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Abstract

Explainable artificial intelligence (XAI) is motivated by the problem of making
Al predictions understandable, transparent, and responsible, as Al becomes in-
creasingly impactful in society and high-stakes domains. The evaluation and
optimization criteria of XAl are gatekeepers for XAl algorithms to achieve their
expected goals and should withstand rigorous inspection. To improve the scien-
tific rigor of XAI, we conduct a critical examination of a common XAl criterion:
plausibility. Plausibility assesses how convincing the Al explanation is to humans,
and is usually quantified by metrics of feature localization or feature correlation.
Our examination shows that plausibility is invalid to measure explainability, and
human explanations are not the ground truth for XAlI, because doing so ignores
the necessary assumptions underpinning an explanation. Our examination further
reveals the consequences of using plausibility as an XAl criterion, including in-
creasing misleading explanations that manipulate users, deteriorating users’ trust
in the Al system, undermining human autonomy, being unable to achieve comple-
mentary human-Al task performance, and abandoning other possible approaches
of enhancing understandability. Due to the invalidity of measurements and the
unethical issues, this position paper argues that the community should stop using
plausibility as a criterion for the evaluation and optimization of XAl algorithms.
We also delineate new research approaches to improve XAl in trustworthiness,
understandability, and utility to users, including complementary human-AlI task
performance.

1 Introduction

Data-driven predictive technologies, now primarily called artificial intelligence (AI) [77]], have
become impactful in high-stakes domains such as healthcare, finance, and criminal justice. This
underscores the importance of the research field of interpretable or explainable Al (XAI) to provide
reasons for Al predictions in human-understandable ways [22]]. The key purposes of XAl are to
provide users with informed decision support to understand the boundaries and error patterns of Al
capabilities, empower users to question and challenge Al predictions to hold algorithms account-
able [11]], and improve the performance of the human-Al team by enabling users to identify potentially
uncertain or flawed Al predictions to leverage the strengths of both [33}/40]. Achieving these purposes
can make the Al system more understandable, transparent, and trustworthy. Explainability is also one
of the five Al ethics principles that enables other four principles of beneficence, non-maleficence,
autonomy, and justice through intelligibility and accountability [26].

However, deploying an XAl algorithm does not automatically guarantee explainability or its benefits
unless the XAl passes rigorous validation. Otherwise, the XAl is suspected of ethics washing [85] 3|
46, 135]]. Evaluation methods are then vital to safeguard the scientific and responsible development of
XA, and should withstand critical examinations. To improve the scientific rigor of XAl research
and development, we conduct a comprehensive examination of one of the most commonly used XAl
criteria [62]]: plausibility. Plausibility assesses the reasonableness of an Al explanation by comparing
it with human prior knowledge [38| 162]. Doing so assumes that human explanations provide the
ground truth for XAI algorithms. Our critical examination shows that plausibility does not exhibit
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construct validity [6}[37] to measure explainability and its key properties, including trustworthiness,
understandability, and transparency. In addition, using plausibility as an XAl criterion can pose
ethical risks to users by encouraging misleading explanations (explanations that are plausible for
wrong Al predictions), which potentially manipulate users and exploit users’ trust. To illustrate how
plausibility is flawed as an XAl criterion, we provide two Motivating Examples in Box 1.

Box 1

Motivating Example 1: XAl for decision support

Suppose we need to equip a 90% accurate black-box Al model with a post-hoc XAl algorithm to explain Al
predictions. If we use plausibility to select the best XAl algorithm (suppose that the candidate XAl algorithms
have similar performances on other evaluation criteria), then decision makers (such as doctors) will be more
likely to accept an Al prediction when its explanation is more plausible, say the most plausible XAl algorithm
will increase doctors’ acceptance rate by 5% compared to the second best plausible XAl algorithm.

However, according to the definition of plausibility, since plausible explanations are unconditioned on the
correctness of Al predictions, for the increased 5% acceptance cases, they have the same 10% probability of
being incorrect as the rest of acceptance cases. Then the rate of misleading cases (doctors’ rate of accepting
incorrect Al predictions for their plausible explanations) is also increased by 10% x 5% = 0.5%. An empirical
study of this phenomenon is shown in Appendix[E-2] In this scenario, unconditionally making AT explanations
more plausible regardless of prediction correctness would be more likely to occlude the signals of incorrect
predictions.

Motivating Example 2: XAl for debugging or bias detection

Suppose we need to use XAl algorithms to debug Al models, such as detecting biases or wrong patterns learned
by Al If we select or optimize an XAl algorithm based on its plausibility performance, then according to the
definition of plausibility, since plausible explanations are unconditioned on the signals of the wrongly learned
patterns, unconditionally making Al explanations more plausible would be more likely to occlude the signals of
the wrongly learned patterns. This phenomenon is empirically shown in [46].

Because using plausibility as an XAl criterion lacks demonstrable benefits, but rather introduces
substantial risks of being unscientific and unethical, we posit that the community should not use
plausibility as an XAI criterion to optimize and evaluate the XAI algorithms. This means that
human explanations should not be regarded as the ground truth for XAI. Our analysis also yields the
following ﬁndingsﬂ 1) we point out how to use plausibility properly: plausibility can be used, not
as an end, but as a means to facilitate measures of XAl utilities to users, including users’ intended
purposes of using XAl and human-Al team performance. 2) We identify the proper ways to measure
or improve trustworthiness, understandability, and transparency for Al explanations, and 3) identify
the mathematical conditions to achieve complementary human-Al performance with XAI. These
findings emphasize important yet under-explored research directions that embed users’ benefits and
perspectives in XAl design and evaluation [94]], so that to ensure XAl fulfill its intended function as a
critical check and balance mechanism to hold Al systems accountable.

2 Alternative view: plausibility as the measure of explainability
We provide a formal definition of plausibility P in the context of XAl:

P = similarity (EM™" EAT) @)

Plausibility P measures the content similarity or agreement between two explanations, EA! and
EPuman - expressed in the same explanation form £. EA! is the machine explanation. EM™ is the
human explanation based on human prior knowledge on the given task and/or data. Plausibility
can be assessed computationally or by human. Human assessment asks users to directly judge the
reasonableness of machine explanations quantitatively or qualitatively [40, 75} [81]. Computational
assessment approximates the human assessment of P using annotated datasets on human prior
knowledge and computational metrics for similarity comparison: human explanations are usually
simplified as a set of important features A™™" such as localization masks of important image
features in computer vision tasks [73} 159} 93], localization masks of important words in natural
language processing tasks [20l 48], important features or concepts with ranking or attribution [45]],
or a combination of them. AM™™22 can be from a human-annotated XAI benchmark dataset [73L159,
931 120, 48], or generated by another Al model that performs the corresponding localization task.
Similarity can be calculated by feature correlation between AM™ and AAT [15]], or by using metrics
on feature overlap, which are commonly used for localization tasks, such as intersection over union

'This work is mainly relevant to user-oriented XAI algorithms for purposes such as decision support,
knowledge discovery, and troubleshooting for Al models. The XAl algorithms include inherently interpretable
and post-hoc methods [[71].
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(IoU) [73L163} 20]] and pointing game rate (hit rate or positive predictive value) [91} 163} 42, [73]]. The
nuance between human and computational assessments is detailed in Appendix

Currently, plausibility is commonly used as a criterion to optimize and evaluate XAl algorithms for
more plausible explanations. There is a growing number of human explanation benchmark datasets to
evaluate or optimize XAl for plausibility [[73}159,193} 120, 48]. In a systematic review of 312 original
XAI papers that propose a new XAI algorithm in 2014-2020, among the 181 papers that used at
least one quantitative evaluation, 34.3% (62/181) used plausibility as the evaluation criterion, and
plausibility is the top-chosen evaluation criterion among the twelve criteria surveyed [62]]. Plausibility
is also one of the main evaluation criteria implemented in the Quantus XAI programming library [32].

The popularity of plausibility in XAl evaluation is the alternative view (opposed to our position) that
regards plausibility as a good measure of explainability. Reasons (Reason 1-8) for the alternative
view can be summarized as follows: Plausibility is exactly how we humans gauge the goodness of an
explanation from a human explainer [90] (Reason 1), and Al explanations are designed the same
way to mimic human explanations as the ground truth [73]] (Reason 2); more plausible explanations
indicate better predictions of the AI model [42] (Reason 3); and more plausible explanations indicate
the Al model learns more effective features as humans [89] (Reason 4). Plausible explanations can
make Al systems more transparent (Reason 5), improve the trustworthiness of an Al system [31]
(Reason 6), which in turn improve the task performance of human-Al team (Reason 7). Plausible
explanations are also more understandable (Reason 8). Our critical examination in the next section
argues against this alternative view, and reveals why these intuitive reasons are surprisingly flawed in
supporting the alternative view.

3 Why is plausibility surprisingly problematic to measure explainability?

3.1 Why is plausibility invalid to measure explainability?
Plausibility is not a measure of explainability because doing so ignores two important facts:

Fact 1. Al predictions are not ideal and can contain errors, uncertainties, biases, shortcuts, unex-
pected and newly discovered patterns in training.

Fact 2. The main purposes of explainability include identifying and articulating the ideal and
non-ideal signals (e.g. features, patterns) in the Al prediction-making process.

However, plausibility does not include the case of deviant signals in its definition. Furthermore,
evaluating or optimizing XAl for plausibility can encourage more occlusion of the deviant signals, as
illustrated in the two Motivating Examples. This is against the intended purposes of explainability
and renders plausibility invalid in measuring explainability, according to measurement theo [6L137].
The measurement invalidity renders the use of plausibility as an XAl criterion unscientific. As we
stated in the Introduction, XAl is intended to function as an adversarial mechanism, equipping users
with a critical check-and-balance tool to ensure the accountability of Al systems. The role of XAl is
similar to the opponent in an adversarial system, such as discriminator in a generative adversarial
network, red team in software development, opposition parties in a government, and reviewers in
peer review. Then optimizing or evaluating XAl for plausibility is like providing the opponent a
strong incentive to construct a spurious positive semblance, which is the least thing we want from an
adversarial mechanism. Due to the adversarial nature of XAI, human judgment of the goodness of an
Al explanation should not be used to measure the goodness of the explanatory function. This refutes
Reason 1 for the alternative view.

From the conclusion that plausibility is invalid to measure explainability, which is identical to state
that encouraging Al explanation to mirror human explanation is invalid for explainability, one can
infer an equivalent proposition that human explanation is not the ground truth for XAI algorithms.
This is further supported by epistemic analysi%regarding the knowledge source of ground truth for
XAI: XAl by definition is to provide reasons for the Al model’s prediction process, so the knowledge
source of its ground truth is from the model’s internal prediction-making process. Faithfulness,
another commonly used XAl criterion, is to measure the alignment of XAl algorithm with its ground
truth [38]]. Humans’ decision-making process is independent of the machine prediction process.
Therefore, human explanation does not provide the direct grounding of the knowledge source for XAl

2Validity, together with reliability, are the two basic properties in measurement theory. “Validity refers to the
degree to which evidence and theory support the interpretations of test scores for proposed uses of tests.” [6]
3The detailed epistemic analysis of the ground truth for XAl algorithms is provided in Appendix
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algorithms, although the content of human and Al explanations can overlap. This refutes Reason 2
for the alternative view.

We have concluded that plausibility is an invalid measure of explainability, with the equivalent
proposition that human explanation is not the ground truth for XAl algorithms. Next, by refuting
Reason 3-8 for the alternative view, we show why this conclusion and its equivalent proposition seem
counterintuitive, and what the consequences are if plausibility is used to evaluate or optimize XAl
algorithms.

3.2 “Plausibility is invalid to measure explainability,” i.e. “human explanation is not the
ground truth for XAL>” why do they seem counterintuitive?

3.2.1 Because assumptions of human explanation do not automatically hold for AI
explanation

One reason for the counterintuitiveness of the conclusions in Section[3.1]is: the definition of XAl [22]
frames XAl as an anthropomorphic problem [34, 4] that mimics the role and expectation of human
explanation to “explain” or present “reasons” to humans. Therefore, it is intuitive for humans to
attribute properties and assumptions of human explanation to Al explanation. Human everyday
explanation is assumed to be associated with the inquired information about the explainer’s internal
decision process, detailed in the following key assumptions. Establishing these assumptions is a
prerequisite to meet users’ expectations of the normal role and functionality of an explanation.

Assumption 1 (Basic function of explanation). Explanation is associated with the key rationales
and/or evidence used in the explainer’s decision process.

Assumption 2 (Intended purposes of explanation). The quality of explanation (i.e., its associated
rationale and evidence) is validly associated with the quality of decision.

