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Abstract

Humans make extensive use of haptic exploration to map and identify the properties
of the objects that we touch. In robotics, active tactile perception has emerged as
an important research domain that complements vision for tasks such as object
classification, shape reconstruction, and manipulation. This work introduces TAP
(Task-agnostic Active Perception) — a novel framework that leverages reinforcement
learning (RL) and transformer-based architectures to address the challenges posed
by partially observable environments. TAP integrates Soft Actor-Critic (SAC)
and CrossQ algorithms within a unified optimization objective, jointly training
a perception module and decision-making policy. By design, TAP is completely
task-agnostic and can, in principle, generalize to any active perception problem. We
evaluate TAP across diverse tasks, including toy examples and realistic applications
involving haptic exploration of 3D models from the Tactile MNIST benchmark.
Experiments demonstrate the efficacy of TAP, achieving high accuracies on the
Tactile MNIST haptic digit recognition task and a tactile pose estimation task.
These findings underscore the potential of TAP as a versatile and generalizable
framework for advancing active tactile perception in robotics.

1 Introduction

Tactile sensing plays a fundamental role in perception and manipulation, spanning practical tasks
such as object grasping and broader perceptual tasks, including material and shape recognition, pose
estimation, and localization. While its significance for human manipulation has been well established
[L, 24 13], recent advances in tactile sensing hardware have not only made it more accessible but also
increased its popularity in robotics. Notably, while tactile sensing provides rich, local information
about contact interactions, it lacks the wider coverage of other sensing modalities (e.g., vision),
thereby necessitating exploratory procedures to enable information gathering [4]. Because exhaustive
tactile exploration is often prohibitively expensive, active perception emerges as a promising solution,
leveraging tactile observations from the agent to better guide its interaction with the environment.

Recent active tactile perception methods have addressed shape estimation [5, 6], texture recogni-
tion [7]], object classification [8} 9]], and grasping [10], often through specialized exploration strategies.
Particularly, Fleer et al. [8] developed the Haptic Attention Model (HAM), which builds upon the
recurrent model of visual attention proposed by Mnih et al. [[11]. HAM jointly optimizes perception
and action using REINFORCE, enabling the classification of objects through haptic exploration.
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However, while these approaches showcase sig-

nificant progress, they are often tuned to their : D ]

specific tasks or sensors, which limits their ver- E ' '

satility. Humans, conversely, demonstrate versa- T G - o

tile tactile capabilities, performing diverse tasks

without specialized retraining. Achieving simi- ‘ )

lar generality in robotics requires flexible strate- Action

gies for sequential decision-making that go be- .

yond task-specific objectives. Unlike supervised II rediction]

methods based on static observations, tactile

sensing demands dynamic exploration strate-

gies that balance exploration and exploitation. Figure 1: Our method Task-agnostic Active Perception

The challenge is compounded by the fact that (TAP) gims to infer propertiesi such as objegt classes., of

touch involves physical interaction, which can its environment based.0n. limited per-step .1nformat10n.

actively alter the environment’s state. Nonethe- To do so, it jointly optimizes an action policy to gather

less, many prior works assume a static setting 1nf0rm?1t10n apd a prediction model for inference. Both
> : . . . the action policy and the prediction model use a shared

Where objects remain .statl(.)na.ry during explo-  ansformer-based backbone to process sequences of

ration [12,15/113L110], simplifying the problem. inputs. Illustrated on the top are four benchmark tasks

In this manner, partially observable strategies e Us€ to evaluate TAP.

such as the partially observable Markov decision

process (POMDP) framework provide a formal foundation for addressing these challenges. POMDPs
enable modeling sequential decision-making in environments where the agent’s observations are
inherently partial or noisy. For efficient exploration, reinforcement learning (RL) naturally fits active
perception, enabling task-adaptive exploration policies through reward maximization while balancing
exploration and exploitation in uncertain and dynamic settings. In this context, Shahidzadeh et al.
[14] introduced an RL-based method for active tactile exploration, specifically for the task of tactile
shape reconstruction.

In this work, we introduce Task-agnostic Active Perception (TAP), combining RL and supervised
learning in a general framework that requires only a differentiable loss and a POMDP environment.
Our method jointly optimizes a policy and perception module using a shared transformer backbone
(see Fig. [T), accommodating diverse sensor inputs without task-specific adjustments. Here, we
propose two variants of TAP, extending SAC [[15)] and CrossQ [[16]. To validate our method, we
evaluate it on four different benchmarks, ranging from classification to counting and localization
tasks. Our experiments confirm RL’s effectiveness for tactile exploration, though improving sample
efficiency remains challenging. In summary, our main contributions are:

* A task-agnostic framework that jointly optimizes an RL policy and perception module using
a shared transformer backbone. This formulation allows both adaptability across tasks and
robustness to dynamic environments where objects may move or change during interaction.

