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Abstract

Creating high-quality articulated 3D models of animals is challenging either via
manual creation or using 3D scanning tools. Therefore, techniques to reconstruct
articulated 3D objects from 2D images are crucial and highly useful. In this
work, we propose a practical problem setting to estimate 3D pose and shape
of animals given only a few (10-30) in-the-wild images of a particular animal
species (say, horse). Contrary to existing works that rely on pre-defined template
shapes, we do not assume any form of 2D or 3D ground-truth annotations, nor
do we leverage any multi-view or temporal information. Moreover, each input
image ensemble can contain animal instances with varying poses, backgrounds,
illuminations, and textures. Our key insight is that 3D parts have much simpler
shape compared to the overall animal and that they are robust w.r.t. animal pose
articulations. Following these insights, we propose LASSIE, a novel optimization
framework which discovers 3D parts in a self-supervised manner with minimal
user intervention. A key driving force behind LASSIE is the enforcing of 2D-3D
part consistency using self-supervisory deep features. Experiments on Pascal-Part
and self-collected in-the-wild animal datasets demonstrate considerably better 3D
reconstructions as well as both 2D and 3D part discovery compared to prior arts.
Project page: https://chhankyao.github.io/lassie/

1 Introduction
The last decade has witnessed significant advances in estimating human body pose and shape from
images [26, 2, 15, 19, 18, 34, 17]. Much progress is fueled by the availability of rich datasets [14, 29,
39] with 3D human scans in a variety of shapes and poses. In contrast, 3D scanning wild animals
is quite challenging, and existing animal datasets such as SMALR [48] rely on man-made animal
shapes. Manually creating realistic animal models for a wide diversity of animals (e.g. mammals and
birds) is also challenging and time-consuming. In this work, we propose to automatically estimate
3D shape and articulation (pose) of animals from only a sparse set of image ensemble (collection)
without using any 2D or 3D ground-truth annotations. Our problem setting is highly practical as each
image ensemble consists of only a few (10-30) in-the-wild images of a specific animal species. Fig. 1
shows sample zebra images which forms our input. In addition, we assume a human-specified 3D
skeleton (left in Fig. 1) that can be quite rough with incorrect bone lengths and this mainly provides
the connectivity of animal parts. For instance, we use the same 3D skeleton for all the quadruped
animals despite considerable shape variations across species, e.g., giraffe vs. zebra vs. elephant.
Manually specifying a rough skeleton is a trivial task which only takes a few minutes.

Estimating articulated 3D shapes from in-the-wild image ensemble is a highly ambiguous and
challenging problem. There are several varying factors across images: backgrounds; lighting; camera
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Figure 1: Articulated shape optimization from sparse images in-the-wild. Given 10-30 images
of an articulated class and a generic 3D skeleton, we optimize the shared skeleton and neural parts
as well as the instance-specific camera viewpoint and bone transformations. Our method is able to
produce high-quality outputs without any pre-defined shape model or instance-specific annotations.
The part-based representation also allows applications like texture and pose transfer, animation, etc.

viewpoints; animal shape, pose and texture, etc. In addition, our highly practical problem setting does
not allow access to any 3D animal models, per-image annotations such as keypoints and silhouettes,
or multi-view images.

In this work, we present LASSIE, an optimization technique to Learn Articulated Shapes from Sparse
Image Ensemble. Our key observation is that shapes are composed of 3D parts with the following
characteristics: 1) 3D parts are geometrically and semantically consistent across different instances. 2)
Shapes of 3D parts remain relatively constant w.r.t. changes in animal poses. 3) Despite the complex
shape of overall animal body, 3D parts are usually made of simple convex shapes. Following these
observations, LASSIE optimizes 3D parts and their articulation instead of directly optimizing the
overall animal shape. Specifically, LASSIE optimizes a 3D skeleton and part shapes that are shared
across instances; while also optimizing instance-specific camera viewpoint, pose articulation, and
surface texture. To enforce semantic part consistency across different images, we leverage deep
features from a vision transformer [10] (DINO-ViT [6]) trained in a self-supervised fashion. Recent
methods [1, 38] demonstrate good 2D feature correspondences in DINO-ViT features and we make
use of these correspondences for 3D part discovery. To regularize part shapes, we constrain the
optimized parts to a latent shape manifold that is learned using 3D geometric primitives (spheres,
cylinders, cones etc.). Being self-supervised at the image level, LASSIE can easily generalize to a
wide range of animal species with minimal user intervention.