The pursuit for more plausible explanations from Al system seems reasonable because it implicitly
assumes that the properties and assumptions of human explanation also hold for Al explanation.
However, for Al explanation, merely designing an XAl algorithm to have the desired properities and
assumptions is insufficient to guarantee their realization, unless the XAl algorithm passes rigorous
evalatuion on its claimed properties and assumptions, as we stated in the Introduction.

Specifically, to make Al explanation fulfill Assumption 1, which is the basic property of any expla-
nation to establish the provided information as explanation and make the internal decision process
transparent, the XAl algorithm needs to pass the faithfulness test to validate that the XAl can make
the key features and processes in prediction making transparent for the given Al model and task.

Preconditioned by Assumption 1, Assumption 2 enables users to further use the explanation for
their intended purposes based on the valid relationship between rationale/evidence and decision.
According to the definition of validity in deductive logicﬁ there are three possible combinations that
precondition a valid relationship between rationale/evidence and decision, and they are visualized
as the three quadrants in Fig. [T} a right conclusion with plausible reasons (quadrant I), a wrong
conclusion with implausible reasons (quadrant III), and a right conclusion with implausible reasons
(quadrant IV). The combination of a wrong conclusion with plausible reasons (quadrant II) is always
logically invalid according to the definition of validity in logic [36l]. And we name such a combination
of plausible explanations for wrong decisions the misleading explanations in the context of XAlL
Misleading explanations can cause harms because they violate Assumption 2 of the expected role and
function of explanations. For example, a doctor or a judge can be misled by convincingly-generated
Al explanations and thus accept AI’s wrong recommendations. We further explore the unethical
issues of misleading explanations in Section[3.3.1]

By failing to incorporate human assumptions as the preconditions of XAl in its assessment, evaluating
or optimizing XAl for plausibility inherently ignores Assumption 2 of the valid interrelation between
the quality of explanation and the quality of prediction. Doing so can increase the likelihood of
misleading explanations, as demonstrated in the Motivating Example 1 in the Introduction. This
effect be illustrated in Fig. [T} without the establishment of valid interrelation between the quality
of explanation (y axis) and the quality of prediction (x axis), pursuing plausible explanations will
move the overall distribution of explanations in the 2D diagram upward (shown by the red arrow),
and the direction of movement is not meaningfully related to the direction of y axis. This creates the

“The definition of validity in logic is: “A deductive argument is valid when, if its premises are true, its
conclusion must be true.” [36]
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Figure 1: The conceptual 2D distribution diagram of Al explanations from an XAI algorithm
regarding the probability of Al decision correctness (z axis) and the degree of plausibility (y axis).

effect of moving more explanations into the misleading zone in quadrant II, indicating the increased
likelihood of misleading explanation. Our empirical study also demonstrates this phenomenon that
using plausibility as an XAI criterion can increase the likelihood of misleading explanations. The
details of the study are in Appendix [E2] Our analysis refutes Reason 3 for the alternative view,
since the interrelation between plausible explanations and good predictions does not hold when using
plausibility as an XAl criterion.

3.2.2 Because Al learning of plausible features is conflated with XAl presentation of plausible
features

The analysis in Section[3.2.indicates that pursuing plausible explanations can become legitimate
given that it is preconditioned by necessary human assumptions of explanation. One way to restore the
association between plausible explanations and good predictions in Assumption 2 is by incorporating
human prior knowledge of important features in Al model training, as seen in previous works
in pursuit of “right for the right reasons” [89, [70, 9l 88]]. This creates the effect of pushing the
distribution of explanations toward the upper right corner in quadrant I in Fig.[T] illustrated by the
green arrow. In this process, the optimization of Al models to learn plausible features should be
the driving force in order to maintain a valid interrelation between the quality of prediction and the
quality of explanation, i.e, the correlation coefficient of y/x should be < 1 to avoid crossing the
misleading zone in quadrant II in Fig. [T} Otherwise, if the optimization of the XAI algorithm for
explaining overtakes the optimization of AI model for learning (i.e., the correlation coefficient of
y/x > 1 and begins to touch quadrant I of the misleading zone), then the speed of increase along the
y axis is greater than the speed of increase along the z axis, indicating that the interrelation of the
quality of explanation with the quality of prediction is weak. This situation fails to fulfill Assumption
2 and makes the optimization of plausibility illegitimate, and is at risk of increasing the likelihood of
misleading explanations.

This analysis indicates that the legitimate optimization of plausibility should make the optimization
for AI model’s learning of plausible features the driving force, not the optimization for XAl algorithm
to present plausible features. This explains the source of confusion: Reason 4 for the alternative view
that “more plausible explanations indicate the AI model learns more effective features as humans”
is intuitive and reasonable, because it states the benefit of optimizing plausibility for Al model’s
learning. But this benefit does not support the conclusion that the XAl algorithm should be selected
or optimized for plausibility. Doing so mistakes the target of optimization of Al models for XAI
algorithms, and misattributes the improvement in Al model’s learning capacity (the cause) to the
improvement in XAl algorithm’s presentation capability (the effect). Our analysis suggests that when
using plausibility to optimize the training of the AI model to learn plausible features, it should not
be clearly stated as such, and should not be confused with the optimization of the XAl algorithm to
present plausible features.

>We note that evaluating and selecting XAI algorithms based on higher plausibility score, which is common
for post-hoc XAl algorithms, is also a form of (meta-)optimization of XAI algorithms.
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3.3 What are the consequences of evaluating or optimizing XAI for plausibility?

In the previous Sections [3.T]and [3.2] we examined the underlying reasons that render plausibility
unscientific and unethical as an XAI criterion. Next, we analyze what the consequences are regarding
the four main outcomes commonly associated with explainability, as mentioned in Reason 5-8 for
the alternative view. They are transparency, trustworthiness, the task performance of human-Al
team, and understandability. For Reason S on the benefits of using plausibility as an XAl criterion
for transparency, our analysis of Assumption 1 and previous work [38]] show that transparency and
plausibility are independent of each other given the Al explanation, and transparency should be
measured by faithfulness. We provide a causal diagram showing the conditional independence
in Appendix [D} Next, we focus on the relationship of plausibility with trustworthiness (Reason 6),
human-AlI team performance (Reason 7), and understandability (Reason 8).

3.3.1 Using plausibility as an XAI criterion can destroy trust and manipulate users

Reason 6 to enhance stakeholders’ trust in an AI model by making XAI algorithms plausible is
based on the rationale that [Premise 1] a plausible explanation can increase user’s local trust in
an Al prediction, thus [Premise 2] the global trust in the AI model can be increased accordingly
by the accumulation of high local trust in Al predictions. Premise 1 is consistent with our daily
experience [58},152] 157} 90]. Prior empirical studies provide support for Premise 1 [[14}164], and we
provide additional empirical evidence on this relationship between user’s local trust and explanation
plausibility in Appendix [E.T}

Premise 2 does not hold because global trust is a complex process that cannot be simply reduced
to a linear combination of local trust. According to trust theories, global trust is developed by first
assessing the dependability and reliability (such as credentials, previous records, and reputation)
of an entity that provides a partial foundation for provisional global trust [54]. This provisional
global trust is then deepened by repeated interactions in three stages of calculus-, knowledge-, and
identification-based trust. In the first stage, calculus-based trust is based on the belief that the other
will be punished if being untrustworthy. The second stage of knowledge-based trust is grounded in
more information that makes the other’s behavior more predictable. Predictability enhances global
trust even if the other is predictably untrustworthy. Lastly, the third stage of identification-based trust
is the belief that one’s interests can be fully defended and protected without monitoring. Positive
experiences in the interactions can stabilize global trust at a certain stage or move to the next stage.
As the stage progresses, trust becomes harder to build as well as to destroy [49].

Regarding our case of XAl as we emphasized in Facts 1 and 2 in Section[3.1] AI predictions are not
ideal, and the role and responsibility of XAl are to faithfully present the deviant-from-ideal signals in
the Al prediction process. This indicates that when the certainty or quality of an Al prediction is low,
user’s local trust in the Al prediction should be low to reject Al, and vice versa. In other words, to
enhance global trust in the Al system, the role of XAl is not to enhance local trust, but to calibrate
local trust [92] in particular predictions to make the AI model’s behavior more predictable to users
according to trust theory [49].

As we analyzed in Section [3.1] evaluating or optimizing XAl for plausibility can neither enable
XAI to perform its intended role to present non-ideal Al prediction process nor calibrate user’s local
trust. To the contrary, making XAl algorithms plausible can increase the likelihood of misleading
explanations shown in Section [3.2.1] These misleading explanations can manipulate users, take
advantage of the fact in Premise 1 and exploit users’ trust in Al with specious explanations [54]],
which eventually can lead to users’ distrust.

One may argue that despite the unethical issue of misleading explanations and the possibility of
distrust, evaluating or optimizing XAl algorithms for plausibility can still create benefit by improving
the task performance of human-Al team. Therefore, in certain circumstances, the benefit may
overweigh the drawbacks, which still make plausibility a legitimate criterion for XAl algorithms. We
argue against this opinion, since it falsely frames ethics, scientific integrity, and users’ autonomy as a
trade-off with performance, not as the prerequisites for performance improvement. This trade-off
reflects the long-standing tension between explanation and prediction [12}[72]. As an analogy, the
relationship between ethics and performance can be regarded as the brake and the engine of a car,
similar to the adversarial system we mentioned. Falsely framing them as a trade-off can limit how far
the performance can go. Our analysis in the next subsection indicates that there may be a third way
to synergize, not to trade off, explanation and performance.
6
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3.3.2 Using plausibility as an XAI criterion undermines human autonomy and cannot achieve
complementary human-Al performance
We use the accuracy metric to measure task performance. In the context of collaborative human-Al
team, suppose h, m, and t represent the accuracies of human, Al, and human-AI team, respectively,
then ideally with the assistance of Al prediction and its explanations, we want the human-Al team
to outperform either human or Al alone ¢ > max(h, m). This is termed complementary human-Al
team performance in the literature [8, 92| 50} 40]. Complementary human-Al performance may be
regarded as one of the most important utilities of XAl in high-stakes decision-support tasks [8} [86].

It is intuitive to see that by optimizing XAl algorithms for more plausible explanations, it maximizes
local trust, and humans would tend to rely more on Al. Provided m > h, then the team accuracy ¢
can increase compared to human performing the task alone h. However, there is an upper bound of ¢
that cannot exceed m, as shown in Theorem [I] (proofs for theorems are in Appendix [F). This means
complementary human-Al team accuracy cannot be achieved when using plausibility as the XAI
criterion.

Theorem 1 (Case of Impossible Complementarity for XAl). Let h, m, and t be the accuracies of the
human, Al, and human-Al team, respectively; and f(P;) be a function of the explanation plausibility
P; denoting the probability of human acceptance of the Al suggestion for the instance x; € D, then:

If plausibility is independent of the Al decision correctness, then the human-Al team can never
achieve complementary accuracy, i.e.: t < max(h, m).

Theorem(I]is also evidenced by empirical studies [40l 8l [16]. Here, the maximum gain in performance
is equivalent to delegating the decision-making task to a black-box AI with accuracy m. The
involvement of human decision-maker and XAI provides no benefit to task performance over their
counterpart black-box model alone. Furthermore, human autonomy is undermined in either case:
using a black-box model makes the decision process opacity to inspect and contest, while optimizing
XAI algorithms for more plausible explanations increases misleading explanations to deceive users.
To summarize, using plausibility as the XAI criterion fails to enable XAl to perform its expected
outcomes to improve collaborative human-Al task performance and support human autonomy in
decision making.

Given that humans and Al err differently, the ideal role of Al explanation in improving performance
is to help humans discern potential uncertainty and mistakes in Al [7]], so humans can overwrite
AT’s potentially uncertain or incorrect predictions with their own judgment. Theorem [2 shows the
theoretical conditions on plausibility to achieve complementary human-Al team performance.

Theorem 2 (Conditions for XAI Complementarity). Let h, m, and t be the accuracies of the
human, Al and human-Al team, respectively; f(P;) be the probability of human acceptance of an
Al suggestion for an instance x; € D, where f(.) is a monotonically non-decreasing function of the
explanation plausibility P;; and P, and P;" be the plausibility values of an Al explanation when an
instance x; is predicted correctly or incorrectly, then:

Complementary human-Al accuracy can be achieved, i.e., t > max(h, m), when

h>m and E[f"]> Zf(ll_:;iiE[wa or,
m>h and E[f"] > zl((ll:TZ)E[f“’] + mTf_’;L)

where E[f"] and E[f™] are the expectations of f(P') and f(P}") over the dataset D, indicating
among the correctly or incorrectly predicted instances of Al, how many are accepted by human.