* Two method variants, based on SAC and CrossQ, are designed for a range of active tactile
exploration tasks.

* Empirical validation across multiple tactile perception benchmarks, demonstrating the
method’s generality and effectiveness.

2 Related Work

We briefly review prior work on tactile perception, vision-based tactile sensing, and active tactile
exploration. For comprehensive surveys on tactile manipulation, we refer readers to [18} [19].

Tactile Perception: Tactile sensing allows robots to infer object geometry, texture, and materials
through physical contact, complementing or substituting visual sensing, especially in occluded
scenarios. Early tactile sensing systems primarily used simple binary contacts [[19]], whereas recent
approaches employ vision-based tactile sensors [20} 21} 22]. These sensors provide high-resolution
data useful in complex tasks, including shape reconstruction, texture recognition, and advanced
manipulation, such as autonomous page turning [23]], object reorientation [24, 25], and handling
deformable objects [26]. Additionally, transformer architectures, known for capturing long-range
dependencies in vision tasks, have recently been adapted for tactile perception due to their ability to
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Figure 2: Overview of our Task-agnostic Active Perception (TAP) method. The agent aims to classify the 3D
MNIST digit using touch alone. At each step, it receives a tactile reading and state information (e.g., sensor
position). A Vision Transformer (ViT) encodes the tactile input, which is concatenated with state data and
processed as a sequence by a transformer. The model outputs a label prediction y;, evaluated against the ground

* . . . )
truth y via a loss function ¢, and an action a. that controls the sensor’s next movement.

integrate spatially detailed and temporal tactile signals [27,28]]. Following this trend, in this work,
we adopt a transformer-based perception module to robustly process sequential tactile data.

Active Tactile Exploration: Active tactile exploration involves deliberately selecting contact
locations and trajectories to optimize information gain during interaction. Previous approaches
leverage Gaussian Processes 5] and Bayesian optimization [7] to efficiently reconstruct
shapes, discriminate textures, or identify grasp points. RL methods have also emerged for tactile
exploration in high-dimensional state spaces, dynamically selecting discriminative contact regions to
enhance perception [9]]. Closely related to this work, proposes the Recurrent Models of Visual
Attention (RAM) for active vision tasks, where a selective attention mechanism is designed to optimize
scene exploration. Extending this concept to tactile data, the Haptic Attention Model (HAM) [8]]
tailored RAM for tactile perception by optimizing selective attention. In contrast, we frame active
tactile perception explicitly as a supervised learning task within a POMDP. To address sequential
decision-making, we employ state-of-the-art RL algorithms such as Soft Actor-Critic (SAC) and
CrossQ [16]. This formulation enables our pipeline to adapt to a variety of tasks while remaining
robust to dynamic environments where objects may move or change during interaction.

3 Active Perception

In this section, we formally derive our method for active perception. We propose two variants of our
method, based on SAC [[13] and CrossQ [16].

3.1 Problem Description

Formally, we define the problem of active perception as a special case of a Partially Observable
Markov Decision Process (POMDP). Here, the environment is governed by unknown dynamics

p(ﬁt+1|ﬁt, dt), where h, is the hidden environment state and d, is the action taken at time ¢. The
agent then makes observations through the distribution, p(o¢|h;), where o; is the observation. In the
active perception scenario, the agent’s objective is to learn a particular property of the environment,
e.g., the class or pose of an object. We assume that the ground truth value g?t of this property at time ¢
is part of the hidden state h; and thus not directly accessible to the agent. Hence, the hidden state
decomposes into h; = (hy, gjt ), where h; is the remainder of the hidden state without the ground truth
property value. Additionally, the agent’s action space contains not only control actions a; but also a

current estimate g, of the desired environment property. In other words, the action space decomposes
into a; = (a¢,y: ), meaning that the agent predicts the desired environment property at every step.

As typical for RL, the action a, is a control signal, e.g., a desired finger movement, which is
communicated to the agent’s motor controllers. The resulting reward function now consists of
two parts: a differentiable prediction loss ¢ and a regular RL reward r. That is, 7(h, gjt, ag,yi) =

(he, a¢) — (3, ;). Here, the prediction loss, £(3,,1:) could, for example, be a cross-entropy loss
in the case of a classification task or the Euclidean distance in the case of a pose estimation task. The