We conduct extensive experiments on image ensembles from the Pascal-Part Dataset [7] with quanti-
tative evaluations using 2D ground-truth part segmentation and keypoints. We also collect in-the-wild
web image ensembles with more animal species and annotate 2D keypoints for evaluation. Both
qualitative and quantitative results demonstrate considerably better 3D reconstructions compared to
the prior arts that use even more supervision. In addition, estimation of explicit 3D parts enables easy
editing and manipulation of animal parts. Fig. 1 shows sample 3D reconstructions with discovered
parts from LASSIE. The main contributions of this work are:

• To the best of our knowledge, this is the first work that recovers 3D articulated shapes
from in-the-wild image ensembles without using any pre-defined animal shape models or
instance-specific annotations like keypoints or silhouettes.

• We propose a novel optimization framework called LASSIE, where we incorporate several
useful properties of mid-level 3D part representation. LASSIE is category-agnostic and can
easily generalize to a wide range of animal species.

• LASSIE can produce high-quality 3D articulated shapes with state-of-the-art results on
existing benchmarks as well as self-collected in-the-wild web image ensembles.

2 Related Work
Animal shape and pose estimation. Estimating 3D pose and shape of animal bodies from in-the-wild
images is highly ill-posed and challenging due to large variations across different classes, instances,
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viewpoints, articulations, etc. Most existing mesh reconstruction work [21, 24, 11, 36, 44] focus
more on compact shapes like birds and cars, and thus cannot handle articulations of animal bodies.
Recent articulation-aware methods, on the other hand, deal with a simplified scenario by assuming a
pre-defined class-level statistical model, instance-specific images, or accessible human annotations.
For instance, Zuffi et al. [49] build a statistical shape model, SMAL, for common quadrupedal
animals, similar to the SMPL [26] model for human bodies. Follow-up work either optimize the
SMAL parameters based on human annotated images [48] or train a neural network on large-scale
image datasets to directly regress the parameters [47, 35]. However, the output shapes are limited
by the SMAL shape space or training images which contain one or few animal classes. Kulkarni et
al. [20] propose A-CSM technique that align a known template mesh with skinning weights to input
2D images. Other recent approaches [41, 40, 42] exploit the dense temporal correspondence in
video frames to reconstruct articulated shapes. In contrast to existing methods, we deal with a novel
and practical problem setting: learn without any pre-defined shape model, instance-level human
annotations, or temporal information to leverage.

Part discovery from image collections. Deep feature factorization (DFF) [9] shows that one
could automatically obtain consistent part segments by clustering intermediate deep features of
a classification network trained on ImageNet. Inspired by DFF, SCOPS [13] learns a 2D part
segmentation network from image collections, which can be used as semantic supervision for 3D
reconstruction [24]. Choudury et al. [8] proposed to use contrastive learning for 2D part discovery.
Lathuilière et al. [22] exploit motion cues in videos for part discovery. Recently, Amir et al.[1]
demonstrate that clustering self-supervisedly learned vision transformers (ViT) such as DINO [6]
features can provide good 2D part segmentations. In this work, we make use of DINO features for
3D part discovery instead of 2D segmentation. In the 3D domain, Tulsiani et al. [37] use volumetric
cuboids as part abstractions to learn 3D reconstruction. Mandikal et al. [28] predict part-segmented
3D reconstructions from a single image. In addition, Luo et al. [27] and Paschalidou et al. [31, 32]
learn to form object parts by clustering 3D points. Considering that most 3D approaches require
ground-truth 3D shape of a whole object or its parts as supervision, Yao et al. [43] propose to discover
and reconstruct 3D parts automatically by learning a primitive shape prior. Most of these works
assume some form of supervision in terms of 3D shape or camera viewpoint. In this paper, we aim to
discover 3D parts of articulated animals from image ensembles without any 2D or 3D annotations,
which, to the best of our knowledge, is unexplored in the literature.

3D reconstruction from sparse images. Optimizing a 3D scene or object from multi-view images
is one of the widely-studied problems in computer vision. The majority of recent breakthroughs are
based on the powerful Neural Radiance Field (NeRF) [30] representation. Given a set of multi-view
images, NeRF can learn a neural volume from which one can render high-quality novel views. Closely
related to our work, NeRS [45] optimizes a neural surface representation from a sparse set of image
collections and also only requires rough camera initialization. In this work, we use a neural surface
representation to represent animal parts. Existing methods assume multi-view images captured in the
same illumination setting and also the object appearance (texture) to be same across images. Another
set of work [3, 46, 5] propose neural reflectance decomposition on image collections captured in
varying illuminations. But they work on rigid objects with ground-truth segmentation and known
camera poses. A concurrent work, SAMURAI [4] jointly reasons about camera pose along with
shape and materials of rigid objects from image collections. In contrast, the input for our method
consists of in-the-wild animal images with varying textures, viewpoints and pose articulations and
captured in different environments.

