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Abstract

Recent work has demonstrated state-of-the-art results in large language model
(LLM) hallucination detection and mitigation through consistency-based ap-
proaches which involve aggregating multiple responses sampled from a single
LLM for a given prompt. These approaches help offset limitations stemming from
the imperfect data on which LLMs are trained, which includes biases and under-
representation of information required at deployment time among other limitations
which can lead to hallucinations. We show that extending these single-model con-
sistency methods to combine responses from multiple LLMs with different training
data, training schemes and model architectures can result in substantial further
improvements in hallucination detection and mitigation capabilities beyond their
single-model consistency counterparts. We evaluate this consortium consistency
approach across many model teams from a pool of 15 LLMs and explore under
what conditions it is beneficial to team together different LLMs in this manner.
Further, we show that these performance improvements often come with reduced
inference costs, offsetting a significant drawback with single-model consistency
methods.

1 Introduction

A well-known, major limitation of current LLMs is their propensity to hallucinate, producing plausible
but factually-incorrect responses. Quality of pre-training data and instruction fine-tuning data plays a
key role in hallucination behavior. When information relevant to deployment-time performance is
under-represented or misrepresented in the pre-training corpus, the model is less likely to be able to
provide accurate responses [1, 2]. Moreover, instruction fine-tuning can incentivize models to make
educated guesses in the absence of reliable knowledge on a given topic [3]. During instruction fine-
tuning it is relatively expensive to determine what a model genuinely does not know and to include
fine-tuning examples which encourage it to admit when it does not know something. Such examples
are therefore likely to be underrepresented in typical fine-tuning data, thereby providing insufficient
counterbalance to the pressure to make educated guesses which often result in hallucinations [4].

Self-consistency [5] effectively mitigates a class of hallucinations by sampling multiple generations
from an LLM in response to a given prompt and a final answer is selected by taking a majority
vote over the responses. This approach, and follow up work [6] demonstrated improvement over
alternative methods such as debate [7] and self-reflection [8], and that smaller models using this
approach can match or surpass the accuracy of substantially stronger models. This method can be
understood as mitigating a class of hallucinations where a model is able to produce correct answers in
response to a given prompt more often than not, whether by means of imperfect recall or intelligent
inference based on known/provided information.
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Figure 1: Illustration of consortium consistency. A given query is input to multiple LLMs, one or
more responses are sampled from each model. Semantically-equivalent answers are clustered together,
and the probability distribution of different answers is computed from these clustered samples. The
distribution is used to calculate a final answer to the query, and an entropy score. Queries with
higher entropy have less consistent responses and are hence more likely to contain hallucinations.
Combining responses from multiple different LLMs reduces the likelihood of incorrectly assigning
high confidence to hallucinated answers and allows consistently hallucinating models to be out-voted
by other models.

Semantic entropy [9, 10] uses a similar consistency-based approach to detect likely hallucinations
by grouping together similar generations sampled in response to a given prompt and computing the
entropy over the resulting clusters of responses. An LLM is deemed more likely to be hallucinating
when its responses to a given prompt have higher semantic entropy, reflecting greater uncertainty
and more guesswork. The authors showed that semantic entropy achieves greater hallucination
detection accuracy than alternative methods, including ones requiring white-box model access and
model training [10]. [11] extend this idea to compute consistency across multiple responses based on
semantic information within internal model embeddings rather than output text, achieving state-of-
the-art (SOTA) hallucination detection results.

However these single-model consistency approaches naturally fail in cases where models produce
relatively consistent hallucinations in response to a given prompt. In these cases the wrong answer
can win the majority vote (hallucination mitigation failure) and semantic entropy can be low [9]
or internal embeddings can be semantically similar [11], indicating that the answer is unlikely to
be a hallucination (hallucination detection failure). We hypothesize that heterogeneous models
with different training data, training methods and model architectures are less likely to share the
same shortcomings in their training data or to making the same educated guesses. Heterogeneous
collections of models therefore ought to be less prone to the aforementioned failure modes which
arise when using single-model consistency approaches.

This motivates extending single-model consistency methods to incorporate multiple different LLMs.
We therefore propose consortium voting and consortium entropy as multi-model counterparts to self-
consistency (single-model voting) and semantic entropy respectively. These multi-model formulations,
which we refer to collectively as consortium consistency, work in tandem to select answers and
estimate confidence in selected answers from a pool of candidate responses generated by two or more
LLMs. Other consistency-based hallucination detection methods such as [11–14] could similarly be
extended to use multiple different LLMs, however we leave this to future work, and in the case of
[11] this would require aligning the embedding spaces of different LLMs.

We compare consortium consistency with single-model consistency, which analogously uses self-
consistency and semantic entropy in tandem with a single model. We evaluate both approaches on a
set of 11 tasks, testing for reasoning capabilities, general knowledge, and domain-specific knowledge
across a variety of domains. We explore consortia formed using various combinations from a pool
of 15 different LLMs, ranging from 6B to 141B parameters in size, and using a range of different
architectures, training methods, and training datasets.

We find that for many combinations of models, consortium voting and consortium entropy sub-
stantially outperform their single-model consistency counterparts whilst simultaneously reducing
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(a) Performance versus number of samples (b) Performance versus API cost

Figure 2: (a) A representative example showing consortium consistency improving on average across
11 test sets over single-model consistency applied to each of the constituent models, across a range of
sample budgets per-query. (b) Consortium consistency dominates single-model consistency on the
cost-performance frontier, achieving both higher performance and lower cost simultaneously. X-axes
show mean API cost in dollars per query, which grows with increasing number of sampled responses
per query.

inference costs. However we also find that these performance gains are sensitive to consortium
composition i.e. which LLMs are teamed together. We therefore investigate under what conditions
consortium consistency tends to deliver the strongest results compared to single-model consistency.

In summary, our main contributions are2:

• We propose consortium voting and consortium entropy, collectively referred to as consortium
consistency: black-box, post-training methods which further advance LLM hallucination
mitigation and detection capabilities beyond their single-model consistency counterparts.

• We evaluate these methods using a wide variety of tasks, across a broad range of consortia
composed of varying combinations of models from a pool of 15 diverse LLMs, finding that
under reasonable constraints in consortium composition, consortium consistency outper-
forms single-model consistency when controlling for sample budget and model availability.

• We investigate which factors regarding consortium composition result in the most reliable
improvements in performance compared to single-model consistency baselines, finding that
performance gains tend to be greatest when all of the LLMs in a consortium are similarly
capable and relatively strong (i.e. high-performing LLMs are better at complementing the
capabilities of other high-performing LLMs).

