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Abstract
Interference bias is a major impediment to identifying causal effects in real-world settings. For
example, vaccination reduces the transmission of a virus in a population such that everyone benefits—
even those who are not treated. This is a source of bias that must be accounted for if one wants to
learn the true effect of a vaccine on an individual’s immune system. Previous approaches addressing
interference bias require strong domain knowledge in the form of a graphical interaction network
fully describing interference between units. Moreover, they place additional constraints on the
form the interference can take, such as restricting to linear outcome models, and assuming that
interference experienced by a unit does not depend on the unit’s covariates. Our work addresses these
shortcomings. We first provide and justify a novel definition of causal models with local interference.
We prove that the True Average Causal Effect, a measure of causality where interference has been
removed, can be identified in certain semi-parametric models satisfying this definition. These
models allow for non-linearity, and also for interference to depend on a unit’s covariates. An analytic
estimand for the True Average Causal Effect is given in such settings. We further prove that the True
Average Causal Effect cannot be identified in arbitrary models with local interference, showing that
identification requires semi-parametric assumptions. Finally, we provide an empirical validation of
our method on both simulated and real-world datasets.

1. Introduction

Medical professionals and epidemiologists want to understand the effects of vaccination. Advertisers
want to estimate the impact of campaigns in online marketplaces. Teachers want to understand how
their instruction influences student’s test scores. In all of these cases, straightforward application of
causal inference techniques will lead to incorrect estimates of the causal effects due to interference
bias. Interference bias arises when the treatment assignment of one unit can impact the outcome of
another. Indeed, vaccination reduces the transmission of a virus in a population, such that everyone
benefits—even those not vaccinated; advertisements compete in online marketplaces, reducing the
impact of certain campaigns; and student’s test scores are not only influenced by their instruction
type, but also by the instruction type of their class-mates.

The restriction that there be no interference between units is a crucial part of the stable unit-
treatment value assumption (SUTVA), generally required to identify causal effects (Rubin, 1978).
Therefore, the presence of interference, and consequent violation of SUTVA, is a major impediment
to using causal inference to address real-world problems. Recent work by Zhang et al. (2022);
Spohn et al. (2023); Zhang et al. (2023) has begun exploring this problem in the graphical models
framework of Pearl (2009). However, these approaches require strong domain knowledge—in the
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form of a graphical interaction network fully describing interference between units—to remove bias.
Moreover, additional constraints are placed on the form interference can take, such as restricting to
linear outcome models (Zhang et al., 2022; Spohn et al., 2023), and assuming that interference does
not depend on a given unit’s covariates [Spohn et al. 2023]. To remove interference bias and identify
the true causal effect (we formally define this quantity in Section 4.2 below), these works rely on
full knowledge of the interaction network, and also require the existence of units not impacted by
interference. These conditions are not always feasible in practice.

In this paper we address these shortcomings. Our approach is based on two observations. Firstly,
those units who are not themselves treated—that is, units that are only impacted by spillover effects
from treated units—provide a sense of the level of interference present. If interference experienced
by the untreated units is representative of that experienced by the treated units, then in principle one
could use spillover effects on untreated units to remove, or reduce, interference bias.

Secondly, even in situations where the interaction network is not fully known, there are real-world
settings where the problem can be simplified. Indeed, in the case of vaccination, while it’s possible
that the vaccination status of one member of the population can impact the outcome for any other
(someone could get vaccinated in London and get on a plane to New York soon after), it is reasonable
to assume that a member of the population is primarily impacted by the vaccination status of the
members of their immediate household. In the case of advertisements in an online marketplace,
a given advertisement will usually only compete with other advertisements that are relevant for
the same buyer in that marketplace and not others. Finally, student’s test scores will likely only
be influenced by their close friends in the class, rather than all class-mates. Hence, even when
the interaction network is not fully known, certain domain knowledge about how interference is
“localised” can make the problem tractable, and allow us to understand if treated units are exposed to
the same type of interference as untreated units.

We show that, by formalising the above two observations, one can remove interference bias in
certain semi-parametric settings—beyond linear outcome models—where domain knowledge tells us
that the interference can be considered local (as in the examples of vaccination, online advertisements,
and student test scores above). The main contributions of this paper are as follows:

1. A novel definition of structural causal models with local interference. In these models
interference effects can be confounded, and can depend on unit’s covariates.

2. A proof that the True Average Causal Effect (TACE), a measure of causality where local
interference bias has been removed, can be identified in certain semi-parametric models. An
analytic estimand for the TACE is given for such models.

3. A proof that the TACE cannot be identified in arbitrary models with local interference—hence
semi-parametric assumptions are required for identification.

4. An empirical validation of our method on both synthetic and real-world datasets.

2. Toy Examples

We now introduce two toy examples which will help build intuition about when one might and might
not be able to use spillover effects to remove interference bias.

