Towards Understanding and Improving GFlowNet Training

Max W. Shen ' > Emmanuel Bengio >

Ehsan Hajiramezanali' Andreas Loukas ! ?

Kyunghyun Cho ' >4 Tommaso Biancalani !

Abstract

Generative flow networks (GFlowNets) are a fam-
ily of algorithms that learn a generative policy
to sample discrete objects x with non-negative
reward R(x). Learning objectives guarantee the
GFlowNet samples x from the target distribution
p*(x) o< R(z) when loss is globally minimized
over all states or trajectories, but it is unclear how
well they perform with practical limits on training
resources. We introduce an efficient evaluation
strategy to compare the learned sampling distri-
bution to the target reward distribution. As flows
can be underdetermined given training data, we
clarify the importance of learned flows to gen-
eralization and matching p*(x) in practice. We
investigate how to learn better flows, and propose
(i) prioritized replay training of high-reward =z,
(ii) relative edge flow policy parametrization, and
(iii) a novel guided trajectory balance objective,
and show how it can solve a substructure credit
assignment problem. We substantially improve
sample efficiency on biochemical design tasks.

1 Introduction

A Generative Flow Network (GFlowNet) learns a policy
for generating discrete objects x, such as graphs, strings,
or sets, by iteratively taking actions that add simple build-
ing blocks to partial objects (substructures) (Bengio et al.,
2021a;b). GFlowNets view the data-generating Markov de-
cision process (MDP) as a flow network, where “water”,
“unnormalized probability”, or non-negative reward R(x)
flows through the MDP, from the source node (a “null” ob-
ject), to intermediate nodes (partial objects), to sink nodes
(complete objects). GFlowNets can be seen as an amortized

'Genentech, South San Francisco, USA *Prescient Design,
Genentech, South San Francisco, USA 3Recursion Pharmaceuti-
cals, Salt Lake City, Utah “Department of Computer Science, New
York University, New York, USA. Correspondence to: Max W.
Shen <shen.max@gene.com>.

Proceedings of the 40" International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

alternative to local exploration methods (e.g., MCMC) that
can learn from data to potentially discover new, distant
with high R(z). They have been applied to active learn-
ing, biological sequence design, and various probabilistic
learning tasks (Bengio et al., 202 1a; Jain et al., 2022; Zhang
et al., 2022; Deleu et al., 2022).

GFlowNets aim to solve a challenging unnormalized density
estimation problem. Standard learning objectives guarantee
that the GFlowNet’s learned distribution over z matches
the target distribution p*(z) o< R(x) when training loss is
globally minimized over all states or trajectories, but many
practical domains of interest can have exponentially many
x and exponentially many trajectories per x, making this
infeasible with a practical amount of data and training time.

To gain insight into GFlowNet learning behavior under prac-
tical constraints, we design an efficient GFlowNet evaluation
scheme that precisely compares the learned sampling distri-
bution to the target reward distribution. We discover that a
primary challenge during GFlowNet training is learning to
reduce the probability assigned to low-reward x, and that
GFlowNets can continue to oversample low-reward x even
after extensive training time.

When the space of x is large, not all MDP states are seen
during training, and a GFlowNet’s ability to match the target
distribution depends on how it generalizes from the flow
it learned during training. GFlowNets were originally de-
signed for the setting where any given R(x) is compatible
with multiple flows (Bengio et al., 2021a) - that is, flows are
underdetermined. Despite this, learned flows have remained
understudied, with little to no sense of which learned flows
may be more desirable than others. Our analyses ground a
clear notion of optimality for learned flows: a flow is better
if it improves generalization to unseen states and helps a
GFlowNet match the target distribution better.

We analyze how existing training objectives learn flows, and
identify a credit assignment problem where the substruc-
tures of « most responsible for reward R(x) can be off the
sampling trajectory used to reach z, and under-credited by
popular training objectives. This is important for composi-
tional reward functions, where the value of R(x) is partially
determined by the substructures of x. We propose guided
trajectory balance, a novel learning objective that is the first

Towards Understanding and Improving GFlowNet Training

solution to this credit assignment problem.

This objective, alongside our proposals of prioritized re-
play training and relative edge flow parametrization, and
even user choice of data-generating MDPs, can change how
GFlowNets learn to distribute flow during training. In ex-
periments on biochemical design tasks, we demonstrate that
these changes in learned flows can significantly impact sam-
ple efficiency and convergence to the target distribution,
with up to 10x improvement. Our work deepens our un-
derstanding of the impact of learned flows on GFlowNet
behavior, and establishes an fundamental open question:
how can we induce GFlowNets to learn more optimal flows,
and thereby improve their ability to solve unnormalized
density estimation problems.

2 Preliminaries

A Generative Flow Network (GFlowNet) learns a genera-
tive policy for constructing an object by taking a sequence
of actions (see (Bengio et al., 2021b) for a more complete
description). This policy acts in a user-defined deterministic
Markov decision process (MDP) which must satisfy certain
constraints described below. The MDP has a state space
S, a set of legal actions A, for each state s, a determinis-
tic transition function S x A, — S, and reward function
R. GFlowNets view this MDP as a type of directed graph
called a flow network where states correspond to nodes and
the MDP transition function defines directed edges between
nodes. The children of a state are states reachable by out-
going edges, and parents are the sources of its incoming
edges. States with no outgoing edges are called terminal
states (sinks), and referred to as x € X'. GFlowNets require
the MDP to be defined by the user such that this graph is
acyclic, has exactly one state without incoming edges, g
called the initial state (source), and has R : X — Rxq.

A complete trajectory is a sequence of states 7 = (5o —
$1 = ... = 8y) starting from source sq to a sink s,, with
(st — si11) € As, for all t. We denote T as the set
of all complete trajectories. A trajectory flow is a non-
negative function F' : 7 — Ry describing the unnor-
malized probability flowing along each complete trajec-
tory 7 from the source to a sink. For any state s, the
state flow F'(s) = 3 ¢ cr.sery F(7) describes the total
amount of unnormalized probability flowing through state
s and, for any edge s — s/, the edge flow is F(s — §') =
Yo (reT (s—syery F(T). A trajectory flow F'(7) is Marko-
vian if there exist distributions P (+|s) over the children of
every non-terminal state s, and a constant Z, such that for
any complete trajectory 7, we have Pr(7) = F(7)/Z with
Pp(1=(s0 = s1 = ... = 8p)) =1[11—1 Pr(st|si—1).

This Pp(s¢t1]s:) is called a forward policy, which can
sample complete trajectories from F. We also consider

Pg(si—1|st), a backward policy. When F' is Markovian,

these policies relate to flows by: Pr(s’|s) = F(;g;/) , and
F(s—s'
Pp(s|s") = Ew(?/) :

Generative Flow Network. A GFlowNet is a learning algo-
rithm with parameters # comprising a model of a Markovian
flow Fjy, and an objective function (Bengio et al., 2021b).
The flow model can be uniquely determined by either:

* edge flows Fy(s — s’), which induces a forward policy
Pr(s'|s), or

e initial state flow Zy =
Pﬁ(3t+1\8t)’ or

Fy(so) and forward policy

o terminal state flows Fy(x) and backward policy
Pg(st_1|st) .

We call the GFlowNet’s learned sampling distribution py(z),
which is sampled by starting at s and iteratively sampling
Pf(s¢11]st) to reach a terminal state . Learning objec-
tives are designed to match py(x) to the rarget distribution,

p*(x) £ R(z)/ 35 R(@).

Trajectory balance objective (Malkin et al., 2022). This
objective uses a forward policy parameterization by learn-
ing Zy and a forward policy P, but also learns a back-
ward policy P% as a training artifact. Trajectory balance
is motivated by a detailed balancing condition, which is
satisfied for a flow F' with state flow function F(s) if
F(s)Pr(s'|s) = F(s")Pg(s|s’) for all edges s — s’. The
trajectory balance objective attempts to enforce detailed
balancing over a complete trajectory:

n 6 2

Ls(1) = | log Zs Hf‘fll PF§St|St71))]
R(@) [11y Pp(se-1ls)

(Malkin et al., 2022) showed that if a GFlowNet achieves
a global minima of this objective over trajectories from
a training policy with full support, then it samples from
the target distribution. When many trajectories can lead
to the same x, there can be many global optima for the
trajectory balance objective - flows are underdetermined.
However, for any fixed choice of Pp, there is a unique
global minima corresponding to a Pr that samples from
the target distribution (Bengio et al., 2021b). (Madan et al.,
2022) study an extension of trajectory balance that learns
from partial episodes.

Maximum entropy GFlowNets. (Zhang et al., 2022)

showed that when Pp is fixed as the uniform distribution,

the unique global minima of the trajectory balance objec-

tive is a Markovian flow F' with maximum flow entropy
n—1

HF] = Brpp 32020 HIPr([s0)].

Towards Understanding and Improving GFlowNet Training

Training. GFlowNets are trained with stochastic gradient
descent to optimize the learning objective on states or tra-
jectories sampled from a training policy, which is usually
chosen as a mixture of P% and a uniform action policy to en-
courage exploration during training. In RL terms, GFlowNet
training is off-policy. Importantly, GFlowNet training is a
bootstrapping process: the current policy is used to sample
new z at each training round. As R(z) is defined by the
user, it is computed on each new z, and this set {z, R(z)}
is used to update the GFlowNet policy. We define X as the
set of all « seen so far in training. It is initially empty and
expands with each training round.

