnetwork Training Details
	Bigram Subnetwork Selection
	Importance of Trained Token Embeddings
	Do Language Models Make Intermediate Bigram Predictions?
	Checkpoint Results for Other Models
	Input and Output Rotation Results for Other Models
	Covariance Similarity Results for Other Models
	Optimal Subnetwork Results for Other Models
	Text Generations After Subnetwork Ablations