Consider the causal model, with causal structure depicted in Figure 1(a), and structural equations
given by Y1 = αT1 + βT2, Y2 = γT2, and Y3 = ρT3 + βT2. Moreover, assume we have observed
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Figure 1: (a) Causal structure for toy example 1 described in Section 2. The spillover effect from unit
2 to unit 3 is used to remove the interference bias and identify the true effect for unit 1. (b) Causal
structure for toy example 2 from Section 2. In this case, the true effect for unit 1 cannot be identified.

that T1 = 1, T2 = 1, and T3 = 0. That is, units 1 and 2 are treated, and unit 3 is untreated. Our
goal is to learn the treatment effect of T1 on Y1 (ie. to identify α). Here, units 1 and 3 experience
interference from unit 2’s treatment, in the sense that their outcomes Y1, Y3 depend on T2. There
are spillover effects from unit 2’s treatment to the outcomes of units 1 and 3. However, as unit 3 is
untreated, observing Y3 yields the spillover effect directly and gives us β. Hence, subtracting this
from Y1 provides us with α: Y1 − Y3 = α+ β − β = α. We have thus removed the interference bias
to learn the true effect of treatment on unit 1 alone using the spillover effect on unit 3. This required
that both unit 1 and unit 3 only experienced interference from unit 2, and moreover that they both
experienced the same level of this interference—that is both depended on T2 through β.

The expression used to obtain α is quite interesting, and worth considering in more detail. We
had domain knowledge informing us that unit 1 and unit 3 experienced the same type and degree
of interference, and thus could consider the untreated unit 3 a “match” for the treated unit 1—in
a similar manner to matching on confounders in propensity-based causal inference. In fact, this
observation foreshadows our approach to removing interference bias provided in Section 4.2.

In our next toy example we will see that these assumptions are crucial for removing interference
bias. Consider the causal model, with causal structure depicted in Figure 1(b), and structural
equations given by Y1 = αT1 + βT2, Y2 = γT2 + δT1, and Y3 = ρT3 + βT2 + δT1. As before,
assume we have observed that T1 = 1, T2 = 1, and T3 = 0. Again, our goal is to identify α. Here
however, it is not possible to use spillover effects to do this. Even though unit 1 and unit 3 are
impacted by interference from unit 2 to the same degree (both through T2 via the coefficient β), unit
3 is also impacted by interference from unit 1, which means the type of interference experienced by
unit 3 is no longer representative of the interference experienced by unit 1 (or unit 2 for that matter).

In Section 4 we provide and justify a novel definition of causal models with local interference,
and prove that interference bias can be removed in certain semi-parametric models satisfying this
definition using spillover effects from untreated units. First, we formally overview the structural
causal model and interaction network framework that we work in for the rest of the paper.

3. Preliminaries: Interaction Networks and the True Average Causal Effect

We adopt the Structural Causal Model (SCM) framework introduced by Pearl (2009).
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Definition 1 (Structural Causal Model) A structural causal model (SCM) specifies a set of latent
variables U = {u1, . . . , un} distributed as P (U), a set of observed variables X = {X1, . . . , Xn},
a directed acyclic graph (DAG) G, called the causal structure of the model, whose nodes are the
variables U∪X , a collection of functions F = {f1, . . . , fn}, such that Xi = fi(PA(Xi), ui), for i =
1, . . . , n, where PA denotes the parent observed nodes of an observed variable.

The latent noise term in each fi can be suppressed into PA(Xi) by enforcing that every observed
node has an independent latent variable as a parent in G. This convention is adopted in this work.

A (hard) intervention on variable Xi is denoted by do(Xi = xi), which corresponds to removing
all incoming edges in the causal graph and replacing its structural equation with a constant.

We work in the interacting models framework of Zhang et al. (2022) (see also Zhang (2023)).
We refer to the variables in a standard causal model as generic variables. An explicit variable, on the
other hand, represents a variable corresponding to a specific unit only. For instance, “treatment (T )”
is a generic variable, but “the treatment assignment of unit i (Ti)” is explicit.

Definition 2 (Interaction model) An interaction model, M(G,S), is a causal model where G is
the interaction network and S is the set of structural equations defining the data generating process
of the observed explicit variables. An interaction network, G, is a DAG with each node representing
an explicit variable and each directed edge Ai → Bj representing Ai causes Bj

An example of an interaction network is given by Figure 1(a), with structural equations specified
in Section 2. Interaction networks allow arrows between explicit variables of the same unit (T1 → Y1
in Figure 1(a)), as well as between explicit variables of different units (T2 → Y1 in Figure 1(a)).