3 Approach
Given a generic 3D skeleton and few images of an articulated animal species, LASSIE optimizes the
camera viewpoint and articulation for each instance as well as the resting canonical skeleton and part
shapes that are shared across all instances. We introduce our neural part representation in Section 3.1
and the optimization framework in Section 3.2. An overview of LASSIE is illustrated in Fig. 2.

3.1 Articulated Shapes with Neural Part Surfaces

3D skeleton. Constructing a template mesh or statistical shape model for specific animal classes
requires either the ground-truth 3D shapes or extensive human annotation, which are both hard
to obtain in real-world scenarios. A 3D skeleton, on the other hand, is easy to annotate since it
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Figure 2: Neural part surface representation. Based on an optimized 3D skeleton, we reconstruct
the articulated shape by optimizing the primitive latent codes and part deformation decoders. The
final output is the composition of neural part surfaces with textures sampled from the input images.

only contains a set of sparse joints connected by bones. Furthermore, it generalizes well across
classes, and one can effortlessly modify certain joints or bones to adapt to distinct animal types (e.g.,
mammals vs. birds). Assuming a simple and generic 3D skeleton is given, we propose a part-based
representation for articulated shapes. A skeleton can be defined by a set of 3D joints P ∈ Rp×3

and bones B = {(Pi, Pj)}b in a tree structure, where p and b = p − 1 are numbers of joints and
bones/parts, respectively. For instance, we use the same base skeleton for all four-legged animals
in our experiments. The base skeleton specifies the connection of 16 joints and the initial joint
coordinates in the root-relative 3D space. The skeleton is shared by all instances in the same class and
can be optimized by scaling the bone lengths and rotating the bones with respect to the parent joints.
Unlike the linear or neural blend skinning models [40, 42] where bones are unconstrained Gaussian
components, our skeleton-based representation allows us to regularize bone transformations, discover
meaningful and connected parts, and produce realistic shape animations.

Neural part surfaces. Given a skeleton which specifies the 3D joints and bones, we represent the
articulated shape as a composition of several neural parts. Specifically, each part is defined as a
neural surface wrapped around a skeleton bone. Motivated by object representation in NeRS [45], we
represent part surface as a multi-layer perceptron (MLP) network that predicts the 3D deformation of
a given continuous UV coordinate on the unit sphere. A key advantage of modeling parts instead
of whole animal is that part shapes are usually of simple convex shapes and can be represented
well with a deformed sphere. Compared to explicit mesh representation, the neural representation
enables efficient mesh regularization on the output shapes while producing high resolution surfaces
as MLPs can work with meshes of arbitrary vertex resolution. Each part surface is first reconstructed
in the canonical space, then scaled by the corresponding bone length, rotated by the bone orientation,
and centered at the bone centroid. This ensures that the parts are connected under various bone
transformations and also easy to repose. Formally, let X ∈ R3×m denote the m uniformly distributed
3D vertices on a unit sphere. Further let Ri ∈ R3×3, ti ∈ R3 and si ∈ R denote the global rotation,
translation and scaling of the ith part (i ∈ {0, · · · , b}), where b denotes the number of parts. We
first deform the sphere to obtain part shape using the part MLP, X → Fi(X); followed by global
transformation to obtain part vertices Vi ∈ R3×m in the global coordinate frame:

Vi = siRiFi(X) + ti. (1)

Latent part prior. Although fitting neural part surfaces on sparse images can produce reasonable
outputs that are faithful to the input view, we observe that part shapes tend to be non-uniform or
unrealistic from other novel views. To further regularize the part shapes, we decompose the part MLP
Fi into a prior MLP, Fp and a part deformation MLP, F∆

i . The prior MLP is trained to produce the
base shapes that are close to geometric primitives such as spheres, cylinders, etc. The deformation
MLP is then used to provide additional deformations on top of the base shapes. Fig. 2 illustrates these
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two MLPs. As shown in the figure, the prior MLP takes as input the surface coordinate as well as a
d-dimensional latent shape code ei ∈ Rd. Both the latent space and the prior MLP are trained using
geometric primitive shapes. Concretely, we train a Variational Auto-Encoder (VAE) which takes a
primitive mesh as input, predicts the latent shape encodings and reconstructs the primitive through a
conditional neural surface decoder which forms our prior MLP. The primitive meshes in this work
are randomly sampled geometric primitives (spheres, ellipsoids, cylinders, and cones). With the use
of prior and deformation MLPs, Eq. 1 now becomes:

Vi = siRi(Fp(X, ei) + F∆
i (X)) + ti, (2)

where ei denotes the latent shape encodings of part i.