3 Evaluating GFlowNets and underfitting

In prior work, GFlowNets have been evaluated in several
ways, typically focusing on their ability to discover novel
and diverse modes with high reward. However, their ability
to match the target distribution has been empirically studied
less thoroughly, especially on real-world data, despite this
ability’s central importance in the GFlowNet machinery.

Learning to match the target distribution is non-trivial. This
theoretically occurs when loss is globally minimized over
all states or trajectories. However, in high-dimensional
settings where | X'| is exponentially large, visiting each state
or trajectory even once is infeasible.

Evaluating GFlowNets can be challenging. In many MDPs
of interest, there are exponentially many trajectories per ,
which can make computing py(x) costly by requiring dy-
namic programming. And, |X| is often exponentially large,
making it infeasible to precisely characterize the target dis-
tribution. Several studies evaluate GFlowNets by spearman
correlation between log pg(x) and R(x) on held-out data
(Madan et al., 2022; Nica et al., 2022) , but this correlation
is 1.0 when log pg(x) = c¢R(x) for any constant ¢ > 0, even
though it is only when ¢ = 1 that the GFlowNet matches
the target distribution.

We design our benchmarks with biological data and rewards,
constrain them to have enumerable X', and use GFlowNet
samples for evaluation rather than computing py(x). This
enables an exact, precise, and efficient view of how well
GFlowNets match statistics of the target reward distribu-
tion. We study the Anderson-Darling statistic which com-
putes goodness-of-fit between GFlowNet samples of reward
and the target reward distribution, and also compare mean
GFlowNet reward from samples, [E,,, .,y [R(x)], to expected
target reward R(z)?/Z.

We remark that this evaluation scheme only compares to
the target reward distribution. Nevertheless, this scheme en-
ables us to report that a key challenge in GFlowNet training
is underfitting the target distribution, meaning that they sam-
ple low rewards with too high probability. We discuss under-

fitting here and propose improvements, and defer benchmark
details and experimental results to §7.

GFlowNets underfit target distributions during training.
In our experiments (see §7), mean GFlowNet sampling re-
ward E,, () [R(7)] initializes significantly below the target
mean reward, and very slowly reaches, or never reaches the
target mean reward, even over more than tens of thousands
of active training rounds. At initialization with random pa-
rameters, we reason that GFlowNet mean sampling rewards
is expected to be low, as P%(s:41]s;) has high entropy, so
pe(x) generally also has high entropy (though it depends on
the choice of MDP, see §A.1).

This is consistent with previous work, which has reported
linear regression slope of 0.58 between log py(x) and
log R(x) on a small molecule task (Bengio et al., 2021a)
after training completed, indicating oversampling of low-
reward x. To encourage discovery of high reward z, it
is common to train on rewards raised to a high exponent,
such as 3 to 10. For instance, 10x higher binding affinity
molecules can be more than 1000x rarer in X, reducing
their relative probability unless reward is taken as bind-
ing affinity raised to a power. This increases reward skew,
decreasing target distribution entropy and widens the gap
to high-entropy GFlowNet initializations. In prior work,
GFlowNets have failed to sufficiently increase sampled re-
wards when training on increasingly skewed rewards.

Remark 1. A primary practical challenge during GFlowNet
training is reducing their probability of sampling low-
reward x.

Our observations affect the practical use of GFlowNets.
GFlowNet training is conventionally stopped at convergence,
or when training resources are depleted, but our experi-
ments show that GFlowNets can converge below the target
mean, and fail to reach the target mean even after extensive
training time. It has not been common practice to monitor
the sampling mean reward nor to compare it to the target
mean, which is typically unknown. As a consequence, in
practice, many GFlowNets may oversample low-reward z,
unbeknowst to users.

This motivates us to understand the training behavior of
GFlowNets, and explore strategies that may assist them in
learning to sample high rewards with higher probability
more quickly. These strategies can help GFlowNets match
the target distribution more quickly.

Reward-prioritized replay training (PRT). We propose
prioritized replay training (PRT) that focuses on high reward
data, as a simple strategy for increasing sampled rewards.
At each training round, in addition to training on trajectories
sampled from the training policy, we form a replay batch
from X, all data seen so far, so that a% of the batch is
sampled from the top /3 percentile of R(x), and the rest of

Towards Understanding and Improving GFlowNet Training

the batch is sampled from the bottom 1 — 3 percentile. To
train on the replay batch of x, we sample trajectories for
them using Pg, then train on the trajectories.

Replay training is common in RL, where it can significantly
improve sample efficiency (Fedus et al., 2020). A simi-
lar strategy is error-prioritized experience replay (Schaul
et al., 2015), which preferentially samples replays with high
temporal-difference error. (Jain et al., 2022) propose replay
training with GFlowNets from a fixed initial dataset. In
contrast, our reward-prioritized replay training is motivated
by fixing the observation that GFlowNets can struggle with
oversampling low-reward x.

4 Flow Distribution and Generalization

We now turn to studying flow distribution, which is how a
GFlowNet chooses to flow “unnormalized probability” over
nodes and edges in the MDP graph. In this section, we
clarify how flow distribution is important for generalization
and efficiently matching the target distribution. As flows
are usually underdetermined, this clarification leads to the
question: how can GFlowNets learn better flows?

The first factor in flow distribution is the user’s choice of the
data-generating MDP. For any given data z, a user usually
enjoys ample choice among different MDPs. Strings can be
generated autoregressively, by starting from an empty string,
and iteratively appending characters. In this autoregressive
MDP, there is exactly one trajectory ending in any x, which
means there is only one flow compatible with R(z) over all
x. However, if the legal action set is expanded to prepending
and appending, then the resulting prepend/append MDP has
2F~1 trajectories ending in a string of length k, and there are
many flows over the MDP compatible with R(x). Finally,
note that graph-generating MDPs typically have more than
two attachment points, and even more trajectories per x.

The original motivation for the GFlowNet machinery, and
its primary novelty, are in MDPs with many trajectories per
z (Bengio et al., 2021a). It is in this setting that autore-
gressive or standard RL methods learn biased generative
probabilities, while GFlowNets do not. When trajectories
and x are one-to-one, GFlowNets reduce to a known method:
discrete-action soft Q-learning. As such, we focus on the
many-to-one setting, where flows are underdetermined given
R(z).

The role of generalization during training. When X is
high-dimensional and large, it is useful to conceptually di-
vide states, trajectories, and z into those seen in training so
far, and those not yet seen. The quality of a GFlowNet’s pol-
icy over X, in particular how closely pg(Zunseen) matches
P*(Tunseen), critically depends on how well a GFlowNet
generalizes from the data seen so far in training. As
GFlowNets train in a bootstrapping manner, improving gen-

eralization at any training step improves future training.
Finally, GFlowNets can only ever train on a tiny fraction of
X, so their final ability to match the target distribution also
depends on generalization.

ASs pg(Tynseen) depends on learned forward policy Pé or
equivalently on learned edge flows Fy(s — s’), we state:

Remark 2. Flow distribution matters for generalization,
which matters for matching the target distribution over X.
Moreover, flows are generally underspecified given data

{z, R(x)}.

This remark grounds a notion of the quality of a flow distri-
bution: a flow distribution is better if it helps a GFlowNet
generalize better.

Relative edge flow parametrization (SSR). Our clarifica-
tion of the role of generalization in matching the target dis-
tribution led us to investigate inductive biases in GFlowNet
parametrizations that could impact generalization behavior.
GFlowNets typically use a policy parametrization, where
PY(s) is a neural net mapping S — A, which we call “SA”.
If this policy learns that certain actions are favorable in a
state s, it can generalize to prefer the same actions in new
states similar to s, but this can sometimes be the wrong
generalization. This concept is related to optimal transport
regularization (Anonymous, 2023) to explicitly encourage
similar action policies in similar states.

We propose an alternative parametrization, where rel-
ative edge flows are parametrized by a neural net
fo : 8,8 — RT, which we call “SSR”. We de-
fine the probability of transitioning forward from s, s" as
fo(8,8")/ 2 ccconitaren(s) fo(s,¢). Intuitively, SSR can
“see” the child state, unlike SA. Conceptually, SSR can help
the GFlowNet generalize to favor taking different actions at
new states than actions seen in training, based on the child
state. We remark that relative edge flow parametrization is
less efficient and no more expressive than SA.

SSR is closely related to directly parametrizing state flows
F'(s) (for example, in the flow matching objective (Bengio
et al., 2021a)) which may help the GFlowNet generalize
from patterns of states with high and low flow to discover
new states associated with high reward. Related work also
includes (Madan et al., 2022) which parametrizes state flows
to learn from partial episodes, and hypothesizes a benefit
to state flow generalization, but their method does not use
learned state flows for decision-making.

S Compositionality and Credit Assignment

We have established that flow distribution is important for
generalization to unseen x, and matching the target distri-
bution over X. Flows are also generally underspecified
given data {x, R(z)}, and it is an open question of whether

Towards Understanding and Improving GFlowNet Training

GFlowNets prefer to learn certain flow distributions over
others. In this section, we continue by investigating how
GFlowNet learning objectives learn to distribute flow. In
particular, we establish this remark (see fig. 3 for intuition):

Remark 3. When there are many trajectories for each x, the
manner in which trajectory balance and maximum entropy
GFlowNets learn flows can inadequately credit substruc-
tures of x associated with high reward. Such substructures
can exist when the reward function is compositional.