We now define the default interaction model, which is the “default” causal model for a unit
if there are no interactions with other units. Our default interaction model extends the isolated
interaction model of Zhang et al. (2022), allowing for non-linear interactions between units in the
structural equations. Interacting units are removed by replacing the variables in the interacting terms
in the structural equations with the appropriate default value. In linear models for instance, removing
interference corresponds to removing the terms that lead to interactions between units, and so default
values are always 0 in this case. Concretely, recall the structural equations for unit 1 in the second toy
example from Section 2: Y1 = αT1 + βT2. The default model for unit 1 then corresponds to setting
T2 = 0. The structural equation in the default model for unit 1 in this toy example is: Y1 = αT1. In
non-linear models, default values can be any real number that the variable can take on in order to
remove interference. For example, if the structural equations are a product of variables from different
units, then to remove interference the default value for interacting variables must be 1.

Definition 3 (Default interaction model) A default interaction model DM(DG,DS) with respect
to an interaction model M(G,S) with a set of default generic variable values D is constructed from
M in the following way:

1. DG = G′ where G′ is the graph obtained from G by removing all edges between units i ̸= j.

2. DS = S′ where S′ is the set of equations obtained from S by substituting in each equation
Xi = fi(PA(Xi)) any explicit variable ∀j ̸= i with the corresponding constant in D.

The unit default interaction model DMi(DGi, DSi) corresponds to the subgraph and subset of
equations in DM(DG,DS) specific to unit i.
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YiTi

Xi

Tj ̸=i

Xj ̸=i

Figure 2: General causal structure with interference between units. Nodes and arrows from different
units are compressed for ease of representation. The latent noise terms are also not shown.

In order to define causal quantities that are the same for all units, we need to introduce a notion
of symmetry in interaction models. To this end, we define balanced interaction models. The intuition
underpinning this definition is that if we hypothetically remove all interactions, then all units should
have the same data generating process—as in standard causal inference.

Definition 4 (Balanced interaction model) An interaction model M is balanced with default val-
ues D if the unit default interaction model DMi(DGi, DSi) is identical for each unit.

Finally, we define the causal quantity of interest in this work: the True Average Causal Effect
(TACE). Zhang et al. (2022) introduced the TACE as a generalization of the usual average causal
effect to the non-iid setting. The TACE is similar to the direct effect defined by Hudgens and Halloran
(2008) in the potential outcomes framework. We work in the interacting models framework and so
use the TACE terminology for consistency with Zhang et al. (2022). This terminology also avoids
potential confusion with the notion of direct vs indirect effects in causal graphs with only generic
variables, where the path T → Y is often referred to as the direct effect, and T → M → Y as an
indirect effect mediated by M .

Definition 5 (True Average Causal Effect) Let M be a balanced interaction model with default
values D. The True Average Causal Effect of binary treatment T on outcome Y , denoted as TACETY ,
is the Average Causal Effect of T on Y in the unit default model of M with default values D. That is
TACETY corresponds to E (Y | do(T = 1))− E (Y | do(T = 0)) in DM(DG,DS).

4. Local Interference

Consider the interaction model depicted in Figure 2. The outcome for unit i, Yi, depends on the
treatment status, Ti, and covariates, Xi, of unit i, but also the treatment status Tj and covariates
Xj of the N − 1 other units where j ̸= i. For the rest of this paper, we assume that all relevant
covariates are observed, and that there are no unobserved confounding factors. Denote the set of
all N − 1 treatments Tj for j ̸= i := {T1, . . . , Ti−1, Ti+1, . . . , TN} by Tj ̸=i, and the set of all
N − 1 covariates Xj for j ̸= i := {X1, . . . , Xi−1, Xi+1, . . . , XN} by Xj ̸=i. We can then write
Yi = fi(Ti, Xi, Tj ̸=i, Xj ̸=i), where we have suppressed the latent noise terms.

Without loss of generality, we assume there exist functions hi and qi such that we can write
Yi = hi(Ti, Xi, qi(Tj ̸=i, Xj ̸=i, Ti, Xi)). There is no loss of generality here as Ti and Xi are inputs to
both hi and qi. We can think of the function qi as governing the degree of interference experienced by
unit i. With this re-framing, we can modify the causal structure to the DAG depicted in Figure 3, such
that the interference experienced by unit i is mediated by a variable Ii, where Yi = hi(Ti, Xi, Ii).
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Figure 3: Graphical reduction of interference to unit-specific information.

In order for our interaction model to be balanced in the sense of Definition 4, we require
Yi = h(Ti, Xi, Ii), where h has no index. That is, we need the set of variables {Yi, Ti, Xi, Ii}
and equations between them to be the same for each unit. Note that, while the set of variables
{Yi, Ti, Xi, Ii} is the same for all units, the values those variables take need not be the same.