3.2 Discovering 3D Neural Parts from Image Ensemble

Optimization setting. The input to our optimization is a sparse set (typically 20-30) of n in-the-wild
images {Ij}nj=1 along with a generic/rough 3D skeleton P ∈ Rp×3 that has p joints and b bones/parts.
The only image-level annotations for optimization are from the self-supervisory DINO [6] features.
All the instances in the input image ensemble are of same species, but could have varying appearance
due to texture, pose, camera angle, lighting, etc. We also assume that the entire animal body is
visible in each image without truncated or occluded by another object although some degree of
self-occlusion is allowed. Let j denote the index over images j ∈ {1, ., n} and i denote the index
over parts i ∈ {1, ., b}. For each image, LASSIE optimizes the camera viewpoint πj = (R0, t0) and
part rotations Rj ∈ Rb×3×3. In addition, LASSIE optimizes these variables for each of the ith part
that are shared across all the animal instances: bone length scaling si ∈ R, latent shape encodings
ei ∈ Rd and part deformation MLPs F∆

i . That is, we assume that part shapes are shared across
all instances whereas their articulation (pose transformation) is instance dependent. Although this
may not be strictly valid in practice, this provides an important constraint for our highly ill-posed
optimization problem.

Analysis by synthesis. Since we do not have access to any form of 3D supervision, we use analysis-
by-synthesis to drive the optimization. That is, we use differentiable rendering to render the optimized
3D articulated shape and define loss functions w.r.t. input images. Using Eq. 2, we first obtain the
complete articulated shape for each image as a combination of different part meshes. We then use
a differentiable mesh renderer [25] to project the 3D points onto 2D image space via the learnable
camera viewpoints. A key challenge is that we do not have access to any from of 2D annotations
such as keypoints or part segmentation.

Self-supervisory deep features to the rescue. Since different instances in the ensemble can have
different texture, we do not model and render image pixel values. Instead, we rely on learned deep
features for our self-supervisory analysis-by-synthesis framework. Recent works [1, 12] demonstrate
that deep features from DINO [6] vision transformer are semantically descriptive, robust to appearance
variations, and higher-resolution compared to CNN features [1, 38]. In this work, we use the key
features from the last layer of the DINO network as semantic visual features for each image. We
assume that these DINO features are relatively similar for same parts across different instances. In
addition to using DINO features for consistent semantic features across images, we also compute 2D
parts and foreground animal mask following similar steps as in [1]. Concretely, we take the class
tokens from the last layer, compute the mean attention of class tokens as saliency maps, and sample
the keys of image patches with high saliency scores. We then collect the salient keys from all images
and apply an off-the-shelf K-means clustering algorithm to form c semantic part clusters. Finally, we
obtain foreground silhouettes by simply thresholding the pixels with minimum distance to cluster
centroids. Fig. 3 shows the DINO part clusters on sample images from different image ensembles.
We observe that using 4 clusters works well in practice. With the use of self-supervised features
(keys) and rough silhouettes, we alleviate the dependency of ground-truth segmentation mask and
keypoint annotations in our optimization framework.

Silhouette loss. We compute the silhouette loss Lmask by rendering all part surfaces with a differ-
entiable renderer [25] and comparing with the pseudo ground-truth foreground masks obtained via
clustering DINO features: Lmask =

∑
j∥M j − M̂ j∥2, where M j and M̂ j are the rendered and

pseudo ground-truth silhouettes of instance j, respectively. Although these silhouette-based losses
encourage the overall shape to match the 2D silhouettes, their supervisory signal is often too coarse
to resolve the ambiguity caused by different camera viewpoints and pose articulations. Therefore, we
design a novel semantic consistency loss to more densely supervise the reconstruction.
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2D-3D semantic consistency. We propose a novel strategy to make use of the semantically consistent
2D DINO features for 3D part discovery. At a high-level, we impose the 2D feature consistency
across the images via learned 3D parts. For this, we propose an Expectation-Maximization (EM)
like optimization strategy where we alternatively estimate the 3D part features (E-step) from image
ensemble features and then use these estimated 3D part features to update the parts (M-step). More
formally, let Kj ∈ Rh×w×f denote the f -dimensional DINO key features from jth image and
Q ∈ Rm×f denote the corresponding features on the 3D shape with total m vertices. In the E-
step, we update Q by projecting the 3D coordinates onto all the 2D image spaces via differentiable
rendering under the current estimated shape and camera viewpoints. We aggregate the 2D image
features from the image ensemble corresponding to each 3D vertex to estimate Q. In the M-step, we
optimize the 3D parts and camera viewpoints using a 2D-3D semantic consistency loss Lsem. To
define Lsem, we discretize the foreground 2D coordinates in each image {p|M̂ j(p) = 1}. Likewise,
we sample a set of points {v ∈ V j} on the 3D part surfaces and obtain their 2D projected coordinates
πj(v). Lsem is then defined as the Chamfer distance in a high-dimensional space:

Lsem =
∑
j

( ∑
p|M̂j(p)=1

min
v∈V j

D(p, v) +
∑
v∈V j

min
p|M̂j(p)=1

D(p, v)
)
. (3)

For each instance j, the distance D between an image point p and 3D surface point v is defined as:
D(p, v) = ∥πj(v)− p∥2︸ ︷︷ ︸

Geometric distance

+ α ∥Q(v)−Kj(p)∥2︸ ︷︷ ︸
Semantic distance

, (4)

where α is a scalar weighting for semantic distance. In effect, Lsem optimizes the 3D part shapes
such that the aggregated 3D point features in the E-step would project closer to the similar pixel
features in the image ensemble. We alternate between E and M steps every other iteration in the
optimization process. In Eq. 4, the image coordinates p and semantic features K,Q are fixed in each
optimization iteration, hence Lsem can effectively push the surface points towards their corresponding
2D coordinates by minimizing the overall distance. Since this EM-style optimization is prone to
local-minima as we jointly optimize camera viewpoints, shapes and pose articulations, we find that
a good initialization of 3D features is important. For this, we manually map each part index i to
one of the DINO clusters (4 in our experiments) and then initialize the 3D features Q by assigning
the average 2D cluster features to the corresponding 3D part vertices. This manual 3D part to 2D
cluster assignment takes minimal effort since it is category-level (all instances share the same 3D
parts). Alternatively, one could roughly initialize the camera viewpoints like in recent works such as
NeRS [45] which allows the computation of initial Q features from 2D features. Nonetheless, 2D-3D
assignment is easier and faster compared to camera viewpoint initialization as 2D-3D assignment
only needs to be done once per image ensemble whereas camera initialization is required for each
instance in the ensemble. To make the optimization process fully automatic, we also propose to use
simple heuristics for the 2D-3D part assignment using intuitions like animal head are usually above
the torso and legs at the bottom. We refer to the LASSIE optimization with this heuristic-based 3D
feature initialization as ‘LASSIE-heuristic’ and describe the details in the supplemental material.

Comparison to related methods. Our use of 2D-3D semantic consistency is closely related to prior
works, UMR [24] and BANMo [42]. At a high-level, LASSIE and UMR both start from 2D part
segmentations and then lift them onto 3D. A key difference is that LASSIE directly discovers parts in
3D using 2D feature consistency, whereas UMR uses 2D part consistency via canonical UV maps.
More specifically, UMR uses 2D parts (not 2D features) and 2D UV maps as common canonical part
representations. Instead, LASSIE directly optimizes 3D part features with feature based loss (not 2D
parts) and LASSIE does not use UV maps like in UMR. We only use 2D parts for feature initialization
and not during optimization. That is, we discover parts directly in 3D with skeleton constraints,
without much reliance on intermediate 2D part discovery. Hence, LASSIE is less sensitive to the
issues in 2D part segmentations compared to UMR. BANMo, on the other hand, learns a canonical
feature embedding by enforcing the consistency between feature matching and geometric warping,
which is made tractable by the dense temporal correspondence (optical flow) between video frames.
The semantic loss in BanMo enforces the 2D-3D cycle consistency between 2D coordinates and
canonical 3D points. Considering that our image ensemble is sparse and un-correlated, we coarsely
initialize and regularize the 3D surface features at the part-level. The proposed semantic loss allows
us to first localize the 3D parts then refine the detailed part shapes in our challenging setting.

Regularization. Our skeleton-based representation allows us to conveniently impose pose prior
or regularization. Specifically, we calculate a pose prior loss Lpose to minimize the bone rotation

6



deviations from the resting pose as: Lpose =
∑

j∥Rj − R̄∥2, where Rj is the bone rotations of
instance j and R̄ denotes the bone rotations of shared resting pose. We also impose a regularization
Lang on joint angles on the animal legs to limit their sideway rotations:

Lang =
∑
j

∑
i∈leg bones

∥Ri,y
j∥2 + ∥Ri,z

j∥2, (5)

where Ri,y and Ri,z are the rotations of bone i with respect to y and z axes respectively. Since the
skeleton faces the +z direction in the canonical space (+x right, +y up, +z out), minimizing the y
and z-axis rotations essentially constrains the sideway movements of the bones. Note that both Lpose

and Lang are generic to all quadrupeds in our experiments, which we find crucial to avoid unrealistic
poses. Finally, we apply common mesh regularization terms to encourage smooth surfaces, including
the Laplacian loss Llap and surface normal loss Lnorm. Llap regularizes 3D surfaces by pushing
each vertex towards the center of its neighbors, and Lnorm encourages neighboring mesh faces to
have similar normal vectors. Note that we apply regularization losses to each part surface individually
since the part shapes should be primitive-like and usually do not have sharp or pointy surfaces.