RL reward, on the other hand, does not have to be differentiable or known to the agent and could be
any function. In this work, we only use it to regularize the agent’s actions a;. In the following, to

simplify the notation, we use p(h, y,0,4, y) =mg(o|h) p(h, ¥y, o0, a), m(y|o) = [T 7 (yt | 00:t)
and p(h, y,0, a) = p(ho, Zjo) [1720 p(ot | he) m(at| 00:) where h = hg.oo, y = gjo:w and so on. Thus,

the objective is now to find a policy 7(a; | 0o ) for which the expected discounted return is maximized.
That is, given the discount factor y € [0, 1),
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3.2 Optimizing the Active Perception Objective

Since the agent’s predictions y; do not influence future states, by defining éﬂ(ﬂt,oonﬁ) =
Er(y: |00:) [E(gjt, yt)] we can rewrite (I) as

J(m) = E [gfyt (r(ht,at)—fﬂ—(zjt,oo;t)):l. )

*

p|h,y,0,a

In this work, we assume that the policy 7 is parameterized by parameters § € R which allows us to
compute a gradient of (2) and optimize the problem with gradient descent algorithms. Computing the
gradient of .J(7y) now yields
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%J(W9)= I@ )[601n7r9(a|0);W%(hny“auyt)]— E I:Z’yt(%zﬂe(ytaooit)- 3

* —
po(h,y,0,a 0 Po y,O) t=0

policy gradient prediction loss gradient

As shown in (3), the gradient of the objective function J(7g) decomposes into a policy gradient and
a negative supervised prediction loss gradient.

3.3 Deriving TAP-SAC and TAP-CrossQ

We use RL-based techniques to estimate the policy gradient in Eq. (3)), focusing on two actor-critic
methods: SAC [15] and CrossQ [16]. SAC is an off-policy RL algorithm that jointly learns a
policy and two Q-networks. The Q-networks are optimized to minimize the Bellman residual for
the policy, and the policy is optimized to maximize the smaller of the two values predicted by the
Q-networks. To stabilize the training of the Q-networks, SAC deploys target networks, which slowly
track the actual Q-networks. CrossQ is similar to SAC but drops the target networks and instead
uses BatchRenorm [29] layers in the Q-network to stabilize their training. To use SAC and CrossQ
in the active perception setting, we adjust three components:

1. The active perception setting is partially observed. Hence, instead of a state s;, the policy and
the Q-networks receive a trajectory of past observations 0.

2. During the training of the Q-networks, SAC and CrossQ sample transitions and rewards from

the replay buffer to compute the Bellman residual. The presence of the prediction loss ¢, requires us
to dynamically recompute the total reward when evaluating the Bellman residual, yielding

2
Ecritic = ]% [; (QQ(OO:ta at) - (Tt - gﬂ'e (étv OO:t) + "YTIE[Qé(OO:t-#la at+1)])) :| .

3. During the policy update, the policy gradient is augmented by the prediction loss gradient.

For the remainder of this paper, we will refer to the SAC variant as TAP—-SAC and to the CrossQ
variant as TAP-CrossQ.



3.4 Input Processing

We assume that the sequence of past observations og.; consists of images and scalar data. To efficiently
process this data in the policy and Q-networks, we use an architecture similar to the Video-Vision-
Transformer (ViViT) [30] architecture. First, a Vision Transformer (ViT) [[L7] is used to generate
embeddings for each tactile image. These embeddings are then concatenated with the scalar inputs
and processed by a transformer to generate an embedding m, for each time step. We empirically
found that sharing these embeddings across Q-networks Qg (0q:¢, a¢ ), action policy mg(a; | 0p:+) and
prediction policy 7y (y: | 0o:¢) yields better results than training individual representations for each of
these components. A full overview of TAP is shown in Fig. 2]

4 Experiments

To evaluate TAP, we conduct experiments on four ac-
tive perception tasks: Circle-Square, Tactile MNIST,
Starstruck, and Toolbox [31]] (see Fig.[3). In each task,
the agent must actively gather information, jointly
learning both a policy and a perception model.

4.1 The Circle-Square Task
Tactile MNIST

Circle-Square

The Circle-Square task is an environment for evalu-
ating active perception in a low-dimensional space.
Here, the agent is presented with a 28x28 grayscale
image containing either a white circle or square
placed randomly in the field (Fig. B}top-left). Its
goal is to identify the correct object class, but it can
only observe a 5x5 glimpse at a time and must ex-
plore the image over time. Each episode allows the
agent to take up to 16 steps. A color gradient of-

Starstruck Toolbox

Figure 3: Active perception benchmarks on

fers directional guidance, but the agent starts without
information about the object’s location. It selects a
continuous movement action a; € [-1,1]? per step
to reposition its glimpse, encouraging learned search
strategies over random behavior. Since the agent’s
glance in this task is small, we do not use our vision

which we evaluate our method. Tactile MNIST,
Starstruck, and Toolbox are tactile perception tasks
from the Tactile MNIST benchmark [31]]. In each
environment, the agent must decide how to gather
information with its sensor. Circle-Square and
Tactile MNIST are classification tasks, where the

agent must decide on a class label. Starstruck is a
searching and counting task, where the agent must
determine the number of stars in the environment.
Toolbox is a pose estimation task, where the agent
must determine the 2D pose of the given object.
All tasks require the agent to gather information
actively and are not accurately solvable via random
exploration.

encoder but treat the inputs as a 25-dimensional vec-
tor. By not using the vision encoder, TAP becomes
more directly comparable to HAM [8]], which also
processes a flat representation of the input image.