From Theorem[2] we can get Corollary 1 in Appendix [F that E[f"] should be greater than E[f*],
and accordingly, the mean plausibility for correctly predicted data E[P"] should be greater than
the mean plausibility for incorrectly predicted data E[P™] as a prerequisite to fulfill the conditions
in Theorem[2] This indicates that plausibility can be evaluated or optimized to correlate with Al
decision correctness to achieve complementary human-Al performance. Furthermore, since a low
E[P"] is preferred and a high E[P"] is the definition of misleading explanation, fulfilling conditions
in Theorem [2]reduces the number of misleading explanations. It also enables users to appropriately
calibrate their local trust depending on prediction reliability [92] 163]], and making the model behavior
including its potential limitations and mistakes more predictable to users. This in turn may improve
global trust, as it is in accordance with the above knowledge-based trust in the trust theory [49, 68]].
We conduct a simulation experiment in Appendix [E.3|to explore variable interactions and their effect
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Inor premise ajor premise between from the premise
Input . , @ Important feature set N Output andl . Easytoinfer
X How X identifies A? How A infers Y ? Y explanation from the premise
B. Three cases of different levels of plausibility and understandability Plausibility ~Understandability
Case Input (@ Important feature set Output [0, 1]
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1 4 @ It is unclear what Al focuses on @ Its ows no conclusive features for Z Bee 04, implausible Not understandable
d . the prediction
¢ i is 3) Legs are a discriminative feature fc .
2 O It looks like the Al is more @ Legs are a discriminative feature for Bee 0.9, plausible  Understandable
! focusing on legs & the prediction
(D Text and image clearly indicates that (@ Legs are a discriminative feature, and . .
1/ 5
3 2 4 Al focuses on the leg and flower features | flowers are a spurious feature for prediction Bee 0.4, implausible  Understandable
Features:

Figure 2: Illustration of the form of explanation and the three cases on understandability.

on team performance, with the empirical results aligning with theoretical findings of Theorems
and 2

3.3.3 Plausibility improves understandability at the expense of neglecting other possibilities
of enhancing understandability

Lastly, we investigate the relationship between plausibility and understandability. Based on deductive
logic and relevance theory in pragmatics [76]], we propose a general framework of how humans make
sense of the Al prediction process based on the provided explanation. As shown in Fig. 2} A, we
dissect the human sense-making process into three steps (1)<3) according to the form of syllogis

is the minor premise in a syllogism that answers “How is the important feature set A identified
from the input X ?”; (2) is the presentation of the important feature set A; and (3) is the major premise
that answers “How does the important feature set A infer the prediction Y7 An explanation make the
prediction process understandable by providing premises and features to facilitate users’ successive
steps of intuitive inference from input X to conclusion Y, i.e.: explanations help users connect dots
in their reasoning from X to Y [[19 156} 155]].

We argue that plausible features can only contribute a small portion to understandability by corre-
sponding to premises (“dots”) that are easy to infer (connect) in user’s chain of reasoning (sufficient
condition), but cannot provide other forms of information to complete users’ chain of reasoning
(necessary condition). To illustrate, let’s look at three cases in Fig. 2} B:

In this task to classify bees vs. flies from images, we show three explanations with different
plausibility scores P; to Ps; and human understandability levels U; to Us. Explanations are shown in
the explanation forms of image mask and text to denote the important feature set A. Al and human
explanations are shown in blue and red, respectively.

For Case 1, U; is low, because the explanation failed to help humans infer meaningful premises:
humans cannot identify a definitive feature from the implausible image features, and cannot infer
a conclusion from the features accordingly. Here, the implausible features fail to provide relevant
information for the given context that facilitates humans’ interpretation [[76].

Case 2 has improved understandability U compared to Case 1, because the human inferential steps
are all connected: By having plausible features that are similar to humans’ important features, the Al
explanation directly leverages the existing human knowledge and inferential steps. The difference
between Cases 1 and 2 shows plausible features are a sufficient condition for understandability.

Case 3 shows that without leveraging plausible features, understandability can still be achieved by
increasing the expressive power of the explanation form £. Case 3 changes the explanation form
from an image mask to a mask with text describing the highlighted features. Although it has the
same low plausibility score as Case 2, Case 3 still improves understandability, because the text
description provides explicit evidence to confirm the important features that are implicitly indicated
in the mask [76]]. This indicates that as long as the explanation can strengthen the premises in humans’
chain of reasoning from input to prediction, understanding can be reached without being confined to
human plausible features. Case 3 provides a counterexample for the argument that “plausible features
are a necessary condition for understandability.”

The three cases show that plausible features are a sufficient but not necessary condition of under-
standability. This greatly limits the use of plausibility as a measure of understandability, including:
1) To achieve understandability, the features need to be plausible enough to reduce ambiguity in
human inference, otherwise there is still uncertainty in humans’ interpretation and understanding.
This means in a range from O to 1, an increase of plausibility score from 0.1 to 0.4 may not be helpful
for understandability, because much ambiguity still remains in the explanation. This phenomenon

6 “A syllogism is a deductive argument in which a conclusion is inferred from two premises.” [36]
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suggests that plausibility does not have a linear relationship with understandability, and an increment
in plausibility may not necessarily lead to an increment in understandability. 2) Because plausible
features are only a sufficient but not necessary condition for understandability, explanations with
plausible features are a small subset of understandable explanations. There are other kinds of un-
derstandable explanations that achieve understandability without being plausible, for example, by
strengthening human inferential steps as shown in Case 3. This shows plausibility cannot measure the
whole spectrum of understandable explanations. 3) Since plausibility cannot cover the full spectrum
of understandable explanations, when using plausibility as the XAl criterion, explanations with
plausible features are prioritized over other possibilities of understandable explanations. This may
discourage the exploration of other possible approaches to achieve understandability.

4 How to use plausibility properly? Use it as a means, not as an end

Our examination in Section [3|shows that although using plausibility as an XAl criterion may seem
intuitive, it is actually invalid because doing so violates the prerequisites and assumptions that enable
XALI algorithms to perform its intended functions and purposes. This provides implications for
XAl evaluation in general: First, the evaluation of XAl should prioritize tests on the fulfillment of
Assumption 1 that establishes the piece of information as “explanation” and aims to make the Al
prediction process transparent. Such tests are termed faithfulness in XAl evaluation [38], which
should be considered as the basic test for any XAI algorithm. Then depending on specific usage
scenarios, optional evaluations of XAl can be conducted to assess the fulfillment of the particular
intended purposes of using Al explanations and their underpinning assumptions.

For example, Assumption 2 underpins several primary intended purposes, including decision ver-
ification/trust calibration, bias and bugs detection, new knowledge discovery. Different purposes
have different required correlations between the quality of explanation and the quality of prediction,
which can be visualized as the corresponding zones in Fig.[I] Decision verification/trust calibration is
further associated with the downstream objective of the task performance of human-Al team. For
these intended purposes, user studies and computational assessments can be performed to measure
how well the quality of explanation can exhibit the desired interrelation with the intended purposes.

Because the quality of explanation defines plausibility, plausibility measure can play a role in the
assessment of these intended purposes of XAl Here, plausibility is no longer the end objective of XAl
evaluation and optimization. It is an intermediate measure to facilitate the downstream assessment on
the interrelation between plausibility and the quality of prediction. We list prior works as examples
that use plausibility as a means for the intended purposes of decision verification [42] and bias
detection [2}[78]].

In addition to the evaluation on the efficacy of XAl algorithms, another equally important evaluation
aspect is conducting thorough assessments of the scopes, limitations, weaknesses, failure modes, and
risks of XAI algorithms [43} 13} 44]. Our examination identifies the unethical issue of misleading
explanations. Controlling its number under a certain threshold and declaring its probability of
occurrence and potential risks should be considered as an important aspect of the evaluation and
limitation acknowledgment of XAI algorithms.

S Conclusion

To improve the scientific rigor of XAI, we conduct a critical examination of the use of plausibility
as an XAl criterion. Our examination shows using plausibility as the XAl criterion is unscientific,
because plausibility could not measure explainability, transparency, and trustworthiness, and cannot
measure the full spectrum of understandability. Using plausibility as the XAI criterion is also
unethical, because it increases misleading explanations, can cause distrust, and is detrimental to
human autonomy. Therefore, we call the community to stop using plausibility as the XAl criterion to
evaluate or optimize XAl algorithms. This means human explanations are not the ground truth for
XAI algorithms.

Our analysis also suggests ways to improve XAl: Transparency can be improved by increasing
faithfulness. Understandability can be improved by increasing the expressive power of the explanation
form. Trustworthiness and human-Al team performance can be improved by enabling users to
appropriately calibrate their local trust, and we provide two theorems that identify the mathematical
conditions to achieve complementary human-Al performance. We emphasize that the optimization of
Al model to learn plausible features should not be confused with the optimization of XAI algorithms
to present plausible features. We also suggest ways to improve XAl evaluation paradigm by using
plausibility as an intermediate measure to optimize users’ intended purposes of using Al explanations.
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Impact Statement

By critically examining the common criterion of explainable Al, this work aims to prevent the
negative impacts of explainable Al techniques if optimized or evaluated inappropriately. Contrary
to the common sense that developing and deploying ethical Al techniques —- such as explainable
Al —- can always create positive societal impacts, we argued in the beginning of this paper that if
explainable Al techniques are not properly developed and assessed, they could create the “ethics
washing” effect [85) 125,167, [27]] that causes harms by “making unsubstantiated or misleading claims
about, or implementing superficial measures in favour of, the ethical values and benefits of digital
processes, products, services, or other solutions in order to appear more digitally ethical than one
is.” [25]

From our critical examination, we identified the negative societal impacts of using plausibility as the
criterion to evaluate or optimize explainable Al algorithms, including: increasing the likelihood of
misleading explanations that can deceive and manipulate users to trust or accept faulty Al suggestions;
undermining human autonomy; being detrimental to the task performance of the human-AlI team;
and influencing the research agenda of explainable Al by ignoring other possibilities of enhancing
understandability. We hope this work can facilitate the community’s critical inspections of current
practice in the research and development of explainable Al to achieve its intended ethical purposes
and create more positive societal impacts.
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722 A Definition of relevant XAI terms

Table 1: As there is a lack of unified definitions for the key concepts commonly encountered in
the XAI field, and some concepts are often intertwined with each other, we provide the working
definitions to clarify the scope of the concepts discussed in this work.

Term Definition

Accountability According to Doshi-Velez et al. 23], accountability is “the ability to
determine whether a decision was made in accordance with procedural
and substantive standards and to hold someone responsible if those
standards are not met.”

Explainability In this work, we use explainability and interpretability interchange-
ably to denote the feature in an Al system that can explain the ra-
tionales of Al decisions to users in understandable ways. Explain-
ability/interpretability differs from AI model visualization in that ex-
plainability emphasizes the intention and behavior of “explaining” and
complies with all the social assumptions in human explanatory com-
munication [30, [76].

Faithfulness Faithfulness is the level at which explanations accurately represent the
prediction process of the Al model [38]]. In the literature, it is also
called fidelity or truthfulness [28] 42]].

Plausibility According to Jacovi and Goldberg [38]], plausibility is how convincing
the explanation is to humans, and they differentiated plausibility from
faithfulness, where the former relied on human judgment or human-
provided explanations involved.

Transparency According to Markus et al. [53]], a model is transparent “if the inner
workings of the model are visible and one can understand how inputs
are mathematically mapped to outputs.” While some XAI literature
uses transparency as a synonym for understandability [[10} 5], we use
transparency to emphasize exposing the inner workings of the Al
model, and use understandability to emphasize the human factors in
comprehending the decision rationales of an Al model.

Trustworthiness According to the Oxford English Dictionary, trustworthiness is “the
ability to be relied on as honest or truthful.”

Understandability ~ According to Barredo Arrieta et al. [10], understandability “(or equiva-
lently, intelligibility) denotes the characteristic of a model to make a
human understand its function — how the model works — without any
need for explaining its internal structure or the algorithmic means by
which the model processes data internally.”
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733 B Symbol table

Table 2: Reference of symbols and their definitions used in the paper. r.v. — random variable

Symbol | Definition Introducing
place

A Important feature set Section 2|

E Explanation Eq.