To have a chance at using spillover effects on the untreated units to remove interference bias on
the treated units and isolate the causal effect of Ti on Yi, we must impose an overlap assumption:
0 < P (Ti|Xi, Ii) < 1. This is an extension of the standard overlap assumption used in propensity-
based causal inference to ensure that not only are there similar units in terms of covariate values
between the treated and untreated groups, they are also similar in terms of the interference they
experience. Such an overlap condition holds in the first toy example from Section 2. But, as
demonstrated in the second toy example, this can fail to hold even in the simple linear case, with no
confounders and constant interference effects where the effect of Ti is the same across units j ̸= i.
Concretely, in the first toy example units 1 and 3 both experience interference level I = β, with treated
unit 1 and untreated unit 3, and so we have that P (T = 1 | I = β) = 0.5. Whereas in the second
toy example only treated unit 1 experiences interference level I = β, and there is no corresponding
match in the untreated group. This violates the overlap inequality with P (T = 1 | I = β) = 1.

Overlap will not hold in all models and settings. To make the problem more tractable, we
introduce the notion of local interference, where the basic idea is that in some real-world settings
the interference experienced by unit i is likely determined by a subset of the N − 1 other units, and
that many units should share the same level and type of interference. This is the case in the first
toy example, where units 2 and 3 don’t experience interference from unit 1, and the interference
experienced by those units is the same. In situations where this notion is valid, we refer to the
mediator Ii as the local interference signature. We can think of the interference signature as a
key that selects the correct “type” of interference for each unit. Note that two units can have the
same interference signature Ii, but still experience different levels of interference depending on their
covariate values.

In practice, the assumption of local interference means that domain knowledge should give us a
simplified or approximate model of interference such that the resulting interference signature has
reduced cardinality relative to all a-priori possible Ii. For instance, by constraining the relevant
interfering units to be those a certain distance away, or, as in the vaccine example from the introduc-
tion, to be from the same household, and so on. An extreme example would be where the domain
knowledge dictates that the interference experienced by a unit is determined by the total number
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of people in their household, and so in this case the interference for unit i would be determined
by unit i’s covariates alone without having to look at other units. In this extreme example of local
interference, the overlap requirement reduces to the usual assumption 0 < P (Ti|Xi) < 1.

Using domain knowledge and feature engineering to specify Ii for a given problem setting, then,
is much like using domain knowledge and feature engineering to specify relevant confounders. We
discuss some examples and their corresponding Ii’s in Section 4.1. In some cases, it is straightforward
to specify Ii. In others, it may not be possible—just as there are real-world situations where
confounders are hidden and can’t be adjusted for.

We now define models with local interference where this is possible and where overlap holds.

Definition 6 (Interaction model with local interference) An interaction model with local interfer-
ence is a balanced interaction model with interaction network given in Figure 3, structural equations
for each unit i given by

Yi = h(Ti, Xi, Ii, σYi), Ti = l(Xi, σTi), Xi = m(σXi), Ii = q(Ti, Xi, Tj ̸=i, Xj ̸=i, σIi),
(1)

where the latent noise terms σ are all drawn i.i.d., and the following overlap condition is satisfied:

0 < P (T |X, I) < 1. (2)

As discussed at the start of this Section, the structural equations in the above Definition hold for
any (balanced) model with the interaction network as in Figure 2 without loss of generality. The main
ingredient of Definition 6 is the overlap assumption. This is what is meant by local interference.

In Section 4.2, we show that that certain semi-parametric assumptions allow the TACE to be
computed in interaction models with local interference by appropriately comparing treated and
untreated units that experience the same levels of interference and confounding. First, we provide
some examples showing how to specify local interference signatures using domain knowledge in
real-world settings.

4.1. Specifying the local interference signature

In this Section, we discuss specifying local interference signatures in two of the examples from the
introduction: vaccinations and student test scores.

Consider the case of vaccinations. It is reasonable to assume that an individual is mainly impacted
by the vaccination status of their immediate household. In this case the local interference signature
could correspond to the fraction of an individual’s household that are vaccinated. This is a function
of other unit’s treatment assignments—the treatment status of the rest of the household—as well as
the value of one of that individual’s covariates—the number of members in their household.

In the case of student test scores, it is reasonable to assume that students will most likely be
influenced by their close friends in the class, rather than all class-mates. Here, the local interference
signature could correspond to the list of a student’s close friends, the teachers those friends have, as
well as the covariates of those friends relating to their prior educational aptitude and previous test
scores. This is a function of both the student’s treatment assignment as well as that of their close
friends, and also certain covariate values of the student and their friends.

We discuss local interference signatures further for the experiments in Section 6.

7



O’RIORDAN GILLIGAN-LEE

4.2. Identifying the TACE in models with additive local interference

Consider the following semi-parametric form for an interaction model with local interference:

Yi = f(Ti, Xi) + g(Ii, Xi) + ϵi, with ϵi ∼ N (0, σ). (3)

The treatment and covariates, and the interference signature and covariates can separately interact in
an arbitrary, non-linear fashion to give rise to the outcome. Importantly, in the outcome model, the
treatment and interference signature only functionally interact in an additive manner1.