In addition to the HAM baseline, we com-
pare our method to a random baseline agent,
TAP-RND. TAP-RND shares the same configuration
as TAP-SAC but does not train an action policy; in-
stead, it selects all actions randomly. Despite this,
TAP-RND still trains the perception module, allow-
ing it to learn to process data without having control
over the location of its haptic glances. We use each agent’s average and final class prediction ac-
curacies as our evaluation metrics. Here, the average class prediction accuracy takes the agent’s
predictions in all steps of an episode into account and computes the average over those. The final
class prediction accuracy, on the other hand, takes only the prediction in the final step of each episode
into account. We ran this experiment on 5 seeds per method, training all models from scratch each
time.

As shown in Fig.[4] our agents TAP—SAC and TAP-CrossQ learn to complete the task with similar
final prediction accuracies of 97% and 96%, respectively. The random agent, TAP—RND, achieves a
68% accuracy, highlighting the need for active perception in the Circle-Square task. Despite extensive
tuning of the learning rate and 8 parameter with HEBO and training for 10M steps, we could not find a
configuration for which HAM reached a prediction accuracy beyond random guessing. To understand
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Figure 4: Average and final prediction accuracies for our methods TAP-SAC and TAP-CrossQ,
HAM [8]], and a random baseline TAP—-RND across various classification tasks. Variants TAP—-SAC-LSTM,
TAP-CrossQ-LSTM, and TAP-RND-LSTM use the LSTM model from HAM in place of our transformer. All
methods were trained with 5 seeds. Shaded areas represent one standard deviation. Metrics are computed on
evaluation tasks with unseen objects, except for Circle-Square, which has only two. For Starstruck, a correct
classification requires predicting the exact number of stars.

what leads to this performance gap, we ran an ablation, using HAM’s LSTM model in combination
with TAP’s off-policy optimization method. The results of this ablation are shown in Fig.[d] where
we call these methods TAP-SAC-LSTM, TAP-CrossQ—-LSTM, and TAP-RND-LSTM. While the
LSTM-based approaches still fall short of the Transformer-based approaches, they achieve higher
accuracies than HAM, suggesting that HAM’s poor performance in this task is at least partly to blame
on its on-policy optimization method. For full implementation details, including an ablation with
longer training times, where we compare HAM with a PPO baseline, see Appendix [A.T]

4.2 The Tactile MNIST Benchmark

While the Circle-Square environment already presents a non-trivial active perception problem for
task-agnostic agents, it remains relatively simple: the input space contains just 25 pixels, there are
only two object classes, with a color gradient providing a search direction. In contrast, (visual-) tactile
perception introduces greater complexity. First, the input is a high-dimensional image requiring
encoding into a latent space. Second, real-world classification tasks often involve many classes with
diverse instances. For example, a robot sorting waste into plastics, glass, and metal must handle
objects of various shapes and textures that belong to the same class. Finally, tactile exploration
often lacks directional cues, as retrieving an object from a cluttered bag requires systematic search
strategies. To investigate this, we evaluate our methods on the Tactile MNIST benchmark introduced
by Schneider et al. [31]. In this task, an agent uses a GelSight Mini sensor to explore a randomly
placed and oriented 3D MNIST digit without prior location knowledge. The goal is to classify the
digit within a fixed time budget (see Fig. [3}top-right for a visualization).

As shown in Fig.[d] both TAP-SAC and TAP-CrossQ reach similar high final prediction accuracies
of 87% and 89% on the evaluation task. The TAP—RND baseline, however, eventually stagnates
at an accuracy of around 74%, highlighting the importance of action selection on this task. The
average class prediction accuracy, as shown in Fig. ffirst column), presents a similar trend, with
TAP-SAC achieving 80% and TAP-CrossQ 81%. An insight into the agent’s performance is given
by Fig. 5] which shows how the accuracy and correct label probability of the trained agents over the
course of an episode, averaged over multiple episodes. This figure shows that the active agents gather
information much quicker and are much more certain about the class label than the random agent.
For full benchmark setup, training details, and sensor configuration, see Appendix [A.2]