£ Explanation form Section|2

Pr Probability Theorem|1

T; An data instance in the dataset D = {z1,..., 2N} Theorem|2

P A real-valued r.v. of the plausibility measure of an explanation E. Its | Eq.
subscript ¢ denotes P is for the explanation of an instance x; € D

Ci A Bernoulli r.v. of an instance z; being correctly predicted by a decision- | Proof
maker. The superscript of C' denotes the identity of the decision-maker | of Theo-
being machine, human, or team (human assisted by Al). remm

h Accuracy of human performing the task alone on the given dataset D Theorem|1

m Accuracy of an Al model performing the task alone on the given dataset | Theoreml|l
D ]

t Accuracy of the human-Al team performing the task on the given dataset Theorem[ﬂ
D

B; A Bernoulli r.v. of the Al suggestion of instance x; being accepted by | Proof
humans of Theo-

rem

f(P) Pr(B; = 1) = f(P), parameter for the r.v. B;, denoting the probability | Theorem|l|
of human accepting the Al suggestion for x; explained by Al explanation
E; with plausibility value of P;; f(.) is the function of human factors that
decide to accept or reject Al given P;

Py Shorthand for P;|CAT = 1, which is the plausibility P; of an explanation Theorem
given the instance z; is correctly predicted by Al (CA! = 1)
Py Shorthand for P;|CAT = 0, which is the plausibility P; of an explanation Theorem

given the instance z; is incorrectly predicted by Al (C2! = 0)
f(Pr) | Shorthand for f(P;]CAT = 1), which is the human acceptance of an Theorem
Al suggestion (if it is correctly predicted, CA! = 1) explained by Al
explanation E; with plausibility P/

f(P®) | Shorthand for f(P;]CAT = 0), which is the human acceptance of an Theorem
Al suggestion (if it is incorrectly predicted, C2! = 0) explained by Al
explanation E; with plausibility P;”

E[f"] Shorthand for E[f(P7)], which is the conditional expectations of | Theorem|2]
f(P;|CA! = 1). It measures the true positive rate that among the correctly
predicted instances of Al, how many are accepted by human

E[f*“] | Shorthand for E[f(P")], which is the expectation of f(P;|CT = 0). | Theorem]]
It measures the false positive rate that among the incorrectly predicted
instances of Al, how many are accepted by human

E[P"] The expectation of P;|CAT = 1, which is the mean plausibility for Coro]laryE]
correctly predicted data
E[P¥] | The expectation of P;|CAT = 0, which is the mean plausibility for Corollary
incorrectly predicted data
L The line that depicts the relationship between E[f™] and E[f"] in Theo- | Eq.

rem E]

734 C Epistemic analysis of the ground truth for XAI algorithms

735 We extend the epistemic analysis of the ground truth for XAI algorithms in Section XAI
736 algorithms are grounded in the Al model’s internal prediction-making process. Al model’s prediction
737 process is grounded in the training data and human prior knowledge. Then can we say that XAI
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algorithms are also grounded in the training data and human prior knowledge? This is equivalent to
state that the human prior knowledge or human explanations can be served as another ground truth
for XAI algorithms, in addition to the ground truth of AI model’s prediction process.

We argue that the above two statements are wrong: XAI algorithms are not grounded in the training
data and human prior knowledge, and human prior knowledge or human explanations cannot be
served as the ground truth for XAI algorithms. This is because in the above deduction from grounding
XAI algorithms in the AI model to human prior knowledge, it utilizes the assumption that the training
data and human prior knowledge can be reduced to the trained AI model. This assumption does not
hold because the training data and human prior knowledge is irreducible to the Al model, according
to the view of complexity science [80,[18]. As the common aphorism “All models are wrong, but
some are useful” states, AI models can be useful abstractions of the complexities of the training data
and human prior knowledge, but cannot fully represent them. There will always be discrepancies
between the Al model and training data/human knowledge, such that the performance of Al models
cannot reach the perfect state of being error-free.

The fact that human explanations are not the ground truth for XAlI algorithms indicates that we should
not mistake the explanatory task for a predictive task: in a predictive task, the goal is to predict the
most likely human explanation for the given circumstance. However, this is not the goal for XAI
algorithms.

D Plausibility is conditionally independent of transparency

Method to measure
faithfulness

Faithfulness/
Transparency
F

Al model

Al explanation
E

O

Human explanation

XAl algorithm Plausibility

P

Method to measure plausibility (similarity measure)

Figure 3: The causal diagram (directed acyclic graph) shows our qualitative causal assumptions on
variables related to plausibility and faithfulness/transparency.

In the scope of XAl research, a model is transparent “if the inner workings of the model are visible and
one can understand how inputs are mathematically mapped to outputs” [53[]. While some literature
uses transparency and understandability interchangeably [10} 5], we distinguish the two by using
transparency to denote the system aspect of its inner workings, and understandability to denote
the human aspect of understanding a model (Table[I)). We argue that transparency and plausibility
are conditionally independent given Al explanations. Thus, transparency cannot be measured by
plausibility.

Once we separate the human aspect from transparency, transparency solely denotes manifesting the
inner workings of the AI model’s prediction process. The way to manifest is through XAI algorithms.
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The capability of XAl algorithms to faithfully manifest the AI model’s inner workings defines and is
quantified by faithfulness. Then, in the context of XAl, we can use faithfulness as a synonym for
transparency. Prior literature has argued that faithfulness and plausibility may be two orthogonal
concepts of XAl, and should not be confused with each other [38,169,162]. We analyze the relationship
between plausibility and transparency/faithfulness using a causal diagram [65, 24} [79] (Fig. [3).

The causal diagram in Fig. [3|represents our causal assumptions. The inputs and the associated method
to calculate a variable are considered to be the cause of the variable. Al model and XAI algorithms
are plug-ins to each other, and they are assumed to be independent. Al explanation is calculated from
the Al model and XAI algorithm. The faithfulness score of an XAI algorithm is calculated using the
Al explanations and Al model as inputs to a faithfulness method. The plausibility score is calculated
by comparing human and Al explanations using a similarity measure (Eq. (I))). Based on the causal
diagram, conditioning on Al explanations d—separates[] plausibility and faithfulness/transparency.
In the calculation of faithfulness and plausibility, the Al explanation is an observed variable, then
plausibility and faithfulness/transparency are conditionally independent of each other given the Al
explanation. Because of the conditional independence between the two, plausibility cannot serve as
an indicator to measure transparency.

E Empirical studies

We conduct three empirical data analyses:

1. We use data from a doctor user study [40] to test Premise 1 used in Section @] that
plausible explanations can increase user’s local trust in an Al prediction.

2. We use data from a computational study [42] to demostrate the phenomenon identified
in Section [3.2.T] that using plausibility as the criterion to select XAI algorithms can increase
the likelihood of misleading explanations.

3. We conduct a simulation experiment to explore the conditions of complementary perfor-
mance in Section[3.3.2]

The first two data analyses are for new research questions that were not covered by the scope of the
original studies. In our data analyses, we use a significance level of o = 0.05. Statistical analyses
were performed using the Python statistical package Pingouirﬂ Data and code for the analyses are
provided in the supplementary material. The data analyses were conducted on a 4-core CPU laptop
computer, and the time of execution for the scripts was usually within seconds.

E.1 Testing the hypothesis on the relationship between plausibility and local trust

Hypothesis. In Section[3.3.T)on the relationship between trust and plausibility, we introduce Premise 1
that users have higher local trust in Al suggestions with more plausible explanations. This hypothesis
is included in Assumption 2 of human explanation in Section[3.2.1] and is also one of the assumptions
(ConjectureI)) for Theorem [2] Here, we aim to test the hypothesis empirically.

Data. To test the hypothesis, we conduct a secondary data analysis based on data collected from a
clinical user study [40]. The study was conducted in an Al and explanation-assisted clinical decision-
making setting. The study recruited 35 neurosurgeons, each reading 25 magnetic resonance images
(MRIs) to grade the brain tumor into high or low grade. For each MRI, doctors first gave their initial
judgment. Then the Al model provided a second opinion accompanied by its explanation to assist
doctors in making a final decision. The explanation was a heatmap showing the important image
regions for the Al prediction. Doctors initial judgment and final decision were recorded. Doctors
also gave a plausibility score for each Al explanation on a 0—10 scale on the question: “How closely
does the highlighted area of the color map match with your clinical judgment?” The study design and
results are detailed in [40]. The secondary analysis of data was approved by Anonymous University
Research Ethics Board with Ethics Application Number 30001984.

Variables. In our analysis, the independent variable is the doctors’ plausibility assessment on a scale
of 0-10, and the dependent variable is the binary variable of the agreement of doctors’ final decisions

"For the definition of d-separation, see Definition 1 in [65].
8http://pingouin-stats.org/index.html
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with Al predictions. We use humans’ behavior of reliance on Al (accept or reject Al suggestion)
as an observable variable for the latent variable of human local trust [83], 47]]. The variable of
doctors’ agreements with Al is a weak indicator of doctors accepting Al suggestions, because this
task was a binary classification problem, and if doctors final decisions agreed with Al suggestions,
it could be due to doctors following their own judgments, or following Al suggestions; If doctors
final decisions disagreed with Al suggestions, it was due to doctors following their own judgments
and rejecting Al suggestions. Therefore, the group of doctors’ disagreement with Al reflects doctors’
decisions to reject Al suggestions; the group of doctors’ agreements with Al is a mixture of doctors’
decisions to accept and reject Al suggestions, and the study design could not differentiate between
the two scenarios. Although being imperfect, to the best of our knowledge, this is the only data that
provides plausibility measure and approximated behavior measure on trust, and we could not find
other publicly available datasets that include these two pieces of information. Future user studies
should improve the study design, for example, by directly asking users about their decisions on
whether to accept or reject Al suggestions.

Data distribution. Table [3]and Fig. 4] show the plausibility distribution for the two groups when
doctors agree or disagree with Al

Statistical test. We test the null hypothesis that when doctors agree with Al, the plausibility level
is no higher than the plausibility level when doctors disagree with Al Since the data do not meet
the assumption of normality for the ¢-test, we conduct a one-sided Mann—Whitney U test to test the
hypothesis. It shows the explanation plausibility score is significantly higher for the group when
doctors agree with AI (M%SD: 6.45 £ 2.82) than the group when doctors disagree with Al (M£SD:
3.82 £ 2.56), U = 46533.0, p-value= 3.29 x 10716,

Table 3: Statistical summary of physicians’ assessment of explanation plausibility for two groups on
whether doctors’ final decisions agree or disagree with Al suggestions. It lists the mean, standard
deviation, min, median, max, 25%, and 75% quantile of the plausibility score on a 0—10 scale.

Group | Number of decisions Plausibility
M=£SD Min | 25% | Median | 75% | Max
Agree 649 6.45+2.82 0 5 7 9 10
Disagree 95 3.82+2.56 0 2 4 5.5 10

0.16| W Agree
Disagree

0.14

0.12

o
-
o

Probability
o
o
oo

o
o
>

0.04

0.02

0.00

Plausibility

Figure 4: Histogram of physicians’ assessment of explanation plausibility on a 0-10 scale. The blue
(left) and orange (right) bars are the distributions of groups when doctors’ final decisions agree or
disagree with Al suggestions, respectively. Since the numbers of data are imbalanced between the
two groups, the histograms visualize the relative probability of each plausibility score within a group.
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Causal analysis. To further determine the causal effect of plausibility on doctors’ local trust, we
conduct a causal analysis [84]. We calculate the average treatment effect (ATE) [61]] of plausible
explanation (X = 1, which is defined by P > 5) to doctors’ agreement with Al (Y = 1), by
controlling the covariant on MRI case easiness Z, which is calculated by participants’ mean accuracy
of each MRI case. Using logistic regression adjustment as an outcome model for Pr(Y = 1| X, Z),
ATE = Pr(YX=! = 1) — Pr(Y*=Y = 1) = 0.94 — 0.77 = 0.17, indicating plausible explanations
have an effect of increasing doctor’s agreement with Al with a probability of 0.17.

The above analyses show that Al explanations with higher plausibility leads to doctors’ higher
agreement with Al suggestions. As stated above, because disagreements can reflect doctors’ rejection
of Al suggestions, and agreement is a mixture of doctors’ acceptance and rejection of Al suggestions,
if rejections in the agreement group follow the same distribution as rejections in the disagreement
group, then the results using agreement measure tend to underestimate the difference between
acceptance and rejection. Therefore, the empirical analyses provide indirect evidence to support our
hypothesis that plausible explanations can increase users’ local trust manifested in their behavior of
being more likely to accept Al decisions.

E.2 Visualizing the effect of using plausibility for XAI evaluation

Hypothesis. In Section[3.2.T]and the Motivating Example 1 in Section[I} we deduce the conclusion
that selecting XAI algorithms based on plausibility would increase the likelihood of misleading
explanations. This is the hypothesis that we test here using empirical data.