• We additionally find that sometimes stronger models are able to benefit from being teamed
with much weaker models, resulting in substantially reduced inference cost compared
with single-model consistency, whilst simultaneously boosting hallucination detection and
mitigation performance compared with single-model consistency with the entire response
budget allocated to the stronger model.

2 Methodology

Our approach is illustrated in Figure 1. Given an input query x, a set of models M =
{m1,m2, . . . ,m|M|}, and a total sampling budget of N responses, we begin by sampling N/|M|
responses from each model i.e. evenly distributing our sample budget over the M models. Each
response is generated independently using nucleus (top-p) sampling with temperature scaling [15].
These responses are then clustered based on semantic equivalence as described below. We propose
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two related methods: consortium voting and consortium entropy, for respectively generating a final
answer and providing a confidence estimate in that answer being a hallucination. These methods
are straightforward multi-model generalizations of the single-model consistency-based methods:
self-consistency [5] and semantic entropy [9]. Since they work together in tandem to select and
estimate confidence in answers, we refer to them collectively as consortium consistency, and we
similarly refer to self-consistency and semantic entropy collectively as single-model consistency.

2.1 Semantic clustering of responses

Similar to [5, 9], consortium consistency requires first clustering the N responses into a set of
semantically distinct equivalence classes C = {C1, C2, . . . , C|C|}, where all responses within a
cluster are considered equivalent in meaning and |C| is determined automatically by the clustering
algorithm. For example given the prompt “What is the capital of France”, the responses “Great,
question! Paris is the capital of France”, and “The capital of France is Paris” would be considered
semantically equivalent for our purposes.

To determine equivalence of responses when clustering, we follow [6] in using task-specific ap-
proaches. For multiple-choice tasks, responses are deemed equivalent if they select the same final
option, regardless of their reasoning paths. For math tasks, responses are deemed equivalent if their
final answers are mathematically equivalent, again regardless of reasoning paths. We also use these
equivalence checks when comparing final answers against ground truth answers during evaluation.
More general equivalence checking is possible, e.g by prompting another LLM to determine equiv-
alence as in [9], but for convenience we restrict our focus to domains where equivalence can be
computed algorithmically.

2.2 Multi-model response generation via consortium voting

Given a set of clustered responses, consortium voting determines the final answer via majority voting.
That is, it determines which cluster has the most responses across all M models:

answer = argmax
Ci∈C

∑
m∈M

N/|M|∑
j=1

1[rm,j ∈ Ci] (1)

where rm,j denotes the j-th response sampled from model m, and 1[·] is the indicator function.

We compare this to single-model majority voting (referred to in the literature as self-consistency [5]),
where all N responses are drawn from a single model:

answersingle = argmax
Ci∈C

N∑
j=1

1[rj ∈ Ci] (2)

2.3 Hallucination detection via consortium entropy

To estimate hallucination likelihood, we extend semantic entropy [10] from single-model settings to
multi-model consortia. For input query x, we estimate the consortium’s distribution over equivalence
classes f as:

P (Ci | x) =
1

N

∑
m∈M

N/|M|∑
j=1

1[rm,j ∈ Ci] (3)

Then the consortium entropy is the semantic entropy over the clustered responses from all models in
a consortium:

SE(x) = −
∑
Ci∈C

P (Ci | x) logP (Ci | x) (4)

As in [9], the semantic entropy for a given input query reflects the level of diversity of responses
across distinct semantic equivalence classes. A value of zero indicates unanimous agreement, while
higher values indicate greater uncertainty and therefore a greater likelihood of hallucination. Unlike
token-level entropy, which may overstate uncertainty due to superficial differences such as different
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ways of phrasing equivalent responses, semantic entropy captures uncertainty at the level of response
meaning.

We compare consortium entropy to single-model semantic entropy [9, 10] where all N responses are
drawn from a single model. In the single-model case the distribution over clusters simplifies to:

Psingle(Ci | x) =
1

N

N∑
j=1

1[rj ∈ Ci] (5)

3 Experimental setup

3.1 Evaluation metrics

We report evaluation accuracy following [5, 6], as well as AUROC and AURAC following [9, 10].
Accuracy simply measures the percentage of evaluation inputs answered correctly. We use this as a
proxy for hallucination mitigation, with higher accuracy generally indicating fewer hallucinations. For
hallucination detection, we use AUROC to evaluate how well consortium entropy and single-model
semantic entropy are able to distinguish correct from incorrect final answers, aggregating over all
classification thresholds.

We also report area under rejection accuracy curve (AURAC), introduced in [10]. Rejection accuracy
is the accuracy when only considering a subset of questions on which semantic entropy scores are
above a given threshold. Less confident answers are considered potential hallucinations, and rejection
accuracy effectively measures the resulting accuracy if the approach were to abstain from answering
those questions. AURAC aggregates rejection accuracy across all confidence thresholds.

3.2 Baselines

Given the impressive results achieved by the single-model consistency methods that we extend, we
use these single-model consistency methods as baselines. We evaluate consortium consistency on
many different selections of M models comprising different consortia. For each consortium we
compare its performance on the metrics defined above with that of applying single-model consistency
using individual models from the M models in the consortium, controlling for sample budget.

Specifically, when we evaluate a given consortium of M models, using a sample budget of N
responses per-question, we also evaluate the result of applying the single-model consistency methods
to each of the M models, in each case with the full sample budget of N responses all allocated to
that one model. We use these single-model consistency scores to define three baselines against which
to compare the consortium score:

• Hard baseline: the highest of the M single-model consistency scores on a given metric.
This is the most difficult baseline to beat as it assumes that we know which of the M models
will perform best on the test data using single-model consistency (which often would not be
known in practice).

• Standard baseline: the median of the M single-model scores. This represents average
performance of single-model consistency methods in the common case where we do not
know a priori which of the M models is best suited to the target domain.

• Worst-case baseline: the lowest of the M single-model scores. This represents the worst-
case performance of single-model consistency methods where the least suitable model for a
given target domain is selected.

3.3 Sampling procedure

Unless otherwise specified, we generate N = 40 responses per input prompt, either (i) distributed
evenly across the consortium of models M, or (ii) drawn entirely from a single model (when
evaluating single-model consistency). When |M| is not a factor of 40, we use the largest multiple
of |M| less than 40 (e.g., N = 39 for |M| = 3) and use the same N for the single-model baselines
to ensure fair comparison. All responses are sampled independently using nucleus sampling with
top-p = 0.9 and temperature = 0.5, and chain-of-thought prompting [16], unless otherwise specified.
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Table 1: Benefits of consortium consistency over single-model consistency baselines when composing
consortia using well-matched, strong models. Results are averaged over the 586 consortia which
met the following criteria: standard deviation of constituent mock benchmark scores ≤ 5 and mean
constituent mock benchmark score ≥ 70. Each row reports either the mean percentage change in score
vs the corresponding baseline (± std) or the percentage of teams that outperform the corresponding
baseline (i.e. where the change in score vs the baseline is positive).