Optimization and textured outputs. The overall optimization objective is:
Lmask + λ1Lsem + λ2Lpose + λ3Lang + λ4Llap + λ5Lnorm, (6)

where {λi} are weighting hyper-parameters. We first pre-train the part prior MLP Fp with 3D
geometric primitives and freeze it during the optimization on a given image ensemble. For each
image ensemble of an animal species, we perform multi-stage optimization on the camera, pose, and
shape parameters until convergence. That is, we update the camera viewpoints and fix the rest first,
then optimize the bone transformations, and finally the latent part codes as well as part deformation
MLPs. In each iteration, we first update the semantic features of 3D surfaces, then use the updated
features to update 3D surfaces, forming an EM-style optimization. We implement the framework in
PyTorch [33] and update all the learnable parameters using an Adam optimizer [16]. To obtain the
final textured outputs, we densely sample vertices from the optimized neural surfaces and directly
sample the colors of visible vertices from individual images via 2D projection, where the visibility
information is obtained from naive rasterization. For the invisible (self-occluded) vertices, we assign
the color by finding their left-right symmetries or nearest visible neighbors. More implementation
details can be found in the supplemental material.

4 Experiments
Datasets. Considering the novel problem of sparse-image optimization, we select a subset of the
Pascal-Part dataset [7] and collect web images of additional animal classes to evaluate LASSIE and
related prior arts. The Pascal-Part dataset contains diverse images of several animal classes which are
annotated with 2D part segmentation masks. We automatically select images of horse, cow, or sheep
with only one object covering 1-50% area of the entire image, and find the keypoints by calculating
the centers/corners of ground-truth part masks. In addition, for analysis on more diverse animal
categories, we collect sparse image ensembles (with CC-licensed images) of some other animals from
the internet and manually annotate the 2D keypoints for evaluation. The classes include quadrupeds
like zebra, tiger, giraffe, elephant, as well as bipeds like kangaroo and penguin. We filter out the
images where the animal body is heavily occluded or truncated, resulting in roughly 30 images
per category. The LASSIE optimization and evaluations are performed on each image ensemble
separately. The self-collected data does not contain personally identifiable information or offensive
content, and will be released to public.

Baselines. Due to the lack of prior works on our problem setting (sparse image optimization for
articulated animal shapes), we mainly compare LASSIE with learning-based mesh reconstruction
methods. Among these methods, we find 3D Safari [47] and A-CSM [20] to be most comparable
to LASSIE since they also model articulation for animal classes of our interest. Other recent mesh
reconstruction methods, on the other hand, either cannot handle articulations [21, 24, 11, 36, 44] or
assume different inputs [23, 40, 42]. Note that both 3D Safari and A-CSM are trained on large-scale
image sets while LASSIE optimizes on a sparse image ensemble. To evaluate their methods on our
dataset, we use the released models trained on the closest animal classes. For instance, the zebra
model of 3D Safari and the horse model of A-CSM are used to evaluate on similar quadrupeds.

Visual comparisons. Fig. 3 shows the qualitative results of LASSIE against 3D Safari and A-CSM
on the self-collected animal images. The 3D Safari [47] model is trained on zebra images and does
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Input DINO [1] 3D Safari [47] A-CSM [20] LASSIE (part) LASSIE (texture)

Figure 3: Qualitative results on the in-the-wild image collections. We show example results of the
baselines as well as the part and texture reconstruction by LASSIE on the self-collected animal image
ensembles. The results demonstrate the semantic consistency of discovered parts across diverse
classes and the high-quality shape reconstruction that allows dense texture sampling.

Table 1: Keypoint transfer evaluations. We evaluate on all the source-target image pairs and report
the percentage of correct keypoints under two different thresholds (PCK@0.1/ PCK@0.05).