In such models, the TACETY corresponds to: E (f(T = 1, X)− f(T = 0, X)). We now show
that TACETY is identifiable from observations of {Yi, Ti, Xi, Ii}.

Theorem 1 In an interaction model with local interference and structural equations

Yi = f(Ti, Xi) + g(Ii, Xi) + ϵi, with ϵi ∼ N (0, σ)

the True Average Causal Effect is identifiable from observations {Yi, Ti, Xi, Ii} and is given by:

TACETY = E
(

IT=1Y

P (T | X, I)
− IT=0Y

1− P (T | X, I)

)
(4)

where IT=t is an indicator random variable that takes on the value 1 if T = t and 0 otherwise.

Proof

E
(

IT=1Y

P (T | X, I)
− IT=0Y

1− P (T | X, I)

)
= E

(
E (Y | T = 1, X, I)− E (Y | T = 0, X, I)

)
= E

(
f(T = 1, X) + g(I,X)− f(T = 0, X)− g(I,X)

)
= E

(
f(T = 1, X)− f(T = 0, X)

)
= TACETY .

The first equality follows from Bayes’ rule and the definition of expectations. See Appendix A for
this derivation.

The expression for TACETY in Theorem 1 is well-defined due to the overlap assumption from
Definition 6. This expression shows that once the interference signature has been specified for a
given problem, interference bias can be removed in estimates of the causal effect by treating the
interference signature in a similar manner to a confounder, and adjusting for it accordingly.

4.3. Non-identifiability of the TACE in models with non-additive local interference

Can we identify TACETY in more general models than the additive ones explored in the previous
Section? We now show that the answer is in general no—showing that semi-parametric assumptions
are required for identification. Recall that a quantity is identifiable from a specific type of data if
every model that agrees on that data produces the same value for the quantity. Hence, if two models
agree on the data, but not on the quantity, then it is not identifiable from that data.

1. The interference and treatment can still interact in a non-linear fashion as long as this behaviour is captured in the
interference signature Ii. Once Ii is specified, further interactions with Ti in the outcome model must be additive.
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Theorem 2 The True Average Causal Effect is not identifiable in general from observations of
{Yi, Ti, Xi, Ii} in interaction models with local interference when the structural equation for Yi is
not additive:

Yi ̸= f(Ti, Xi) + g(Ii, Xi) + ϵi, with ϵi ∼ N (0, σ).

Note that this does not imply that the True Average Causal Effect is never identifiable in interaction
models with non-additive local interference.

Proof By the definition of identifiability, all we need to do to prove this Theorem is to find two
non-additive models that agree on the observed data, but not on TACETY . Consider these models:

Model 1: Yi = αTi Ii +Xi, Model 2: Yi = α′Ti Ii + βTi +Xi,

where both models have the same data generating mechanisms for Ti, Xi, and Ii. If we set αIi =
α′Ii + β, then both models have the same joint observational distribution over {Yi, Ti, Xi, Ii}, and
thus agree on this data. The TACETY in the first model is α and the TACETY in the second model
is α′ + β. As long as Ii does not equal 1 for at least one unit, then these models have different
TACETY . That is, they agree on the data, but not on the causal estimand, hence one cannot identify
the TACETY from observational data alone.

This is not to say that non-additive functional interactions between Ii and Ti in the outcome
model always preclude the identification of causal quantities. For example, in product outcome
models with local interference

Yi = f(Ti, Xi)g(Ii, Xi) + ϵi, with ϵi ∼ N (0, σ),

the True Average Causal Risk Ratio corresponds to TACRRTY = E (f(T = 1, X)/f(T = 0, X)).
In a similar manner to the additive case, we can estimate TACRRTY by conditioning on Xi and Ii,
matching treated and untreated units in each segment.

TACRRTY = E
(
f(T = 1, X)

f(T = 0, X)

)
= E

(
f(T = 1, X)g(I,X)

f(T = 0, X)g(I,X)

)
= E

(
E(Y | T = 1, X, I)

E(Y | T = 0, X, I)

)

5. Related work

Interference was first formally defined by Cox in his 1958 work (Cox, 1958). Handling interference
is non-trivial, and most works in causal inference assume no interference by invoking SUTVA
(Rubin, 1978). Much work has been done to relax this assumption, facilitating the investigation
treatment effects in the presence of interference using the concept of exposure mappings (Hudgens
and Halloran, 2008; Manski, 2013; Aronow and Samii, 2017; Eckles et al., 2017; Chin, 2019;
Auerbach and Tabord-Meehan, 2021; Sävje et al., 2021; Leung, 2022; Sävje, 2024). The main idea is
to assume the existence of functions mapping the treatment and network information into an effective
treatment for each unit, such that the potential outcomes depend only on the treatment assignments
via this compressed representation.

