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Abstract

Explainable artificial intelligence (XAI) is motivated by the problem of making1

AI predictions understandable, transparent, and responsible, as AI becomes in-2

creasingly impactful in society and high-stakes domains. The evaluation and3

optimization criteria of XAI are gatekeepers for XAI algorithms to achieve their4

expected goals and should withstand rigorous inspection. To improve the scien-5

tific rigor of XAI, we conduct a critical examination of a common XAI criterion:6

plausibility. Plausibility assesses how convincing the AI explanation is to humans,7

and is usually quantified by metrics of feature localization or feature correlation.8

Our examination shows that plausibility is invalid to measure explainability, and9

human explanations are not the ground truth for XAI, because doing so ignores10

the necessary assumptions underpinning an explanation. Our examination further11

reveals the consequences of using plausibility as an XAI criterion, including in-12

creasing misleading explanations that manipulate users, deteriorating users’ trust13

in the AI system, undermining human autonomy, being unable to achieve comple-14

mentary human-AI task performance, and abandoning other possible approaches15

of enhancing understandability. Due to the invalidity of measurements and the16

unethical issues, this position paper argues that the community should stop using17

plausibility as a criterion for the evaluation and optimization of XAI algorithms.18

We also delineate new research approaches to improve XAI in trustworthiness,19

understandability, and utility to users, including complementary human-AI task20

performance.21

1 Introduction22

Data-driven predictive technologies, now primarily called artificial intelligence (AI) [77], have23

become impactful in high-stakes domains such as healthcare, finance, and criminal justice. This24

underscores the importance of the research field of interpretable or explainable AI (XAI) to provide25

reasons for AI predictions in human-understandable ways [22]. The key purposes of XAI are to26

provide users with informed decision support to understand the boundaries and error patterns of AI27

capabilities, empower users to question and challenge AI predictions to hold algorithms account-28

able [11], and improve the performance of the human-AI team by enabling users to identify potentially29

uncertain or flawed AI predictions to leverage the strengths of both [33, 40]. Achieving these purposes30

can make the AI system more understandable, transparent, and trustworthy. Explainability is also one31

of the five AI ethics principles that enables other four principles of beneficence, non-maleficence,32

autonomy, and justice through intelligibility and accountability [26].33

However, deploying an XAI algorithm does not automatically guarantee explainability or its benefits34

unless the XAI passes rigorous validation. Otherwise, the XAI is suspected of ethics washing [85, 3,35

46, 35]. Evaluation methods are then vital to safeguard the scientific and responsible development of36

XAI, and should withstand critical examinations. To improve the scientific rigor of XAI research37

and development, we conduct a comprehensive examination of one of the most commonly used XAI38

criteria [62]: plausibility. Plausibility assesses the reasonableness of an AI explanation by comparing39

it with human prior knowledge [38, 62]. Doing so assumes that human explanations provide the40

ground truth for XAI algorithms. Our critical examination shows that plausibility does not exhibit41
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construct validity [6, 37] to measure explainability and its key properties, including trustworthiness,42

understandability, and transparency. In addition, using plausibility as an XAI criterion can pose43

ethical risks to users by encouraging misleading explanations (explanations that are plausible for44

wrong AI predictions), which potentially manipulate users and exploit users’ trust. To illustrate how45

plausibility is flawed as an XAI criterion, we provide two Motivating Examples in Box 1.46

Box 1
Motivating Example 1: XAI for decision support
Suppose we need to equip a 90% accurate black-box AI model with a post-hoc XAI algorithm to explain AI
predictions. If we use plausibility to select the best XAI algorithm (suppose that the candidate XAI algorithms
have similar performances on other evaluation criteria), then decision makers (such as doctors) will be more
likely to accept an AI prediction when its explanation is more plausible, say the most plausible XAI algorithm
will increase doctors’ acceptance rate by 5% compared to the second best plausible XAI algorithm.
However, according to the definition of plausibility, since plausible explanations are unconditioned on the
correctness of AI predictions, for the increased 5% acceptance cases, they have the same 10% probability of
being incorrect as the rest of acceptance cases. Then the rate of misleading cases (doctors’ rate of accepting
incorrect AI predictions for their plausible explanations) is also increased by 10%× 5% = 0.5%. An empirical
study of this phenomenon is shown in Appendix E.2. In this scenario, unconditionally making AI explanations
more plausible regardless of prediction correctness would be more likely to occlude the signals of incorrect
predictions.
Motivating Example 2: XAI for debugging or bias detection
Suppose we need to use XAI algorithms to debug AI models, such as detecting biases or wrong patterns learned
by AI. If we select or optimize an XAI algorithm based on its plausibility performance, then according to the
definition of plausibility, since plausible explanations are unconditioned on the signals of the wrongly learned
patterns, unconditionally making AI explanations more plausible would be more likely to occlude the signals of
the wrongly learned patterns. This phenomenon is empirically shown in [46].

47

Because using plausibility as an XAI criterion lacks demonstrable benefits, but rather introduces48

substantial risks of being unscientific and unethical, we posit that the community should not use49

plausibility as an XAI criterion to optimize and evaluate the XAI algorithms. This means that50

human explanations should not be regarded as the ground truth for XAI. Our analysis also yields the51

following findings1: 1) we point out how to use plausibility properly: plausibility can be used, not52

as an end, but as a means to facilitate measures of XAI utilities to users, including users’ intended53

purposes of using XAI and human-AI team performance. 2) We identify the proper ways to measure54

or improve trustworthiness, understandability, and transparency for AI explanations, and 3) identify55

the mathematical conditions to achieve complementary human-AI performance with XAI. These56

findings emphasize important yet under-explored research directions that embed users’ benefits and57

perspectives in XAI design and evaluation [94], so that to ensure XAI fulfill its intended function as a58

critical check and balance mechanism to hold AI systems accountable.59

2 Alternative view: plausibility as the measure of explainability60

We provide a formal definition of plausibility P in the context of XAI:61

P = similarity(Ehuman,EAI) (1)

Plausibility P measures the content similarity or agreement between two explanations, EAI and62

Ehuman, expressed in the same explanation form E . EAI is the machine explanation. Ehuman is the63

human explanation based on human prior knowledge on the given task and/or data. Plausibility64

can be assessed computationally or by human. Human assessment asks users to directly judge the65

reasonableness of machine explanations quantitatively or qualitatively [40, 75, 81]. Computational66

assessment approximates the human assessment of P using annotated datasets on human prior67

knowledge and computational metrics for similarity comparison: human explanations are usually68

simplified as a set of important features Ahuman, such as localization masks of important image69

features in computer vision tasks [73, 59, 93], localization masks of important words in natural70

language processing tasks [20, 48], important features or concepts with ranking or attribution [45],71

or a combination of them. Ahuman can be from a human-annotated XAI benchmark dataset [73, 59,72

93, 20, 48], or generated by another AI model that performs the corresponding localization task.73

Similarity can be calculated by feature correlation between Ahuman and AAI [15], or by using metrics74

on feature overlap, which are commonly used for localization tasks, such as intersection over union75

1This work is mainly relevant to user-oriented XAI algorithms for purposes such as decision support,
knowledge discovery, and troubleshooting for AI models. The XAI algorithms include inherently interpretable
and post-hoc methods [71].
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(IoU) [73, 63, 20] and pointing game rate (hit rate or positive predictive value) [91, 63, 42, 73]. The76

nuance between human and computational assessments is detailed in Appendix G.77

Currently, plausibility is commonly used as a criterion to optimize and evaluate XAI algorithms for78

more plausible explanations. There is a growing number of human explanation benchmark datasets to79

evaluate or optimize XAI for plausibility [73, 59, 93, 20, 48]. In a systematic review of 312 original80

XAI papers that propose a new XAI algorithm in 2014-2020, among the 181 papers that used at81

least one quantitative evaluation, 34.3% (62/181) used plausibility as the evaluation criterion, and82

plausibility is the top-chosen evaluation criterion among the twelve criteria surveyed [62]. Plausibility83

is also one of the main evaluation criteria implemented in the Quantus XAI programming library [32].84

The popularity of plausibility in XAI evaluation is the alternative view (opposed to our position) that85

regards plausibility as a good measure of explainability. Reasons (Reason 1-8) for the alternative86

view can be summarized as follows: Plausibility is exactly how we humans gauge the goodness of an87

explanation from a human explainer [90] (Reason 1), and AI explanations are designed the same88

way to mimic human explanations as the ground truth [73] (Reason 2); more plausible explanations89

indicate better predictions of the AI model [42] (Reason 3); and more plausible explanations indicate90

the AI model learns more effective features as humans [89] (Reason 4). Plausible explanations can91

make AI systems more transparent (Reason 5), improve the trustworthiness of an AI system [31]92

(Reason 6), which in turn improve the task performance of human-AI team (Reason 7). Plausible93

explanations are also more understandable (Reason 8). Our critical examination in the next section94

argues against this alternative view, and reveals why these intuitive reasons are surprisingly flawed in95

supporting the alternative view.96

3 Why is plausibility surprisingly problematic to measure explainability?97

3.1 Why is plausibility invalid to measure explainability?98

Plausibility is not a measure of explainability because doing so ignores two important facts:99

Fact 1. AI predictions are not ideal and can contain errors, uncertainties, biases, shortcuts, unex-100

pected and newly discovered patterns in training.101

Fact 2. The main purposes of explainability include identifying and articulating the ideal and102

non-ideal signals (e.g. features, patterns) in the AI prediction-making process.103

However, plausibility does not include the case of deviant signals in its definition. Furthermore,104

evaluating or optimizing XAI for plausibility can encourage more occlusion of the deviant signals, as105

illustrated in the two Motivating Examples. This is against the intended purposes of explainability106

and renders plausibility invalid in measuring explainability, according to measurement theory2 [6, 37].107

The measurement invalidity renders the use of plausibility as an XAI criterion unscientific. As we108

stated in the Introduction, XAI is intended to function as an adversarial mechanism, equipping users109

with a critical check-and-balance tool to ensure the accountability of AI systems. The role of XAI is110

similar to the opponent in an adversarial system, such as discriminator in a generative adversarial111

network, red team in software development, opposition parties in a government, and reviewers in112

peer review. Then optimizing or evaluating XAI for plausibility is like providing the opponent a113

strong incentive to construct a spurious positive semblance, which is the least thing we want from an114

adversarial mechanism. Due to the adversarial nature of XAI, human judgment of the goodness of an115

AI explanation should not be used to measure the goodness of the explanatory function. This refutes116