Metric Baseline Accuracy ↑ AUROC ↑ AURAC ↑

Mean score ∆ (%)
Hard +1.33 ± 1.03 +1.84 ± 1.48 +2.75 ± 0.69
Standard +3.70 ± 1.20 +5.63 ± 1.46 +5.39 ± 1.09
Worst-case +9.67 ± 3.44 +18.80 ± 10.41 +16.20 ± 7.22

% of teams improved
Hard 92 92 100
Standard 99 100 100
Worst-case 100 100 100

3.4 Uncertainty estimation

Unless otherwise specified, each evaluation metric for each model/consortium is computed using 100
bootstrap samples over the input questions and model/consortium responses. Reported values are
mean averages across these samples. Where shown, error bars indicate one standard deviation across
the bootstrap samples.

3.5 Models

We evaluate consortium consistency using varying subsets of models from a pool of 15 LLMs ranging
in size from 6B to 141B parameters. These include models from the LLaMA, Mistral, Qwen, and
Gemma families (full list in Appendix C). We experiment with different strategies for selecting which
models to team together into consortia.

3.6 Datasets

We evaluate consortia and baselines on 11 tasks covering reasoning and general/domain knowledge:

• Reasoning: GSM8K [17] (200 randomly sampled questions), GPQA-Diamond [18].

• General and domain knowledge: 8 MMLU [19] subsets covering virology, world religions,
jurisprudence, astronomy, public relations, anatomy, college chemistry, and global facts.
TruthfulQA [2], which probes for common misconceptions.

We report metrics averaged across all 11 tasks to approximate performance in mixed-domain, real-
world deployment settings.

3.7 Separate tasks for model selection

The strategies we propose for selecting which models to team together into consortia consider the
relative and absolute capability levels of the candidate models. Ideally public benchmark scores
would be used for these purposes, however we could not find any public benchmarks covering all
15 models. We therefore compiled a separate set of tasks with which to estimate a mock benchmark
score for each model (detailed in Appendix D).

3.8 Compute costs

Gathering and processing all of the LLM responses discussed in this paper cost approximately $1000.
The majority of this cost resulted from the API costs required for sampling 40 responses per question
across the 11 main datasets and the 15 models we used.
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4 Results

4.1 Performance with well-matched, strong models

Figure 2a shows a representative example of the benefits of consortium consistency over single-model
consistency when applied to a set of similarly capable, relatively strong models. Consortium consis-
tency outperforms single-model consistency applied to any of the individual constituent models across
all three metrics and across a wide range of response budgets. Table 1 summarizes results aggregated
across many such consortia, identified using the mock benchmark scores of their constituent models
(detailed in Section D). Specifically we select teams with (i) a standard deviation in mock benchmark
scores below 5 points and (ii) a mean mock benchmark score above 70%.

Across these consortia, consortium consistency delivers significant improvements over all single-
model consistency baselines. Of particular note, consortium consistency outperforms the hard
baseline in the vast majority of cases (≥ 92% of teams on each metric; see Table 1). The performance
gap widens further against the other baselines, with over 99% of consortia outperforming the standard
baseline on each metric, and all consortia outperforming the worst-case baselines.

4.2 Impact of model strength

Figure 3b shows how the advantage of consortium consistency over the hard baseline is impacted by
the mean strength of the models within a consortium, as measured by their mean mock benchmark
scores. We observe that as mean strength increases, the advantage of consortium consistency over the
hard baselines grows more reliable across all three metrics. It was not immediately obvious to us
why this should happen, since as mean strength increases, so do the baseline scores against which
consortia are evaluated.

We hypothesize that this result is in part due to more capable models being more likely to make more
intelligent (less random) guesses and mistakes, making them more likely to generate consistent (rather
than random) hallucinations in response to some queries. Weaker models on the other hand tend to
produce more varied responses when they hallucinate, corresponding to more random guesses. This
can result in lower semantic entropies when stronger models hallucinate, making such hallucinations
more difficult to detect using single-model semantic entropy. This leaves more room for consortium
entropy to benefit from different models being less likely to all hallucinate in the same way, making
low entropy on incorrect answers less likely.

Table 5 shows detailed results vs baselines for consortia selected based on high mean model strength.
Compared with results from selecting based on both high mean model strength and low variance in
model strength Section 4.1, AUROC scores are significantly lower, however 81% of these consortia
still beat the hard baseline, with all of the 1580 consortia evaluated beating the standard and worst-case
baselines across all three metrics.

4.3 Impact of variance in model capability

Figure 3a shows how the advantage of consortium consistency over the hard baseline is impacted
by diversity in model capability within a consortium, as measured by the standard deviation of
the constituent models’ mock benchmark scores. We observe that as variance in model capability
decreases, the advantage of consortium consistency over the hard baselines grows more reliable
across all three metrics. This aligns with intuition: a relatively strong model is less likely to benefit by
sharing its response sample budget with substantially weaker models than with other similarly capable
models. However, interestingly we see in figure 3a that in the case of accuracy, many consortia with
high diversity in model capabilities still exhibit substantial improvements over the hard baseline.

Table 4 shows detailed results for consortia selected based on low-variance in model capability only.
Compared to selecting based on mean model capability (Section 4.2), AUROC improvements over
the hard baseline are less reliable, with only 68% of consortia beating the hard AUROC baseline.
We investigate this in Section A, finding that at the lower entropy regions, consortium consistency
maintains a strong advantage over single-model consistency, however when using weaker models,
this is often outweighed by consortia being more prone to producing higher entropies on correct
responses due to a significantly higher chance of “dissenting opinions” when weaker models are used.
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(a) Impact of diversity of mock benchmark scores on consortium performance vs hard baselines

(b) Impact of mean individual model mock benchmark scores on consortium performance vs hard
baselines

Figure 3: KDE plots showing performance of consortia vs hard baselines as a function of varying
properties of constituent models. Plots are generated using 1000 consortia randomly selected from all
215 − 15 consortia that can be formed from the available models.

4.4 Cost-performance tradeoffs

Figure 2b compares performance against approximate API cost for consortium consistency and
single-model consistency for a representative consortium and each of its constituent models. Across
all evaluation metrics, the consortium dominates the single-model consistency baselines on the
cost-performance frontier, achieving both higher performance and lower cost simultaneously. Note
that this is an expected result because the strongest individual model is on average likely to be the
most expensive. Therefore reallocating some of its sample budget across a consortium including
cheaper models results in lower cost as well as the performance improvements which come with
consortium consistency. See Section E for more examples of detailed plots for varied consortium
compositions.