Recent years have also seen a rise in the use of graphical tools to explore and remove the bias
introduced by interference (Ogburn and VanderWeele, 2014; Shpitser et al., 2017; Sherman and
Shpitser, 2018). These works rely on a notion of partial interference which divides units into equal-
sized blocks and assumes that interference can only occur within a block but not across different
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blocks (see also Liu and Hudgens 2014). More recent works by Zhang et al. (2022, 2023) (see also
Zhang 2023), Yu et al. (2022), Spohn et al. (2023), and Ogburn et al. (2024) relax these assumptions.
Our work closely follows Zhang et al. (2022) and Spohn et al. (2023), aiming to overcome specific
limitations of these works, and explores how to remove interference bias when interference effects
are confounded, can depend on a unit’s covariates, and when structural equations aren’t linear.

The approach of Zhang et al. (2022) requires strong graphical knowledge to remove bias. In
particular, they require the existence of units in the interaction network whose outcomes are not
impacted by other unit’s treatment assignment. In a follow-on work, Zhang et al. (2023) relax
the strict graphical requirements, and replace them with uncertainty estimates of the graphical
structure. While this reduces the type of domain knowledge required, assigning a quantitative level
of uncertainty over graphical interaction networks nevertheless requires a reasonable degree domain
knowledge. Additionally, they only consider linear structural causal models.

The approach of Spohn et al. (2023) also restricts to linear structural causal models. Although
this strict linear assumption does in principle allow for identification of the TACE, the approach is
actually designed around identification of a different causal quantity, namely the Global Average
Treatment Effect (GATE). Moreover, the model does not allow for interference effects to depend on
a unit’s covariates, nor does it allow the interference effects from other units to be confounded.

6. Experiments

6.1. Simulated data

In this Section, we demonstrate our method on data sampled from an additive outcome model
with local interference. We construct 10,000 simulated datasets according to the data generating
process outlined below. Each dataset consists of 110,000 units, with a True Average Causal Effect of
TACETY = 1. The variable X determines each unit’s baseline outcome Y , and baseline probability
of treatment T . Units are randomly2 assigned to one of 10,000 contexts in L. These contexts are
analogous to a unit’s local neighbourhood, impacting both the unit’s treatment status, and also the
level of interference they experience. For example, this local context could correspond to a person’s
household or town, or in the case of online advertising the local context could label distinct product
categories such that items in the same category could interference with each other. T is sampled as
a Bernoulli trial with probability set by X and the local context L. Note that units interfere within
their own local context such that units with higher proportions of other treated units the same context
are more likely to be impacted by interference.

Xi ∈R {0.1, 0.2, 0.3, 0.4}, Li ∈R {1, . . . , 10000}, ULi ∈R {0.1, 0.2, 0.3, 0.4},

Ti ∼ B (Xi + ULi) , Ii =

∑
j ̸=i,Lj=Li

Tj∑
j ̸=i,Lj=Li

1
, Wi ∼ B (Ii) , Yi ∼ N (4Xi + Ti + 4Wi, 1)

In Figure 4, we show the bias when TACETY is estimated without adjustment, adjusting only for
the confounders X , and adjusting for both X and I . In Appendix B, we show a modified version of
this example where the interference signature also depends on Ti.
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Figure 4: Bias in TACETY estimates for the simulated data described in Section 6.1. We show the
bias when TACETY is estimated without adjustment (IPW with P (T )), adjusting only for X (IPW
with P (T | X)), and adjusting for both X and I (IPW with P (T | X, I)). The error bars show the
intervals between the 2.5% and 97.5% percentiles across 10,000 simulated datasets.

6.2. Semi-synthetic data

In this Section, we demonstrate our method on real-world data. We apply our model to estimate the
TACE of restrictive policy adoption on the spread of COVID-19 in Switzerland between July 2020
and December 2020. Early in the pandemic, the cantons of Switzerland could choose to adopt more
restrictive policies than the government-mandated baselines. As people commute between cantons,
the policy adoption in one canton could impact the spread of COVID-19 in others—a potential source
of interference bias. The data and causal assumptions are adapted from Nussli et al. (2024)3, and
Spohn et al. (2023)4. These works estimate various causal quantities corresponding to the effects of
introducing a strict facial-mask policy (ie. more restrictive than the government-mandated baseline)
on the spread of COVID-19 in Switzerland between July 2020 and December 2020.

To isolate the effect of the facial-mask policy, the authors control for additional policies including
closing of workplaces, restrictions on gatherings, and cancellations of public events. However,
adoption of the facial-mask policy is highly correlated with these other policies, resulting in severe
overlap violations. Therefore, isolating the effect of the facial-mask policy is only possible with strict
parametric assumptions. Instead, we estimate the combined effect of these policies by aggregating
them into a single binary treatment, where Ti = 1 in canton i if the canton adopted at least one of the
following (a) strict facial-mask policy, (b) required work closures for some sectors, (c) restrictions on
gatherings of more than 100 people, or (d) required cancellations of public events. We estimate the
TACE of restrictive policy adoption on the weekly case growth rate.