‘We build up to this remark in pieces: first discussing compo-
sitional reward functions, the substructure credit assignment
problem, and finally studying TB and MaxEnt objectives.

Compositional reward functions. We have established
that generalization from seen R(X) to unseen z is impor-
tant for GFlowNets to match the target distribution when
X is large. However, it could be that R(x) has no learn-
able relationship with x - in such a case, generalization is
impossible, and no flow distribution is better than any other.

Thus, the core premise that GFlowNets have an advantage
over MCMC for unnormalized density estimation relies
on the assumption that generalization of R(x) is possible.
Compositional reward functions, where the value of R(z)
depends primarily on properties of subparts or substructures
of = and interactions among them (Andreas, 2019; Szabd,
2020), are an important example of such learnable R(x).

For example, important properties of small molecules are
often caused by the presence of molecular substructures,
such as benzene rings. These examples highlight that when
R(x) is compositional, substructures of = can be associated
with higher reward. We call these important substructures.

GFlowNets that generate discrete objects iteratively take
actions that combine simple building blocks, progressively
passing through states corresponding to “partial objects”
to generate complete objects . When R(z) is composi-
tional, GFlowNets that assign higher flow to internal MDP
states s corresponding to important substructures may gen-
eralize better by 1) increasing pg(Zunseen) for downstream
Tynseen that contain s, increasing the probability of sam-
pling Tyunseen associated with higher reward, and 2) en-
abling the GFlowNet to generalize from s and discover new
substructures Sunseen associated with high reward.

The substructure credit assignment problem. In rein-
forcement learning, the credit assignment problem concerns
determining how the success of a system’s overall perfor-
mance is due to the various contributions of the system’s
components (Minsky, 1961). A long trajectory of actions
is taken by a learning agent in an environment to receive a
final reward, and the agent must learn to assign credit to the
actions most responsible for the reward.

We argue that GFlowNets face an analogous challenge -

assigning flow, or credit, to important substructures most
responsible for R(z) - which we call the substructure credit
assignment problem. But in RL, credit assignment is limited
to actions taken in a specific trajectory arriving at reward.
However, for GFlowNets, in the typical case where there
are exponentially many trajectories ending in any x, the
substructures most responsible for R(x) are often not on the
training trajectory used to reach x.

Existing learning objectives inadequately address the sub-
structure credit assignment problem. Trajectory balance
(TB) and MaxEnt objectives take gradients steps to min-
imize loss on the generative trajectory, from the training
policy, used to reach z, which usually does not contain im-
portant substructures. Furthermore, TB underspecifies flow:
many different flows all globally minimize loss, and there
is no discernible inductive bias favoring any particular flow
distribution. MaxEnt fixes Pg as the uniform distribution,
achieving a unique credit assignment solution, but one that
diffuses credit for R(z) as widely as possible, assigning
minimal credit to important substructures.

Prior objectives under-credit important substructures.
To formalize intuitions, we study the behavior of TB and
MaxEnt in a simplified yet representative framework. We
adopt the tabular model setting used to study algorithms in
RL (Sutton & Barto, 2018), and consider a simple MDP
with relevant properties. Due to space constraints, we pro-
vide informal summaries here, and complete statements and
proofs in the appendix.

Definition 5.1 (Sequence prepend/append MDP setting).
In this MDP, s is the empty string, states are strings, and
actions are prepending or appending a symbol in an alphabet
A. This MDP generates strings of length n. There is a
fixed dataset {x, 2’} with R(z) = R(z’). Denote s* as the
important substructure, defined as longest substring shared
by z,2’, with length k. Denote si(x) the set of k-length
substrings of x.

Remark 4. In this MDP, there are 2"~ trajectories end-
ing in any z, and each passes through exactly one string
of length k, which is either s*, or any other string in the
set {sk(x) \ s*} where \ denotes set subtraction. We
study the flow F'(s*) passing through s*, and the sum of
flows passing through {sx () \ s*}, using F(sy(z) \ s*) =
Dsefortansy F8) -

Proposition 5.2 (MaxEnt assigns minimal credit to impor-
tant substructures). In setting (.3, suppose the GFlowNet is
trained with the maximum entropy learning objective. Then,
at the global minima,

E

) _
F(sk(x)\s*)] Cn—k @

with expectation over random positions of s* in x, x’.

Towards Understanding and Improving GFlowNet Training

This proposition states that, for many values of n, k of prac-
tical interest, MaxEnt assigns a low minority of flow to s*,
and prefers to sample trajectories through non-important
substructures with high probability.

To reason about trajectory balance in setting , We con-
fine it to tabular trajectory flow updates, and ensure equal
training steps on x, ’.

Definition 5.3 (Tabular, fixed-data TB). Suppose that all
tabular trajectory flows F'(7) = e at initialization, such
that F'(z) < R(z) for =,z at initialization. We take m /2
training steps on each of x, z’, sampling a trajectory 7_,,

ending in that x with probability proportional to current
F(1_,), then update F(7_,) < F(7..) + AMR(x) — €).

Proposition 5.4 (TB tends to reduce credit to important
substructures). Suppose setting and TB training
Let t index training steps. At any training step t, if
Fi_1(s*) < (n— k) Egus, (o)\s+ [Fi—1(5)] holds (with ex-
pectation under a uniform distribution), then the expected
trajectory flow update over training trajectories T has:

E [Ft(s*)] CF_i(s) <

E [F(sn(@) \57)] = Fioalse(@) \ 7).

TB learning updates prefer to increase flow through non-
important substructures at the expense of s*, except in the
rare situation where F'(s*) is significantly larger, by a factor
of (n — k), than the average flow through competing non-
important substructures. In §C.7, we interpret TB as a Pélya
urn process where “rich gets richer”: trajectories with high
flow are sampled more in training, further increasing flow.

In summary, TB and MaxEnt inadequately address the sub-
structure credit assignment problem, and likely do not learn
to distribute flow optimally.

6 Guided Trajectory Balance

We introduce a novel learning objective called guided tra-
Jectory balance that enables flexible control over credit as-
signment and flow distribution. We propose a specific guide
that solves the substructure credit assignment problem.

In general, suppose that for some = and R(z), we would
like to assign credit (i.e., flow) for R(x) preferentially along
some trajectories. We express this preference over trajecto-
ries ending in z with a guide distribution p(1_,,).

We emphasize that the guide p(7_,,) does not have to be
fixed, and does not have to be Markovian with respect to the
MDP. A particularly powerful approach is defining guides
using X, the set of all = collected so far during training,
which we demonstrate in a following section. The resulting

guide p(7_,|X) changes with each new active round during
training, as X grows.

To formulate a valid and general GFlowNet learning objec-
tive, we propose a guided trajectory balance constraint for
a trajectory 7_,,, ending in z. Theorem shows that if a
GFlowNet satisfies this constraint at all z and all trajectories,
then it samples from the target distribution, which achieves
the same asymptotic guarantees as prior GFlowNet learning
objectives.

Theorem 6.1 (Guided trajectory balance constraint). Sup-
pose that for any x, and any trajectory T_,, = (So — s1 —
. = 8p =) ending in x, the guided trajectory balance
constraint (3) holds.

Z [[Pr(silsi-1) = p(rz) R(x) 3)

t=1

Then Pr samples x with probability R(x)/Z.

Proof. Use [[,—; Pr(st|st—1) = Pr(7—), then sum over
all trajectories ending in x to get Z Pr(x) = R(x). O

In general, however, the guide distribution may not be
Markovian, and constraint 3 cannot be satisfied everywhere
by standard GFlowNets with Markovian flow. We solve this
with a two-phase optimization approach. Note how guided
trajectory balance (3) relates to trajectory balance (1), in
that p(7_,,,) plays the role of Pg. We propose to first train
Pg to match p(7_,,), using:

" P N2
‘Cback*GTB(T—np) E (10g Ht_lp(f(St)LSt 1)) (4)

which learns a Pp that acts as a Markov approximation to
p(7—z). Once converged, we freeze Pg, then learn Pr with
fixed Pp using trajectory balance, which recovers a proper
GFlowNet learning objective: by the uniqueness property
((Bengio et al., 2021b), Corollary 1), for any fixed Marko-
vian Pp, there is a unique global minima to the trajectory
balance loss which corresponds to a Markovian Pr that
samples from the target distribution.

Training considerations. Training trajectories can be sam-
pled from the training policy. Alternatively, x can be sam-
pled from the training policy, and a training trajectory 7_,,
can be resampled from the guide.

In practice, a useful Pr can be learned faster by alternating
updates to Pp and Pr. Pp may also train on a target that
mixes the current P and guide p(7_,,) with weight a €
[0, 1]:

Towards Understanding and Improving GFlowNet Training

EforwardfGTB(T) = (wf - wb)Q (5)

e 2log Zg+ Y log Pp(selsi—1) (6)

t=1

Yy, £ log R(z) + alog p(T_2) @)
+ (1= a) (Y log Ph(silsi))
t=1

Substructure guide. We propose a particular guide suited
for compositional reward functions, used to train substruc-
ture GFlowNets. This guide finds important substructures
by looking at parts of = associated with high reward over all
of X seen so far in training, and guides credit assignment
towards these empirically important substructures.