Al models and XAI algorithms. This analysis uses data from a computational evaluation of XAlI,
where five convolutional neural network (CNN) models were trained on a binary medical image
classification task to grade brain tumors from MRI images. The five 3D CNN models only differed in
their random initialization of parameters. The mean accuracy of the five models was 0.8946+0.0199.
Then 16 post-hoc XAI algorithms were used to explain the trained models. The included XAI
algorithms use gradient- or perturbation-based methods. The generated Al explanations are in the
explanation form of a heatmap that highlights the important regions for prediction. The study details
are in [42].

Variables. The dataset used to train the Al model includes human-annotated segmentation masks
for brain tumors. Therefore, the independent variable of plausibility is calculated by the percentage
of important features within the lesion mask. The dependent variable is the number of misleading
explanations. A misleading explanation for a data instance z; is defined as an explanation that has
a high plausibility P; and a low probability of Al prediction correctness Pr(CA! = 1), and their
difference is big enough with P; — Pr(CA! = 1) > 3. Both P; and Pr(CA!i = 1) are in the range
of [0,1], and S is set to be a number around the higher tail in a distribution. In our analysis, we
set 3 = 0.75. We use the probability of the ground truth label to represent Pr(CA! = 1). We use
the average plausibility from a total of 370 test instances to rank P; of an XAl algorithm. The test
instances were aggregated from the five similarly trained models on a test set containing 74 instances.

Statistical test. Since the data fail to meet the assumption of normality for Pearson’s correlation, we
conduct a nonparametric Spearman’s correlation test to test the hypothesis. The result shows that
among the 16 post-hoc XAI algorithms, there is a high Spearman’s correlation between the percentage
of misleading explanations and the average plausibility, 7(14) = 0.84, p-value= 4.7 x 10~°. Fig.
visualizes the distribution of misleading explanations of the 16 XAI algorithms. This observation is
in accordance with our conclusion in Section [3.2.] that evaluating or selecting XAl based on high
plausibility increases the likelihood of misleading explanations.
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Figure 5: The 2D distribution of Al explanations regarding the probability of Al decision correctness
Pr(CA! = 1) (x axis) and plausibility P (y axis) for the 16 XAI algorithms. Each dot is a test
instance, and the color represents the identity of the five similarly trained models. Each subplot is the
conceptual plot of Fig. [T|populated by empirical data. The misleading zone is the upper left corner
(P — Pr(CA = 1) > 0.75) indicated by a dashed line. The dot size for misleading explanations
is enlarged for better visibility. The order of subplots is ranked by the mean plausibility of XAI
algorithms. The three numbers under the name of an XAI algorithm are: mean plausibility, number
of misleading explanations out of the total 370 instances, and mean faithfulness (measured by gradual
feature removal in [42]]) of an XAl algorithm on the five models.
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Limitation. A limitation of this analysis is that the conclusion is drawn from XAI algorithms
with different levels of faithfulness to the given model and task. As we proposed in Section [4}
faithfulness is the basic evaluation for XAl algorithms. Therefore, ideally this analysis should be
accompanied by the analysis on XAI algorithms that achieve a certain threshold of faithfulness.
We can deduce that faithfulness may not influence the results, because faithfulness is conditionally
independent of plausibility according to the conclusion of Appendix [D| However, it would still be
beneficial to conduct empirical studies to validate it. From Fig. [5|we can see that among the five XAI
algorithms with the same level of higher faithfulness (0.48 ~ 0.53 of Guided GradCAM, Guided
Backprop, Shapley Value Sampling, SmoothGrad, and LIME), selecting XAl algorithms based on
higher plausibility still has the same tendency to increase the likelihood of misleading explanations.
However, the sample size here in our experiment is too small to conduct statistical tests, and future
experiments are needed to test the hypothesis that given the same satisfactory level of faithfulness,
selecting XAl algorithms for high plausibility can increase the number and misleading explanations.

E.3 Simulation experiment on human-AlI collaboration and complementary performance

Experiment setup. We conduct simulation experiments of human-AlI collaboration to study the fac-
tors of plausibility, human and Al performance, and their relationship to complementary performance
in Theorem 2] In a human-Al collaborative setting, the experiment simulates the ground truth labels,
human and Al predictions, the plausibility score, and the human acceptance of Al prediction in a
classification problem. We generate the explanation plausibility score P from a normal distribution
with the mean randomly drawn in the range of [0, 3) when the Al prediction is correct, and in the
range of [—3,0) when the Al prediction is incorrect (i.e., plausibility values reflect correctness).
We set the human factor function of accepting an Al prediction f(P) to be the sigmoid function of
P. Then the team prediction is the Al prediction if the human accepts Al or the human prediction
otherwise. From the team predictions, we can calculate the team accuracy, E[f"] and E[f™], and
conclude if complementary accuracy is achieved or not. Each simulation trial is run on 2000 test
data instances in a 10-class classification task. Some data samples generated from the scripts of the
simulation experiment are shown in Table [

Table 4: Ten data samples showing how data are generated from the scripts of the simulation
experiment. In a five-class classification task, we generate the ground truth (GT) labels. Then human
and Al predictions for each data instance are generated according to their preset accuracies. In this
data sample, the human accuracy is 0.7, Al accuracy is 0.9. Then plausibility score P is generated
based on the information of Al correctness. We use the sigmoid function for f(P) of the human
likelihood of accepting an Al prediction. The human-Al team prediction is the Al prediction if the
human accepts an Al prediction, otherwise it is the human prediction. Then the human-Al team
accuracy can be calculated from the team prediction. In this case, the team accuracy is 1.0, which
achieves complementary accuracy.

Data ID | Human prediction | Al prediction P f(P) | Accept Al | Team prediction | GT
01 5 5 247 | 092 True 5 5
02 2 2 1.14 | 0.76 True 2 2
03 5 5 0.79 | 0.69 True 5 5
04 3 3 375 ] 098 True 3 3
05 3 4 1.46 | 0.81 True 4 4
06 1 2 1.13 | 0.76 True 2 2
07 2 5 1.76 | 0.85 True 5 5
08 3 1 -1.88 | 0.13 False 3 3
09 2 2 1.90 | 0.87 True 2 2
10 1 1 0.74 | 0.68 True 1 1
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Figure 6: Visualization of the simulation experiment. Left and middle panels: Results of the
simulation experiment on the E[f*]-E[f"] plot. Each panel has 1000 dots, which represents 1000
simulation trials. Orange and blue dots indicate whether complementary performance is achieved
or not in a trial, respectively. The £ line in Eq. (2) is shown in red to visualize the relationship
between E[f*] and E[f"] in Theorem [2| The left and middle panels show two conditions when
human accuracy is greater or less than Al accuracy. Right panel: The relationship of human and Al
accuracies i and mn in the E[f*]-E[f"] plot according to the formulas in Theorem[2} Each line is the
E[f*]-E[f"] line according to different values of h and m.

Theorem 2-related results. We show the results with respect to the relationship between E[f*] and
E[f"] in Fig. |§| left and middle panels. We define line £ (red lines in Fig. |§| left and middle panels) as
the line with the same slop and intercept between E[f*] and E[f"] as depicted in Theorem[2}

r] _ h(l1—m) w .
- {E[f’”] 0 @
]E[f ] = m(l—h)E[f ] + m(I=h) ifm>h

The plots show that the simulation experiment confirms the theoretical finding in Theorem [2] that
trials achieved complementary accuracy (the orange dots) reside above the line £, which correspond
to the solution space where the relation between E[f*] and E[f"] in Theorem [2{holds. The two
plots show that it is possible to achieve complementary accuracy when human accuracy is either
greater or less than AI accuracy (Corollary 3 in Appendix [F). The two plots also show that the two £
lines are symmetric around the diagonal E[f"] = 1 — E[f™]. We further illustrate the relationship of
different values of human and Al accuracies h and mn in Fig. [6}right that confirms this symmetric
relationship. The plot shows that as the values of h and m become closer to each other, the possibility
of achieving complementary accuracy gets higher as the area above the £ line grows bigger. We
illustrate this relationship with more value assignments of h and m in Fig.[7] and Fig.[§] The £
line always resides on or above the E[f"] = E[f*] diagonal towards the upper left corner, when
E[f7] is larger and E[f™] is smaller. This confirms Corollary 1 in Appendix that E[f"] is always
greater than E[ /"] when complementary accuracy is potentially achievable. This also indicates that
if plausibility distribution can enable users to reliably know when to accept Al and when not to, the
distribution of the human-AlI collaboration experiment result (the dots) will more likely reside above
the line £ and are more likely to achieve complementary accuracy.
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Figure 7: The relationship of human and Al accuracies h and m in the E[f*]-E[f"] plot according to
the formulas in Theorem 2] Each line is the E[f*]-E[f"] line according to different values of h and
m. In Fig.[6}right, we show a similar plot when h and m are above 0.5. This plot shows the situation
when h and m are equal or below 0.5. Despite having different accuracies, both plots show that the
lines that define the condition to achieve complementary accuracy reside above the E[f"] = E[f*]
diagonal, and it is the differences of i and m, rather than their absolute values, that determine the
likelihood (the area above the line) of achieving complementary accuracy.
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Figure 8: The heatmap showing the area above the E[f*]-E[f"] line with respect to different values of
human accuracy h and Al accuracy m. The values of accuracy (in percentage) for human and Al are
shown in the horizontal and vertical axes, and the color of the heatmap represents the area above the
line of E[f7] in Theorem[2] In Fig.[7} we illustrate different E[f*]-E[f"] lines depending on different
h and m. The area above the line indicates the likelihood of achieving complementary performance
for different combinations of h and m. The heatmap shows that as the difference between h and m
becomes smaller (near the diagonal), it permits more area above the line for achieving complementary
accuaracy.
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Theorem 1-related results. The previous experiment is in the condition where plausibility is
correlated with Al prediction quality. What if plausibility is not correlated with Al prediction quality?
We conduct the simulation experiment, which shows that while the rest conditions remain the same as
in the previous experiment in Fig.[6] the generated plausibility values follow normal distributions and
do not correlate with AI prediction correctness. The results are shown in Fig.[0] In either case when
human accuracy is greater or less than Al accuracy, the complementary human-Al team accuracy
cannot be achieved. This empirical finding corresponds to the theoretical finding of Theorem [I]

10 Human acc: 0.91, Al acc: 0.80 10 Human acc: 0.80, Al acc: 0.90

=05 =05
[ [
—— Theorem 2
No complementarity
Complementarity
0.0 0.0
0.0 0.5 1.0 0.0 0.5 1.0
ETfY] E[f"]

Figure 9: Visualization of the simulation experiment when plausibility does not correlate with Al
prediction correctness. Each panel has 1000 dots, which represents 1000 simulation trials. Orange
and blue dots indicate the complementary performance is achieved or not in a trial, respectively. The
L line in Eq. (2)) is shown in red to visualize the relationship between E[f™] and E[f"] in Theorem
The two plots show two conditions when human accuracy is greater or less than Al accuracy. In Fig.[6]
we show similar plots. They only differ in that the simulation experiments in this figure draw the
plausibility scores from normal distributions that are independent of Al prediction correctness, which
follows the conclusion in Theorem [I|that complementary accuracy is not achieved.

F Proof of the two theorems on plausibility and human-AI team performance

We provide proofs of the two theorems on plausibility and human-Al team performance in Sec-
tion We first set up the problem of human-Al collaboration, then provide proof for the two
theorems regarding the influence of explanation plausibility to human-Al team performance.

We focus on the problem setting of human-AlI collaboration where Al neither has full task delegation
nor decides the task delegation, and acts as a decision assistant. This is a common scenario in human-
Al collaboration especially in high-stakes tasks [51]], and this is the scenario where Al explanation
can play a major role. Otherwise, if Al decides the task delegation [60], there is little chance for Al
explanation to play a role in either the task delegation or the whole decision-making process.

To simplify the problem, we use the task performance metric of accuracy for classification problems.
It is worth noting that choosing different metrics may lead to different effects in explanation optimiza-
tion, because different metrics emphasize different aspects that users think as important in performing
a task, as shown in previous work [66]. We leave the exploration of using different task performance
metrics on XAl optimization for future work.