5 Related works

5.1 Hallucination detection

White-box methods have explored using token output probabilities [20–22] to calculate uncertainty
scores, as well as training hallucination detection models using an LLM’s internal embeddings
[23, 24]. Black-box methods have explored prompting LLMs to provide confidence scores [25] and
sampling multiple responses and evaluating consistency across responses [12, 13, 9, 10]. [26] uses a
verifier model to check the answers of a target model, but is limited to teaming two models together
in this manner. Other methods combine consistency across multiple samples with white-box model
access [14], with [11] achieving SOTA results. Our method builds on [9, 10], inheriting the benefit of
being black-box, and extends their approach to use an arbitrary number of different models, reducing
the chance of unanimous agreement on hallucinated responses. However other consistency-based
methods such as [11–14] could similarly be extended to use multiple models, and we believe they
would likely see similar improvements as a result, but we leave this to be explored in future work.
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5.2 Hallucination mitigation

While typically not explicitly framed as addressing hallucinations, certain consistency-based ap-
proaches [5, 27, 6] can be seen as mitigating a subset of hallucinations. Similarly, works combining
the strengths of multiple models, both before generation of response(s) via model selection [28–31],
during generation [32–34], and combining responses after generation [7, 35–37], can be understood
as mitigating a different set of hallucinations arising from inherent limitations of individual models.
Note that these works are concerned with improving the accuracy of generated answers rather than
detecting hallucinations. Our work leverages the hallucination mitigation advantages of sampling
multiple generations per-model and using multiple diverse models, whilst also estimating confidences
in the selected responses which can be used for hallucination detection. Another line of work tackling
hallucination mitigation involves retrieval-augmentation [38–40]. We see these approaches as largely
orthogonal and potentially complementary to consistency-based approaches, and future work could
look at combining them.

6 Conclusions and limitations

In this paper, we extended the single-model consistency methods: self-consistency and semantic
entropy, proposing corresponding consortium consistency methods: consortium voting and consor-
tium entropy. We demonstrated that consortium consistency improves over single-model consistency
for mitigating and detecting hallucinations across a wide range of consortia, and does so whilst
simultaneously reducing inference costs. We also analyzed the impacts of the capabilities of con-
stituent models on consortium consistency performance relative to single-model consistency baselines,
finding useful rules of thumb to help select models which are more likely to work well together in
consortia. We hope that these results help motivate and guide future work in combining multiple
LLMs for hallucination detection and mitigation.

Thus far, our evaluation has focused on average performance across 11 tasks. Further work could
investigate how performance vs single-model consistency baselines varies with task diversity. Our
hypothesis is that greater task diversity reduces the likelihood of any single model dominating, thereby
enhancing the effectiveness of multi-model approaches. Conversely, in settings with more narrowly
focused tasks, it may more often be preferable to rely on single-model consistency using the single
strongest model in that domain when the best model is known.

While consistency-based approaches to hallucination detection and mitigation have achieved SOTA
results, these come at the expense of substantially increased inference costs due to the need to sample
multiple responses. This limits their applicability to situations where performance requirements
outweighs inference cost concerns. We have seen that a multi-model approach can partially alleviate
the increased costs due to the ability to combine models with varying inference-time demands,
however this approach still incurs greater costs than more lightweight methods.

Recent work [37] indicates that stronger models can exhibit more similar failure modes, which could
limit the benefits of multi-model consistency approaches. However, within the range of models
explored thus far, we have observed the opposite, with stronger models benefiting more than weaker
models from being teamed together. This could be the result of an interplay between two factors: the
convergence of cross-model failure modes with increasing model strength indicated in [37] (which
would harm consortium consistency), and the potentially even greater propensity for stronger single
models to hallucinate more consistently (which would harm single-model consistency).

Another limitation of our approach arises when queries require knowledge of niche topics that few
models within the consortium are experts in. Based on the current setup, a single expert model can be
out-voted if some of the other models share a hallucination, perhaps based on some incorrect data
points they share within their training data. To overcome this, further work may explore weighted
aggregation based on known model strengths or per-model confidence estimates, to help ensure that
authority can sometimes win out over consensus.

Acknowledgments

We are grateful to James Oldfield, Douglas O’Rourke, David Rimmer, Rupert Thomas, and Joe
Corrigan for valuable discussions and feedback.

9



References
[1] Nikhil Kandpal, Haikang Deng, Adam Roberts, Eric Wallace, and Colin Raffel. Large lan-

guage models struggle to learn long-tail knowledge. In Andreas Krause, Emma Brunskill,
Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, Proceed-
ings of the 40th International Conference on Machine Learning, volume 202 of Proceed-
ings of Machine Learning Research, pages 15696–15707. PMLR, 23–29 Jul 2023. URL
https://proceedings.mlr.press/v202/kandpal23a.html.

[2] Stephanie Lin, Jacob Hilton, and Owain Evans. TruthfulQA: Measuring How Models Mimic
Human Falsehoods. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio, edi-
tors, Proceedings of the 60th Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 3214–3252, Dublin, Ireland, May 2022. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.229. URL https:
//aclanthology.org/2022.acl-long.229/. arXiv:2109.07958 [cs].

[3] Mrinank Sharma, Meg Tong, Tomasz Korbak, David Duvenaud, Amanda Askell, Samuel R.
Bowman, Esin DURMUS, Zac Hatfield-Dodds, Scott R Johnston, Shauna M Kravec, Timothy
Maxwell, Sam McCandlish, Kamal Ndousse, Oliver Rausch, Nicholas Schiefer, Da Yan,
Miranda Zhang, and Ethan Perez. Towards understanding sycophancy in language models.
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=tvhaxkMKAn.

[4] Qinyuan Cheng, Tianxiang Sun, Xiangyang Liu, Wenwei Zhang, Zhangyue Yin, Shimin Li,
Linyang Li, Zhengfu He, Kai Chen, and Xipeng Qiu. Can AI assistants know what they
don’t know? In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria
Oliver, Jonathan Scarlett, and Felix Berkenkamp, editors, Proceedings of the 41st International
Conference on Machine Learning, volume 235 of Proceedings of Machine Learning Research,
pages 8184–8202. PMLR, 21–27 Jul 2024. URL https://proceedings.mlr.press/v235/
cheng24i.html.

[5] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-Consistency Improves Chain of Thought Reasoning
in Language Models. In Proceedings of the Eleventh International Conference on Learn-
ing Representations, May 2023. URL https://openreview.net/forum?id=1PL1NIMMrw.
arXiv:2203.11171 [cs].