4.3 Starstruck

The Starstruck task (see Fig. [Bfbottom-left) builds on the Tactile

MNIST simulation framework but introduces a distinct challenge. o T

Rather than classifying an object, the agent must count how many =08

stars are placed among randomly arranged geometric shapes (stars, E 0.6 -

squares, and circles). Since all stars share the same 3D model, E

this task removes intra-class variation and focuses purely on ex- < 0.4}

ploration, allowing us to isolate systematic search behavior. Here, 2020

at the start of each episode, between one and three stars are placed - ‘

randomly among distractor shapes. The agent’s goal is to deter- ‘

mine the exact number of stars on the plate using the GelSight ~0.8 |

Mini sensor. As in Tactile MNIST, the agent moves freely in g

2D space under the same motion constraints, but we extend the § 061

episode budget to 32 steps to accommodate the larger search space. <

We frame this task as a 3-way classification problem where the Do
correct prediction must exactly match the star count. We evaluate 0.4 6 é 0 15

TAP-SAC, TAP-CrossQ, and the random baseline TAP—RND,
using the same hyperparameters as in the Tactile MNIST task to Glances

ensure comparability. Figure 5: Exploration efficiency of

The results, summarized in Fig. ] indicate that TAP-CrossQ final policies on the Tactile MNIST
reaches a final prediction accuracy of 78%, with an average predic- benchmark. ~ Shown are the pre-
tion accuracy of 72%. TAP-SAC achieves a similar final accuracy ~dicted probability of the correct la-
of 75% and a slightly lower average accuracy of 65%, suggesting ¢! (top) and accuracy (bottom) af-
that both approaches are well-suited for this task. In contrast, ter N tactile glances.

the TAP—RND baseline peaks at a 56% final accuracy and 50%

average accuracy, underscoring the necessity of active perception

in solving this problem. The slower convergence compared to Tactile MNIST suggests that the
Starstruck task is more challenging to solve for our methods. However, this could, in part, be due to
the increased episode length of 32 vs 16 in Tactile MNIST, which effectively reduces the number of
episodes seen during training to half in comparison to Tactile MNIST. For implementation details
and hyperparameter settings, see Appendix [A.3]

4.4 Toolbox

In the Toolbox task, the agent has to find a wrench on a platform by touch alone. Unlike Tactile
MNIST and Starstruck, Toolbox is a regression task, where the agent has to predict the 2D position
and 1D orientation of the wrench in the workspace. As such, the task consists of two problems: the
agent must find the wrench in the workspace and determine its position and orientation. Crucially, as
can be seen in Fig. [3}bottom-right, most parts of the wrench are ambiguous in location when touched,
and the information of multiple touches has to be combined to make an accurate prediction. For
example, when touching the handle, the agent may extract information about the lateral position
of the wrench, but does not yet know where it is currently touching the handle longitudinally, and
whether the open end is left or right. Hence, to disambiguate the wrench pose, a strong exploration
strategy must include finding one of the ends of the wrench. Similar to the previous two tasks, the
agent moves a GelSight Mini sensor freely in 2D space, constrained by the platform boundaries.
Since the platform for this task is larger than that for the other tasks, we allow 64 steps for exploration
before the episode is terminated.

The results, shown in Fig. [6] show that TAP-CrossQ reaches a final accuracy of 1.9cm and 13°
on average, while TAP—SAC and the random baseline TAP—RND stagnate at much lower accuracies.
The low performance of the TAP-RND again highlights the importance of active perception for
this task. It is important to note that we again did not tune any of these methods on this task and
instead relied on hyperparameters optimized for Tactile MNIST. While tuning TAP—-SAC on this
task can lead to stronger performance, these results, together with the Starstruck results in Fig. A
indicate that TAP-CrossQ might be more robust w.r.t the choice of hyperparameters. However,
more experiments are needed to answer this question definitively. For training details, evaluation
protocol, and hyperparameter settings, see Appendix



5 Discussion

The results in Section E] show that our task-
agnostic, RL-based method successfully learns
exploration strategies across diverse active per-
ception tasks. We evaluated TAP on a toy Circle-
Square classification task and three simulated
tactile benchmarks: Tactile MNIST (digit classi-
fication), Starstruck (object counting), and Tool-
box (object pose estimation). In all three tactile
benchmarks, the agent must learn an image en-
coder and refine its exploration policy jointly.
Notably, TAP-CrossQ retained high perfor-
mance when switching tasks without hyperpa-
rameter tuning, highlighting its robustness.