Problem setup

The problem is in a collaborative setting where Al assists humans in making decisions on a task. For
each case, the human decision-maker first reviews the Al suggestion, including the Al prediction
and its explanation. Then the human decides whether to accept or reject Al assistance by judging
how plausible the suggestion is based on human prior knowledge of the task. The more plausible
an explanation is, the more likely the human will accept Al assistance and its suggestion. If Al
assistance is rejected, the human delegates the decision-making task to herself and makes a final
decision based on her own knowledge. Fig|10|illustrates this Al-assisted decision process.
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Figure 10: Flowchart of the Al-assisted decision-making workflow. The gray bars at the bottom
highlight tasks that the human needs to perform.

We assume a test dataset D = {z1,...,zx} has N number of cases that are independent and
identically distributed. We use the subscript ¢ € [1, N] to denote the index of an instance in D. For
an instance x; € D, we use B; € {0, 1} to denote the binary random variable of human choosing
to accept or reject the Al suggestion for z;, with B; = 1 representing “the human accepts the Al
suggestion for x;,” and B; = 0 representing “the human rejects the Al suggestion for z;.” B; follows
a Bernoulli distribution with Pr(B; = 1; f(P;)) = f(P;) and E[B;] = f(F;), where Pr denotes
probability, P; € R denotes the random variable of the plausibility measure of an Al explanation
E; for the prediction of z;, and f(P;) € [0, 1] denotes the probability of human acceptance of the
Al suggestion for x;. f(.) is assumed to be a function of plausibility P to denote the human factor
function of the probability to decide to take an Al suggestion given the explanation plausibility
P. In Theorem [2| we assume they have a causal relationship, P — f(P). An explanation with
higher plausibility P would lead to user’s higher probability of acceptance f(P). Based on the
empirical data in Appendix on the causal correlation relationship between P and f(P), we have
the following conjecture:

Conjecture 1 (Relationship between Plausibility and Human Acceptance of Al). For any instances
x;, xj, the probability f(P;) of human acceptance of the Al suggestion for x; is a function of the
explanation plausibility P; with a monotonically non-decreasing relationship: VP; = p;, P; = pj, if
pi = pj, then f(pi) = f(p;).

We use C; € {0,1} to denote the binary random variable of an instance z; € D being predicted
correctly or not by the decision-maker, with C; = 1 representing “the instance x; is correctly
predicted,” and C; = 0 representing “the instance x; is incorrectly predicted.” C; follows a Bernoulli
distribution, with Pr(C; = 1;v) = v and E[C;] = , where 7 is the probability of x; being predicted
correctly. When z; is predicted by the human, Al, or human-Al team, we use Clh“ma“, C’lAI, and C’Zt-eam
to denote the decision-maker of the random variable C;, and denote v = h, m, t, respectively. We
use the random variable K to denote the number of instances being correctly predicted in the dataset
D. Since x; € D are i.i.d., and C; denotes each x; being correctly predicted or not, K follows a
binomial distribution, with E[K] = E[C; + --- + Cn] = Zi\; E[C;] = Zf\;l ~ = N~. Then the
accuracy on the dataset D would be E[K]/N = ~y. The parameters h, m, and ¢ can also be used to
denote the accuracies on the dataset D of the human, Al, or the human-Al team, respectively. We
assume h € (0,1) and m € (0, 1) to avoid the undefined case of division by zero.

Definition 1 (Complementary Accuracy from Bansal et al. [8]). In classification tasks, the comple-
mentary accuracy of a human-Al team is defined as the human-Al team accuracy t being greater than
either human accuracy h or Al accuracy m alone:

t > max(h, m).

Before we prove the two main theorems in the paper, we provide conditions to show when comple-
mentary accuracy is impossible to achieve. Negations of these conditions are the prerequisites for the
following Theorems [T]and [2]

Lemma 1 (Impossible Complementarity for Black-Box Al). In classification tasks, let h, m, and t be
the accuracies of the human, Al, and human-Al team, respectively, the Al is a black-box Al that only
provides the human with the predicted class label without any other information about the decision
process for the data instance x € D, then the human-Al team can never achieve complementary
accuracy, i.e.: t < max(h,m).
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Proof. For a data instance x; € D, we use b; to denote the parameter of the Bernoulli distribution of
the probability that “the human accepts the Al suggestion for z;;” with Pr(B; = 1;b;) = b;. Because
the human is not provided with any information on the decision process, the random variable B; of
human acceptance of Al suggestion is independent of the random variable of Al decision correctness
CAL. Then the joint probability of Pr(B;, C2) can be calculated by the multiplication of probabilities
of individual events:

Pr(B;, CZAI) = Pr(B,»)Pr(CZAI).

Then for each instance x; in the test set, we can list the joint events of B; and C’;”, their joint
probabilities, and their likelihood of being correctly predicted (C; = 1) by the decision-maker in
Table[3]

Table 5: Four events regarding the combinations of random variable assignments of B; and C! for
an instance z;. b; is the probability of human accepting Al suggestion for instance x;. Regarding the
last column of the likelihood of the decision-maker correctly predicting x; (C; = 1), for events i and
ii, because the decision-maker is Al, and the events are conditioned on CZAI being 1 or 0, therefore,
C; = C’;”. For events iii and iv, because the decision-maker is the human, then C; = C’Zh”ma“.

Event: B; and CM Values of | Probability Who Likelihood of the
therv. | of the event: | is the | decision-maker cor-
Pr(B;, CA) decision- | rectly predicting z;
maker? C; =1
1. Human accepts Al B, =11 bym Al 1
Al predicts correctly for  CAl =1
X
ii. Human accepts Al B,=1]0b(1—-m) Al 0
Al predicts incorrectly for ~ CAl = 0
£
iii. Human rejects Al B;=0](T=b)m Human h
Al predicts correctly for  CAl =1
£
iv. Human rejects Al B;=0] (1-5)1-m) | Human h
Al predicts incorrectly for ~ CAl =0
i

We use ¢; to denote the probability of C!**™ = 1 for the human-Al team to correctly predict x;. ¢; can
be calculated by aggregating the likelihood of C; = 1 from all the four potential events weighted by
the corresponding probabilities of an event:

:bim—l—(l—bi)h
:(m—h)bi—i—h
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The random variable K denotes the number of instances being correctly predicted in the dataset D.
Then the human-AlI team accuracy ¢ on the test set D can be calculated as:

E[Kteam] _ Zfil E[C;eam] B Zj\il ti

== N N
Zg\ilbi Z]-\ilbi
= == 1_1;
m=s + h( N )
Zg\ilbi
= —h)==—+h
(m — h) ==
Ifh > m:
Zg\i1bi Zg\ilbi
t= — h)== h<(h—h)== h=nh
(m— ) =S 4 h < (h—h) =
=t<h
Ifh <m:
N N N N
. bz . bZ i bz = bz
t:mizlgfl —i—h(l—L’&l )<mLZJ—V1 +m(1—7ZZZ—V1 y=m
=t<m

Therefore, t < max(h,m)

O

In LemmalI] the value of b; reflects the human interpretation of all available information provided
by a black-box model, including the human interpretation of the input, the predicted label, and the
overall performance of the AI model on a previous test set. Lemma [I] shows that with the limited
and non-data-instance-specific information provided by black-box Al models, the black-box models
are not equipped with the prerequisites to achieve complementary accuracy. Lemma [T] provides
motivation for white-box and gray-box Al models that provide additional information about the
model decision process, decision certainty, or decision quality. Such information can be the decision
confidence or uncertainty estimation for the given instance (for example, the calibrated probability
output for the predicted class), the fine-grained performance on different subsets of the data, an Al
explanation, or a combination of these different types of information.

Other two conditions that make complementary performance impossible to achieve are identified
in Donahue et al.’s work on theoretical investigation of complementarity and fairness [21]], where
they differed from our theoretical proofs by using the loss function as the performance metric,
having a different set of assumptions on decision combination, and focusing on fairness rather than
explainability. Lemma 3 in Donahue et al.’s work [21] states that “Complementarity is impossible if
one of the human or algorithm always weakly dominates the loss of the other: that is, if a; < h; for
all 4, or a; > h; for all 2,” where a; and h; are the losses of Al and human for an instance . We adapt
the same conclusion to our problem setup and assumptions in Lemma[2]

Lemma 2 (Adapted from Donahue et al. [21]]). If one decision-maker of either human or Al always
dominates the prediction performance for all instances x € D, then the human-Al team can never
achieve complementary performance.

Proof. For any data instance x; € D, since one decision-maker dominates the prediction performance
for x;, then the rational choice during task delegation is to delegate the decision-making task to the
dominant decision-maker. Then the maximum task performance for the human-Al team is equivalent
to the performance of the dominant decision-maker, i.e.: max¢ = max(h, m). This concludes that
complementary performance is impossible to achieve. [

The last condition that makes complementary performance impossible is stated in Corollary 1 of
Donahue et al.’s work [21]: “A combining function with a constant weighting function wy, (a;, h;) =
wy, can never achieve complementarity performance,” where wy,(.) is the weighting function of the
human decision-maker “controlling how much the human influences the final prediction.” The role
of wp(.) is similar to f(P) in our problem setup. Corollary 1 from [21]] states that if the decision
cobmination function has constant weights (i.e., the function wy,(.) becomes a constant wy) to
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combine the human and Al decision-makers’ loss for all instances, then it is impossible to achieve
complementary performance. In our problem setup, we assume that the decision delegation (the
probabilistic form is equivalent to the weighted decision combination in [21]]) for each instance is an
individual Bernoulli random process, with each instance x; having a different parameter of f(F;) of
a different Bernoulli distribution. If f(P;) is the same for every instance x;, i.e., f(FP;) = A, then we
can show in Lemma [3| that complementary performance is impossible to achieve.

Lemma 3 (Adapted from Donahue et al. [21]). If the Al suggestion has the same probability \
to be accepted by human for every instance x € D, then the human-Al team can never achieve
complementary performance.

Proof. Since the probability of human acceptance of Al suggestion for any instance x; € D is a
constant A, then the human acceptance of Al suggestion is independent of the correctness of the
decision-maker. Then we can use the same probability of the events in Table 5] by replacing b; in the
table with \. We use ¢; to denote the probability of Ci**™ = 1 for the human-Al team to correctly
predict x;. t; can be calculated by aggregating the likelihood of C; = 1 from all the four potential
events weighted by the corresponding probabilities of an event.

ti PI’(CZ‘ = 1)
PI’(CZ‘ = l,Bi = 1) + PF(C,L = 1,Bl = 0)

= m+ (1—A)h

The human-Al team accuracy ¢ on the test set D can be calculated as:

E[Kteam] _ Zf\le E[C;-eam] _ Zf\;1 ti

="x N N h
=xm+(1-XMh
Ifh >m:
t=(m-hA+h<(h—h)A+h=h
=t<h
Ifh <m:
t=mA+({1—-Nh<Im+(1—-XNm=m
=t<m

Therefore, ¢t < max(h, m)

O

In summary, from Lemma 1-3 we identify the conditions that are impossible to achieve complementary
performance. Therefore, to potentially achieve complementary performance for the human-Al team,
the Al models should be white-box or gray-box models that can provide additional information of the
decision process to assist human judgment on whether to accept an Al suggestion, the human or Al
should not always dominate the prediction performance, and the probability of human acceptance of
Al suggestions should vary by data instances. These conditions set the prerequisites for the following
Theorems|[I]and [2]on when it is impossible or possible to achieve complementary accuracy with Al
explanations.

Let us recall Theorem [Tl from Section[3.3.2)

Theorem 1] (Case of Impossible Complementarity for XAI). Let h, m, and t be the accuracies of the
human, Al, and human-Al team, respectively; and f(P;) be a function of the explanation plausibility
P; denoting the probability of human acceptance of the Al suggestion for the instance x; € D, then:

If plausibility is independent of the Al decision correctness, then the human-Al team can never
achieve complementary accuracy, i.e.: t < max(h, m).

Proof. The procedure of proof is the same with the one for Lemma[T} with the only difference in that
b; is replaced by f(P;).
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If plausibility P is independent of the Al decision correctness (denoted by the Bernoulli random
variable CA) with Pr(P|CA) = Pr(P), Because Pr(P;|CAl) = Pr(P;), and f(P;) is a function
of P; with the specific function parameters determined by human factors that are independent of
C;M (as humans have no access to the ground truth information that determines correctness), then

Pr(f(P)ICN) = Pr(f(F))-

Because f(F;) is the only parameter that determines the Bernoulli distribution of B;, then we can
get Pr(B;|C) = Pr(B;). Then the joint probability of Pr(B;, C!) can be calculated by the
multiplication of probabilities of individual events:

Pr(B;, C}N) = Pr(Bi|CM)Pr(CM) = Pr(B;)Pr(C}Y).