Pascal-Part dataset Our dataset

Method Horse Cow Sheep Zebra Tiger Giraffe Elephant Kangaroo Penguin

3D Safari [47] 71.8/ 57.1 63.4/ 50.3 62.6/ 50.5 80.8/ 62.1 63.4/ 50.3 57.6/ 32.5 55.4/ 29.9 35.5/ 20.7 49.3/ 28.9
A-CSM [20] 69.3/ 55.3 68.8/ 60.5 67.4/ 54.7 78.5/ 60.3 69.1/ 55.7 71.2/ 52.2 67.3/ 39.5 42.1/ 26.9 53.7/ 33.0

LASSIE w/o Lsem 60.4/ 45.6 58.9/ 43.1 55.3/ 42.3 62.7/ 47.5 53.6/ 40.0 54.7/ 28.9 52.0/ 25.6 33.8/ 19.8 50.6/ 25.5
LASSIE w/o Fp 71.1/ 56.3 69.0/ 59.5 68.9/ 52.2 77.0/ 60.2 71.5/ 59.2 79.3/ 57.8 66.6/ 37.1 44.3/ 30.1 63.3/ 38.2
LASSIE 73.0/ 58.0 71.3/ 62.4 70.8/ 55.5 79.9/ 63.3 73.3/ 62.4 80.8/ 60.5 68.7/ 40.3 47.0/ 31.5 65.5/ 40.6
LASSIE-heuristic 72.1/ 57.0 69.5/ 61.1 69.7/ 55.3 78.9/ 61.9 71.9/ 60.0 80.4/ 60.1 66.5/ 38.7 45.6/ 30.9 60.8/ 37.6

not generalize well to other animal classes. A-CSM [20] assumes high-quality skinned model of an
object category which enables detailed shapes of animal bodies. However, its outputs do not align
well with the given 2D images. Our results demonstrate that LASSIE can effectively learn from
sparse image ensemble to discover 3D articulated parts that are high-quality, faithful to input images,
and semantically consistent across instances. Note that our 3D reconstructions also improve the 2D
part segmentation from DINO-ViT feature clustering [1].

Keypoint transfer metrics. As there is no ground-truth 3D annotation in our datasets, we quan-
titatively evaluate using 2D keypoint transfer between each pair of images which is a standard
practice [47, 20]. We map a given set of 2D keypoints on a source image onto the 3D part surfaces,
and then project them to a target image using the optimized camera viewpoints, shapes and pose
articulations. Since this keypoint transfer goes through the 2D-to-3D and 3D-to-2D mappings,
a successful keypoint transfer requires accurate 3D reconstruction on both the source and target
images. We calculate the percentage of correct keypoints (PCK) under two different thresholds:
0.1×max(h,w) and 0.05×max(h,w), where h and w are image height and width, respectively.
Table 1 shows that LASSIE achieves higher PCK on the Pascal-part [7] images and most other classes
in our in-the-wild image collections. We also show ablative results of LASSIE without using the
semantic feature consistency loss Lsem or part prior MLP Fp. Note that Lsem is essential to fit the
skeleton and part surfaces faithfully to the input images, and Fp provides effective regularization
on part surfaces to generate realistic shapes from various viewpoints. LASSIE-heuristic, by using
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Input A-CSM [20] DINO [1] LASSIE GT [7]

Figure 4: 2D segmentations. We show the overall masks
(A-CSM) and part masks (DINO clusters, LASSIE results,
and Pascal-part GT) overlaid on the sample input images.

Source Target Transferred

Figure 5: Keypoint transfer results
using LASSIE from source to target
images.

Table 2: Quantitative evaluations on the Pascal-part images. We report the overall foreground
IOU, part mask IOU, and percentage of correct pixels (PCP) under dense part segmentation transfer
between all pairs of source-target images.

Overall IOU Part IOU Part transfer (PCP)

Method Horse Cow Sheep Horse Cow Sheep Horse Cow Sheep

SCOPS [13] 62.9 67.7 63.2 23.0 19.1 26.8 - - -
DINO clustering [1] 81.3 85.1 83.9 26.3 21.8 30.8 - - -

3D Safari [47] 72.2 71.3 70.8 - - - 71.7 69.0 69.3
A-CSM [20] 72.5 73.4 71.9 - - - 73.8 71.1 72.5

LASSIE w/o Lsem 65.3 67.5 60.0 29.7 23.2 31.5 62.0 60.3 59.7
LASSIE w/o Fp 81.0 86.5 85.0 37.1 33.7 41.9 76.1 75.6 72.4
LASSIE 81.9 87.1 85.5 38.2 35.1 43.7 78.5 77.0 74.3

automatic 3D feature initialization, achieves slightly lower PCK but still performs favorably against
prior arts overall. Example visual results of keypoint transfer are shown in Fig. 5.