Reason 1 for the alternative view.117

From the conclusion that plausibility is invalid to measure explainability, which is identical to state118

that encouraging AI explanation to mirror human explanation is invalid for explainability, one can119

infer an equivalent proposition that human explanation is not the ground truth for XAI algorithms.120

This is further supported by epistemic analysis3 regarding the knowledge source of ground truth for121

XAI: XAI by definition is to provide reasons for the AI model’s prediction process, so the knowledge122

source of its ground truth is from the model’s internal prediction-making process. Faithfulness,123

another commonly used XAI criterion, is to measure the alignment of XAI algorithm with its ground124

truth [38]. Humans’ decision-making process is independent of the machine prediction process.125

Therefore, human explanation does not provide the direct grounding of the knowledge source for XAI126

2Validity, together with reliability, are the two basic properties in measurement theory. “Validity refers to the
degree to which evidence and theory support the interpretations of test scores for proposed uses of tests.” [6]

3The detailed epistemic analysis of the ground truth for XAI algorithms is provided in Appendix C.
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algorithms, although the content of human and AI explanations can overlap. This refutes Reason 2127

for the alternative view.128

We have concluded that plausibility is an invalid measure of explainability, with the equivalent129

proposition that human explanation is not the ground truth for XAI algorithms. Next, by refuting130

Reason 3-8 for the alternative view, we show why this conclusion and its equivalent proposition seem131

counterintuitive, and what the consequences are if plausibility is used to evaluate or optimize XAI132

algorithms.133

3.2 “Plausibility is invalid to measure explainability,” i.e. “human explanation is not the134

ground truth for XAI,” why do they seem counterintuitive?135

3.2.1 Because assumptions of human explanation do not automatically hold for AI136

explanation137

One reason for the counterintuitiveness of the conclusions in Section 3.1 is: the definition of XAI [22]138

frames XAI as an anthropomorphic problem [34, 4] that mimics the role and expectation of human139

explanation to “explain” or present “reasons” to humans. Therefore, it is intuitive for humans to140

attribute properties and assumptions of human explanation to AI explanation. Human everyday141

explanation is assumed to be associated with the inquired information about the explainer’s internal142

decision process, detailed in the following key assumptions. Establishing these assumptions is a143

prerequisite to meet users’ expectations of the normal role and functionality of an explanation.144

Assumption 1 (Basic function of explanation). Explanation is associated with the key rationales145

and/or evidence used in the explainer’s decision process.146

Assumption 2 (Intended purposes of explanation). The quality of explanation (i.e., its associated147

rationale and evidence) is validly associated with the quality of decision.148

The pursuit for more plausible explanations from AI system seems reasonable because it implicitly149

assumes that the properties and assumptions of human explanation also hold for AI explanation.150

However, for AI explanation, merely designing an XAI algorithm to have the desired properities and151

assumptions is insufficient to guarantee their realization, unless the XAI algorithm passes rigorous152

evalatuion on its claimed properties and assumptions, as we stated in the Introduction.153

Specifically, to make AI explanation fulfill Assumption 1, which is the basic property of any expla-154

nation to establish the provided information as explanation and make the internal decision process155

transparent, the XAI algorithm needs to pass the faithfulness test to validate that the XAI can make156

the key features and processes in prediction making transparent for the given AI model and task.157

Preconditioned by Assumption 1, Assumption 2 enables users to further use the explanation for158

their intended purposes based on the valid relationship between rationale/evidence and decision.159

According to the definition of validity in deductive logic4, there are three possible combinations that160

precondition a valid relationship between rationale/evidence and decision, and they are visualized161

as the three quadrants in Fig. 1: a right conclusion with plausible reasons (quadrant I), a wrong162

conclusion with implausible reasons (quadrant III), and a right conclusion with implausible reasons163

(quadrant IV). The combination of a wrong conclusion with plausible reasons (quadrant II) is always164

logically invalid according to the definition of validity in logic [36]. And we name such a combination165

of plausible explanations for wrong decisions the misleading explanations in the context of XAI.166

Misleading explanations can cause harms because they violate Assumption 2 of the expected role and167

function of explanations. For example, a doctor or a judge can be misled by convincingly-generated168

AI explanations and thus accept AI’s wrong recommendations. We further explore the unethical169

issues of misleading explanations in Section 3.3.1.170

By failing to incorporate human assumptions as the preconditions of XAI in its assessment, evaluating171

or optimizing XAI for plausibility inherently ignores Assumption 2 of the valid interrelation between172

the quality of explanation and the quality of prediction. Doing so can increase the likelihood of173

misleading explanations, as demonstrated in the Motivating Example 1 in the Introduction. This174

effect be illustrated in Fig. 1: without the establishment of valid interrelation between the quality175

of explanation (y axis) and the quality of prediction (x axis), pursuing plausible explanations will176

move the overall distribution of explanations in the 2D diagram upward (shown by the red arrow),177

and the direction of movement is not meaningfully related to the direction of y axis. This creates the178

4The definition of validity in logic is: “A deductive argument is valid when, if its premises are true, its
conclusion must be true.” [36]
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Figure 1: The conceptual 2D distribution diagram of AI explanations from an XAI algorithm
regarding the probability of AI decision correctness (x axis) and the degree of plausibility (y axis).

effect of moving more explanations into the misleading zone in quadrant II, indicating the increased179

likelihood of misleading explanation. Our empirical study also demonstrates this phenomenon that180

using plausibility as an XAI criterion can increase the likelihood of misleading explanations. The181

details of the study are in Appendix E.2. Our analysis refutes Reason 3 for the alternative view,182

since the interrelation between plausible explanations and good predictions does not hold when using183

plausibility as an XAI criterion.184

3.2.2 Because AI learning of plausible features is conflated with XAI presentation of plausible185

features186

The analysis in Section 3.2.1 indicates that pursuing plausible explanations can become legitimate187

given that it is preconditioned by necessary human assumptions of explanation. One way to restore the188

association between plausible explanations and good predictions in Assumption 2 is by incorporating189

human prior knowledge of important features in AI model training, as seen in previous works190

in pursuit of “right for the right reasons” [89, 70, 9, 88]. This creates the effect of pushing the191

distribution of explanations toward the upper right corner in quadrant I in Fig. 1, illustrated by the192

green arrow. In this process, the optimization of AI models to learn plausible features should be193

the driving force in order to maintain a valid interrelation between the quality of prediction and the194

quality of explanation, i.e, the correlation coefficient of y/x should be ≤ 1 to avoid crossing the195

misleading zone in quadrant II in Fig. 1. Otherwise, if the optimization of the XAI algorithm for196

explaining5 overtakes the optimization of AI model for learning (i.e., the correlation coefficient of197

y/x > 1 and begins to touch quadrant II of the misleading zone), then the speed of increase along the198

y axis is greater than the speed of increase along the x axis, indicating that the interrelation of the199

quality of explanation with the quality of prediction is weak. This situation fails to fulfill Assumption200

2 and makes the optimization of plausibility illegitimate, and is at risk of increasing the likelihood of201

misleading explanations.202

This analysis indicates that the legitimate optimization of plausibility should make the optimization203

for AI model’s learning of plausible features the driving force, not the optimization for XAI algorithm204

to present plausible features. This explains the source of confusion: Reason 4 for the alternative view205

that “more plausible explanations indicate the AI model learns more effective features as humans”206

is intuitive and reasonable, because it states the benefit of optimizing plausibility for AI model’s207

learning. But this benefit does not support the conclusion that the XAI algorithm should be selected208

or optimized for plausibility. Doing so mistakes the target of optimization of AI models for XAI209

algorithms, and misattributes the improvement in AI model’s learning capacity (the cause) to the210

improvement in XAI algorithm’s presentation capability (the effect). Our analysis suggests that when211

using plausibility to optimize the training of the AI model to learn plausible features, it should not212

be clearly stated as such, and should not be confused with the optimization of the XAI algorithm to213

present plausible features.214

5We note that evaluating and selecting XAI algorithms based on higher plausibility score, which is common
for post-hoc XAI algorithms, is also a form of (meta-)optimization of XAI algorithms.
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3.3 What are the consequences of evaluating or optimizing XAI for plausibility?215

In the previous Sections 3.1 and 3.2, we examined the underlying reasons that render plausibility216

unscientific and unethical as an XAI criterion. Next, we analyze what the consequences are regarding217

the four main outcomes commonly associated with explainability, as mentioned in Reason 5-8 for218

the alternative view. They are transparency, trustworthiness, the task performance of human-AI219

team, and understandability. For Reason 5 on the benefits of using plausibility as an XAI criterion220

for transparency, our analysis of Assumption 1 and previous work [38] show that transparency and221

plausibility are independent of each other given the AI explanation, and transparency should be222

measured by faithfulness. We provide a causal diagram showing the conditional independence223

in Appendix D. Next, we focus on the relationship of plausibility with trustworthiness (Reason 6),224

human-AI team performance (Reason 7), and understandability (Reason 8).225

3.3.1 Using plausibility as an XAI criterion can destroy trust and manipulate users226

Reason 6 to enhance stakeholders’ trust in an AI model by making XAI algorithms plausible is227

based on the rationale that [Premise 1] a plausible explanation can increase user’s local trust in228

an AI prediction, thus [Premise 2] the global trust in the AI model can be increased accordingly229

by the accumulation of high local trust in AI predictions. Premise 1 is consistent with our daily230

experience [58, 52, 57, 90]. Prior empirical studies provide support for Premise 1 [14, 64], and we231

provide additional empirical evidence on this relationship between user’s local trust and explanation232

plausibility in Appendix E.1.233

Premise 2 does not hold because global trust is a complex process that cannot be simply reduced234

to a linear combination of local trust. According to trust theories, global trust is developed by first235

assessing the dependability and reliability (such as credentials, previous records, and reputation)236

of an entity that provides a partial foundation for provisional global trust [54]. This provisional237

global trust is then deepened by repeated interactions in three stages of calculus-, knowledge-, and238

identification-based trust. In the first stage, calculus-based trust is based on the belief that the other239

will be punished if being untrustworthy. The second stage of knowledge-based trust is grounded in240

more information that makes the other’s behavior more predictable. Predictability enhances global241

trust even if the other is predictably untrustworthy. Lastly, the third stage of identification-based trust242

is the belief that one’s interests can be fully defended and protected without monitoring. Positive243

experiences in the interactions can stabilize global trust at a certain stage or move to the next stage.244

As the stage progresses, trust becomes harder to build as well as to destroy [49].245