[6] Junyou Li, Qin Zhang, Yangbin Yu, Qiang Fu, and Deheng Ye. More Agents Is All You
Need. Transactions on Machine Learning Research, October 2024. ISSN 2835-8856. URL
https://openreview.net/forum?id=bgzUSZ8aeg. arXiv:2402.05120 [cs].

[7] Yilun Du, Shuang Li, Antonio Torralba, Joshua B. Tenenbaum, and Igor Mordatch. Improving
Factuality and Reasoning in Language Models through Multiagent Debate. In Proceedings
of the 41st International Conference on Machine Learning, pages 11733–11763. PMLR, July
2024. URL https://proceedings.mlr.press/v235/du24e.html. ISSN: 2640-3498,
arXiv:2305.14325 [cs].

[8] Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao.
Reflexion: language agents with verbal reinforcement learning. In Proceedings of the 37th
International Conference on Neural Information Processing Systems, NIPS ’23, pages 8634–
8652, Red Hook, NY, USA, December 2023. Curran Associates Inc. URL https://dl.acm.
org/doi/10.5555/3666122.3666499. arXiv:2303.11366 [cs].

[9] Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. Semantic Uncertainty: Linguistic In-
variances for Uncertainty Estimation in Natural Language Generation. In Proceedings
of the Eleventh International Conference on Learning Representations, May 2023. URL
https://openreview.net/forum?id=VD-AYtP0dve. arXiv:2302.09664 [cs].

[10] Sebastian Farquhar, Jannik Kossen, Lorenz Kuhn, and Yarin Gal. Detecting hallucinations
in large language models using semantic entropy. Nature, 630(8017):625–630, June 2024.
ISSN 1476-4687. doi: 10.1038/s41586-024-07421-0. URL https://www.nature.com/
articles/s41586-024-07421-0. Publisher: Nature Publishing Group.

10

https://proceedings.mlr.press/v202/kandpal23a.html
https://aclanthology.org/2022.acl-long.229/
https://aclanthology.org/2022.acl-long.229/
https://openreview.net/forum?id=tvhaxkMKAn
https://openreview.net/forum?id=tvhaxkMKAn
https://proceedings.mlr.press/v235/cheng24i.html
https://proceedings.mlr.press/v235/cheng24i.html
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=bgzUSZ8aeg
https://proceedings.mlr.press/v235/du24e.html
https://dl.acm.org/doi/10.5555/3666122.3666499
https://dl.acm.org/doi/10.5555/3666122.3666499
https://openreview.net/forum?id=VD-AYtP0dve
https://www.nature.com/articles/s41586-024-07421-0
https://www.nature.com/articles/s41586-024-07421-0


[11] Chao Chen, Kai Liu, Ze Chen, Yi Gu, Yue Wu, Mingyuan Tao, Zhihang Fu, and Jieping
Ye. INSIDE: LLMs’ Internal States Retain the Power of Hallucination Detection. In The
Twelfth International Conference on Learning Representations. arXiv, October 2024. URL
https://iclr.cc/virtual/2024/poster/18385. arXiv:2402.03744 [cs].

[12] Potsawee Manakul, Adian Liusie, and Mark Gales. SelfCheckGPT: Zero-Resource Black-Box
Hallucination Detection for Generative Large Language Models. In Houda Bouamor, Juan
Pino, and Kalika Bali, editors, Proceedings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pages 9004–9017, Singapore, December 2023. Association
for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.557. URL https://
aclanthology.org/2023.emnlp-main.557/. arXiv:2303.08896 [cs].

[13] Bairu Hou, Yujian Liu, Kaizhi Qian, Jacob Andreas, Shiyu Chang, and Yang Zhang. De-
composing Uncertainty for Large Language Models through Input Clarification Ensembling.
In Proceedings of the 41st International Conference on Machine Learning, pages 19023–
19042. PMLR, July 2024. URL https://proceedings.mlr.press/v235/hou24b.html.
arXiv:2311.08718 [cs].

[14] Jinhao Duan, Hao Cheng, Shiqi Wang, Alex Zavalny, Chenan Wang, Renjing Xu, Bhavya
Kailkhura, and Kaidi Xu. Shifting attention to relevance: Towards the predictive uncertainty
quantification of free-form large language models. In Lun-Wei Ku, Andre Martins, and Vivek
Srikumar, editors, Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 5050–5063, Bangkok, Thailand, August 2024.
Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.276. URL https:
//aclanthology.org/2024.acl-long.276/.

[15] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The Curious Case of
Neural Text Degeneration. In Proceedings of the Eighth International Conference on Learn-
ing Representations, April 2020. URL https://openreview.net/forum?id=rygGQyrFvH.
arXiv:1904.09751 [cs].

[16] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H.
Chi, Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large
language models. In Proceedings of the 36th International Conference on Neural Information
Processing Systems, NIPS ’22, pages 24824–24837, Red Hook, NY, USA, November 2022.
Curran Associates Inc. ISBN 978-1-7138-7108-8. URL https://dl.acm.org/doi/abs/10.
5555/3600270.3602070. arXiv:2201.11903 [cs].

[17] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and
John Schulman. Training Verifiers to Solve Math Word Problems, November 2021. URL
http://arxiv.org/abs/2110.14168. arXiv:2110.14168 [cs].

[18] David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R. Bowman. GPQA: A Graduate-Level Google-Proof Q&A
Benchmark. In Proceedings of the First Conference on Language Modeling, October 2025. URL
https://openreview.net/forum?id=Ti67584b98#discussion. arXiv:2311.12022 [cs].

[19] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring Massive Multitask Language Understanding. In Proceedings of
the Ninth International Conference on Learning Representations, May 2021. URL https:
//openreview.net/forum?id=d7KBjmI3GmQ. arXiv:2009.03300 [cs].

[20] Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez,
Nicholas Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-Johnson, Scott Johnston,
Sheer El-Showk, Andy Jones, Nelson Elhage, Tristan Hume, Anna Chen, Yuntao Bai, Sam
Bowman, Stanislav Fort, Deep Ganguli, Danny Hernandez, Josh Jacobson, Jackson Kernion,
Shauna Kravec, Liane Lovitt, Kamal Ndousse, Catherine Olsson, Sam Ringer, Dario Amodei,
Tom Brown, Jack Clark, Nicholas Joseph, Ben Mann, Sam McCandlish, Chris Olah, and
Jared Kaplan. Language Models (Mostly) Know What They Know, November 2022. URL
http://arxiv.org/abs/2207.05221. arXiv:2207.05221 [cs].