Then for each instance x; in the test set, we can list the joint events of B; and C#!, their joint
probabilities, and their likelihood of being correctly predicted (C; = 1) by the decision-maker in
Table[6l

Table 6: Four events regarding the combinations of random variable assignments of B; and C'*! for
an instance x;. P; is the plausibility of Al explanation for instance x;, and f(F;) is the probability of
human accepting Al suggestion for instance z; given P;. Regarding the last column of the likelihood
of the decision-maker correctly predicting x; (C; = 1), for events i and ii, because the decision-maker
is AL and the events are conditioned on C! being 1 or 0, therefore, C; = CL. For events iii and iv,
because the decision-maker is the human, then C; = Clhuma“.

Event: B; and CM Values of | Probability Who Likelihood of the
ther.v. | of the event: | is the | decision-maker cor-
Pr(B;, CA) decision- | rectly predicting z;
maker? C; =1
1. Human accepts Al B, =11 f(P)m Al 1
Al predicts correctly for  CAl =1
£
ii. Human accepts Al B, =11 f(B)1—m) Al 0
Al predicts incorrectly for ~ CAl =0
£
iii. Human rejects Al B,=0|(1-f(P))m Human h
Al predicts correctly for  CAl =1
£
iv. Human rejects Al B;=0] (- f(P)1T — | Human h
m)
Al predicts incorrectly for ~ CAl =0
z;

1085 We use ¢; to denote the probability of Ci**™ = 1 for the human-Al team to correctly predict x;. t; can

1086
1087

be calculated by aggregating the likelihood of C; = 1 from all the four potential events weighted by
the corresponding probabilities of an event:

ti=f(P)m x 1+ f(P;)(1 =m) x 0+ (1 = f(F;))mh + (1 = f(P))(1 —m)h
= f(P)m+ (1 - f(P;))h
=(m—-h)f(P)+h
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The human-Al team accuracy ¢ on the test set D can be calculated as:

il D Dty oo B A

t — j\f — =1 ]\[ — ?;:
SV f(P) SN f(P)
= m S (1 - S

_ S f(P)
= (771 — ll) “““jif““‘* ‘%'}l

Ifh >m:
t:(m—h)zy%(mmqh h)Zi%(Pi)M:h
=>t<h
Ifh <m:
N N N N
t:mZi:#(Pi)th(liZi:%( ))< Ez:%ﬂ( )er(l Zi:%(ﬂ)):
=t<m

Therefore, t < max(h, m)

Let us recall Theorem 2] from Section [3.3.21

Theorem [2| (Conditions for XAI Complementarity). Let h, m, and t be the accuracies of the
human, AL, and human-Al team, respectively; f(P;) be the probability of human acceptance of an
Al suggestion for an instance x; € D, where f(.) is a monotonically non-decreasing function of the
explanation plausibility P;; and P, and P;" be the plausibility values of an Al explanation when an
instance x; is predicted correctly or incorrectly, then:

Complementary human-Al accuracy can be achieved, i.e., t > max(h, m), when

h>m and E[fT]> e mhi or,
m>h and E[f"] > 21((11 —Elf ] "(11__%

where E[f"] and E[f*] are the expectations of f(P) and f(P}") over the dataset D, indicating
among the correctly or incorrectly predicted instances of A, how many are accepted by human.

Proof. Since P and P} are the plausibility values of an Al explanation when an instance x; € D is

predicted correctly or incorrectly (CAl = 1 or 0), respectively, P/ and P are the shorthand notations

for P;|CA = 1 and P;|CA! = 0. Since P, is conditioned on C’l, and f ( ;) is a function of P;, then

f(P;) is also conditioned on C;. We use f(P!) to denote f(P;|CA = 1), and use f(P) to denote
f(P|CA = 0).

Because f(P;) is the parameter that determines the Bernoulli distribution of B;, and f (P;) is defined

conditioned on Cj, then B; is also defined by conditioning on C;, with:

Pr(B; = 1|CM =1) = f(P|CM =1) = f(P!), and 3)

Pr(B; = 1|C}M = 0) = f(PR|CM = 0) = f(P") “)
With these, we can calculate the joint probability of Pr(B;, CA) by:
Pr(B;, CM) = Pr(B;|CAPr(CA

Then for each instance x; in the test set, we can list the joint events of B; and C’;”, their joint

probabilities, and their likelihood of being correctly predicted (C; = 1) by the decision-maker in
Table[7l
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Table 7: Four events regarding the combinations of random variable assignments of B; and C!
for instance z;. P;" and P;” are the plausibility of Al explanation for instance x; when Al predicts
correctly or wrongly, and f(P;) is the probability of human accepting Al suggestion for instance ;.
Regarding the last column of the likelihood of the decision-maker correctly predicting z; (C; = 1),
for events v and vi, because the decision-maker is Al, and the events are conditioned on C’;’“ being
1 or 0, therefore, C; = C{“. For events vii and viii, because the decision-maker is the human, then
Oi — Clhuman-

Event: B; and CA! Values of | Probability Who Likelihood of the
therv. | of the event: | is the | decision-maker cor-
Pr(B;, CA1) decision- | rectly predicting z;
maker? C; =1
v. Human accepts Al B, =1 f(P)m Al 1
Al predicts correctly for  CAl =1
X4
vi. Human accepts Al B, =1] f(P")(1—m) Al 0
Al predicts incorrectly for ~ CAl =0
X
vii. Human rejects Al B,=0]| (1—-f(P))m Human h
Al predicts correctly for  CAl =1
X
viii. Human rejects Al B;=0] (1-f(P"))(1— | Human h
m)
Al predicts incorrectly for ~ CAl =0
z;

We use t; to denote the probability of Ci**™ = 1 for the human-Al team to correctly predict z;. ¢; can
be calculated by aggregating the likelihood of C; = 1 from the four potential events weighted by the
corresponding probabilities of the event:
ti = f(B)m+ f(P)(1 —=m)0+ (1= f(P))mh+ (1 - f(P))(1—m)h
= f(P)m + mh — f(PYmh + h — f(P*)h — mh + f(P)mh

= f(P))m — f(P[)mh +h — f(P")h+ f(P)mh Q)
The human-Al team accuracy ¢ on the test set D can be calculated as:
+— E[K*™] _ ZZV:1 E[CF] _ Zz]\il ti
N N N
DY (05D S, f(P) Sy F(P) Sy F(P)
=m N mh N +h—-nh N + mh N
(6)
The terms Eil}\f(Pf), Zﬁil}\f(a’w) are the expectations of f(P]) and f(P}"):
N
= Pir Id
Z“]f EE) _ ppen) ™
N
N r(pw
22—1]5( 7 ) :]E[f(Pw)] (8)
We use E[f"] and E[f™] to simplify the notation. So Eq. (7) and Eq. (8) can be rewritten as:
(/7] and E[f*] to simplify q q
N .
1= f Py T T
Zimt I gy = ) ©)
N
i= .f Piw w w
L=t S _ giy(poy) = gy (10)
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Then Eq. (@) can be rewritten as:

t =mE[f"] — mhE[f"] + h — hRE[f*] + mhE[f*] (11)

The meaning of E[f"] and E[f*] can be interpreted as follows:

If we use the definition of f(P]) and f(P/) in Eq. (3) and Eq. (4), then the term E[f"] and E[f"]
can be written as:

oSN )
Blfr] = &=t
N fefer=1)
o N
N — —
- Zi:l Pr(Bi]; 1|CZAI =1) (12)
N F(PE)
E[f"] = ==Lots
N f(Bler =0)
- N

E[f"] means, among the correctly predicted instances (CA! = 1), how many are accepted by human
(B; = 1); Similarly, E[f*] means, among the incorrectly predicted instances (C2! = (), how many
are accepted by human (B; = 1). In this sense, E[f"] is a measure of sensitivity (true positive rate),
and E[f*] is a measure of false positive rate.

From Eq. (TT), we can get the conditions for complementary accuracy as follows:

Ifh >m:
t —h=mE[f"] —mhE[f"] + h — hE[f*] +- mhE[f*] —
= mE[f"] — mhE[f"] - h]E[fw] + mhE[f"]
=m(1 —h)E [ 1= h(1 —m)E[f*]
ItE(f] > S B,
then m(1 — R)E[f"] — h(1 — mE[f*]) >0
thent —h >0 given h > m and E[f"] > h((l _ﬂ;;]E[fw}

Ifm > h:
t —m = mE[f"] — mhE[f"] + h — RE[f*] + mhE[f*“] — m
:m(l—h)]E[f’“] —h(1—m)E [fw] —(m—h)

then m(1 h)E[ "T—h(1 —m) [f“] = (m—h)>0
thent —m > 0 given m > h and E[f"] > HE[fw] + mml__hh)
Therefore,
h>mand E[f"] > h((ll _mh;IE[fw] , or
t > max(h, m) if h(1 —m) m—h (14)
m > hand E[f"] > 1 h)]E[f“’] + m(1l—h)
O
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From Theorem 2] we can get the following corollaries.

Corollary 1. If a human-Al team can achieve complementary accuracy, then the human acceptance
rate for correctly predicted data should be greater than the human acceptance rate for incorrectly
predicted data, E[f"] > E[f™]. Furthermore, the mean plausibility for correctly predicted data
should be greater than the mean plausibility for incorrectly predicted data, E[P"] > E[P"].

Proof. To achieve complementary human-Al accuracy, it should fulfill one of the two conditions in

Eq. (T4).

When h > m,
h—hm>m-—hm
h(1—m)
m—h) ="
Therefore,
L") > T Bl 2 Bl
When m > h,
h(1=m) . . m—h w h(1—m) w m—~h
m—n) N Ty B = Ca ) T VR Sa T
h—m w m—h
T r L U e
m—nh w
= m(l—E[f )>0
Therefore,
L) > SR+ e > B

And according to Conjecture |1} because P and f(P) have the monotonically non-decreasing relation-
ship, then

E[P"] > E[P"]
O

Corollary [T]indicates that to achieve complementary human-Al performance, the difference between
E[f"] and E[f*], and accordingly, the plausibility for correct and incorrect decisions P/ and P}”,
should be big enough, i.e., above a threshold. Such relationships of E[f"] > E[f*] and E[P"] >
E[P™] are necessary but not sufficient conditions to achieve complementary human-Al performance.

Corollary 2. If complementary human-Al accuracy is achievable for an Al model, then with the
assistance of this Al model, both novices and experts can achieve complementary accuracy despite
their differences in prior knowledge.

Proof. Eq.[14]does not impose constraints on the level of human performance h, therefore, com-
plementary human-Al accuracy is achievable for both novices and experts as long as they have the
domain knowledge for the given task that allows them to provide a reasonable estimate of P [17]. [

Corollaryalso indicates that since f(P) is dependent on the human judgment of P, novices and
experts may have different net increases in complementary human-Al accuracy ¢ — max(h, m) from
the Al system, due to their different assessments of P and f(P) accordingly.

Corollary 3. It is possible for both an inferior and a superior Al to help humans achieve complemen-
tary human-Al accuracy.

Proof. Theorem [2]shows both conditions for Al that is either superior (m > h) or inferior (h > m)
to human in accuracy to help human achieve complementary human-Al accuracy. O
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Corollary 3] indicates that as long as the explanation plausibility can be highly indicative of the Al
decision correctness, even with the assistance of an inferior AI, humans can still benefit from the
inferior Al and achieve complementary human-AlI performance. However, as the machine accuracy

m decreases, the ratio of ]EE[[]{w]} = fn((ll_f;ig increases, which indicates that the difference — between
the plausibility of correctly and incorrectly predicted instances — should be bigger to achieve

complementarity.

Limitation analysis

A limitation in our analysis of the complementary human-Al task performance in this section is
that, to model Al-assisted decision-making and task performance with Al explanations, in our
problem setup in Fig. [T0] we only utilize the simplest setup where the user delegates the task to Al
or herself as a binary decision. And if the user delegates the task to herself, her decision-making
is independent of the Al suggestion. In reality, unless otherwise instructed, a user may not accept
or reject an Al suggestion in a binary fashion, and may include or exclude AI’s second opinion
as a decision option’|in a probabilistic manner depending on plausibility and other factors of Al
trustworthiness. Future works can explore various task delegation settings for XAl in Al-assisted
decision making, and whether and how the ways of collaboration will influence complementary
human-AlI task performance.