Following Spohn et al. (2023), we consider the following confounders: canton population, %
people of age 80+ in a canton, people per km2 in a canton, public school holidays, and information
about the pandemic available to the public in week t, given by the lagged case growth rate at week
t− 2. Furthermore, we consider two potential interference signatures: IA, and ID. IA is defined in a
similar manner to the “interference feature” of Spohn et al. (2023). For each canton, IA is calculated
as the average treatment status of adjacent cantons. ID is based on the distance between cantons, and
for each canton is calculated as a weighted average of the treatment status of other cantons, weighted

2. The notation Vi ∈R S indicates that variable V is sampled uniformly at random from the set S.
3. https://github.com/enussl/Facial-Mask-Policy-COVID-19
4. https://github.com/henckell/InterferenceCode
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Figure 5: Estimated TACETY of restrictive policy adoption in the real-world data from Section 6.2.
The top panel shows the estimates on the unmodified data. The horizontal dashed line is centered on
the P (T | X) estimate for comparison with other panels. The middle panel shows estimates on a
semi-synthetic variant where we introduce inference between adjacent cantons, while the bottom
panel shows estimates where we introduce interference inversely proportional to the squared distance
between canton capitals. Conditioning on the correctly specified interference signature recovers the
effect estimate from the unmodified data, while conditioning on the misspecified signature (eg. IA
instead of ID or vice versa) still reduces interference bias, but does not completely remove it. The
error bars show the 95% bootstrap confidence intervals calculated by resampling cantons, with the
variance inflated as described in Appendix C.

by the inverse squared distance between canton capital cities. This second example shows how the
interference signature allows for a richer range of interference behaviours than can be captured by
the interaction network structure and treatment status alone.

In Figure 5, we show the estimated TACETY of restrictive policy adoption on the weekly case
growth rate. We adjust for an interference signature IA defined based on the treatment status of
adjacent cantons, and also for ID based on treatment status and distance between canton capitals. On
the unmodified data (top panel), we find no evidence of significant interference bias, and so we also
construct two semi-synthetic variants where we artificially introduce interference between cantons,
which we describe below.

The interference signature IA is defined as the fraction of adjacent cantons that are treated. For a
given canton, we further multiply this by the population density of that canton, such that cantons with
larger population density, and with larger fraction of adjacent treated cantons, experience higher levels
of interference. In the outcome model, the introduced synthetic interference is therefore a non-linear
(multiplicative) combination of the interference signature and canton covariates, which is added to
the original outcome — recall that this additive interference is a requirement for identifiability in
our semi-parametric model. We introduce synthetic interference for the ID case in a similar manner,
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such that cantons with larger population density, larger fraction of adjacent treated cantons, and
with capital cities close to other treated capital cities, experience higher levels of interference. This
demonstrates how, in our framework, covariates of other units — in this case distance between units
— can play a role in the interference experienced by a given unit.

How is it that the outcome model of Spohn et al. (2023) (see their Eq. 4) allows for an interaction
term that is a product between the treatment and interference, whereas our outcome model must
restrict to additivity between the treatment and interference? Firstly, it should be noted that Spohn
et al. (2023) aim to identify the Global Average Treatment Effect (GATE), which corresponds to
the sum of the TACE and interference effects, and so for their purposes it’s not strictly necessary to
identify the TACE. Secondly, the TACE can be identified in linear interference models with product
interaction terms in the outcome model if either (a) there exist treated and untreated units who
experience zero interference (as assumed by Zhang et al. 2022), or (b) the linear model correctly
extrapolates beyond the support of the data to this zero-interference setting (as assumed by Spohn
et al. 2023). Finally, as discussed in Section 4.2, our model does in fact allow for non-additive
interactions between the treatment and interference, provided these are captured by the interference
signature such that overlap holds.

7. Conclusion

We provided and justified a novel definition of causal models with local interference. We proved
that the TACE can be identified in certain semi-parametric models satisfying this definition, where
interference effects are additive in the outcome model, but the interaction of interference and a
unit’s covariates could be non-linear. An analytic estimand for the TACE was given in such settings.
We further proved that the TACE cannot be identified in arbitrary models with local interference,
showing that identification requires semi-parametric assumptions. However, we demonstrated that
other causal quantities, such as the TACRR, can be identified in certain models where the semi-
parametric additivity requirement on the outcome model fails. Finally, we provided an empirical
validation of our method on both simulated and real-world datasets.
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Appendix

Appendix A. Proof of Theorem 1

In this section, we write out in full the steps involved in the first line of the proof of Theorem 1.