We say that a state s is a substructure of x, or s € z, if there
is a directed path in the MDP from s to 2. A motivating
insight is that for many compositional objects, € is efficient
to compute (subset function for sets, substring function
for strings). For graphs, € corresponds to the NP-complete
graph isomorphism problem, but this is fast in practice when
many node or edge features are distinct. Furthermore, €
can always be computed by breadth-first search in the MDP
DAG, which bounds its time complexity to O(V + E).

Our guide defines p(7_,,|X) = [/ p(st11]s6, 2, X),
where state transition probabilities are:

¢(St+1|xv X)
s’€children(syt) ¢(S,|$, X))

p(St+1|5t,$,X) = Z (8)

with score function ¢(s|x, X) that favors children that are
substructures of z with high average reward:

E R(2'), ifseux
¢(S|ZL‘7X) — {z’eX:sex} (9)

0 otherwise.

For ease of presentation, this description ignores corner
cases. We provide a complete description in §A.2. In prac-
tice, parallelization and an efficiency trick reduce added
overhead to negligible amounts (see §A.2).

Substructure GFlowNets credit important shared sub-
structures. In setting , we showed that MaxEnt and
TB objectives inadequately credit the important shared sub-
structure, s*. In contrast, substructure GFlowNets assign
maximal credit to s* (Proposition C.9), demonstrating that
substructure-guided trajectory balance helps to solve the
substructure credit assignment problem.

7 Experiments

To precisely and efficiently evaluate how well GFlowNets
match the target reward distribution, we design benchmarks
with enumerable X, and use GFlowNet sampled rewards for
evaluation. The Anderson-Darling (AD) statistic, a statisti-
cal metric of goodness-of-fit between samples and a target
distribution, is strongly correlated with error between mean
of the samples and the target mean in our experiments (me-
dian R? = 0.87, §B, Fig.), and the AD statistic is near
zero (indicating no significant difference) when the mean’s
error is near zero. As a result, we report error against the
mean for ease of interpretation. In table |, we report relative
error of the mean at convergence, or number of training
rounds required to first reach the target mean. In figure 1,
we depict training curves for the same runs in table 1. We
report mean =+ standard error in table | and figure | using
three replicates.

In five tasks, we report results from baselines TB and Max-
Ent, and compare to the effects of our three proposed train-
ing modifications: prioritized replay training (PRT), rela-
tive edge flow policy parametrization mapping S x S — R
(SSR), and substructure guided trajectory balance (Sub).
‘We used the ablation series of TB, TB+PRT, TB+PRT+SSR,
and Sub+PRT+SSR to compare the individual effects of
adding PRT, SSR, and substructure guidance respectively.
We change the minimal number of hyperparameters and
training details necessary to add each proposal (see §B for
full experimental details).

Tasks.

Bag. (|X'| ~ 100B) A multiset of size 13, with 7 distinct
elements. The base reward is 0.01. A bag has a “substruc-
ture” if it contains 7 or more repeats of any letter: then it
has reward 10 with 75% chance, and 30 otherwise. In this
MDP, actions are adding an element to a bag.

SIX6 (TFBind8). (|X'| = 65,536) A string of length 8 of
nucleotides. The reward is wet-lab measured DNA binding
activity to a human transcription factor, SIX6, from (LA
et al., 2016; Trabucco et al., 2022). Following (Jain et al.,
2022), we use a reward exponent of 3. Though an autore-
gressive MDP is conventionally used for strings, in order
to compare TB with substructure guidance which is only
meaningful in generative MDPs with more than one trajec-
tory per x, we use a sequence prepend/append MDP. We
compare to an autoregressive MDP in a following section.

PHO4. (|X| =1,048,576) 10 nucleotide string, with wet-
lab measured DNA binding activity to yeast transcription
factor PHO4 (LA et al., 2016; Trabucco et al., 2022).

QM. (|X| = 58,765) A small molecule graph. Reward is
from a proxy deep neural network predicting the HOMO-
LUMO gap from density functional theory. We build using

Towards Understanding and Improving GFlowNet Training

12 building blocks with 2 stems, and generate with 5 blocks
per molecule.

sEH. (|X| = 34,012,224) A small molecule graph. Re-
ward is from a proxy model trained to predict binding affin-
ity to soluble epoxide hydrolase from AutoDock. We build
using 18 blocks with 2 stems, and use 6 blocks per molecule.

Results.

PRT, SSR, and Sub improve GFlowNet training. In Table
, we observe that across all 5 experimental settings, the best
model includes at least one of our proposals PRT, SSR, and
substructure guidance. The best model matches the target
mean in the shortest number of rounds - in the case of sEH,
9-fold faster than TB - or achieves the highest mean when
all models underfit the target distribution. We discuss the
individual effects of each proposal in following sections.

Baselines and GFlowNets can struggle with underfit-
ting. Our benchmark results show that within a reasonable
amount of training time, TB converges to policies that under-
sample the target mean and place too much weight on low
rewards in two out of five environments. This is particularly
notable in SIX6 where over 50,000 training rounds TB sam-
pled 800,000 data points (batch size of 16 per round), a rela-
tive ratio over 12x over the state space size | X| = 65, 536.
This convergence under the mean despite significantly over-
sampling the state space size shows the difficulty of finding
a global minima over all states and trajectories in practice,
and may signal challenges in GFlowNets training in larger
state spaces. Underfitting also varied by environment: all
models struggled in PHO4 in particular.

TB and MaxEnt are often similar. MaxEnt has a unique
global optima from Pp distributing flow uniformly, while
TB could in principle learn different flows with lower en-
tropy Pp. Prior work has not yielded much insight into the
similarities and differences between MaxEnt and TB. In our
experiments, we empirically observe that the training curves
of MaxEnt and TB are similar, and generally have worse
sample efficiency and convergence than our proposals.

Prioritized replay training improves sample efficiency.
Prioritized replay training (PRT) improves on baselines. It
achieves the highest performance in PHO4 out of all models,
and reduces the number of rounds to match the target mean
in sSEH by 3-fold, from 45840 to 19390. In environments
bag and SIX6, prioritized replay training does not improve

the final converged GFlowNet (Table 1), but noticeably
improves the sample efficiency of improving mean error in
learning curves (compare green vs. blue, Fig. 1).

Effect of relative edge flow parametrization. Relative
edge flow parametrization (SSR) further improves training
by a significant amount (compare red vs. green, Fig. 1), and
in particular noticeably shifts the learning curve in SIX6 by
a factor up to 3. In Bag and sEH, SSR improves the time
to match the target mean by 2-fold. These experiments show
that SSR can meaningfully change the training behavior of
GFlowNets, and improve them substantially on some tasks.
Further work may continue to investigate SSR and develop
further improved parametrizations.

Effect of substructure guidance. Substructure guidance
has the biggest effect in SIX6 and sEH, where it enables the
only model able to match the target mean in SIX6, and im-
proves sample efficiency in matching the target mean by 2x
in SEH (Table 1). Overall, these results confirm that differ-
ent credit assignment preferences can significantly impact
GFlowNet training, convergence, and sample efficiency.

The benefit of our proposed substructure guide can depend
on how compositional R(z) is. Further, failures of the sub-
structure guide to improve training may be due to overfitting.

Autoregressive MDP. In general, users can have many
choices in designing generative MDPs. TFBind8 is a string-
generation environment, for which autoregressive or append-
only MDPs have commonly been used for GFlowNet train-
ing. We trained a GFlowNet using an autoregressive MDP,
and find final converged mean at 97.3% after 50,000 training
rounds with a TB baseline. Note that in an autoregressive
MDP, standard TB is equivalent to MaxEnt and substruc-
ture guidance has no effect, as there is only one trajectory
per z. Adding PRT and PRT+SSR do not impact the final
GFlowNet policy, achieving 96.9% and 96.6% respectively,
but significantly improve sample efficiency, reaching their
best policies by rounds 8000 and 3500 respectively, which
is a 6-fold and 14-fold improvement (Fig. 2).