Average Error Final Error

Angular [deg] Linear [cm]

Steps 106 Steps 106

The poor performance of the TAP-RND base-
line across all tasks confirms the necessity of l TAP-SAC
structured exploration, while HAM [§]] failed to
learn an effective strategy on Circle-Square, de- Figure 6: Average and final prediction accuracies over
faulting to predicting the mean class despite ex- five runs for our methods TAP-SAC and TAP-CrossQ,
tensive tuning using HEBO. This points to a fun- as well as the baseline TAP-RND on the Toolbox task.
damental limitation of HAM in this setting. Key Each method was trained on 5 seeds for 10M steps.
differences between TAP and HAM explain this

gap: first, TAP uses a transformer-based policy

network, which our ablation shows outperforms LSTM-based variants, likely due to better modeling
of long-term dependencies. Second, HAM relies on on-policy RL, which discards samples after a sin-
gle update, limiting learning efficiency. In contrast, TAP employs off-policy methods (TAP-SAC and
TAP-CrossQ), enabling sample reuse — a critical factor in active perception, where supervised learn-
ing benefits from multiple passes over the same data. Both TAP-SAC and TAP-CrossQ perform
comparably on environments they have been tuned on, but TAP-CrossQ has proven more robust
to new environments without hyperparameter tuning and offers a clear computational advantage.
By avoiding target network updates, it requires roughly half the transformer forward passes during
training, leading to a 53% reduction in training time on average, without sacrificing performance.

TAP-CrossQ TAP-RND ‘

In summary, transformer-based policies and off-policy RL significantly improve active perception
learning. The strong cross-task performance, especially of TAP-CrossQ without retuning, demon-
strates its potential as a robust, general framework for active tactile perception.

6 Conclusion

We introduced TAP (Task-agnostic Active Perception), a framework combining reinforcement learn-
ing and transformer-based models for active tactile perception. We evaluated it on four benchmarks
where TAP consistently outperforms a random baseline, underscoring the value of active percep-
tion. Notably, the current state-of-the-art method — HAM — cannot solve any of these tasks. On the
Circle-Square task, HAM resorted to always predicting a 50/50 probability for both labels, even after
long training, while the other three tasks require an image encoder, which HAM lacks. TAP, on
the other hand, achieves high performance across all tasks, with the exception of TAP-SAC on the
Toolbox task, where it was not tuned on. Ablation results on Circle-Square additionally show that
our transformer-based architecture outperforms HAM’s LSTM, even when paired with our actor-critic
training. Future work will focus on applying sim-to-real transfer for deployment, extending TAP
to real-world applications such as in-hand pose estimation and texture recognition, and exploring
multi-modal integration with vision and touch.



7 Limitations

While TAP demonstrates strong performance across various active perception tasks, it also has certain
limitations. One of the primary drawbacks is its reliance on large amounts of training data, requiring
up to 5M steps for the tactile perception tasks. This high data requirement arises from the combination
of a transformer-based architecture and RL-based policy optimization. While this approach enhances
the generality of TAP, allowing it to adapt to different tasks without hyperparameter tuning, it
comes at the cost of sample efficiency. A promising avenue to solve this issue is leveraging pre-
trained transformer models, which could improve sample efficiency by providing useful feature
representations. Furthermore, recent advancements in sample-efficient reinforcement learning [32,33]]
offer potential alternatives for improving the practicality of TAP in real-world applications.

Another limitation of the proposed work, and not necessarily from the proposed method, that is
TAP, is the lack of real-world experimentation. This is an avenue that we aim to investigate in
future work, integrating state-of-the-art methods for sim-to-real transfer known in RL. Domain
randomization and adaptation offer potential pathways to mitigate this limitation by enabling policies
trained in simulation to generalize to real-world environments. Additionally, approaches such as
CycleGAN [34] can be used to enhance the realism of simulated tactile images, improving the
alignment between simulated and real-world data to facilitate transfer.

Another similar limitation and future direction is to explore a more diverse and practical set of tasks.
Applications such as object pose estimation, shape reconstruction, or material property inference
remain unexplored and could pose additional challenges to our methodology. Moreover, our current
experiments use a single tactile sensor, but in principle, the TAP model architecture supports multi-
fingered robotic hands and multi-modal perception (e.g., combining vision and touch). However,
the practical scalability of TAP to those applications remains an open question, as the increased
action and observation space complexity may introduce additional challenges in training efficiency,
policy learning stability, and computational demands. Future work will explore these extensions by
evaluating TAP on multi-fingered robotic systems and integrating complementary sensing modalities
to enhance active perception capabilities.
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(a) (b) (© (d

Figure 7: Episode starting conditions of the Circle-Square task. The agent’s glimpse and the object (circle @
or square (b} [d)) are placed in random locations on the field. Besides the color gradient, the agent receives no
information about the object’s location on the field.