Regarding our case of XAI, as we emphasized in Facts 1 and 2 in Section 3.1, AI predictions are not246

ideal, and the role and responsibility of XAI are to faithfully present the deviant-from-ideal signals in247

the AI prediction process. This indicates that when the certainty or quality of an AI prediction is low,248

user’s local trust in the AI prediction should be low to reject AI, and vice versa. In other words, to249

enhance global trust in the AI system, the role of XAI is not to enhance local trust, but to calibrate250

local trust [92] in particular predictions to make the AI model’s behavior more predictable to users251

according to trust theory [49].252

As we analyzed in Section 3.1, evaluating or optimizing XAI for plausibility can neither enable253

XAI to perform its intended role to present non-ideal AI prediction process nor calibrate user’s local254

trust. To the contrary, making XAI algorithms plausible can increase the likelihood of misleading255

explanations shown in Section 3.2.1. These misleading explanations can manipulate users, take256

advantage of the fact in Premise 1 and exploit users’ trust in AI with specious explanations [54],257

which eventually can lead to users’ distrust.258

One may argue that despite the unethical issue of misleading explanations and the possibility of259

distrust, evaluating or optimizing XAI algorithms for plausibility can still create benefit by improving260

the task performance of human-AI team. Therefore, in certain circumstances, the benefit may261

overweigh the drawbacks, which still make plausibility a legitimate criterion for XAI algorithms. We262

argue against this opinion, since it falsely frames ethics, scientific integrity, and users’ autonomy as a263

trade-off with performance, not as the prerequisites for performance improvement. This trade-off264

reflects the long-standing tension between explanation and prediction [12, 72]. As an analogy, the265

relationship between ethics and performance can be regarded as the brake and the engine of a car,266

similar to the adversarial system we mentioned. Falsely framing them as a trade-off can limit how far267

the performance can go. Our analysis in the next subsection indicates that there may be a third way268

to synergize, not to trade off, explanation and performance.269
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3.3.2 Using plausibility as an XAI criterion undermines human autonomy and cannot achieve270

complementary human-AI performance271

We use the accuracy metric to measure task performance. In the context of collaborative human-AI272

team, suppose h, m, and t represent the accuracies of human, AI, and human-AI team, respectively,273

then ideally with the assistance of AI prediction and its explanations, we want the human-AI team274

to outperform either human or Al alone t > max(h,m). This is termed complementary human-AI275

team performance in the literature [8, 92, 50, 40]. Complementary human-AI performance may be276

regarded as one of the most important utilities of XAI in high-stakes decision-support tasks [8, 86].277

It is intuitive to see that by optimizing XAI algorithms for more plausible explanations, it maximizes278

local trust, and humans would tend to rely more on AI. Provided m > h, then the team accuracy t279

can increase compared to human performing the task alone h. However, there is an upper bound of t280

that cannot exceed m, as shown in Theorem 1 (proofs for theorems are in Appendix F). This means281

complementary human-AI team accuracy cannot be achieved when using plausibility as the XAI282

criterion.283

Theorem 1 (Case of Impossible Complementarity for XAI). Let h, m, and t be the accuracies of the284

human, AI, and human-AI team, respectively; and f(Pi) be a function of the explanation plausibility285

Pi denoting the probability of human acceptance of the AI suggestion for the instance xi ∈ D, then:286

If plausibility is independent of the AI decision correctness, then the human-AI team can never287

achieve complementary accuracy, i.e.: t ≤ max(h,m).288

Theorem 1 is also evidenced by empirical studies [40, 8, 16]. Here, the maximum gain in performance289

is equivalent to delegating the decision-making task to a black-box AI with accuracy m. The290

involvement of human decision-maker and XAI provides no benefit to task performance over their291

counterpart black-box model alone. Furthermore, human autonomy is undermined in either case:292

using a black-box model makes the decision process opacity to inspect and contest, while optimizing293

XAI algorithms for more plausible explanations increases misleading explanations to deceive users.294

To summarize, using plausibility as the XAI criterion fails to enable XAI to perform its expected295

outcomes to improve collaborative human-AI task performance and support human autonomy in296

decision making.297

Given that humans and AI err differently, the ideal role of AI explanation in improving performance298

is to help humans discern potential uncertainty and mistakes in AI [7], so humans can overwrite299

AI’s potentially uncertain or incorrect predictions with their own judgment. Theorem 2 shows the300

theoretical conditions on plausibility to achieve complementary human-AI team performance.301

Theorem 2 (Conditions for XAI Complementarity). Let h, m, and t be the accuracies of the302

human, AI, and human-AI team, respectively; f(Pi) be the probability of human acceptance of an303

AI suggestion for an instance xi ∈ D, where f(.) is a monotonically non-decreasing function of the304

explanation plausibility Pi; and P r
i and Pw

i be the plausibility values of an AI explanation when an305

instance xi is predicted correctly or incorrectly, then:306

Complementary human-AI accuracy can be achieved, i.e., t > max(h,m), when307 {
h ≥ m and E[fr] > h(1−m)

m(1−h)E[f
w]; or,

m > h and E[fr] > h(1−m)
m(1−h)E[f

w] + m−h
m(1−h)

where E[fr] and E[fw] are the expectations of f(P r
i ) and f(Pw

i ) over the dataset D, indicating308

among the correctly or incorrectly predicted instances of AI, how many are accepted by human.309

From Theorem 2, we can get Corollary 1 in Appendix F that E[fr] should be greater than E[fw],310

and accordingly, the mean plausibility for correctly predicted data E[P r] should be greater than311

the mean plausibility for incorrectly predicted data E[Pw] as a prerequisite to fulfill the conditions312

in Theorem 2. This indicates that plausibility can be evaluated or optimized to correlate with AI313

decision correctness to achieve complementary human-AI performance. Furthermore, since a low314

E[Pw] is preferred and a high E[Pw] is the definition of misleading explanation, fulfilling conditions315

in Theorem 2 reduces the number of misleading explanations. It also enables users to appropriately316

calibrate their local trust depending on prediction reliability [92, 63], and making the model behavior317

including its potential limitations and mistakes more predictable to users. This in turn may improve318

global trust, as it is in accordance with the above knowledge-based trust in the trust theory [49, 68].319

We conduct a simulation experiment in Appendix E.3 to explore variable interactions and their effect320
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A. More understandable (U)
≠ More plausible

P1= 0.4 P2= 0.9

U1: It is 
unclear 
whether 
it is 
focusing 
on the 
legs or 
flowers

ΔP1→2 = 0.5

ΔU1→

2

U2: Looks like it is more 
focusing on the legs 

P3= 0.4 ΔP1→3 = 0

ΔU1→

3

U3: Clearly it is focusing 
on legs and flowers

legs, flower

How X identifies A? How A infers Y ?Input Output② Important feature set 
③ Major premise① Minor premise

A. Structure of explanation in syllogistic form

Input Output② Important feature set 

Bee
① It is unclear what AI focuses on ③ It shows no conclusive features for 

the prediction

Plausibility
[0, 1] 

Understandability 

0.4, implausible Not understandable 

The overlap 
between 
human and AI 
explanation

B.     Three cases of different levels of plausibility and understandability 

Bee
① It looks like the AI is more 
focusing on legs

③ Legs are a discriminative feature for 
the prediction Understandable 

Bee
① Text and image clearly indicates that 
AI focuses on the leg and flower features

③ Legs are a discriminative feature, and 
flowers are a spurious feature for prediction Understandable 

Case

1

2

3

Features: 

Difficult to infer 
from the premise

Easy to infer 
from the premise

0.9, plausible

0.4, implausible

Figure 2: Illustration of the form of explanation and the three cases on understandability.
on team performance, with the empirical results aligning with theoretical findings of Theorems 1321

and 2.322

3.3.3 Plausibility improves understandability at the expense of neglecting other possibilities323

of enhancing understandability324

Lastly, we investigate the relationship between plausibility and understandability. Based on deductive325

logic and relevance theory in pragmatics [76], we propose a general framework of how humans make326

sense of the AI prediction process based on the provided explanation. As shown in Fig. 2-A, we327

dissect the human sense-making process into three steps 1 - 3 according to the form of syllogism6:328

1 is the minor premise in a syllogism that answers “How is the important feature set A identified329

from the input X?”; 2 is the presentation of the important feature set A; and 3 is the major premise330

that answers “How does the important feature set A infer the prediction Y ?” An explanation make the331

prediction process understandable by providing premises and features to facilitate users’ successive332

steps of intuitive inference from input X to conclusion Y , i.e.: explanations help users connect dots333

in their reasoning from X to Y [19, 56, 55].334

We argue that plausible features can only contribute a small portion to understandability by corre-335

sponding to premises (“dots”) that are easy to infer (connect) in user’s chain of reasoning (sufficient336

condition), but cannot provide other forms of information to complete users’ chain of reasoning337

(necessary condition). To illustrate, let’s look at three cases in Fig. 2-B:338

In this task to classify bees vs. flies from images, we show three explanations with different339

plausibility scores P1 to P3 and human understandability levels U1 to U3. Explanations are shown in340

the explanation forms of image mask and text to denote the important feature set A. AI and human341

explanations are shown in blue and red, respectively.342

For Case 1, U1 is low, because the explanation failed to help humans infer meaningful premises:343

humans cannot identify a definitive feature from the implausible image features, and cannot infer344

a conclusion from the features accordingly. Here, the implausible features fail to provide relevant345

information for the given context that facilitates humans’ interpretation [76].346

Case 2 has improved understandability U2 compared to Case 1, because the human inferential steps347

are all connected: By having plausible features that are similar to humans’ important features, the AI348

explanation directly leverages the existing human knowledge and inferential steps. The difference349

between Cases 1 and 2 shows plausible features are a sufficient condition for understandability.350

Case 3 shows that without leveraging plausible features, understandability can still be achieved by351

increasing the expressive power of the explanation form E . Case 3 changes the explanation form352

from an image mask to a mask with text describing the highlighted features. Although it has the353

same low plausibility score as Case 2, Case 3 still improves understandability, because the text354

description provides explicit evidence to confirm the important features that are implicitly indicated355

in the mask [76]. This indicates that as long as the explanation can strengthen the premises in humans’356

chain of reasoning from input to prediction, understanding can be reached without being confined to357

human plausible features. Case 3 provides a counterexample for the argument that “plausible features358

are a necessary condition for understandability.”359

The three cases show that plausible features are a sufficient but not necessary condition of under-360

standability. This greatly limits the use of plausibility as a measure of understandability, including:361