Can it be beneficial to use an MDP with more trajectories
per x? For SIX6, we show the answer is that it can be. Using
a prepend/append MDP alongside substructure guidance,
PRT, and SSR is the only combination in our experiments
that managed to match the target mean in SIX6 (Table 1).
This result shows that favoring autoregressive MDPs may
not always be best, as their constraints on building order can

Table 1. Converged learned mean vs. target mean (100% is best), or num. active rounds to match target mean (J,)

METHOD | BAG SIX6 PHO4 QM9 SEH

TB 100% (13820 &+ 1740) 98.0% + 0.2% 78.3% + 0.3% 100% (8405 &+ 185) 100% (45840 £ 500)
MAXENT 100% (13775 £2275) 96.8% +0.7% 77.7% + 0.2% 100% (8735 £ 775) 100% (42670 £ 190)
TB + PRT 100% (20575 4 2355) 97.3% £ 0.2% 80.2% £0.3% 100% (4735 +£765) 100% (19390 £ 2570)

TB + PRT + SSR
SUB + PRT + SSR

100% (8880 & 1795)
100% (7440 £ 1310)

97.2% £+ 0.2%
100% (4560 + 1730)

79.6% + 0.4%
73% £ 0.5%

100% (5630 £ 650)
98.5% £+ 1.0%

100% (9920 =+ 4880)
100% (5570 £ 290)

Towards Understanding and Improving GFlowNet Training

SIX6 training curves

100% -

c
©
3
£
5 80% 4 Name
g — T8
@ MaxEnt
2 60% —— TB+PRT
% —— TB+PRT+SSR
4 —— Sub+PRT+SSR
40% +-r T T
102 103 10*
Training rounds (up to 50000)
100% Bag training curves
b A
f =
3 80% A
£
S 60%
e
@ 40% A
G)
2
S 20% /
g ,/
0% -
102 103 104
Training rounds (up to 50000)
100% sEH training curves
b 1 —
c /
©
g 80%
-
o
S 60%
£
[}
£ 20%
=1
©
ko]
C20% A
102 103 10*
Training rounds
100.0% PHO4 training curves
. 0
c
© 90.0%-
5
< 80.0%
g
o 70.0%-
2
©
T 60.0%
o
102 103 104
Training rounds
100% QMS9 training curves
b
c
3 90% A
£
-
S 80% Name
g — TB
Y 70% MaxEnt
< —— TB+PRT
% 60% —— TB+PRT+SSR
< —— Sub+PRT+SSR
50% vy T T
102 103 10*

Training rounds
Figure 1. Training curves. Generally, baselines (orange/blue) in-
crease reward most slowly, and converge later or to lower values,
than our proposals (green/red/purple). This effect is seen most
clearly in Six6, Bag, and sEH, and less clearly in PHO4 and QM9.

limit which z can be built from certain substructures.

100%

f=4
S 90%
£
‘5 80% A
5
S 70% Name
o — TB
5 60% —— TB+PRT
° 50% - —— TB+PRT+SSR
4
102 103 104

Training rounds

Figure 2. SIX6, autoregressive MDP. TB baseline (blue) is outper-
formed with PRT and SSR.

Mode discovery and diversity. We confirm that improved
sample efficiency and sampling higher reward = with higher
frequency also improves mode discovery, while retaining
diversity. In sEH, the TB baseline discovered 140 modes
by active round 10,000, while Sub+PRT+SSR discovered
867 modes (6 x more). The Tanimoto diversity (1 is better)
among the top 100 reward-ranked samples was (.55, slightly
better than 0.517 for the TB baseline. This result is consis-
tent with other experiments, where we found that training
strategy had no significant impact on sample diversity.

8 Discussion

In this work, we have identified challenges with GFlowNet
training to learn to match the target distribution in a reason-
able number of training steps, and contributed a conceptual
understanding of GFlowNet training in terms of generaliza-
tion, flow distribution, and credit assignment. We evaluated
three proposals for improving GFlowNet training: priori-
tized replay training, relative edge flow parametrization, and
substructure-guided trajectory balance.

We discussed challenges in GFlowNet evaluation, and stud-
ied GFlowNet learning behavior on benchmark tasks with
biochemical data using the Anderson-Darling statistic be-
tween GFlowNet sampled rewards and the target reward
distribution, and the difference in sampled mean to target
mean. We learned that a key challenge in GFlowNet train-
ing is learning to not undersample the mean. However, by
evaluating with sampled rewards, we sacrificed exactness
for efficiency. While matching the target mean is better than
undersampling it, the target mean can be matched while
po(x) # p*(x) for all z. In future work, more insights into
GFlowNet learning behavior may be uncovered by more
thoroughly comparing py(z) to p*(x) on enumerable MDPs
with real-world reward functions.

We have shown that altering flow distributions can signif-
icantly change generalization and training behavior, and
developed a novel training objective that enables flexible
control over credit assignment. While we have defined one
notion of optimality of flow distribution based on general-
ization and convergence, it remains an open question how
best to learn favorable flow distributions.

Towards Understanding and Improving GFlowNet Training

References

Andreas, J. Measuring compositionality in representa-
tion learning. In None (ed.), International Confer-
ence on Learning Representations, 2019. URL https:
//openreview.net/forum?id=HJz0500gK7.

Anonymous. Improving generative flow networks with
path regularization. In Submitted to The Eleventh In-
ternational Conference on Learning Representations,
2023. URL https://openreview.net/forum?
id=7gyLeRmle3. under review.

Bengio, E., Jain, M., Korablyov, M., Precup, D., and Ben-
gio, Y. Flow network based generative models for non-
iterative diverse candidate generation. In Beygelzimer,
A., Dauphin, Y., Liang, P., and Vaughan, J. W. (eds.),
Advances in Neural Information Processing Systems,
2021a. URL https://openreview.net/forum?
id=Arn2E4IRJEB.

Bengio, Y., Deleu, T., Hu, E. J., Lahlou, S., Tiwari,
M., and Bengio, E. Gflownet foundations. CoRR,
abs/2111.09266, 2021b. URL https://arxiv.org/
abs/2111.09266.

Deleu, T., Géis, A., Emezue, C., Rankawat, M., Lacoste-
Julien, S., Bauer, S., and Bengio, Y. Bayesian struc-
ture learning with generative flow networks. arXiv,
abs/2202.13903, 2022. URL https://arxiv.org/
abs/2202.13903.

Fedus, W., Ramachandran, P., Agarwal, R., Bengio, Y.,
Larochelle, H., Rowland, M., and Dabney, W. Revisiting
fundamentals of experience replay. In III, H. D. and Singh,
A. (eds.), Proceedings of the 37th International Confer-
ence on Machine Learning, volume 119 of Proceedings
of Machine Learning Research, pp. 3061-3071. PMLR,

13-18Jul 2020. URL https://proceedings.mlr.

press/v119/fedus20a.html.

Jain, M., Bengio, E., Garcia, A.-H., Rector-Brooks, J.,
Dossou, B. F. P, Ekbote, C., Fu, J., Zhang, T., Kil-
gour, M., Zhang, D., Simine, L., Das, P., and Bengio,
Y. Biological sequence design with gflownets. arXiv,
abs/2203.04115, 2022. URL https://arxiv.org/
abs/2203.04115.

LA, B, A, V, IV, K, IM, R, SS, G, EJ, R,, J, W,,
L, M, KH, K, S, I, T, S, L, S, R, G, N, S, C,
C, T H,S, Y, MK, MJ], D, M, V, DE, H., and
ML., B. Survey of variation in human transcription
factors reveals prevalent dna binding changes. Science,
March 2016. URL http://web.media.mit.edu/
~minsky/papers/steps.html.

Madan, K., Rector-Brooks, J., Korablyov, M., Bengio, E.,
Jain, M., Nica, A., Bosc, T., Bengio, Y., and Malkin,

10

N. Learning gflownets from partial episodes for im-
proved convergence and stability, 2022. URL https:
//arxiv.org/abs/2209.12782.

Malkin, N., Jain, M., Bengio, E., Sun, C., and Bengio,
Y. Trajectory balance: Improved credit assignment in
gflownets. In Advances in Neural Information Processing
Systems, volume abs/2201.13259, 2022. URL https:
//arxiv.org/abs/2201.13259.

Minsky, M. Steps toward artificial intelligence. Proc.
IRE, January 1961. URL http://web.media.mit.
edu/~minsky/papers/steps.html.

Nica, A. C., Jain, M., Bengio, E., Liu, C.-H., Korablyov, M.,
Bronstein, M. M., and Bengio, Y. Evaluating generaliza-
tion in GFlownets for molecule design. In ICLR2022 Ma-
chine Learning for Drug Discovery, 2022. URL https:
//openreview.net/forum?id=JFSaHKNZ35b.

Schaul, T., Quan, J., Antonoglou, 1., and Silver, D. Priori-
tized experience replay, 2015. URL https://arxiv.
org/abs/1511.05952.

Sutton, R. S. and Barto, A. G. Reinforcement Learn-
ing: An Introduction. The MIT Press, second edition,
2018. URL http://incompleteideas.net/
book/the-book-2nd.html.

Szabd, Z. G. Compositionality. In Zalta, E. N. (ed.), The
Stanford Encyclopedia of Philosophy. Metaphysics Re-
search Lab, Stanford University, fall 2020 edition, 2020.

Trabucco, B., Geng, X., Kumar, A., and Levine, S. Design-
bench: Benchmarks for data-driven offline model-based
optimization, 2022. URL https://arxiv.org/
abs/2202.08450.