2D overall/part IOU metrics. Our part-based representation can generate realistic 3D shapes and
can even improve 2D part discovery compared to prior arts. In Table 2 and Fig. 4, we show the
qualitative and quantitative comparisons against prior 3D works as well as 2D co-part discovery
methods of SCOPS [13] and DINO clustering [1]. For SCOPS [13] and DINO clustering [1], we
set the number of parts Np = 4 (which we find to be optimal for these techniques) and manually
assign each discovered part to the best matched part in the Pascal-part annotations. Note that higher
part IOU against Pascal-part annotations may not strictly indicate better part segmentation since the
self-discovered parts need not correspond to human annotations. Compared to prior arts on articulated
shape reconstruction, LASSIE results match the Pascal-part segmentation masks better and achieves
higher overall IOU. On co-part segmentation, our 3D reconstruction captures the semantic parts in
2D while being more geometrically refined than DINO clustering. Moreover, our results can separate
parts with similar semantic features, e.g., 4 animal legs, and thus resulting in much higher part IOU.

Part transfer. While keypoint transfer and part IOU are commonly used in the literature, we
observe that they are either sparse, biased towards certain body parts (e.g., animal faces), or not
directly comparable due to part mismatch. To address this issue, we propose a part transfer metric
for better evaluation of 3D reconstruction consistency across image ensemble. This part transfer
metric is similar to keypoint transfer but uses part segmentations. That is, we densely transfer the part

9



Pose transfer / motion re-targeting Texture transfer
(top: target pose, bottom: re-posed output) (top: target texture, bottom: re-textured output)

Figure 6: Applications of neural part surfaces. We use the LASSIE results of zebra images (top) as
target and apply pose transfer (bottom left) and texture transfer (bottom right) to the giraffe shapes.
These applications demonstrate the realistic part surfaces discovered by LASSIE.

segmentation in a source image to a target image through forward and backward mapping between
the 2D pixels and the canonical 3D surfaces. A pixel is considered transferred correctly if and only if
it is mapped to the same 2D part in the target image as where it belongs in the source image. Similar
to PCK in keypoint transfer evaluation, we calculate the percentage of correct pixels (PCP) for each
source-target pair. Since the part segmentation only covers the visible surfaces and not the occluded
regions, we ignore the pixels mapped to a self-occluded surface when calculating the PCP metric. The
quantitative results are shown in Table 2, which demonstrate the favorable performance of LASSIE
against prior arts.

Applications. Our 3D neural part representation not only produces more faithful and realistic shapes
but also enables various applications like part manipulation, texture transfer, motion re-targeting, etc.
Specifically, we can generate a new shape by swapping or interpolating certain parts, transfer the
sampled surface texture from one object class to another using the same base skeleton, or specify the
bone rotations to produce desirable re-posed shape or animation. We show some example results of
pose transfer and texture transfer between different animal classes in Fig. 6.

Limitations. LASSIE relies heavily on the 3D skeleton and strong pose and shape regularization.
As the first attempt to address this novel and highly ill-posed problem, we find the proposed pose and
shape constraints essential to produce good quality results and avoid unrealistic outputs. Moreover,
LASSIE can not handle image collections with heavy truncation, occlusions, or extreme pose
variations since we leverage self-supervisory DINO-ViT features on sparse image ensemble as our
main supervision. For instance, partial-body or noisy DINO features can cause ambiguities in camera
pose and part localization. Finally, we observe that LASSIE currently struggles with a) highly
articulated parts like elephant trucks and b) fluffy animals that appear with more instance variations
and ambiguous articulations.

5 Conclusion
In this paper, we study a novel and practical problem of articulated shape optimization of animals
from sparse image collections in-the-wild. Instead of relying on pre-defined shape models or human
annotations like keypoints or segmentation masks, we propose a neural part representation based on a
generic 3D skeleton, which is robust to appearance variations and generalizes well across different
animal classes. In LASSIE, our key insight is to reason about animal parts instead of whole shape as
parts allow imposing several constraints. We leverage self-supervisory dense ViT features to provide
both silhouette and semantic part consistency for supervision. Both quantitative and qualitative results
on Pascal-Part and our own in-the-wild image ensembles show that LASSIE can effectively learn
from few in-the-wild images and produce high-quality results. Our part-based representation also
enables various applications such as pose interpolation, texture transfer, and animation. We hope that
this work will facilitate future research efforts on learning, inferring, and manipulating articulated
shapes from image ensembles in the wild.
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[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes]
• Did you include the license to the code and datasets? [No] The code and the data are

proprietary.
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [No] Since the

scope of our paper is within 3D reconstruction of animal bodies, there is no potential
negative social impact that we are aware of.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running ex-

periments multiple times)? [No] In our optimization framework, the random seed
initialization does not affect the outputs much since the most sensitive parameters (e.g.
camera, bone scaling, pose) are not randomly initialized.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
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(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]
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spent on participant compensation? [N/A]

13