1) To achieve understandability, the features need to be plausible enough to reduce ambiguity in362

human inference, otherwise there is still uncertainty in humans’ interpretation and understanding.363

This means in a range from 0 to 1, an increase of plausibility score from 0.1 to 0.4 may not be helpful364

for understandability, because much ambiguity still remains in the explanation. This phenomenon365

6 “A syllogism is a deductive argument in which a conclusion is inferred from two premises.” [36]
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suggests that plausibility does not have a linear relationship with understandability, and an increment366

in plausibility may not necessarily lead to an increment in understandability. 2) Because plausible367

features are only a sufficient but not necessary condition for understandability, explanations with368

plausible features are a small subset of understandable explanations. There are other kinds of un-369

derstandable explanations that achieve understandability without being plausible, for example, by370

strengthening human inferential steps as shown in Case 3. This shows plausibility cannot measure the371

whole spectrum of understandable explanations. 3) Since plausibility cannot cover the full spectrum372

of understandable explanations, when using plausibility as the XAI criterion, explanations with373

plausible features are prioritized over other possibilities of understandable explanations. This may374

discourage the exploration of other possible approaches to achieve understandability.375

4 How to use plausibility properly? Use it as a means, not as an end376

Our examination in Section 3 shows that although using plausibility as an XAI criterion may seem377

intuitive, it is actually invalid because doing so violates the prerequisites and assumptions that enable378

XAI algorithms to perform its intended functions and purposes. This provides implications for379

XAI evaluation in general: First, the evaluation of XAI should prioritize tests on the fulfillment of380

Assumption 1 that establishes the piece of information as “explanation” and aims to make the AI381

prediction process transparent. Such tests are termed faithfulness in XAI evaluation [38], which382

should be considered as the basic test for any XAI algorithm. Then depending on specific usage383

scenarios, optional evaluations of XAI can be conducted to assess the fulfillment of the particular384

intended purposes of using AI explanations and their underpinning assumptions.385

For example, Assumption 2 underpins several primary intended purposes, including decision ver-386

ification/trust calibration, bias and bugs detection, new knowledge discovery. Different purposes387

have different required correlations between the quality of explanation and the quality of prediction,388

which can be visualized as the corresponding zones in Fig. 1. Decision verification/trust calibration is389

further associated with the downstream objective of the task performance of human-AI team. For390

these intended purposes, user studies and computational assessments can be performed to measure391

how well the quality of explanation can exhibit the desired interrelation with the intended purposes.392

Because the quality of explanation defines plausibility, plausibility measure can play a role in the393

assessment of these intended purposes of XAI. Here, plausibility is no longer the end objective of XAI394

evaluation and optimization. It is an intermediate measure to facilitate the downstream assessment on395

the interrelation between plausibility and the quality of prediction. We list prior works as examples396

that use plausibility as a means for the intended purposes of decision verification [42] and bias397

detection [2, 78].398

In addition to the evaluation on the efficacy of XAI algorithms, another equally important evaluation399

aspect is conducting thorough assessments of the scopes, limitations, weaknesses, failure modes, and400

risks of XAI algorithms [43, 13, 44]. Our examination identifies the unethical issue of misleading401

explanations. Controlling its number under a certain threshold and declaring its probability of402

occurrence and potential risks should be considered as an important aspect of the evaluation and403

limitation acknowledgment of XAI algorithms.404

5 Conclusion405

To improve the scientific rigor of XAI, we conduct a critical examination of the use of plausibility406

as an XAI criterion. Our examination shows using plausibility as the XAI criterion is unscientific,407

because plausibility could not measure explainability, transparency, and trustworthiness, and cannot408

measure the full spectrum of understandability. Using plausibility as the XAI criterion is also409

unethical, because it increases misleading explanations, can cause distrust, and is detrimental to410

human autonomy. Therefore, we call the community to stop using plausibility as the XAI criterion to411

evaluate or optimize XAI algorithms. This means human explanations are not the ground truth for412

XAI algorithms.413

Our analysis also suggests ways to improve XAI: Transparency can be improved by increasing414

faithfulness. Understandability can be improved by increasing the expressive power of the explanation415

form. Trustworthiness and human-AI team performance can be improved by enabling users to416

appropriately calibrate their local trust, and we provide two theorems that identify the mathematical417

conditions to achieve complementary human-AI performance. We emphasize that the optimization of418

AI model to learn plausible features should not be confused with the optimization of XAI algorithms419

to present plausible features. We also suggest ways to improve XAI evaluation paradigm by using420

plausibility as an intermediate measure to optimize users’ intended purposes of using AI explanations.421
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Impact Statement422

By critically examining the common criterion of explainable AI, this work aims to prevent the423

negative impacts of explainable AI techniques if optimized or evaluated inappropriately. Contrary424

to the common sense that developing and deploying ethical AI techniques —- such as explainable425

AI —- can always create positive societal impacts, we argued in the beginning of this paper that if426

explainable AI techniques are not properly developed and assessed, they could create the “ethics427

washing” effect [85, 25, 67, 27] that causes harms by “making unsubstantiated or misleading claims428

about, or implementing superficial measures in favour of, the ethical values and benefits of digital429

processes, products, services, or other solutions in order to appear more digitally ethical than one430

is.” [25]431

From our critical examination, we identified the negative societal impacts of using plausibility as the432

criterion to evaluate or optimize explainable AI algorithms, including: increasing the likelihood of433

misleading explanations that can deceive and manipulate users to trust or accept faulty AI suggestions;434

undermining human autonomy; being detrimental to the task performance of the human-AI team;435

and influencing the research agenda of explainable AI by ignoring other possibilities of enhancing436

understandability. We hope this work can facilitate the community’s critical inspections of current437

practice in the research and development of explainable AI to achieve its intended ethical purposes438

and create more positive societal impacts.439
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A Definition of relevant XAI terms732

Table 1: As there is a lack of unified definitions for the key concepts commonly encountered in
the XAI field, and some concepts are often intertwined with each other, we provide the working
definitions to clarify the scope of the concepts discussed in this work.

Term Definition
Accountability According to Doshi-Velez et al. [23], accountability is “the ability to

determine whether a decision was made in accordance with procedural
and substantive standards and to hold someone responsible if those
standards are not met.”

Explainability In this work, we use explainability and interpretability interchange-
ably to denote the feature in an AI system that can explain the ra-
tionales of AI decisions to users in understandable ways. Explain-
ability/interpretability differs from AI model visualization in that ex-
plainability emphasizes the intention and behavior of “explaining” and
complies with all the social assumptions in human explanatory com-
munication [30, 76].

Faithfulness Faithfulness is the level at which explanations accurately represent the
prediction process of the AI model [38]. In the literature, it is also
called fidelity or truthfulness [28, 42].

Plausibility According to Jacovi and Goldberg [38], plausibility is how convincing
the explanation is to humans, and they differentiated plausibility from
faithfulness, where the former relied on human judgment or human-
provided explanations involved.

Transparency According to Markus et al. [53], a model is transparent “if the inner
workings of the model are visible and one can understand how inputs
are mathematically mapped to outputs.” While some XAI literature
uses transparency as a synonym for understandability [10, 5], we use
transparency to emphasize exposing the inner workings of the AI
model, and use understandability to emphasize the human factors in
comprehending the decision rationales of an AI model.

Trustworthiness According to the Oxford English Dictionary, trustworthiness is “the
ability to be relied on as honest or truthful.”

Understandability According to Barredo Arrieta et al. [10], understandability “(or equiva-
lently, intelligibility) denotes the characteristic of a model to make a
human understand its function – how the model works – without any
need for explaining its internal structure or the algorithmic means by
which the model processes data internally.”
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B Symbol table733

Table 2: Reference of symbols and their definitions used in the paper. r.v. – random variable

Symbol Definition Introducing
place

A Important feature set Section 2
E Explanation Eq. (1)
E Explanation form Section 2
Pr Probability Theorem 1
xi An data instance in the dataset D = {x1, . . . , xN} Theorem 2
P A real-valued r.v. of the plausibility measure of an explanation E. Its

subscript i denotes P is for the explanation of an instance xi ∈ D
Eq. (1)

Ci A Bernoulli r.v. of an instance xi being correctly predicted by a decision-
maker. The superscript of C denotes the identity of the decision-maker
being machine, human, or team (human assisted by AI).

Proof
of Theo-
rem 1

h Accuracy of human performing the task alone on the given dataset D Theorem 1
m Accuracy of an AI model performing the task alone on the given dataset

D
Theorem 1

t Accuracy of the human-AI team performing the task on the given dataset
D

Theorem 1

Bi A Bernoulli r.v. of the AI suggestion of instance xi being accepted by
humans

Proof
of Theo-
rem 1

f(Pi) Pr(Bi = 1) = f(Pi), parameter for the r.v. Bi, denoting the probability
of human accepting the AI suggestion for xi explained by AI explanation
Ei with plausibility value of Pi; f(.) is the function of human factors that
decide to accept or reject AI given Pi

Theorem 1

P r
i Shorthand for Pi|CAI

i = 1, which is the plausibility Pi of an explanation
given the instance xi is correctly predicted by AI (CAI

i = 1)
Theorem 2

Pw
i Shorthand for Pi|CAI

i = 0, which is the plausibility Pi of an explanation
given the instance xi is incorrectly predicted by AI (CAI

i = 0)
Theorem 2

f(P r
i ) Shorthand for f(Pi|CAI

i = 1), which is the human acceptance of an
AI suggestion (if it is correctly predicted, CAI

i = 1) explained by AI
explanation Ei with plausibility P r

i

Theorem 2

f(Pw
i ) Shorthand for f(Pi|CAI

i = 0), which is the human acceptance of an
AI suggestion (if it is incorrectly predicted, CAI

i = 0) explained by AI
explanation Ei with plausibility Pw

i

Theorem 2

E[fr] Shorthand for E[f(P r)], which is the conditional expectations of
f(Pi|CAI

i = 1). It measures the true positive rate that among the correctly
predicted instances of AI, how many are accepted by human

Theorem 2

E[fw] Shorthand for E[f(Pw)], which is the expectation of f(Pi|CAI
i = 0).