Zhang, D., Malkin, N., Liu, Z., Volokhova, A., Courville,
A., and Bengio, Y. Generative flow networks for discrete
probabilistic modeling. arXiv, abs/2202.01361, 2022.
URL https://arxiv.org/abs/2202.01361.

https://openreview.net/forum?id=HJz05o0qK7
https://openreview.net/forum?id=HJz05o0qK7
https://openreview.net/forum?id=7qyLeRm1e3
https://openreview.net/forum?id=7qyLeRm1e3
https://openreview.net/forum?id=Arn2E4IRjEB
https://openreview.net/forum?id=Arn2E4IRjEB
https://arxiv.org/abs/2111.09266
https://arxiv.org/abs/2111.09266
https://arxiv.org/abs/2202.13903
https://arxiv.org/abs/2202.13903
https://proceedings.mlr.press/v119/fedus20a.html
https://proceedings.mlr.press/v119/fedus20a.html
https://arxiv.org/abs/2203.04115
https://arxiv.org/abs/2203.04115
http://web.media.mit.edu/~minsky/papers/steps.html
http://web.media.mit.edu/~minsky/papers/steps.html
https://arxiv.org/abs/2209.12782
https://arxiv.org/abs/2209.12782
https://arxiv.org/abs/2201.13259
https://arxiv.org/abs/2201.13259
http://web.media.mit.edu/~minsky/papers/steps.html
http://web.media.mit.edu/~minsky/papers/steps.html
https://openreview.net/forum?id=JFSaHKNZ35b
https://openreview.net/forum?id=JFSaHKNZ35b
https://arxiv.org/abs/1511.05952
https://arxiv.org/abs/1511.05952
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
https://arxiv.org/abs/2202.08450
https://arxiv.org/abs/2202.08450
https://arxiv.org/abs/2202.01361

Towards Understanding and Improving GFlowNet Training

A Appendix: Notes

A.1 Oversampling low-reward z at initialization Using default PyTorch neural network initializations, we find that
Pr(st41|st) outputting real numbers taken as logits has close to a uniform distribution. We can understand this with a
simple model: suppose Pr is exactly a uniform distribution, all states have exactly the same number of actions A, and all
trajectories have the same length n: then the probability of any trajectory is 1/A™. It is difficult to precisely characterize the
entropy of pg(z) at random neural net initialization because it depends on how many trajectories end in each x in the MDP;
denote this NV,. We can extend the above simple model to find that at initialization, the flow ending in x is proportional
to N, /A™. Thus py(x) has highest entropy and is the uniform distribution when N, is identical for all z. However, if N,
varies substantially, then py(z) will have lower entropy.

However, we note that the common practice of using high reward exponents (from 3 to 10) typically induces a very low
entropy reward distribution, which can make it very unlikely in practice that at initialization, a GFlowNet’s sampled mean is
higher than the target mean.

A.2 Substructure Guide. Our substructure guide uses a scoring function to favor children states s that are a member of
x in X with high reward.

In equation 9, we presented a simplified scoring function for presentation purposes. The exact scoring function is:

E R(x), ifs € Trarger
¢(S|xtarget, X) —) {zeX\{@targec }:5€2} w0
0, otherwise,

In words: the score ¢ scores a state s, given target T+ ,rqor and X, the set of all observed « so far in training. If the state s is
not in (€) the target x, then the score is 0 (bottom line). If the state s is in the target (the state s is a substructure of the target
x), then the score is the average reward over the subset of « in X, where for each x in that subset, s is a substructure of that
x. This subset excludes the target: we only care about other x in X that contains s.

When this scoring function is used to build a guide distribution over trajectories ending in ' . rge¢ , it prefers trajectories
along paths that include substructures/states s that are substructures of high-reward x, other than . get .

The main difference with the simplified equation 9 is that here, we exclude the target = from the collection X . This focuses
on substructures that are shared with other z.

One corner case is when no child states are members of any x in X except for the target z: then the score for all children is
zero. In this case, we set p(s¢+1|s¢) to the uniform distribution over children s that are members of the target 2. We refer
readers to the code for a very precise description of the algorithm.

Implementation details. We parallelize guide computation on CPUs, and observe no significant overhead on GPU model
training, at the cost of using slightly out-of-date X. We sample guide trajectories efficiently by progressively filtering X as
the sampled trajectory lengthens: note that if a state s is not in some z, then any descendant of s cannot be in x.

A.3 Additional figures.

11

Towards Understanding and Improving GFlowNet Training

[empty graph]

add nodes one-by-one Other target-binding molecules

NNy Caffeine Theobromine

\‘/ Istradefylline

; Nz FDA-approved drug
possible N X :
generative 7)” for Parkinson’s
ordering oy o N
HO OH

R(x): Receptor binding activity

Figure 3. Intuition figure. (Left) Multiple trajectories lead to the same x. An example possible generative ordering (red) disagrees with the
preferred credit assignment path (green), which contains a molecular substructure that causes receptor binding activity, a fact that could be
learned by a substructure GFlowNet by looking at other molecules (right).

B Appendix: Experimental Details
Our code is available at https://github.com/maxwshen/gflownet.

Implementation details. We found it useful to clip gradient norms to a maximum of 10.0. We also clipped policy logit
predictions to a minimum of -50.0 and a maximum of 50.0. We initialized log Zy to 5.0, which is less than the true
Z =Y. R(x) in every environment. In our experiments, every active training round we sampled a batch of 16 x using
the current training policy, and updated the model using the sample batch, then optionally performed one replay training
update. For monitoring, every 10 active rounds we sampled 128 x from the GFlowNet policy (not the training policy). To
evaluate the model at a certain round while reducing sample noise, we aggregate over all true policy samples from the last
500 rounds, for an effective sample size of 6400.

There are several design choices for substructure gflownets. One can sample training trajectories from the training policy, or
sample x from the training policy and resample a training trajectory using the guide distribution. We found that the former
worked better in practice, though it can increase loss and gradient norm variance, which bounding gradient norm helped
with. The mixing weight, «, in equation 5 is another choice. We found that & = 1 was generally preferred, which eliminates
the Pp term and focuses solely on the guide likelihood term.

For prioritized replay training, we focus on the top 10% ranked by reward and randomly sample among them to be 50% of
the batch, with the bottom 90% ranked comprising the remainder of the batch.

Bag. (|X'| ~ 100B) A multiset of size 13, with 7 distinct elements. The base reward is 0.01. A bag has a “substructure” if it
contains 7 or more repeats of any letter: then it has reward 10 with 75% chance, and 30 otherwise. In this MDP, actions are
adding an element to a bag. As this is a constructed setting, we use a small neural net policy with two layers of 16 hidden
units. We use an exploration epsilon of 0.10.

SIX6 (TFBind8). (|X'| = 65,536) A string of length 8 of nucleotides. The reward is wet-lab measured DNA binding
activity to a human transcription factor, SIX6, from (LA et al., 2016; Trabucco et al., 2022). Following (Jain et al., 2022),
we use a reward exponent of 3. Though an autoregressive MDP is conventionally used for strings, in order to compare TB
with substructure guidance which is only meaningful in generative MDPs with more than one trajectory per x, we use a
sequence prepend/append MDP. We use a neural net with two layers of 128 hidden units and an exploration epsilon of 0.01.

PHO4. (|X| = 1,048, 576) 10 nucleotide string, with wet-lab measured DNA binding activity to yeast transcription factor
PHO4 (LA et al., 2016; Trabucco et al., 2022). We use a reward exponent of 3, and scale rewards to a maximum of 10. We
use a neural net with three layers of 512 hidden units and an exploration epsilon of 0.01.

12

https://github.com/maxwshen/gflownet

Towards Understanding and Improving GFlowNet Training

QM. (JX| = 58, 765) A small molecule graph. Reward is from a proxy deep neural network predicting the HOMO-LUMO
gap from density functional theory. We use a reward exponent of 5, and scale rewards to a maximum of 100. We build using
12 building blocks with 2 stems, and generate with 5 blocks per molecule. As all the blocks have two stems, we treat the
MDP as a sequence prepend/append MDP. In general, the stem locations on the graph blocks are not symmetric, so reward
is not invariant to string reversal. We use a neural net with two layers of 1024 hidden units and an exploration epsilon of
0.10. We measure diversity using 1 - Tanimoto similarity.

sEH. (|]X| = 34,012, 224) A small molecule graph. Reward is from a proxy model trained to predict binding affinity to
soluble epoxide hydrolase from AutoDock. Specifically, we trained a gradient boosted regressor on the graph neural network
predictions from the proxy model provided by (Bengio et al., 2021a) over the entire space of X', with the goal of memorizing
the model. Our proxy achieved a mean-squared error of 0.375, and pearson correlation of 0.905. We use a reward exponent
of 6, which is less than 10 used in prior work, and scale rewards to a maximum of 10. We build using 18 blocks with 2
stems, and use 6 blocks per molecule. As all the blocks have two stems, we treat the MDP as a sequence prepend/append
MDP. In general, the stem locations on the graph blocks are not symmetric, so reward is not invariant to string reversal. We
use a neural net with two layers of 1024 hidden units and an exploration epsilon of 0.05. We define modes as the top 0.5%
of X as ranked by R(x). We measure diversity using 1 - Tanimoto similarity.

B.1Anderson-Darling statistic. In figure B.1, we depict the relationship between the Anderson-Darling statistic between
GFlowNet samples and the target distribution, and the relative error between the GFlowNet sampled mean and the target
mean.

Anderson-Darling statistic is
strongly correlated with relative error in mean

04 &
:.f
i
0.2 g
0.0 1
021 %,
b

-04{ * ‘%n
06 %ﬁ%@&
] %%

ﬂﬁ%‘““'u,.

Relative error
[Sampled mean - target mean) [target mean

-1.0 { . .

0 200 400 600 800
Anderson-Darling statistic

13

Towards Understanding and Improving GFlowNet Training

C Appendix: Proofs

In this section, we study the credit attribution behavior of various GFlowNet learning objectives in a simplified yet
representative setting.