G Analysis of examples on plausibility assessment and misleading
explanations

We provide a detailed analysis of the examples in Fig. [T of the paper, to show the subtle differences in
human- and computationally-assessed plausibility and the role of human prior knowledge. In Fig.[I]of
the paper, we give four examples that cover different combinations of plausible/implausible reasons
for correct/incorrect predictions. The examples are on a task to classify bees vs. flies. We use an
input image with the ground truth label of an Osmia ribifloris bee (Fig.[I2). The AI explanations are
given in the form of important feature set A, where the important features are expressed by a feature
localization mask on the input image and a text description. This explanation form can be generated
using a combination of the forms of a saliency map explanation [41]] and concept explanation [45]].

G.1 The analytical framework: explanation is an explanatory argument with three
propositions

Since plausibility is related to the human interpretation of explanation, we first detail the analytical
framework we introduced in Section [3.3.3] on how humans make sense of a conclusion given an
explanation. We regard an explanation as an argument that provides reasons for this question: why is
the input X predicted as the output Y ? And humans’ interpretation of a given explanation is in a
deductive manner. We apply syllogism in logical reasoning to analyze the human interpretation of
explanation. For different explanation forms in predictive tasks, including saliency map, concept,
prototype, example, and rule-based explanations, they have a common element of presenting the
evidence of prediction in the form of features. In a syllogistic view, the feature set A is the middle
term, input X is the minor term, and output Y is the major term. Then, a general form of explanatory
argument is the following:

Proposition (1) X has A. Minor premise

Proposition (2) A is the set of important features for Y.  Middle term

Proposition @ A is discriminative for Y. Major premise
X is predicted to be Y. Conclusion

The above form slightly differs from the standard form of a syllogism, as we separate the feature set
A from the major premise (proposition (3)) as a standalone proposition (2) that states: A is the set
of important features for the prediction Y. And (3) further states the detailed inference process on
how A is discriminative for Y. Making A a standalone proposition is to facilitate the assessment of
plausibility.

°For example, in doctor’s differential diagnosis [87].
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This form dissects human’s interpretation process of an explanation so that we can analyze each
proposition for plausibility. Plausibility denotes a person’s judgment of the degree of an argument or
proposition being true according to the person’s knowledge m The human assessment of plausibility
thus includes the plausibility judgment of all three propositions being true. And the computational
assessment of plausibility includes the plausibility judgment of proposition (2) being true.

In Al explanation, the main information is the feature set A, and the two premises are not always given
by Al explanation. According to the ostensive-inferential model in human communication, premises
are context, which is the audience’s assumption of the world [[76]. When contextual information is
lacking, users have to use their knowledge to infer the most probable premises given the evidence
presented in the features. Therefore, it depends on the audience’s assumptions and knowledge to infer
the premises and their level of plausibility. Since human inference relies on human prior knowledge,
the audience’s inferential process may not be faithful to the model’s underlying inference process,
unless an explicit machine inferential process is provided by the Al explanation.

G.2 Four examples presenting different combinations of the degree of plausibility and
decision correctness

@ Minor premise @ Major premise
Xhas 4 A is discriminative for ¥ Computationally- Human-
. @ Important feature set , assessed | assessed
In/pyut How X identifies 47 (&) Important feature se How A infers Y? OU;BUt plausibility plausibility
— Assess Assess
Eg% only @ all D@®
Ex.| Both features can be Features: long antennae, wide Both are distinctive Bee @is Al DB
identified from the input. | hairy legs features to discriminate V] plausible. are
.. s plausible. Both are important features for ~ Pees from flies. -'» Plausible.  plausible.
bees. .. ®is plausible. -+ Plausible.
.. @is plausible
Ex. Il Green body can be identified Features: big eyes, green Green body cannot Fly @is D@ are
from the input; ] body discriminate flies from x plausible. implausible.
Big eyes cannot be identified Both are important features bees”; -+ Plausible. .". Implausible.
from the input, as the eyes for flies. Big eyes are a distinctive
do not cover the whole face .. @is plausible. feature for flies.
to be deemed big*. .. @ is implausible.
. M is implausible.
Ex. Il Toothbrush cannot be b ¥ Feature: toothbrush Toothbrush is an irrelevant Fly @is Al D@3
identified from the input. - It is not an important feature feature to differentiate X implausible. are
.. Mis implausible. . for flies. bees and flies. .". Implausible. implausible.
.. @is implausible. . @is implausible. " Implausible.
Ex. IV Flower can be identified B Feature: flower Flower is an irrelevant Bee @is @® are
from the input. W%, ltis not an important feature for feature to differentiate V| implausible. implausible.
. s plausible. " bees. bees and flies. .. Implausible. .". Implausible.
.. @is implausible. .. @ is implausible.

Figure 11: Analysis of the four examples in Fig. [T] of the paper regarding computationally- and
human-assessed plausibility.

We provide an analysis of the four examples based on the above framework, which separates the
plausibility of an explanation into the plausibility of the three propositions, illustrated in the top row
of Fig.[TT] Example (Ex.) I is a plausible explanation for a right prediction; Ex. II is a plausible
explanation for a wrong prediction; Ex. III is an implausible explanation for a wrong prediction;
And Ex. IV is an implausible explanation for a right prediction. Here, the plausible or implausible
explanations are assessed computationally on the feature set A only.

For computationally-assessed plausibility, it calculates the similarity between humans’ and AI’s
important feature set A to the prediction Y, which is the plausibility of proposition (2). In Ex. I and
I, A is plausible because it identifies the characteristic body parts of the insect. In Ex. III and IV, A
is not plausible because it focuses on the background rather than the insect.

1Strictly speaking, the truth and falsehood judgment can only apply to a proposition, not an argument. And
the judgment of the faithfulness of an argument is termed soundness [36]. In the assessment of plausibility, we
do not emphasize the distinction between a proposition and an argument.
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For human-assessed plausibility, in addition to assessing the plausibility of proposition (2), a human
will also assess propositions (1) and (3). Such information is not provided by Al explanations in our
examples, and is mainly inferred by the users. Proposition (1) states “how the feature set A can be
identified from the input X.” Features in Ex. I (long antennae, wide hairy legs) and IV (flower) are
plausible because they can be directly localized from the input image. Ex. II has two features: a
green body and big eyes. Although the saliency map correctly localizes both features, the feature of
big eyes cannot be identified from X, as the eyes are not big enough to cover the whole face, which
is a criterion that distinguishes flies from bees. Note that such information requires some in-depth
domain knowledge, which we mark with a x. Whether one possesses such knowledge or not makes
a difference in the assessment of plausibility. For Ex. III, although the saliency map highlights the
location of the feature, it cannot be recognized as a toothbrush. Therefore, the toothbrush feature
cannot be identified from X, and proposition (1) is implausible.

Proposition (3) states “how the feature set A is discriminative features for the prediction Y.” Human
knowledge is used to both infer the most possible premise that constructs the proposition based on the
provided A, and judge the plausibility of the proposition. A in Ex. I provides distinctive features (long
antennae and wide hairy legs) to discriminate bees from flies, thus this proposition is plausible. In Ex.
I1, the feature of a green body is not a distinguishing feature for flies, and can be a characteristic of
some bees as well; the feature of big eyes that cover the entire face is a distinguishing feature for flies.
Because the green body feature is implausible, the whole proposition is implausible. In Ex. IIT and
1V, both features (toothbrush and flowers) are irrelevant features to differentiate bees and flies, thus
both propositions are implausible.

With the above analysis of the plausibility of each proposition in the four examples, we have
plausibility of an explanation assessed by human or machine, as shown in Fig. There is a
discrepancy between the two ways of assessment in Ex. II: the explanation is plausible by only
assessing the feature set A; but when humans carefully examine its premises (1) and (3), we will
identify flaws in its argument that deem it implausible. A person without in-depth domain knowledge
could also judge premises (1) and (3) as plausible. This is a misleading explanation that misleads
users to take the wrong suggestions of Al with its seemingly plausible explanation. We discuss
misleading explanations in the next two subsections.

G.3 Where do misleading explanations come from?

From the above analysis of the four examples, we can see misleading explanations (plausible
explanations for wrong predictions) exist because the computational assessment of plausibility cannot
well distinguish plausible explanations from implausible ones. The computational assessment of
plausibility can only assess the plausibility of feature set A, but not the contextual information of
the premises (propositions (1) and (3)) that are inferred by human audiences. Only human-assessed
plausibility may sometimes be able to identify the unreasonableness of misleading explanations.

Even with human-assessed plausibility, misleading explanations may still be unavoidable due to
humans’ or AI’s epistemic gaps: 1) As shown in Ex. II, users may lack in-depth domain knowledge
to discern misleading explanations; 2) The Al model may not know it is predicting incorrectly despite
the best effort to calibrate its decision certainty. Even though misleading explanations may not be
eliminated, we cannot increase the number of misleading explanations to exacerbate this issue. As
we have argued in the paper, using plausibility to evaluate or optimize XAl algorithms will increase
the percentage of misleading explanations, which should be avoided.

G.4 What are the dangers of misleading explanations?

In some tasks, misleading explanations may not be a big concern if humans can clearly recognize
the misleading explanation being implausible by incorporating contextual information from human
prior knowledge, as we show in the analysis of Ex. II in Fig.[TT] This typically happens when the
task is not ambiguous, very easy for humans to perform, or humans have complete information or
knowledge about the task. However, such ideal scenarios are not always the case in real-world tasks,
especially in cases where Al explanations are needed.

First, the common triggering motivations for users to check Al explanations include: resolving
disagreements between users and Al, verifying Al suggestions to ensure the safety and reliability
of decisions, detecting biases, improving user’s own skills and knowledge, or making new discov-
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eries [39]]. For scenarios where users need Al explanations the most, they usually do not meet the
above conditions that allow users to easily recognize misleading explanations.

Second, identifying misleading explanations requires in-depth domain knowledge (such as the
knowledge of how big the eyes should be for a fly in Fig. [TT|Ex. II) with the complete information
provided for a task (such as the right perspective of the photo to capture the characteristics of
the insect), as we show in the analysis of Ex. II. There are many real-world tasks where humans
or Al would not have access to complete information, and need to make decisions under limited
information, such as medical or financial decisions. In this scenario, it may be difficult for users to
discern misleading explanations given incomplete information of the task or users’ lack of in-depth
domain knowledge.

Third, even if users can potentially discern misleading explanations, misleading explanations can
still make the evidence for incorrect decisions more accessible to users than the evidence for correct
decisions. It may cause users to overweigh and latch onto the evidence for wrong decisions. This is
the anchoring effect in human judgment [82, [74]].

Therefore, the dangers of misleading explanations are that they have negative impacts on users’
decision correctness and task performance as stated in the paper, and may not be easily recognizable
in real-world tasks.

The fallacy of misleading explanations is that they use seemingly plausible explanations to support
the wrong decisions. In logic, this is an invalid argument as it breaks the logical link between true
premises and true conclusion. In this sense, the plausibility of explanation acts as an indicator for
decision certainty or confidence. And we should set the same goal for plausibility of XAl algorithms
as uncertainty estimation [[1]] or confidence calibration [29]], to avoid the model confidently being
wrong.

H Additional figure

Figure 12: The original image used in Fig.[T] Fig.[2] and Fig.[IT]of the paper. Photo of an Osmia
ribifloris bee on a barberry flower. Photo by Jack Dykinga, USDA Agricultural Research Service.
Public domain image, image source link: https://www.ars.usda.gov/oc/images/photos/may00/k5400-
1/,
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA] .

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
¢ Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [NA]

Justification: This is a position paper, and this type of paper does not make claims as
technical papers do. We make our position clear in the abstract and introduction (the bold
text).

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: The limitation analysis for the first empirical study is provided in the Variables
part, and the limitation analysis for the second and third empirical studies are provided in
the Limitation part at the end of each study in Appendix [E| We provide the Limitation
analysis part of theoretical problem setup at the end of Appendix [

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The whole section Appendix [F]provides the proof for Theorems|[I]and[2] The
full set of assumptions are provided at the beginning of Appendix [Fin Problem Setup.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
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Justification: We provide the data and code in the supplementary material to run the three
empirical studies in Appendix [E|

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide a readme file for the data and code files. The code files contain
detailed instructions to reproduce all experimental results.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental setting/details are described in parts labeling the Data,
Variables, AI models and XAI algorithms, and Experiment setup in Appendix [E]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We use a significance level of 0.05 and reported it in Appendix[E] The statistical
test details are described in paragraphs labeling the Statistical test in Appendix [E]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
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11.

Justification: The data analyses were not resource intensive, and the computational resources
are provided in the beginning of Appendix [E]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We provide an Impact Statement section after Conclusion.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards
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Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The secondary data analysis in Appendix [E.T| has obtained ethics approval
from the university Research Ethics Board.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.
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* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]
Justification: IRB approval was obtained for the secondary data analysis in Appendix
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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