(a) (b) (© ()

Figure 8: Visualization of an episode in the Circle-Square task. @) The agent starts at a random location and
uses the color gradient to locate the object. It can only observe a 5 x 5 pixel patch. (E[) The agent follows the
gradient, gradually gathering information. Without full certainty, it predicts a 50/50 probability between classes
along the way. Colored boxes show past glances, with color indicating prediction confidence. () The agent
reaches the object at the corner. (d) Upon confident identification, the agent classifies the object as a square
(bright green box) and maintains this prediction in later steps.

Appendix

A Environment Details

Here, we detail each of the tasks that were evaluated. That is the Circle-Square 2D classification
task, the Tactile MNIST tactile classification task, the Starstruck counting task, and the Toolbox pose
estimation task.

A.1 Circle-Square Task

In each Circle-Square episode, the agent receives a 28x28 grayscale image containing either a circle
or a square. It can only observe a 5x5 pixel region (glimpse), with the initial location randomized. A
color gradient in the background helps guide exploration, but the agent has no access to the object’s
position. See Fig.[7]and Fig. [§|for illustration of the Circle-Square task.

Actions a; € [-1,1]? are mapped to pixel motion as a; - 5.6 px (20% of the image width), allowing
smooth movement across the image. We use bilinear interpolation to compute the glimpse values
even at non-integer positions. The agent’s prediction y; € R? is interpreted as logits for circle vs.

square:
1) (2)

eV eYi
Deircle (Y1) = m, psquare(yt) = m~
Cross-entropy loss is used for training:
K(y:ayt) == Z 6(y:7c) log (pc(yt))

ce{circle,square }
We apply a regularizing reward penalty on the magnitude of each action: r(h¢, a;) = 1072 a.||%.

Due to the small input size, we do not use a vision encoder; instead, the input is directly flattened
into a 25-dimensional vector. This design choice allows a fairer comparison to HAM [8]], which also
operates on flat image data,
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Figure 9: Additional experiments on the Circle-Square environment, comparing HAM with two PPO-based
variants: PPO—-TAP and PPO-LSTM. The difference between PPO-TAP and PPO-LSTM is that PPO-TAP uses
our transformer model, while PPO-LSTM uses HAM’s LSTM model. TAP-CrossQ’s run with 250K steps is
shown for reference. The left plot shows the average prediction accuracies, while the right plot shows the final
prediction accuracies. Training is terminated after 10M environment steps.

i

Figure 10: The simulated Tactile MNIST classification benchmark [31]], which we use for evaluating our method.
The objective of the Tactile MNIST task is to identify the numeric value of the presented digit by touch only. In
every step, the agent decides how to move the finger and predicts the class label. The haptic glance is computed
via the Taxim [36] tactile simulator.

Figure [0] shows an additional experiment on Circle-Square, where we compare HAM to two PPO-
based variants, one using HAM’s LSTM model (PPO-LSTM) and one using our transformer model
(PPO-TAP). Note that, unlike in the experiment shown in Fig. ] where we stopped training after
250K environment steps, here, we let the training run for 10M steps. Despite the longer training time,
HAM fails to achieve a final prediction accuracy that is better than random guessing. The PPO variant
using HAM’s model (PPO—-LSTM) achieves a final prediction accuracy of 72% after 10M steps, while
the PPO variant with our model (PPO-TAP) achieves around 79%. In addition to the difference in
final performance of PPO-LSTM and PPO-TAP being 7%, PPO-TAP improves much quicker in
the beginning than PPO-LSTM. All hyperparameters for this experiment were again tuned using
HEBO [33] and each method was trained from scratch on 5 seeds.

These results, in conjunction with the results shown in Section @ indicate that HAM’s issues in
solving the Circle-Square task may have two reasons: First, HAM’s LSTM model seems to be ill-suited
for learning this task, as all other compared methods (TAP-SAC, TAP-CrossQ, and PPO-TAP)
each performed worse with HAM’s LSTM model than with our transformer model. Second, the fact that
PPO and HAM are both on-policy algorithms likely has a negative impact on their sample efficiency,
as samples collected from the environment cannot be reused later on. Off-policy algorithms, such as
TAP-SAC and TAP-CrossQ, on the other hand, store samples over the course of the entire training
and revisit them many times, making optimal use of the information gathered during training. We see
this effect clearly in Fig.[9] where TAP-CrossQ outperforms PPO-TAP by orders of magnitude in
sample-efficiency, despite both algorithms using the same model for their policy and class predictions.

A.2 Tactile MNIST Benchmark

In the Tactile MNIST benchmark (see[I0), the agent is presented with a 3D model of a high-resolution
MNIST digit, placed randomly on a 12x12cm plate. Each digit is up to 10cm in width and height.
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Figure 11: The simulated Starstruck task, which we use for evaluating our method. The objective of the
Starstruck task is to count the number of stars among the presented objects on the plate. In every step, the

agent decides how to move the finger and predicts the number of stars. The haptic glance is computed via the
Taxim [36] tactile simulator.