C.0.1 DEFINITIONS

Definition C.1. (Sequence prepend/append MDP). A sequence prepend/append MDP is an MDP where s is the empty
string, states correspond to strings, and actions are prepending or appending a symbol in some discrete alphabet A to a
string. We consider this MDP to only generate strings = of length n, i.e., the exit action only occurs at states corresponding
to strings of length n, and the exit action is the only action available at those states.

Remark 5. While simple, this is representative of many MDPs that construct compositional objects by combining subparts,
such as building graphs by connecting new nodes to existing nodes (often, > 2 insertion points that increase as the graph
enlarges).

Definition C.2. (Tabular GFlowNet, with trajectory flow parameterization). A tabular GFlowNet uses a table to store
the flow network. We consider a trajectory flow parameterization, where the trajectory flow F' : 7 — R>¢ is stored as a
table. In contrast to the function approximation setting, updating any entry in the table does not change any other entry. We
assume all trajectory flows F'(7) are uniformly initialized to a small positive constant e. A trajectory flow F'(7) is updated
with y with F'(7) <= F(7) + A(y — F'(7)) for some step size 0 < A < 1.

Remark 6. The tabular setting has historically been used to develop, motivate, and study properties of reinforcement
learning algorithms (Sutton & Barto, 2018). Note that the trajectory flow parameterization is inefficient in practice,
because computing Pr on a single state can require summing over exponentially many trajectories. However, it is a useful
parameterization for theoretical analysis for various reasons.

Definition C.3. (Setting A). This setting comprises a sequence prepend/append MDP, and a fixed dataset {x, 2}, each of
length n, with R(z) = R(z’). Let s* denote the longest string shared by x, 2, with length k& < n: i.e., there is no string of
length k + 1 shared by both z, 2’. Let s, (x) denote the set of k-length substrings of some x.

Remark 7. In this setting, every trajectory is a sequence of strings of length (0, 1,2, ..., n), thus every trajectory contains
exactly one substring of length k for every k£ < n. As a result, a trajectory ending in z must pass through either s* (the
shared substring) or some substring s’ € s (z) (a non-shared substring). Our analysis will concern the credit assignment
behavior of various learning objectives in how they assign flow to F'(s*) compared to F'(sx(x) \ s*).

C.0.2 PROPERTIES

We now state various properties about setting

Property 1. (Exponentially many trajectories for each). In a sequence prepend/append MDP, there are 2"~ trajectories
that end in a specific string = of length n.

Proof. To build a string s of length n, we can choose an initial zero-based index ¢ for our first character, then we can take ¢
prepend actions and n — % — 1 append steps in any order. There are ("Z_l) such sequences of prepend and append actions.

. n—1 — —
Summing over choices of ¢, which can be viewed as summing over a row of Pascal’s triangle, there are) . ("l 1) =on—1
trajectories.

Remark 8. This property shows how “easy” it is to design an MDP with exponentially many trajectories for each x. Note
that an autoregressive, append-only MDP has exactly one trajectory for each z. The sequence prepend/append MDP has two
“insertion points”, points at which new content can be added, and has exponentially many trajectories for each x. In general,
MDPs that construct objects by combining building blocks will likely have many insertion points. MDPs that do not have
specific insertion positions, such as sets, also have at least exponentially many trajectories for each x.

Property 2. (Number of trajectories through a state s to some x). In a sequence prepend/append MDP, suppose s of
length k is preceded by a characters in x of length n. There are (";k) 2F~1 trajectories passing through s that end at .

14

Towards Understanding and Improving GFlowNet Training

Proof. There are 2"~ trajectories from the root to s (property 1). There are (";k) action sequences corresponding to

different orderings of prepending and appending, to start from s and end at z. So in total there are (”;k) 2k=1 trajectories
passing through s* that end at x. O

Property 3. Uniform trajectory flow distribution <= Uniform forward and backward policies. In a sequence
prepend/append MDP, the flow has a uniform trajectory flow distribution F'(7) if and only if Pr and Ppg are uniform at
every state.

Proof. (Uniform trajectory flow distribution —> Uniform forward and backward policies).

Let the uniform F'(7) = €. Recall that F'(s, s') = }__c 7.5 s)e, £'(7). Suppose s has length k and therefore s” has length

k + 1. Using property |, there are 2°~! trajectories from sq to s, and there are 2" %~ trajectories from s’ to any string of
length n, for a total of 2"~ trajectories that pass through the edge s — s’. Using F(7) = ¢, we have for any s with length
k and s’ with length k + 1, F(s,s") = 2" 2e.

At any state corresponding to a string of length k, Pp is only a distribution over strings of length k£ + 1, and Pg over k — 1,
because the MDP always adds a single character with every action. As Pr and Pp sample with probability proportional to
the edge flow, and the edge flow is identical for every edge, Pr and Pp are uniform. O

Proof. (Uniform trajectory flow distribution <= Uniform forward and backward policies).

Any trajectory 7 = (sg, S1, ..., Sp) is a sequence of strings of length (0, 1,2, ..., n). We consider the forward policy first.
Note that at sq, there are |.A| actions/children, corresponding to adding each letter in the alphabet .A. For any string of length
1 ton — 1, there are 2|.A| actions/children. For any string of length n, there is 1 action (exiting). Using this, we have for any
T’

n—1
p(T) = Pr(s1]s0) H Pr(sty1]st) (11)
t=1
11
== 1l 531 12
A 13 2/4] (12)

As this doesn’t depend on the states in 7, we have p(7) = p(7’) for any trajectories 7,7’ € T. Note that F'(7) = Zp(7).

The backward policy case proceeds similarly, using the observation that each string of length 2 to n has 2 parents. O

C.0.3 MAXIMUM ENTROPY GFLOWNETS

Recall that the maximum entropy learning objective learns Pg using the trajectory balance constraint:

n—1 n—1
Zy [Ph(serals:) = R(x) [] Polsilsi) (13)
t=0 t=0

for a trajectory 7 ending in 2. The maximum entropy objective fixes Pg(s;—1|s¢) as the uniform distribution. The trajectory
balance constraint is an algebraic manipulation of the simpler detailed balancing constraint

F(8)Pp(st+1lst) = F(st41)Pp(st|si+1) (14)

that “chains” the detailed balancing constraint over a complete trajectory. Other constraints can be derived by extending the
chain over partial trajectories. Note that the trajectory balance constraint with a uniform Pg fully determines Pg(s;y1|s¢)
when all R(x) are known.

Theorem C.4. (Maximum entropy GFlowNets attribute minimal credit to shared substructures). In setting (.3, suppose
the GFlowNet is trained with the maximum entropy learning objective. Then, at the global minima,

15

Towards Understanding and Improving GFlowNet Training

N
F(sk(aj)\s*)] @<n—k> (15)

over uniformly random positions of s* in z, x’.

Remark 9. As all trajectories to x must pass through either the shared substring s* (with length &) or a non-shared substring
in sg(x) \ s*, credit assignment for x, r(z) can be evaluated by how much flow, or reward, is assigned to s* versus s () \ s*.
This theorem states that a minority of credit is assigned to s*, and it decreases linearly with n — k.

Proof. As a uniform backward policy induces a uniform trajectory distribution over trajectories connecting x to the root
(property 3), and there are 2" ! such trajectories (property |), each trajectory ending in x has trajectory flow r(z)/2" 1.

By property 2, there are (";k) 2k—1 trajectories passing through s* that end at . Multiplying by the flow over each trajectory,
the total flow passing through s* ending at just z is

(n;k) 2k—1R($)

2n—1 (16)

The average number of trajectories over a uniform distribution on a, which can range from 0 to n — £, is:

1 Sk on—k n—k
n—k+1z< a)n—k+1lg[< a)] 17

a=0

Thus, the expected flow passing through s* and ending at just x, over uniformly random positions of s* in z is:

n—k\ok—1
2R R
g [UaD) ()| _ _ R(=) (18)
a 2n—1 n—k+1
The total expected flow of s* to both z, 2’ is w, while the total expected flow through si(x) \ z* is %.
When R(z) = R(x'), the ratio is 2/(n — k), which scales as ©(1/(n — k)).
O

Remark 10. In a set MDP, a similar argument shows that the fraction of flow going through s* out of all flow going through
all subsets of size k scales as ©(1/k!).
C.0.4 TRAJECTORY BALANCE GFLOWNETS

The trajectory balance learning objective is more challenging to analyze because it has many global minima which are
reached by a self-modifying learning procedure, where in each step the GFlowNet policy generates samples x which are
used to update the policy.

Definition C.5. (Trajectory balance training procedure: Fixed dataset, tabular GFlowNet setting).

This definition builds on setting , and the definitions of a tabular GFlowNet (definition C.2). We suppose that ¢, the initial
value of all trajectory flows, is sufficiently small and R(x) is sufficiently large such that, at initialization,

Finit(ac) < R(x) (19)

We consider training for m steps, with some learning rate A. During each training step, we:
1. Sample a trajectory T ending in x or 2’ according to the current GFlowNet policy. Under our tabular trajectory flow
parameterization, we presume this is done by sampling a trajectory with probability proportional to its flow, among all

trajectories ending in either x, 2’ (see remark 12).

16

Towards Understanding and Improving GFlowNet Training

2. The GFlowNet is updated according to the trajectory balance learning objective. We update F'(7) < F(7) + A, where
we label A = A(R(z) — Finic (7)) as the positive, constant flow update.