It measures the false positive rate that among the incorrectly predicted
instances of AI, how many are accepted by human

Theorem 2

E[P r] The expectation of Pi|CAI
i = 1, which is the mean plausibility for

correctly predicted data
Corollary 1

E[Pw] The expectation of Pi|CAI
i = 0, which is the mean plausibility for

incorrectly predicted data
Corollary 1

L The line that depicts the relationship between E[fw] and E[fr] in Theo-
rem 2

Eq. (2)

C Epistemic analysis of the ground truth for XAI algorithms734

We extend the epistemic analysis of the ground truth for XAI algorithms in Section 3.1. XAI735

algorithms are grounded in the AI model’s internal prediction-making process. AI model’s prediction736

process is grounded in the training data and human prior knowledge. Then can we say that XAI737
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algorithms are also grounded in the training data and human prior knowledge? This is equivalent to738

state that the human prior knowledge or human explanations can be served as another ground truth739

for XAI algorithms, in addition to the ground truth of AI model’s prediction process.740

We argue that the above two statements are wrong: XAI algorithms are not grounded in the training741

data and human prior knowledge, and human prior knowledge or human explanations cannot be742

served as the ground truth for XAI algorithms. This is because in the above deduction from grounding743

XAI algorithms in the AI model to human prior knowledge, it utilizes the assumption that the training744

data and human prior knowledge can be reduced to the trained AI model. This assumption does not745

hold because the training data and human prior knowledge is irreducible to the AI model, according746

to the view of complexity science [80, 18]. As the common aphorism “All models are wrong, but747

some are useful” states, AI models can be useful abstractions of the complexities of the training data748

and human prior knowledge, but cannot fully represent them. There will always be discrepancies749

between the AI model and training data/human knowledge, such that the performance of AI models750

cannot reach the perfect state of being error-free.751

The fact that human explanations are not the ground truth for XAI algorithms indicates that we should752

not mistake the explanatory task for a predictive task: in a predictive task, the goal is to predict the753

most likely human explanation for the given circumstance. However, this is not the goal for XAI754

algorithms.755

D Plausibility is conditionally independent of transparency756

Plausibility
P

AI model

XAI algorithm Human explanation

AI explanation
E

Faithfulness/
Transparency

F

Method to measure 
faithfulness

Method to measure plausibility (similarity measure)

F ⊥ P | E

Figure 3: The causal diagram (directed acyclic graph) shows our qualitative causal assumptions on
variables related to plausibility and faithfulness/transparency.

In the scope of XAI research, a model is transparent “if the inner workings of the model are visible and757

one can understand how inputs are mathematically mapped to outputs” [53]. While some literature758

uses transparency and understandability interchangeably [10, 5], we distinguish the two by using759

transparency to denote the system aspect of its inner workings, and understandability to denote760

the human aspect of understanding a model (Table 1). We argue that transparency and plausibility761

are conditionally independent given AI explanations. Thus, transparency cannot be measured by762

plausibility.763

Once we separate the human aspect from transparency, transparency solely denotes manifesting the764

inner workings of the AI model’s prediction process. The way to manifest is through XAI algorithms.765
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The capability of XAI algorithms to faithfully manifest the AI model’s inner workings defines and is766

quantified by faithfulness. Then, in the context of XAI, we can use faithfulness as a synonym for767

transparency. Prior literature has argued that faithfulness and plausibility may be two orthogonal768

concepts of XAI, and should not be confused with each other [38, 69, 62]. We analyze the relationship769

between plausibility and transparency/faithfulness using a causal diagram [65, 24, 79] (Fig. 3).770

The causal diagram in Fig. 3 represents our causal assumptions. The inputs and the associated method771

to calculate a variable are considered to be the cause of the variable. AI model and XAI algorithms772

are plug-ins to each other, and they are assumed to be independent. AI explanation is calculated from773

the AI model and XAI algorithm. The faithfulness score of an XAI algorithm is calculated using the774

AI explanations and AI model as inputs to a faithfulness method. The plausibility score is calculated775

by comparing human and AI explanations using a similarity measure (Eq. (1)). Based on the causal776

diagram, conditioning on AI explanations d-separates7 plausibility and faithfulness/transparency.777

In the calculation of faithfulness and plausibility, the AI explanation is an observed variable, then778

plausibility and faithfulness/transparency are conditionally independent of each other given the AI779

explanation. Because of the conditional independence between the two, plausibility cannot serve as780

an indicator to measure transparency.781

E Empirical studies782

We conduct three empirical data analyses:783

1. We use data from a doctor user study [40] to test Premise 1 used in Section 3.3.1 that784

plausible explanations can increase user’s local trust in an AI prediction.785

2. We use data from a computational study [42] to demostrate the phenomenon identified786

in Section 3.2.1 that using plausibility as the criterion to select XAI algorithms can increase787

the likelihood of misleading explanations.788

3. We conduct a simulation experiment to explore the conditions of complementary perfor-789

mance in Section 3.3.2.790

The first two data analyses are for new research questions that were not covered by the scope of the791

original studies. In our data analyses, we use a significance level of α = 0.05. Statistical analyses792

were performed using the Python statistical package Pingouin8. Data and code for the analyses are793

provided in the supplementary material. The data analyses were conducted on a 4-core CPU laptop794

computer, and the time of execution for the scripts was usually within seconds.795

E.1 Testing the hypothesis on the relationship between plausibility and local trust796

Hypothesis. In Section 3.3.1 on the relationship between trust and plausibility, we introduce Premise 1797

that users have higher local trust in AI suggestions with more plausible explanations. This hypothesis798

is included in Assumption 2 of human explanation in Section 3.2.1, and is also one of the assumptions799

(Conjecture 1) for Theorem 2. Here, we aim to test the hypothesis empirically.800

Data. To test the hypothesis, we conduct a secondary data analysis based on data collected from a801

clinical user study [40]. The study was conducted in an AI and explanation-assisted clinical decision-802

making setting. The study recruited 35 neurosurgeons, each reading 25 magnetic resonance images803

(MRIs) to grade the brain tumor into high or low grade. For each MRI, doctors first gave their initial804

judgment. Then the AI model provided a second opinion accompanied by its explanation to assist805

doctors in making a final decision. The explanation was a heatmap showing the important image806

regions for the AI prediction. Doctors initial judgment and final decision were recorded. Doctors807

also gave a plausibility score for each AI explanation on a 0–10 scale on the question: “How closely808

does the highlighted area of the color map match with your clinical judgment?” The study design and809

results are detailed in [40]. The secondary analysis of data was approved by Anonymous University810

Research Ethics Board with Ethics Application Number 30001984.811

Variables. In our analysis, the independent variable is the doctors’ plausibility assessment on a scale812

of 0-10, and the dependent variable is the binary variable of the agreement of doctors’ final decisions813

7For the definition of d-separation, see Definition 1 in [65].
8http://pingouin-stats.org/index.html
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with AI predictions. We use humans’ behavior of reliance on AI (accept or reject AI suggestion)814

as an observable variable for the latent variable of human local trust [83, 47]. The variable of815

doctors’ agreements with AI is a weak indicator of doctors accepting AI suggestions, because this816

task was a binary classification problem, and if doctors final decisions agreed with AI suggestions,817

it could be due to doctors following their own judgments, or following AI suggestions; If doctors818

final decisions disagreed with AI suggestions, it was due to doctors following their own judgments819

and rejecting AI suggestions. Therefore, the group of doctors’ disagreement with AI reflects doctors’820

decisions to reject AI suggestions; the group of doctors’ agreements with AI is a mixture of doctors’821

decisions to accept and reject AI suggestions, and the study design could not differentiate between822

the two scenarios. Although being imperfect, to the best of our knowledge, this is the only data that823

provides plausibility measure and approximated behavior measure on trust, and we could not find824

other publicly available datasets that include these two pieces of information. Future user studies825

should improve the study design, for example, by directly asking users about their decisions on826

whether to accept or reject AI suggestions.827

Data distribution. Table 3 and Fig. 4 show the plausibility distribution for the two groups when828

doctors agree or disagree with AI.829

Statistical test. We test the null hypothesis that when doctors agree with AI, the plausibility level830

is no higher than the plausibility level when doctors disagree with AI. Since the data do not meet831

the assumption of normality for the t-test, we conduct a one-sided Mann–Whitney U test to test the832

hypothesis. It shows the explanation plausibility score is significantly higher for the group when833

doctors agree with AI (M±SD: 6.45± 2.82) than the group when doctors disagree with AI (M±SD:834

3.82± 2.56), U = 46533.0, p-value= 3.29× 10−16.

Table 3: Statistical summary of physicians’ assessment of explanation plausibility for two groups on
whether doctors’ final decisions agree or disagree with AI suggestions. It lists the mean, standard
deviation, min, median, max, 25%, and 75% quantile of the plausibility score on a 0–10 scale.

Group Number of decisions Plausibility
M±SD Min 25% Median 75% Max

Agree 649 6.45±2.82 0 5 7 9 10
Disagree 95 3.82±2.56 0 2 4 5.5 10

835
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Figure 4: Histogram of physicians’ assessment of explanation plausibility on a 0–10 scale. The blue
(left) and orange (right) bars are the distributions of groups when doctors’ final decisions agree or
disagree with AI suggestions, respectively. Since the numbers of data are imbalanced between the
two groups, the histograms visualize the relative probability of each plausibility score within a group.
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Causal analysis. To further determine the causal effect of plausibility on doctors’ local trust, we836

conduct a causal analysis [84]. We calculate the average treatment effect (ATE) [61] of plausible837

explanation (X = 1, which is defined by P > 5) to doctors’ agreement with AI (Y = 1), by838

controlling the covariant on MRI case easiness Z, which is calculated by participants’ mean accuracy839

of each MRI case. Using logistic regression adjustment as an outcome model for Pr(Y = 1|X,Z),840

ATE = Pr(Y X=1 = 1)− Pr(Y X=0 = 1) = 0.94− 0.77 = 0.17, indicating plausible explanations841

have an effect of increasing doctor’s agreement with AI with a probability of 0.17.842

The above analyses show that AI explanations with higher plausibility leads to doctors’ higher843

agreement with AI suggestions. As stated above, because disagreements can reflect doctors’ rejection844

of AI suggestions, and agreement is a mixture of doctors’ acceptance and rejection of AI suggestions,845

if rejections in the agreement group follow the same distribution as rejections in the disagreement846

group, then the results using agreement measure tend to underestimate the difference between847

acceptance and rejection. Therefore, the empirical analyses provide indirect evidence to support our848

hypothesis that plausible explanations can increase users’ local trust manifested in their behavior of849

being more likely to accept AI decisions.850

E.2 Visualizing the effect of using plausibility for XAI evaluation851

Hypothesis. In Section 3.2.1 and the Motivating Example 1 in Section 1, we deduce the conclusion852

that selecting XAI algorithms based on plausibility would increase the likelihood of misleading853

explanations. This is the hypothesis that we test here using empirical data.854

AI models and XAI algorithms. This analysis uses data from a computational evaluation of XAI,855

where five convolutional neural network (CNN) models were trained on a binary medical image856

classification task to grade brain tumors from MRI images. The five 3D CNN models only differed in857

their random initialization of parameters. The mean accuracy of the five models was 0.8946±0.0199.858