11

https://iclr.cc/virtual/2024/poster/18385
https://aclanthology.org/2023.emnlp-main.557/
https://aclanthology.org/2023.emnlp-main.557/
https://proceedings.mlr.press/v235/hou24b.html
https://aclanthology.org/2024.acl-long.276/
https://aclanthology.org/2024.acl-long.276/
https://openreview.net/forum?id=rygGQyrFvH
https://dl.acm.org/doi/abs/10.5555/3600270.3602070
https://dl.acm.org/doi/abs/10.5555/3600270.3602070
http://arxiv.org/abs/2110.14168
https://openreview.net/forum?id=Ti67584b98#discussion
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
http://arxiv.org/abs/2207.05221


[21] Andrey Malinin and Mark Gales. Uncertainty Estimation in Autoregressive Structured Predic-
tion. In Proceedings of the Ninth International Conference on Learning Representations, May
2021. URL https://openreview.net/forum?id=jN5y-zb5Q7m. arXiv:2002.07650 [stat].

[22] Neeraj Varshney, Wenlin Yao, Hongming Zhang, Jianshu Chen, and Dong Yu. A Stitch in Time
Saves Nine: Detecting and Mitigating Hallucinations of LLMs by Validating Low-Confidence
Generation, August 2023. URL http://arxiv.org/abs/2307.03987. arXiv:2307.03987
[cs].

[23] Ernesto Quevedo, Jorge Yero Salazar, Rachel Koerner, Pablo Rivas, and Tomas Cerny. Detecting
Hallucinations in Large Language Model Generation: A Token Probability Approach. In
Hamid R. Arabnia, Leonidas Deligiannidis, Soheyla Amirian, Farzan Shenavarmasouleh, Farid
Ghareh Mohammadi, and David de la Fuente, editors, Proceedings of the 26th International
Conference on Artificial Intelligence and Applications, pages 154–173, Cham, July 2024.
Springer Nature Switzerland. ISBN 978-3-031-86623-4. doi: 10.1007/978-3-031-86623-4_13.
arXiv:2405.19648 [cs].

[24] Weihang Su, Changyue Wang, Qingyao Ai, Yiran Hu, Zhijing Wu, Yujia Zhou, and Yiqun
Liu. Unsupervised Real-Time Hallucination Detection based on the Internal States of Large
Language Models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar, editors, Findings of the
Association for Computational Linguistics: ACL 2024, pages 14379–14391, Bangkok, Thailand,
August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.
854. URL https://aclanthology.org/2024.findings-acl.854/. arXiv:2403.06448
[cs].

[25] Miao Xiong, Zhiyuan Hu, Xinyang Lu, Yifei Li, Jie Fu, Junxian He, and Bryan Hooi. Can
LLMs Express Their Uncertainty? An Empirical Evaluation of Confidence Elicitation in LLMs.
In Proceedings of the Twelfth International Conference on Learning Representations, May 2024.
URL https://openreview.net/forum?id=gjeQKFxFpZ. arXiv:2306.13063 [cs].

[26] Jiaxin Zhang, Zhuohang Li, Kamalika Das, Bradley Malin, and Sricharan Kumar. SAC3: Reli-
able Hallucination Detection in Black-Box Language Models via Semantic-aware Cross-check
Consistency. In Houda Bouamor, Juan Pino, and Kalika Bali, editors, Findings of the Association
for Computational Linguistics: EMNLP 2023, pages 15445–15458, Singapore, December 2023.
Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.1032. URL
https://aclanthology.org/2023.findings-emnlp.1032/. arXiv:2311.01740 [cs].

[27] Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut, et al. Gemini:
A Family of Highly Capable Multimodal Models, June 2024. URL http://arxiv.org/abs/
2312.11805. arXiv:2312.11805 [cs].

[28] Prasenjit Dey, Srujana Merugu, and Sivaramakrishnan Kaveri. Uncertainty-Aware Fusion: An
Ensemble Framework for Mitigating Hallucinations in Large Language Models. In Companion
Proceedings of the ACM on Web Conference 2025, WWW ’25, pages 947–951, New York,
NY, USA, May 2025. Association for Computing Machinery. ISBN 979-8-4007-1331-6. doi:
10.1145/3701716.3715523. URL https://dl.acm.org/doi/10.1145/3701716.3715523.

[29] Keming Lu, Hongyi Yuan, Runji Lin, Junyang Lin, Zheng Yuan, Chang Zhou, and Jingren
Zhou. Routing to the Expert: Efficient Reward-guided Ensemble of Large Language Models. In
Kevin Duh, Helena Gomez, and Steven Bethard, editors, Proceedings of the 2024 Conference
of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers), pages 1964–1974, Mexico City, Mexico,
June 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.109.
URL https://aclanthology.org/2024.naacl-long.109/. arXiv:2311.08692 [cs].

[30] Kv Aditya Srivatsa, Kaushal Maurya, and Ekaterina Kochmar. Harnessing the Power of
Multiple Minds: Lessons Learned from LLM Routing. In Shabnam Tafreshi, Arjun Akula, João
Sedoc, Aleksandr Drozd, Anna Rogers, and Anna Rumshisky, editors, Proceedings of the Fifth
Workshop on Insights from Negative Results in NLP, pages 124–134, Mexico City, Mexico, June
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.insights-1.15. URL
https://aclanthology.org/2024.insights-1.15/. arXiv:2405.00467 [cs].

12

https://openreview.net/forum?id=jN5y-zb5Q7m
http://arxiv.org/abs/2307.03987
https://aclanthology.org/2024.findings-acl.854/
https://openreview.net/forum?id=gjeQKFxFpZ
https://aclanthology.org/2023.findings-emnlp.1032/
http://arxiv.org/abs/2312.11805
http://arxiv.org/abs/2312.11805
https://dl.acm.org/doi/10.1145/3701716.3715523
https://aclanthology.org/2024.naacl-long.109/
https://aclanthology.org/2024.insights-1.15/


[31] Lingjiao Chen, Matei Zaharia, and James Zou. FrugalGPT: How to Use Large Language
Models While Reducing Cost and Improving Performance. Transactions on Machine Learning
Research, December 2024. ISSN 2835-8856. URL https://openreview.net/forum?id=
cSimKw5p6R. arXiv:2305.05176 [cs].

[32] Costas Mavromatis, Petros Karypis, and George Karypis. Pack of LLMs: Model Fusion at Test-
Time via Perplexity Optimization. In Proceedings of the First Conference on Language Model-
ing, October 2025. URL https://openreview.net/forum?id=5Nsl0nlStc#discussion.
arXiv:2404.11531 [cs].

[33] Xiaoding Lu, Zongyi Liu, Adian Liusie, Vyas Raina, Vineet Mudupalli, Yuwen Zhang,
and William Beauchamp. Blending Is All You Need: Cheaper, Better Alternative to
Trillion-Parameters LLM, January 2024. URL http://arxiv.org/abs/2401.02994.
arXiv:2401.02994 [cs].