If A = 2/m, then when we have performed exactly m/2 training steps on x and 2/, we have F'(z) = R(x) and F(2') =
R(z').

Remark 11. This training procedure is closely related to standard GFlowNet active learning schemas (Bengio et al., 2021a).
The condition that every trajectory ends in an x in the fixed dataset is also used in the backward trajectory data augmentation
training procedure used in (Zhang et al., 2022; Jain et al., 2022). This setting is conceptually equivalent to standard active
learning when R(x) has the property that learning on any 2"/, R(x") for 2" ¢ X negligibly impacts the learned flow
network. Note that this training procedure has full support over states and trajectories in a tabular GFlowNet where all
trajectory flows are initialized to a small positive constant.

Remark 12. (Non-Markovian trajectory sampling). Sampling a trajectory proportional to its flow when each trajectory has
a separate tabular flow value induces a non-Markovian trajectory distribution, which acts as a relaxation of the standard
GFlowNet procedure where trajectories are sampled according to the Markovian policy Pr or Pp. For theoretical analysis,
this simplifying assumption ensures that the principle of “tabular independence” is obeyed for trajectory sampling - changing
the flow of some trajectory 7 does not change the relative likelihood ratio of sampling any other two trajectories 7/, 7.

X %k

Theorem C.6. (Trajectory balance tends to reduce credit to shared substructures). In setting (.3, suppose the GFlowNet
is trained with trajectory balance according to the steps in . Let t index training steps. At any training step t, if
Fi_q1(s*
t1(s) <n—k (20)

Eswsk(m)\s* [thl (S)]

holds (where the expectation is on a uniform distribution over the set), then the expected learning update over training
trajectories has:

E [Ft(s*)] ~Fia(s") <E [Ft(sk(x) \ s*)} — i (sul@) \ 8Y). 1)

Remark 13. This proposition states that, unless F'(s*) dominates F'(s) for any s that is not a shared k-length substring,
each trajectory balance training step tends to increase flow more for non-shared substrings than for s*.

Proof. Recall the following definitions: s* is the longest substring shared between x, z’, and has length k. The set of
k-length strings in z is denoted by sy (z), and there are n — k + 1 such strings.

As any trajectory from x to sg must pass through exactly one string in sy (), and the state flow is defined as the total flow
summed over all trajectories passing through that state, the probability of sampling a trajectory that passes through s* is

oL B R
) = Flo@) ~ Soense) FO)

(22)

Suppose Fy_1(s*) < Fy_1(sk(x) \ «*). Using the fact that there are n — k items in s, (x) \ «*, this condition is equivalent
to equation 20. This means that p;_1(s*) < pi—1(sk(x) \ s%).

Note that the expected increase in flow from one training step is:

E[F(s")] = Fia(s") = Apea(s”) 23)
E | Fy(sk(z) \ 8*)} — Fi1(sk(2) \ %) = Apri(sk(z) \ s7) (24)
Using pi—1(s*) < pr—1(sk(x) \ s*), we arrive at our proposition. O

17

Towards Understanding and Improving GFlowNet Training

When trajectories are sampled according to their flow and not by a Markovian policy, the “rich-get-richer” property can be
understood through a Pélya urn model.

Theorem C.7. (Trajectory balance training as a Pélya urn model). In setting , suppose the GFlowNet is trained with

trajectory balance according to the steps in . After m training steps, we have:

Fe; *) = Finie(s”
p f nal(sl) n t(s) . > 'll) S (25)
Frinai(si(@,2")) = Finie(sk(x, 7))
1 — BetaBi ialCDF| ¢ a ¢ + 5 2 (26)
— BetaBinomia m;n =m, = ,Q = —
a+pB m/n—k A

forﬁgwglandn—kzz&

Remark 14. A consequence of the P6lya urn model is that the fraction of total flow attributed during training that passes
through s* follows a beta-binomial distribution. As each training step increases flow by a constant amount, this fraction is
equal to the fraction of trajectories sampled through s* during the “rich-get-richer” training process.

Proof. The Pélya urn model applies as follows: we have one color of ball in the urn for each k-length substring in either
x, 2’, where we recall that s* is the only k-length substring shared by both x, z’. There are therefore 2(n — k) + 1 colors.
We denote the set of k-length substrings in either x, 2’ as s (z, 2’). At each training step, we sample a trajectory 7 ending in
either x, 2’ which must pass through exactly one s € s (z, z’) with probability proportional to F'(s); in the Pélya urn, this
corresponds to sampling a ball from the urn with color c. We then increment the flow along 7. Due to the tabular trajectory
flow parameterization, and tabular trajectory sampling assumption in , this incrementing step does not change the flow to
any other state in s (). In the Pélya urn, this corresponds to adding a ball with color ¢ to the urn.

The distribution of ball colors sampled from the Pélya urn, after m steps, follows a Dirichlet-multinomial distribution. As
we only care about s* compared to s (z, ') \ s*, we can reduce to two colors, which follows a Beta-binomial distribution.
We label *white balls’ for s* and "black balls’ for s (z,z') \ s*.

At initialization, the number of white balls for s* is determined by F'(s*|x, 2’), which depends on its position in z and «’
(property 2). We apply an upper bound on F'(s*|x) to remove this dependence, which will let us treat x, z’ identically and
simplify our exposition.

Recall that a denotes how many characters precede s* in . We use the upper bound (see lemma C.8):

n—k e2n—k
< ——.
ogg?f—k < a > T mvn—k @D

For some & in {z, 2"}, recall that there are 2"~ trajectories ending in #. We upper bound the number of trajectories passing
through s* ending in £ as:

n—=k e2n—k
k—le < 22 okl 28
(a) €= mvn —k ‘ (28)

As both x, 2’ are the same length, and s* is the only k-length substring in z and 2/, the upper bound on the proportion of
trajectories with s* are equal for x and z’. This corresponds to an “upper-bounded” Pélya urn where the number of white
balls for trajectories with s* ending in x or x’ is proportional to 28, and the number of black balls for any other trajectory
ending in x or ’ is proportional to 2"~ 1. We continue our analysis using this upper-bounded Pélya urn.

We now solve for the parameters of the beta-binomial distribution that models the urn’s draws. Let o denote the initial
number of white balls for s*. As “one ball” is A flow,

18

Towards Understanding and Improving GFlowNet Training

ezn—k 2k—16

o= —— 29
mn—k A @9
Similarly, let & + 3 denote the initial total number of balls.
2k—1
atf=@H5= (30)

[e] e

When n — k = 3, we have @B = nhh = 0.499555773, which is the mean of the normalized beta binomial confined

between 0 and 1. As the beta binomial distribution’s mean and variance are largest when o/ (« 4+) = 0.5, and decrease
as o/ (a +) decreases below 0.5, we have that for any threshold ¢ greater than or equal to the mean o/(« +), our
upper bounded beta binomial has a larger cumulative probability density above 1 than any beta binomial with smaller mean.
Therefore, our upper-bounded beta binomial satisfies the bounds in the proposition.

O
* sk sk
Lemma C.8. (Upper bound on the largest element in a row of Pascal’s triangle).
For any natural number n,
n e2™
< . 31
02&2% (a) "W\HE ()

Proof. Note that the series (§), (1), ..., (1) corresponds to a row of Pascal’s triangle.

First, consider when n is even. Then (7') is maximized when a = n/2. We therefore seek an upper bound to (7:;2) We use
Stirling’s approximation:

<n72> : (5)2 (32)

< - (33)

Following algebraic manipulations, we get

n e2™
() < 7o a4

Now, consider when n is odd. Then () is maximized when a is n/2 rounded up or down. This corresponds to (%1,
2

which we note is equal to (1) By the recurrence relation of Pascal’s triangle, we have
2

1
(5)+(2)-(5)
2 2
1 1
= (”,fl > (36)
2

Towards Understanding and Improving GFlowNet Training

Applying the same upper bounding strategy for the even case on (iﬁ) we get
2

n 1 e2ntt!
('L;1> T 27yn+1 37)

e2™
< 38
S cTnT (38)
As this upper bound is less than the upper bound of :22, we can apply that bound whether n is odd or even. O

C.0.5 SUBSTRUCTURE GFLOWNETS

Theorem C.9. (Substructure GFlowNets attribute credit to shared substructures). In setting (.3, suppose the GFlowNet
is trained as a substructure GFlowNet. Then, at the global minima over learned Markovian policies Pp, Pr,

F(s*) = R(z) + R(z'), (39)
F(sk(z)\s*) =0. (40)

Proof. As s* is the only k-length substring in both x, 2/, all trajectories ending in z, ' sampled by the substructure-aware
guide distribution must include s*. When Pp reaches a global minima in matching the guide distribution, it will also have
this property, because this property is Markov: for any sj1 of length k + 1 connected to s*, have Pg(s*|sg+1) = 1. When
Pr reaches a global minima, it therefore must assign all flow from R(x), R(z) through s*. O

Remark 15. In practice, it may be preferable to not assign all credit for R(x), R(z') to a single substring s*; in some
situations, this may correspond to overfitting. Other credit assignments are easily achievable by other guide distribution
designs, or mixing the substructure GFlowNet guide distribution with a uniform guide distribution.

20