The agent uses a single simulated GelSight Mini sensor [20]] to explore the plate surface. The sensor
outputs a 32x32 pixel image rendered from a depth map by Taxim [36]. Additionally, the agent
receives the 3D position of the sensor as input.

Each episode begins with a randomly selected digit, randomly placed and oriented. The agent has 16
steps to explore and classify the object. At each step, it chooses a movement action a; € [-1,1]?,
which corresponds to a translation of up to 1.5cm per axis. The sensor is automatically positioned to
maintain a 2mm indentation into the 4mm-thick gel. To simulate the object shifting around when
being manipulated by the agent, we apply Gaussian random noise to the position and orientation of
the object throughout the episode.

The classification output is a 10-dimensional logit vector. A standard cross-entropy loss is used:

(e

ay:,yt):—ié(y:,c)log(pc(y»), pe () =

@) °
21130 et

The reward is used only for regularizing motion: 7(hs, a;) = 1073 a|*.

We train TAP-SAC, TAP-CrossQ, and TAP-RND from scratch (no pre-trained encoders), using 5
random seeds for SM steps. Hyperparameters are tuned via the HEBO Bayesian optimizer. HAM
is not evaluated here as it lacks an image encoder. Evaluation is done using digits not seen during
training.

A.3 Starstruck Task

In the Starstruck task (see [II)), each episode begins with a random configuration of geometric
objects—circles, squares, and between one to three identical 3D star shapes—scattered across a
12x12cm plate. The agent explores the scene using a simulated GelSight Mini sensor, identical to
that used in Tactile MNIST, providing a 32x32 tactile image, while also receiving the 3D sensor
position as input.

Actions a; € [~1,1]? again correspond to a maximum motion of 1.5cm per axis. The sensor maintains
a fixed 2mm indentation into the gel on each step. Unlike Tactile MNIST, the label in each episode is
the total number of stars present (1, 2, or 3), and a prediction is only considered correct if it exactly
matches the ground truth.

Each agent — TAP-SAC, TAP-CrossQ, and TAP-RND - is trained from scratch using 5 random
seeds for 5M steps. We reuse the hyperparameters optimized on Tactile MNIST without modification
to evaluate robustness across tasks. Evaluation is performed on held-out shape configurations, which
are not seen during training.

A.4 Toolbox Task

In the Toolbox task (see[12), the agent has to estimate the pose of a 24cm long wrench that is placed
in a uniformly random 2D position and orientation on a 30x30cm plate. Similarly to the previous two
tasks, the agent explores the scene using a simulated GelSight Mini sensor, providing a 32x32 tactile
image, while also receiving the 3D sensor position as input. Actions a; € [~1,1]? again correspond
to a maximum motion of 1.5cm per axis, and the sensor maintains a fixed 2mm indentation into the
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Figure 12: The simulated Toolbox task, which we use for evaluating our method. The objective of the Toolbox
task is to determine the 2D pose (2D position and orientation angle) of the object relative to the platform center.

In every step, the agent decides how to move the finger and predicts the 2D pose. The haptic glance is computed
via the Taxim [36] tactile simulator.

(a) (b) (©) (d)

Figure 13: Exploration strategy learned by our TAP-CrossQ agent. In the beginning (a), both sensor and
wrench start in uniformly random places on the platform. The agent guesses a central position of the wrench
(illustrated by the transparent wrench) to minimize error in the absence of any further information. To find the
object efficiently, the agent has learned a circular search pattern and therefore quickly locates the object (b).
However, the information it currently has is not enough, as the orientation of the wrench is not clear by just
touching the handle. Thus, it randomly guesses the wrong orientation, with the open jaw pointing left instead
of right. To gather information, it moves along the handle (c) until it finds the open jaw (d) and immediately
corrects the angle of it pose estimation.

gel on each touch. To simulate the object shifting around when being manipulated by the agent, we
apply Gaussian random noise to the position and orientation of the object throughout the episode.

The Toolbox task poses two challenges: finding the object and determining its exact position and
orientation. Once the object is found, determining its orientation is still not trivial, as many touch
locations only provide ambiguous data. Hence, as shown in Fig.[T3] even after the object is found, an
exploration strategy for determining its pose must be executed.

Each agent — TAP-SAC, TAP-CrossQ, and TAP-RND - is trained from scratch using 5 random
seeds for 10M steps. Similar to the Starstruck task, we reuse the hyperparameters optimized on
Tactile MNIST without modification to evaluate robustness across tasks.
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