[34] Fanqi Wan, Xinting Huang, Deng Cai, Xiaojun Quan, Wei Bi, and Shuming Shi. Knowl-
edge Fusion of Large Language Models. In Proceedings of the Twelfth International Confer-
ence on Learning Representations, May 2024. URL https://openreview.net/forum?id=
jiDsk12qcz. arXiv:2401.10491 [cs].

[35] Junlin Wang, Jue Wang, Ben Athiwaratkun, Ce Zhang, and James Zou. Mixture-of-Agents
Enhances Large Language Model Capabilities. In Proceedings of the Thirteenth International
Conference on Learning Representations, April 2025. URL https://openreview.net/
forum?id=h0ZfDIrj7T. arXiv:2406.04692 [cs].

[36] Justin Chen, Swarnadeep Saha, and Mohit Bansal. ReConcile: Round-Table Conference
Improves Reasoning via Consensus among Diverse LLMs. In Lun-Wei Ku, Andre Martins,
and Vivek Srikumar, editors, Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 7066–7085, Bangkok, Thailand,
August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.381.
URL https://aclanthology.org/2024.acl-long.381/. arXiv:2309.13007 [cs].

[37] Shashwat Goel, Joschka Struber, Ilze Amanda Auzina, Karuna K. Chandra, Ponnurangam
Kumaraguru, Douwe Kiela, Ameya Prabhu, Matthias Bethge, and Jonas Geiping. Great Models
Think Alike and this Undermines AI Oversight, February 2025. URL http://arxiv.org/
abs/2502.04313. arXiv:2502.04313 [cs].

[38] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel,
and Douwe Kiela. Retrieval-augmented generation for knowledge-intensive nlp tasks. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in
Neural Information Processing Systems, volume 33, pages 9459–9474. Curran Associates,
Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/
6b493230205f780e1bc26945df7481e5-Paper.pdf.

[39] Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christo-
pher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, Xu Jiang, Karl Cobbe, Tyna
Eloundou, Gretchen Krueger, Kevin Button, Matthew Knight, Benjamin Chess, and John
Schulman. Webgpt: Browser-assisted question-answering with human feedback, 2022. URL
https://arxiv.org/abs/2112.09332.
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of the paper (regardless of whether the code and data are provided or not)?
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• If the paper includes experiments, a No answer to this question will not be perceived
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to make their results reproducible or verifiable.
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5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The listed datasets are all well-known, and easily obtainable. The models
tested with are also detailed, and accessible via their APIs. The code for running our
experiments is in the process of being tidied and documented prior to sharing, to ensure ease
of reproducibility.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Our test setup is well documented. Any configurable hyperparameters that are
not explicitly detailed in the paper will be set as default in the released code, or specified in
the code’s supplementary documentation.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Error bars are provided where appropriate throughout our tabled results,
and also in some plotted graphs (notably in Appendix E). Details for these are defined in
Section 3.4.
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• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should
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of Normality of errors is not verified.
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• If error bars are reported in tables or plots, The authors should explain in the text how
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8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This research conforms with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
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Justification: While we touch upon how our approach may have a positive societal impact,
i.e. reducing the impact of LLM hallucinations and improving resilience to imperfect data,
we do not believe there to be any negative societal impact that could stem directly from our
work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This work produces no new models or data, thus poses no such risk.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Original asset owners are correctly referenced. All released code will properly
credit authors and respect licensing.
Guidelines:

• The answer NA means that the paper does not use existing assets.
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• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Any code released for this work will be well documented. No other assets
were newly created (e.g. models and datesets), though any that were used already have
strong documentation by the original authors/creators.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
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Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: While this work is a study of LLMs and how to improve their reliability, LLMs
were not used in any other core methods of this research beyond using their outputs as data
for analysis.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Precision-recall tradeoffs with weaker models

(a) Entropy distributions for correct vs. incorrect responses

(b) ROC curves for individual models and the consor-
tium

(c) Precision-recall curves showing trade-offs in preci-
sion vs. recall

Figure 4: (a) The entropy distributions show a clearer separation between correct and incorrect
responses for the consortium in the low-entropy region, even though Mythomax achieves the highest
AUROC overall. This suggests that the consortium is better calibrated in high-confidence cases. (b)
While the consortium’s improved low-entropy separation slightly boosts performance at the left-most
part of the ROC curve, the overall AUROC remains highest for Mythomax. (c) Precision-recall
curves reveal a more substantial benefit: while mythomax dominates in the higher recall range, the
consortium attains higher peak precision, allowing more flexibility to trade off recall for higher
precision. This is a common trend (see Appendix B).

Figure 4a shows entropy histograms for correct vs. incorrect responses in a representative consortium
formed with weaker models. Consortium AUROC (0.663) is lower than that of the hard single-model
consistency baseline, in this case provided by the Mythomax model, which has AUROC: 0.690.
Despite the lower AUROC, the consortium has a significantly higher proportion of correct responses
in the low-entropy region, indicating less propensity to hallucinate consistently than using single-
model semantic entropy with Mythomax. Figure 4c shows the corresponding precision-recall curves:
the consortium achieves substantially higher peak precision, although in this case at the cost of lower
recall, with little impact on the ROC curve (Figure 4b). Appendix B presents additional examples for
randomly selected consortia, showing that this is a typical pattern.

This supports our hypothesis that it is rare for multiple different models to hallucinate in exactly the
same way, meaning that when near-unanimous agreement does occur, it is more trustworthy than in
the single-model case. However it also highlights a limitation of consortium entropy for consortia
formed with weaker models: consortia are more likely to have dissenting opinions even on correct
answers, making it more difficult in some cases to distinguish hallucinations from non-hallucinations
at the higher entropy range. This is particularly an issue for consortia with poorly (or in this case
randomly) selected constituents. Recall that in Section 4.1 we showed that when selecting for
consortia with low variance in strength and high mean strength of constituent models, overall AUROC
scores are reliably improved over the hard baseline.
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B Precision-recall curves for randomly selected consortia

Figure 5: Consortium entropy typically attains higher peak precision values than semantic entropy
with any of the individual constituent models (controlled for number of responses per query). Consor-
tia typically allow more flexibility to trade-off recall for precision, even in cases where some of the
individual constituent models have higher AUROC scores (see Section A for more discussion). Each
sub-plot shows the precision-recall curve for a randomly chosen consortium (in blue) along with
precision-recall curves for each of the constituent models. Consortia are chosen at random without
filtering for variance in ability or mean ability, however they are filtered to consortia comprised of 4
models or less to aid readability.
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C List of models used

Table 2: LLMs used in this study. Where available the model parameter count and API used for
access is given.