Then 16 post-hoc XAI algorithms were used to explain the trained models. The included XAI859

algorithms use gradient- or perturbation-based methods. The generated AI explanations are in the860

explanation form of a heatmap that highlights the important regions for prediction. The study details861

are in [42].862

Variables. The dataset used to train the AI model includes human-annotated segmentation masks863

for brain tumors. Therefore, the independent variable of plausibility is calculated by the percentage864

of important features within the lesion mask. The dependent variable is the number of misleading865

explanations. A misleading explanation for a data instance xi is defined as an explanation that has866

a high plausibility Pi and a low probability of AI prediction correctness Pr(CAI
i = 1), and their867

difference is big enough with Pi − Pr(CAI
i = 1) > β. Both Pi and Pr(CAIi = 1) are in the range868

of [0, 1], and β is set to be a number around the higher tail in a distribution. In our analysis, we869

set β = 0.75. We use the probability of the ground truth label to represent Pr(CAI
i = 1). We use870

the average plausibility from a total of 370 test instances to rank Pi of an XAI algorithm. The test871

instances were aggregated from the five similarly trained models on a test set containing 74 instances.872

Statistical test. Since the data fail to meet the assumption of normality for Pearson’s correlation, we873

conduct a nonparametric Spearman’s correlation test to test the hypothesis. The result shows that874

among the 16 post-hoc XAI algorithms, there is a high Spearman’s correlation between the percentage875

of misleading explanations and the average plausibility, r(14) = 0.84, p-value= 4.7× 10−5. Fig. 1876

visualizes the distribution of misleading explanations of the 16 XAI algorithms. This observation is877

in accordance with our conclusion in Section 3.2.1 that evaluating or selecting XAI based on high878

plausibility increases the likelihood of misleading explanations.879
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Figure 5: The 2D distribution of AI explanations regarding the probability of AI decision correctness
Pr(CAI = 1) (x axis) and plausibility P (y axis) for the 16 XAI algorithms. Each dot is a test
instance, and the color represents the identity of the five similarly trained models. Each subplot is the
conceptual plot of Fig. 1 populated by empirical data. The misleading zone is the upper left corner
(P − Pr(CAI = 1) > 0.75) indicated by a dashed line. The dot size for misleading explanations
is enlarged for better visibility. The order of subplots is ranked by the mean plausibility of XAI
algorithms. The three numbers under the name of an XAI algorithm are: mean plausibility, number
of misleading explanations out of the total 370 instances, and mean faithfulness (measured by gradual
feature removal in [42]) of an XAI algorithm on the five models.
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Limitation. A limitation of this analysis is that the conclusion is drawn from XAI algorithms880

with different levels of faithfulness to the given model and task. As we proposed in Section 4,881

faithfulness is the basic evaluation for XAI algorithms. Therefore, ideally this analysis should be882

accompanied by the analysis on XAI algorithms that achieve a certain threshold of faithfulness.883

We can deduce that faithfulness may not influence the results, because faithfulness is conditionally884

independent of plausibility according to the conclusion of Appendix D. However, it would still be885

beneficial to conduct empirical studies to validate it. From Fig. 5 we can see that among the five XAI886

algorithms with the same level of higher faithfulness (0.48 ∼ 0.53 of Guided GradCAM, Guided887

Backprop, Shapley Value Sampling, SmoothGrad, and LIME), selecting XAI algorithms based on888

higher plausibility still has the same tendency to increase the likelihood of misleading explanations.889

However, the sample size here in our experiment is too small to conduct statistical tests, and future890

experiments are needed to test the hypothesis that given the same satisfactory level of faithfulness,891

selecting XAI algorithms for high plausibility can increase the number and misleading explanations.892

E.3 Simulation experiment on human-AI collaboration and complementary performance893

Experiment setup. We conduct simulation experiments of human-AI collaboration to study the fac-894

tors of plausibility, human and AI performance, and their relationship to complementary performance895

in Theorem 2. In a human-AI collaborative setting, the experiment simulates the ground truth labels,896

human and AI predictions, the plausibility score, and the human acceptance of AI prediction in a897

classification problem. We generate the explanation plausibility score P from a normal distribution898

with the mean randomly drawn in the range of [0, 3) when the AI prediction is correct, and in the899

range of [−3, 0) when the AI prediction is incorrect (i.e., plausibility values reflect correctness).900

We set the human factor function of accepting an AI prediction f(P ) to be the sigmoid function of901

P . Then the team prediction is the AI prediction if the human accepts AI or the human prediction902

otherwise. From the team predictions, we can calculate the team accuracy, E[fr] and E[fw], and903

conclude if complementary accuracy is achieved or not. Each simulation trial is run on 2000 test904

data instances in a 10-class classification task. Some data samples generated from the scripts of the905

simulation experiment are shown in Table 4.906

Table 4: Ten data samples showing how data are generated from the scripts of the simulation
experiment. In a five-class classification task, we generate the ground truth (GT) labels. Then human
and AI predictions for each data instance are generated according to their preset accuracies. In this
data sample, the human accuracy is 0.7, AI accuracy is 0.9. Then plausibility score P is generated
based on the information of AI correctness. We use the sigmoid function for f(P ) of the human
likelihood of accepting an AI prediction. The human-AI team prediction is the AI prediction if the
human accepts an AI prediction, otherwise it is the human prediction. Then the human-AI team
accuracy can be calculated from the team prediction. In this case, the team accuracy is 1.0, which
achieves complementary accuracy.

Data ID Human prediction AI prediction P f(P ) Accept AI Team prediction GT
01 5 5 2.47 0.92 True 5 5
02 2 2 1.14 0.76 True 2 2
03 5 5 0.79 0.69 True 5 5
04 3 3 3.75 0.98 True 3 3
05 3 4 1.46 0.81 True 4 4
06 1 2 1.13 0.76 True 2 2
07 2 5 1.76 0.85 True 5 5
08 3 1 -1.88 0.13 False 3 3
09 2 2 1.90 0.87 True 2 2
10 1 1 0.74 0.68 True 1 1
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Figure 6: Visualization of the simulation experiment. Left and middle panels: Results of the
simulation experiment on the E[fw]-E[fr] plot. Each panel has 1000 dots, which represents 1000
simulation trials. Orange and blue dots indicate whether complementary performance is achieved
or not in a trial, respectively. The L line in Eq. (2) is shown in red to visualize the relationship
between E[fw] and E[fr] in Theorem 2. The left and middle panels show two conditions when
human accuracy is greater or less than AI accuracy. Right panel: The relationship of human and AI
accuracies h and m in the E[fw]-E[fr] plot according to the formulas in Theorem 2. Each line is the
E[fw]-E[fr] line according to different values of h and m.

Theorem 2-related results. We show the results with respect to the relationship between E[fw] and907

E[fr] in Fig. 6 left and middle panels. We define line L (red lines in Fig. 6 left and middle panels) as908

the line with the same slop and intercept between E[fw] and E[fr] as depicted in Theorem 2.909

L :

{
E[fr] = h(1−m)

m(1−h)E[f
w] if h ≥ m

E[fr] = h(1−m)
m(1−h)E[f

w] + m−h
m(1−h) if m > h

(2)

The plots show that the simulation experiment confirms the theoretical finding in Theorem 2 that910

trials achieved complementary accuracy (the orange dots) reside above the line L, which correspond911

to the solution space where the relation between E[fw] and E[fr] in Theorem 2 holds. The two912

plots show that it is possible to achieve complementary accuracy when human accuracy is either913

greater or less than AI accuracy (Corollary 3 in Appendix F). The two plots also show that the two L914

lines are symmetric around the diagonal E[fr] = 1− E[fw]. We further illustrate the relationship of915

different values of human and AI accuracies h and m in Fig. 6-right that confirms this symmetric916

relationship. The plot shows that as the values of h and m become closer to each other, the possibility917

of achieving complementary accuracy gets higher as the area above the L line grows bigger. We918

illustrate this relationship with more value assignments of h and m in Fig. 7 and Fig. 8. The L919

line always resides on or above the E[fr] = E[fw] diagonal towards the upper left corner, when920

E[fr] is larger and E[fw] is smaller. This confirms Corollary 1 in Appendix F that E[fr] is always921

greater than E[fw] when complementary accuracy is potentially achievable. This also indicates that922

if plausibility distribution can enable users to reliably know when to accept AI and when not to, the923

distribution of the human-AI collaboration experiment result (the dots) will more likely reside above924

the line L and are more likely to achieve complementary accuracy.925
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Figure 7: The relationship of human and AI accuracies h and m in the E[fw]-E[fr] plot according to
the formulas in Theorem 2. Each line is the E[fw]-E[fr] line according to different values of h and
m. In Fig. 6-right, we show a similar plot when h and m are above 0.5. This plot shows the situation
when h and m are equal or below 0.5. Despite having different accuracies, both plots show that the
lines that define the condition to achieve complementary accuracy reside above the E[fr] = E[fw]
diagonal, and it is the differences of h and m, rather than their absolute values, that determine the
likelihood (the area above the line) of achieving complementary accuracy.
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Figure 8: The heatmap showing the area above the E[fw]-E[fr] line with respect to different values of
human accuracy h and AI accuracy m. The values of accuracy (in percentage) for human and AI are
shown in the horizontal and vertical axes, and the color of the heatmap represents the area above the
line of E[fr] in Theorem 2. In Fig. 7, we illustrate different E[fw]-E[fr] lines depending on different
h and m. The area above the line indicates the likelihood of achieving complementary performance
for different combinations of h and m. The heatmap shows that as the difference between h and m
becomes smaller (near the diagonal), it permits more area above the line for achieving complementary
accuaracy.
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Theorem 1-related results. The previous experiment is in the condition where plausibility is926

correlated with AI prediction quality. What if plausibility is not correlated with AI prediction quality?927

We conduct the simulation experiment, which shows that while the rest conditions remain the same as928

in the previous experiment in Fig. 6, the generated plausibility values follow normal distributions and929

do not correlate with AI prediction correctness. The results are shown in Fig. 9. In either case when930

human accuracy is greater or less than AI accuracy, the complementary human-AI team accuracy931

cannot be achieved. This empirical finding corresponds to the theoretical finding of Theorem 1.932

Figure 9: Visualization of the simulation experiment when plausibility does not correlate with AI
prediction correctness. Each panel has 1000 dots, which represents 1000 simulation trials. Orange
and blue dots indicate the complementary performance is achieved or not in a trial, respectively. The
L line in Eq. (2) is shown in red to visualize the relationship between E[fw] and E[fr] in Theorem 2.
The two plots show two conditions when human accuracy is greater or less than AI accuracy. In Fig. 6,
we show similar plots. They only differ in that the simulation experiments in this figure draw the
plausibility scores from normal distributions that are independent of AI prediction correctness, which
follows the conclusion in Theorem 1 that complementary accuracy is not achieved.