E(E(Y |T = 1, X, I)) = E

(∑
Y

Y P (Y |T = 1, X, I)

)
=
∑
X,I

∑
Y

Y P (Y |T = 1, X, I)P (X, I)

=
∑
X,I

∑
Y

Y P (Y |T = 1, X, I)P (X, I)
P (T = 1|X, I)

P (T = 1|X, I)

=
∑
X,I

∑
Y

Y P (Y, T = 1, X, I)

P (T = 1|X, I)

=
∑
X,I

E(IT=1,X,IY )

P (T = 1|X, I)

= E
(∑

X,I IT=1,X,IY

P (T = 1|X, I)

)
= E

(
IT=1Y

P (T = 1|X, I)

)

Appendix B. Additional Simulated Data Example

In this section, we show a simulated example where the interference signature depends on Ti. We
generate 10,000 datasets, each with 110,000 units, according to the data generating process outlined
below. This is a modified version of the example in Section 6.1. Note that the interference signature
for unit i depends on that unit’s treatment status. In particular, units who are treated experience lower
levels of interference than if they were untreated. In Figure 6, we show the bias when TACETY is
estimated for this dataset without adjustment, adjusting only for the confounders X , and adjusting
for both X and I .

Xi ∈R {0.1, 0.2, 0.3, 0.4}, Li ∈R {1, . . . , 10000}, ULi ∈R {0.1, 0.2, 0.3, 0.4},

Ti ∼ B (Xi + ULi) , Ĩi =

∑
j ̸=i,Lj=Li

Tj∑
j ̸=i,Lj=Li

1
, Ii = max

(
0, Ĩi − 0.1Ti

)
, Wi ∼ B (Ii) ,

Yi ∼ N (4Xi + Ti + 4Wi, 1)

This example also highlights the crucial role of the overlap condition in Def 6. Note that in the
data generating process above, there can be no treated units with interference signature Ii > 0.9.
Therefore, the overlap condition is violated where I > 0.9 with P (T = 1 | X, I > 0.9) = 0, and so
we must exclude these units when estimating TACETY . In this case, we still recover an unbiased
estimate of TACETY for the full population because the treatment effect is constant. However, as in
all applications of causal inference, we must rely on domain knowledge to assess the relevance of
causal quantities estimated on subsets of the population.
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Figure 6: Bias in TACETY estimates for the simulated data described in Appendix B. We show the
bias when TACETY is estimated without adjustment (IPW with P (T )), adjusting only for X (IPW
with P (T | X)), and adjusting for both X and I (IPW with P (T | X, I)). The error bars show the
intervals between the 2.5% and 97.5% percentiles across 10,000 simulated datasets.

Appendix C. Variance Inflation Factor

In this paper we focus on the identifiability of TACETY , and an investigation of procedures for
estimation of confidence intervals is beyond the scope of the current work. However, conventional
estimates of confidence intervals are likely to be overly optimistic in the presence of interference,
and so in Section 6.2 we employ a straightforward variance inflation procedure outlined by Sävje
et al. (2021). This procedure relies on knowledge of the interaction network, and aims to construct
conservative confidence intervals for the IPW estimator in the presence of interference.

As discussed in Section 6.2, we assume that cantons interfere with adjacent cantons. Let Aij

be the N ×N adjacency matrix indicating which of the N cantons are adjacent. For convenience,
we set the diagonal elements to Aii = 1. Following Sävje et al. (2021), we define the number of
interference dependencies for canton i as

Di =
N∑
j=1

Dij where Dij =

{
1 if AkiAkj = 1 for any k ∈ {1, ..., N}
0 otherwise

The interference dependence indicator Dij captures whether cantons i and j are impacted by a
common treatment — either directly interfering with each other, or jointly interfering with a third
canton. Note that in the absence of interference we would have Di = 1 for all cantons. These
quantities measure the deviation of an experiment from the zero interference case, and Sävje et al.
(2021) discuss how summaries of these can serve as adequate variance inflation factors. In particular,
they consider the unit average dependence Davg = 1

N

∑N
i=1Di, the unit maximum dependence

Dmax = maxiDi, and the spectral radius of Dij , which corresponds to the maximum of the absolute
value of its eigenvalues, and falls between these Davg ≤ Dsr ≤ Dmax. Sävje et al. (2021) argue
that Davg is generally overly optimistic, while Dmax is generally overly conservative, and therefore
favour Dsr as a compromise between these. In Figure 5 we show the 95% bootstrap confidence
intervals, with the estimated variance inflated as Varsr = Dsr Varbootstrap. In this specific application,
the confidence intervals are very wide due to large variance inflation. The inflation factor is quite
large because many units are either adjacent or share a common adjacent unit. The variance inflation
would not be as extreme in similar applications with sparser adjacency graphs.
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