Abbreviated model name Full model name API Model parameters [Billions]
mythomax Gryphe/MythoMax-L2-13b-Lite together.ai 13
nova-micro amazon.nova-micro-v1:0 AWS Bedrock not published

nova-lite amazon.nova-lite-v1:0 AWS Bedrock not published
llama-3.1-8b meta.llama3-1-8b-instruct-v1:0 AWS Bedrock 8

mistral-7b mistralai/Mistral-7B-Instruct-v0.3 together.ai 7
qwen-7b Qwen/Qwen2.5-7B-Instruct-Turbo together.ai 7

gemma-2-9b google/gemma-2-9b-it together.ai 9
gemma-2-27b google/gemma-2-27b-it together.ai 27

command-light cohere.command-light-text-v14 AWS Bedrock 6
command-r cohere.command-r-v1:0 AWS Bedrock 35
mixtral-8-7b mistralai/Mixtral-8x7B-Instruct-v0.1 together.ai 46.7

wizard microsoft/WizardLM-2-8x22B together.ai 141
mixtral-8-22b mistralai/Mixtral-8x22B-Instruct-v0.1 together.ai 141
llama-3-70B meta.llama3-70b-instruct-v1:0 AWS Bedrock 70

qwen2-72B-Instruct Qwen/Qwen2-72B-Instruct together.ai 72

D Separate tasks for model selection

The strategies we propose for selecting model consortia which are likely to work well together
consider the relative and absolute capability levels of the candidate models. For many models,
public benchmark scores are available, however to our knowledge there are no public benchmarks
on which all of the models in our experiments have been evaluated. Therefore, for the purposes of
our experiments, we assembled a mock benchmark composed of a set of tasks covering a disjoint
set of topics to those we use for evaluating consortia. Specifically, to compute a model’s mock
benchmark score, we evaluate it on 10 MMLU subsets not used in the main evaluation: abstract
algebra, college computer science, college mathematics, econometrics, high school world history,
human aging, marketing, philosophy, professional psychology, and sociology. Each model answers
100 questions per subset using greedy decoding, and we score them by their average accuracy (out of
100) across these tasks.
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E Varied examples of consortia

Figure 6: Varied examples of consortia which include weaker models and more variance in model
capability outperforming single-model consistency applied to each of the constituent models.

F Detailed results

The following tables show the results of applying varying selection criteria when composing consortia.
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Table 3: Benefits of consortium consistency over single-model consistency baselines when composing
consortia using well-matched, strong models. Results are averaged over the 586 consortia which
met the following criteria: standard deviation of constituent mock benchmark scores ≤ 5 and mean
constituent mock benchmark score ≥ 70. Each row reports either the mean percentage change in score
vs the corresponding baseline (± std) or the percentage of teams that outperform the corresponding
baseline (i.e. where the change in score vs the baseline is positive).

Metric Baseline Accuracy ↑ AUROC ↑ AURAC ↑

Mean score ∆ (%)
Hard +1.33 ± 1.03 +1.84 ± 1.48 +2.75 ± 0.69
Standard +3.70 ± 1.20 +5.63 ± 1.46 +5.39 ± 1.09
Worst-case +9.67 ± 3.44 +18.80 ± 10.41 +16.20 ± 7.22

% of teams improved
Hard 92 92 100
Standard 99 100 100
Worst-case 100 100 100

Table 4: Benefits of consortium consistency over single-model consistency baselines when composing
consortia using well-matched models. Results are averaged over the 928 consortia which met the
following criteria: standard deviation of constituent mock benchmark scores ≤ 5. Each row reports
either the mean percentage change in score vs the corresponding baseline (± std) or the percentage of
teams that outperform the corresponding baseline (i.e. where the change in score vs the baseline is
positive).

Metric Baseline Accuracy ↑ AUROC ↑ AURAC ↑

Mean score ∆ (%)
Hard +1.24 ± 1.14 +0.87 ± 2.03 +2.32 ± 1.23
Standard +4.51 ± 1.99 +5.39 ± 1.80 +6.16 ± 1.82
Worst-case +11.93 ± 4.70 +19.35 ± 10.14 +17.00 ± 6.49

% of teams improved
Hard 90 68 98
Standard 99 99 100
Worst-case 100 100 100

Table 5: Benefits of consortium consistency over single-model consistency baselines when composing
consortia using strong models. Results are averaged over the 1580 consortia which met the following
criteria: mean constituent mock benchmark score ≥ 70. Each row reports either the mean percentage
change in score vs the corresponding baseline (± std) or the percentage of teams that outperform the
corresponding baseline (i.e. where the change in score vs the baseline is positive).

Metric Baseline Accuracy ↑ AUROC ↑ AURAC ↑

Mean score ∆ (%)
Hard +1.43 ± 0.88 +1.17 ± 1.42 +2.58 ± 0.64
Standard +3.96 ± 1.16 +4.70 ± 1.63 +5.42 ± 1.10
Worst-case +16.76 ± 6.89 +17.87 ± 10.09 +18.01 ± 6.05

% of teams improved
Hard 95 81 100
Standard 100 100 100
Worst-case 100 100 100
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Table 6: Benefits of consortium consistency over single-model consistency baselines when composing
consortia randomly with no filtering. Results are averaged over 1000 random consortia. Each row
reports either the mean percentage change in score vs the corresponding baseline (± std) or the
percentage of teams that outperform the corresponding baseline (i.e. where the change in score vs the
baseline is positive).

Metric Baseline Accuracy ↑ AUROC ↑ AURAC ↑

Mean score ∆ (%)
Hard +0.22 ± 1.18 -4.03 ± 2.94 +0.24 ± 1.46
Standard +7.68 ± 3.55 +1.34 ± 2.70 +7.63 ± 2.82
Worst-case +63.08 ± 29.58 +16.98 ± 6.61 +49.39 ± 22.27

% of teams improved
Hard 66 8 59
Standard 100 72 100
Worst-case 100 100 100

26


	Introduction
	Methodology
	Semantic clustering of responses
	Multi-model response generation via consortium voting
	Hallucination detection via consortium entropy

	Experimental setup
	Evaluation metrics
	Baselines
	Sampling procedure
	Uncertainty estimation
	Models
	Datasets
	Separate tasks for model selection
	Compute costs

	Results
	Performance with well-matched, strong models
	Impact of model strength
	Impact of variance in model capability
	Cost-performance tradeoffs

	Related works
	Hallucination detection
	Hallucination mitigation

	Conclusions and limitations
	Precision-recall tradeoffs with weaker models
	Precision-recall curves for randomly selected consortia
	List of models used
	Separate tasks for model selection
	Varied examples of consortia
	Detailed results