F Proof of the two theorems on plausibility and human-AI team performance933

We provide proofs of the two theorems on plausibility and human-AI team performance in Sec-934

tion 3.3.2. We first set up the problem of human-AI collaboration, then provide proof for the two935

theorems regarding the influence of explanation plausibility to human-AI team performance.936

We focus on the problem setting of human-AI collaboration where AI neither has full task delegation937

nor decides the task delegation, and acts as a decision assistant. This is a common scenario in human-938

AI collaboration especially in high-stakes tasks [51], and this is the scenario where AI explanation939

can play a major role. Otherwise, if AI decides the task delegation [60], there is little chance for AI940

explanation to play a role in either the task delegation or the whole decision-making process.941

To simplify the problem, we use the task performance metric of accuracy for classification problems.942

It is worth noting that choosing different metrics may lead to different effects in explanation optimiza-943

tion, because different metrics emphasize different aspects that users think as important in performing944

a task, as shown in previous work [66]. We leave the exploration of using different task performance945

metrics on XAI optimization for future work.946

Problem setup947

The problem is in a collaborative setting where AI assists humans in making decisions on a task. For948

each case, the human decision-maker first reviews the AI suggestion, including the AI prediction949

and its explanation. Then the human decides whether to accept or reject AI assistance by judging950

how plausible the suggestion is based on human prior knowledge of the task. The more plausible951

an explanation is, the more likely the human will accept AI assistance and its suggestion. If AI952

assistance is rejected, the human delegates the decision-making task to herself and makes a final953

decision based on her own knowledge. Fig 10 illustrates this AI-assisted decision process.954
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Figure 10: Flowchart of the AI-assisted decision-making workflow. The gray bars at the bottom
highlight tasks that the human needs to perform.

We assume a test dataset D = {x1, . . . , xN} has N number of cases that are independent and955

identically distributed. We use the subscript i ∈ [1, N ] to denote the index of an instance in D. For956

an instance xi ∈ D, we use Bi ∈ {0, 1} to denote the binary random variable of human choosing957

to accept or reject the AI suggestion for xi, with Bi = 1 representing “the human accepts the AI958

suggestion for xi,” and Bi = 0 representing “the human rejects the AI suggestion for xi.” Bi follows959

a Bernoulli distribution with Pr(Bi = 1; f(Pi)) = f(Pi) and E[Bi] = f(Pi), where Pr denotes960

probability, Pi ∈ R denotes the random variable of the plausibility measure of an AI explanation961

Ei for the prediction of xi, and f(Pi) ∈ [0, 1] denotes the probability of human acceptance of the962

AI suggestion for xi. f(.) is assumed to be a function of plausibility P to denote the human factor963

function of the probability to decide to take an AI suggestion given the explanation plausibility964

P . In Theorem 2, we assume they have a causal relationship, P → f(P ). An explanation with965

higher plausibility P would lead to user’s higher probability of acceptance f(P ). Based on the966

empirical data in Appendix E.1 on the causal correlation relationship between P and f(P ), we have967

the following conjecture:968

Conjecture 1 (Relationship between Plausibility and Human Acceptance of AI). For any instances969

xi, xj , the probability f(Pi) of human acceptance of the AI suggestion for xi is a function of the970

explanation plausibility Pi with a monotonically non-decreasing relationship: ∀Pi = pi, Pj = pj , if971

pi ≥ pj , then f(pi) ≥ f(pj).972

We use Ci ∈ {0, 1} to denote the binary random variable of an instance xi ∈ D being predicted973

correctly or not by the decision-maker, with Ci = 1 representing “the instance xi is correctly974

predicted,” and Ci = 0 representing “the instance xi is incorrectly predicted.” Ci follows a Bernoulli975

distribution, with Pr(Ci = 1; γ) = γ and E[Ci] = γ, where γ is the probability of xi being predicted976

correctly. When xi is predicted by the human, AI, or human-AI team, we use Chuman
i , CAI

i , and C team
i977

to denote the decision-maker of the random variable Ci, and denote γ = h,m, t, respectively. We978

use the random variable K to denote the number of instances being correctly predicted in the dataset979

D. Since xi ∈ D are i.i.d., and Ci denotes each xi being correctly predicted or not, K follows a980

binomial distribution, with E[K] = E[C1 + · · ·+ CN ] =
∑N

i=1 E[Ci] =
∑N

i=1 γ = Nγ. Then the981

accuracy on the dataset D would be E[K]/N = γ. The parameters h,m, and t can also be used to982

denote the accuracies on the dataset D of the human, AI, or the human-AI team, respectively. We983

assume h ∈ (0, 1) and m ∈ (0, 1) to avoid the undefined case of division by zero.984

Definition 1 (Complementary Accuracy from Bansal et al. [8]). In classification tasks, the comple-985

mentary accuracy of a human-AI team is defined as the human-AI team accuracy t being greater than986

either human accuracy h or AI accuracy m alone:987

t > max(h,m).

Before we prove the two main theorems in the paper, we provide conditions to show when comple-988

mentary accuracy is impossible to achieve. Negations of these conditions are the prerequisites for the989

following Theorems 1 and 2.990

Lemma 1 (Impossible Complementarity for Black-Box AI). In classification tasks, let h, m, and t be991

the accuracies of the human, AI, and human-AI team, respectively; the AI is a black-box AI that only992

provides the human with the predicted class label without any other information about the decision993

process for the data instance x ∈ D, then the human-AI team can never achieve complementary994

accuracy, i.e.: t ≤ max(h,m).995
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Proof. For a data instance xi ∈ D, we use bi to denote the parameter of the Bernoulli distribution of996

the probability that “the human accepts the AI suggestion for xi” with Pr(Bi = 1; bi) = bi. Because997

the human is not provided with any information on the decision process, the random variable Bi of998

human acceptance of AI suggestion is independent of the random variable of AI decision correctness999

CAI
i . Then the joint probability of Pr(Bi, C

AI
i ) can be calculated by the multiplication of probabilities1000

of individual events:1001

Pr(Bi, C
AI
i ) = Pr(Bi)Pr(C

AI
i ).

Then for each instance xi in the test set, we can list the joint events of Bi and CAI
i , their joint1002

probabilities, and their likelihood of being correctly predicted (Ci = 1) by the decision-maker in1003

Table 5.1004

Table 5: Four events regarding the combinations of random variable assignments of Bi and CAI
i for

an instance xi. bi is the probability of human accepting AI suggestion for instance xi. Regarding the
last column of the likelihood of the decision-maker correctly predicting xi (Ci = 1), for events i and
ii, because the decision-maker is AI, and the events are conditioned on CAI

i being 1 or 0, therefore,
Ci = CAI

i . For events iii and iv, because the decision-maker is the human, then Ci = Chuman
i .

Event: Bi and CAI
i Values of

the r.v.
Probability
of the event:
Pr(Bi, C

AI
i )

Who
is the
decision-
maker?

Likelihood of the
decision-maker cor-
rectly predicting xi

(Ci = 1)
i. Human accepts AI Bi = 1 bim AI 1

AI predicts correctly for
xi

CAI
i = 1

ii. Human accepts AI Bi = 1 bi(1−m) AI 0
AI predicts incorrectly for
xi

CAI
i = 0

iii. Human rejects AI Bi = 0 (1− bi)m Human h
AI predicts correctly for
xi

CAI
i = 1

iv. Human rejects AI Bi = 0 (1− bi)(1−m) Human h
AI predicts incorrectly for
xi

CAI
i = 0

We use ti to denote the probability of C team
i = 1 for the human-AI team to correctly predict xi. ti can1005

be calculated by aggregating the likelihood of Ci = 1 from all the four potential events weighted by1006

the corresponding probabilities of an event:1007

ti = bim× 1 + bi(1−m)× 0 + (1− bi)mh+ (1− bi)(1−m)h

= bim+ (1− bi)h

= (m− h)bi + h
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The random variable K denotes the number of instances being correctly predicted in the dataset D.
Then the human-AI team accuracy t on the test set D can be calculated as:1008

t =
E[K team]

N
=

∑N
i=1 E[C team

i ]

N
=

∑N
i=1 ti
N

= m

∑N
i=1 bi
N

+ h(1−
∑N

i=1 bi
N

)

= (m− h)

∑N
i=1 bi
N

+ h

If h ≥ m:

t = (m− h)

∑N
i=1 bi
N

+ h ≤ (h− h)

∑N
i=1 bi
N

+ h = h

⇒ t ≤ h

If h < m:

t = m

∑N
i=1 bi
N

+ h(1−
∑N

i=1 bi
N

) < m

∑N
i=1 bi
N

+m(1−
∑N

i=1 bi
N

) = m

⇒ t < m

Therefore, t ≤ max(h,m)

1009

In Lemma 1, the value of bi reflects the human interpretation of all available information provided1010

by a black-box model, including the human interpretation of the input, the predicted label, and the1011

overall performance of the AI model on a previous test set. Lemma 1 shows that with the limited1012

and non-data-instance-specific information provided by black-box AI models, the black-box models1013

are not equipped with the prerequisites to achieve complementary accuracy. Lemma 1 provides1014

motivation for white-box and gray-box AI models that provide additional information about the1015

model decision process, decision certainty, or decision quality. Such information can be the decision1016

confidence or uncertainty estimation for the given instance (for example, the calibrated probability1017

output for the predicted class), the fine-grained performance on different subsets of the data, an AI1018

explanation, or a combination of these different types of information.1019

Other two conditions that make complementary performance impossible to achieve are identified1020

in Donahue et al.’s work on theoretical investigation of complementarity and fairness [21], where1021

they differed from our theoretical proofs by using the loss function as the performance metric,1022

having a different set of assumptions on decision combination, and focusing on fairness rather than1023

explainability. Lemma 3 in Donahue et al.’s work [21] states that “Complementarity is impossible if1024

one of the human or algorithm always weakly dominates the loss of the other: that is, if ai ≤ hi for1025

all i, or ai ≥ hi for all i,” where ai and hi are the losses of AI and human for an instance i. We adapt1026

the same conclusion to our problem setup and assumptions in Lemma 2.1027

Lemma 2 (Adapted from Donahue et al. [21]). If one decision-maker of either human or AI always1028

dominates the prediction performance for all instances x ∈ D, then the human-AI team can never1029

achieve complementary performance.1030

Proof. For any data instance xi ∈ D, since one decision-maker dominates the prediction performance1031

for xi, then the rational choice during task delegation is to delegate the decision-making task to the1032

dominant decision-maker. Then the maximum task performance for the human-AI team is equivalent1033

to the performance of the dominant decision-maker, i.e.: max t = max(h,m). This concludes that1034

complementary performance is impossible to achieve.1035

The last condition that makes complementary performance impossible is stated in Corollary 1 of1036

Donahue et al.’s work [21]: “A combining function with a constant weighting function wh(ai, hi) =1037

wh can never achieve complementarity performance,” where wh(.) is the weighting function of the1038

human decision-maker “controlling how much the human influences the final prediction.” The role1039

of wh(.) is similar to f(P ) in our problem setup. Corollary 1 from [21] states that if the decision1040

cobmination function has constant weights (i.e., the function wh(.) becomes a constant wh) to1041
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combine the human and AI decision-makers’ loss for all instances, then it is impossible to achieve1042

complementary performance. In our problem setup, we assume that the decision delegation (the1043

probabilistic form is equivalent to the weighted decision combination in [21]) for each instance is an1044

individual Bernoulli random process, with each instance xi having a different parameter of f(Pi) of1045

a different Bernoulli distribution. If f(Pi) is the same for every instance xi, i.e., f(Pi) = λ, then we1046

can show in Lemma 3 that complementary performance is impossible to achieve.1047

Lemma 3 (Adapted from Donahue et al. [21]). If the AI suggestion has the same probability λ1048

to be accepted by human for every instance x ∈ D, then the human-AI team can never achieve1049

complementary performance.1050

Proof. Since the probability of human acceptance of AI suggestion for any instance xi ∈ D is a1051

constant λ, then the human acceptance of AI suggestion is independent of the correctness of the1052

decision-maker. Then we can use the same probability of the events in Table 5 by replacing bi in the1053

table with λ. We use ti to denote the probability of C team
i = 1 for the human-AI team to correctly1054

predict xi. ti can be calculated by aggregating the likelihood of Ci = 1 from all the four potential1055

events weighted by the corresponding probabilities of an event.1056

ti = Pr(Ci = 1)

= Pr(Ci = 1, Bi = 1) + Pr(Ci = 1, Bi = 0)

= Pr(Bi = 1)Pr(Ci = 1) + Pr(Bi = 0)Pr(Ci = 1)

= λm+ (1− λ)h

The human-AI team accuracy t on the test set D can be calculated as:

t =
E[K team]

N
=

∑N
i=1 E[C team

i ]

N
=

∑N
i=1 ti
N

= ti

= λm+ (1− λ)h

If h ≥ m:
t = (m− h)λ+ h ≤ (h− h)λ+ h = h

⇒ t ≤ h

If h < m:
t = mλ+ (1− λ)h < λm+ (1− λ)m = m

⇒ t < m

Therefore, t ≤ max(h,m)

1057

In summary, from Lemma 1-3 we identify the conditions that are impossible to achieve complementary1058

performance. Therefore, to potentially achieve complementary performance for the human-AI team,1059

the AI models should be white-box or gray-box models that can provide additional information of the1060

decision process to assist human judgment on whether to accept an AI suggestion, the human or AI1061

should not always dominate the prediction performance, and the probability of human acceptance of1062

AI suggestions should vary by data instances. These conditions set the prerequisites for the following1063

Theorems 1 and 2 on when it is impossible or possible to achieve complementary accuracy with AI1064

explanations.1065

Let us recall Theorem 1 from Section 3.3.2.1066

Theorem 1 (Case of Impossible Complementarity for XAI). Let h, m, and t be the accuracies of the1067

human, AI, and human-AI team, respectively; and f(Pi) be a function of the explanation plausibility1068

Pi denoting the probability of human acceptance of the AI suggestion for the instance xi ∈ D, then:1069

If plausibility is independent of the AI decision correctness, then the human-AI team can never1070

achieve complementary accuracy, i.e.: t ≤ max(h,m).1071

Proof. The procedure of proof is the same with the one for Lemma 1, with the only difference in that1072

bi is replaced by f(Pi).1073
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If plausibility P is independent of the AI decision correctness (denoted by the Bernoulli random1074

variable CAI) with Pr(P |CAI) = Pr(P ), Because Pr(Pi|CAI
i ) = Pr(Pi), and f(Pi) is a function1075

of Pi with the specific function parameters determined by human factors that are independent of1076

CAI
i (as humans have no access to the ground truth information that determines correctness), then1077

Pr(f(Pi)|CAI
i ) = Pr(f(Pi)).1078

Because f(Pi) is the only parameter that determines the Bernoulli distribution of Bi, then we can1079

get Pr(Bi|CAI
i ) = Pr(Bi). Then the joint probability of Pr(Bi, C

AI
i ) can be calculated by the1080

multiplication of probabilities of individual events:1081

Pr(Bi, C
AI
i ) = Pr(Bi|CAI

i )Pr(CAI
i ) = Pr(Bi)Pr(C

AI
i ).

Then for each instance xi in the test set, we can list the joint events of Bi and CAI
i , their joint1082

probabilities, and their likelihood of being correctly predicted (Ci = 1) by the decision-maker in1083

Table 6.1084

Table 6: Four events regarding the combinations of random variable assignments of Bi and CAI
i for

an instance xi. Pi is the plausibility of AI explanation for instance xi, and f(Pi) is the probability of
human accepting AI suggestion for instance xi given Pi. Regarding the last column of the likelihood
of the decision-maker correctly predicting xi (Ci = 1), for events i and ii, because the decision-maker
is AI, and the events are conditioned on CAI

i being 1 or 0, therefore, Ci = CAI
i . For events iii and iv,

because the decision-maker is the human, then Ci = Chuman
i .

Event: Bi and CAI
i Values of

the r.v.
Probability
of the event:
Pr(Bi, C

AI
i )

Who
is the
decision-
maker?

Likelihood of the
decision-maker cor-
rectly predicting xi

(Ci = 1)
i. Human accepts AI Bi = 1 f(Pi)m AI 1

AI predicts correctly for
xi

CAI
i = 1

ii. Human accepts AI Bi = 1 f(Pi)(1−m) AI 0
AI predicts incorrectly for
xi

CAI
i = 0

iii. Human rejects AI Bi = 0 (1− f(Pi))m Human h
AI predicts correctly for
xi

CAI
i = 1

iv. Human rejects AI Bi = 0 (1 − f(Pi))(1 −
m)

Human h

AI predicts incorrectly for
xi

CAI
i = 0

We use ti to denote the probability of C team
i = 1 for the human-AI team to correctly predict xi. ti can1085

be calculated by aggregating the likelihood of Ci = 1 from all the four potential events weighted by1086

the corresponding probabilities of an event:1087

ti = f(Pi)m× 1 + f(Pi)(1−m)× 0 + (1− f(Pi))mh+ (1− f(Pi))(1−m)h

= f(Pi)m+ (1− f(Pi))h

= (m− h)f(Pi) + h

31



The human-AI team accuracy t on the test set D can be calculated as:1088

t =
E[K team]

N
=

∑N
i=1 E[C team

i ]

N
=

∑N
i=1 ti
N

= m

∑N
i=1 f(Pi)

N
+ h(1−

∑N
i=1 f(Pi)

N
)

= (m− h)

∑N
i=1 f(Pi)

N
+ h

If h ≥ m:

t = (m− h)

∑N
i=1 f(Pi)

N
+ h ≤ (h− h)

∑N
i=1 f(Pi)

N
+ h = h

⇒ t ≤ h

If h < m:

t = m

∑N
i=1 f(Pi)

N
+ h(1−

∑N
i=1 f(Pi)

N
) < m

∑N
i=1 f(Pi)

N
+m(1−

∑N
i=1 f(Pi)

N
) = m

⇒ t < m

Therefore, t ≤ max(h,m)

1089

Let us recall Theorem 2 from Section 3.3.2.1090

Theorem 2 (Conditions for XAI Complementarity). Let h, m, and t be the accuracies of the1091

human, AI, and human-AI team, respectively; f(Pi) be the probability of human acceptance of an1092

AI suggestion for an instance xi ∈ D, where f(.) is a monotonically non-decreasing function of the1093

explanation plausibility Pi; and P r
i and Pw

i be the plausibility values of an AI explanation when an1094

instance xi is predicted correctly or incorrectly, then:1095

Complementary human-AI accuracy can be achieved, i.e., t > max(h,m), when1096 {
h ≥ m and E[fr] > h(1−m)

m(1−h)E[f
w]; or,

m > h and E[fr] > h(1−m)
m(1−h)E[f

w] + m−h
m(1−h)

where E[fr] and E[fw] are the expectations of f(P r
i ) and f(Pw

i ) over the dataset D, indicating1097

among the correctly or incorrectly predicted instances of AI, how many are accepted by human.1098

Proof. Since P r
i and Pw

i are the plausibility values of an AI explanation when an instance xi ∈ D is1099

predicted correctly or incorrectly (CAI
i = 1 or 0), respectively, P r

i and Pw
i are the shorthand notations1100

for Pi|CAI
i = 1 and Pi|CAI

i = 0. Since Pi is conditioned on Ci, and f(Pi) is a function of Pi, then1101

f(Pi) is also conditioned on Ci. We use f(P r
i ) to denote f(Pi|CAI

i = 1), and use f(Pw
i ) to denote1102

f(Pi|CAI
i = 0).1103

Because f(Pi) is the parameter that determines the Bernoulli distribution of Bi, and f(Pi) is defined1104

conditioned on Ci, then Bi is also defined by conditioning on Ci, with:1105

Pr(Bi = 1|CAI
i = 1) = f(Pi|CAI

i = 1) = f(P r
i ), and (3)

Pr(Bi = 1|CAI
i = 0) = f(Pi|CAI

i = 0) = f(Pw
i ) (4)

With these, we can calculate the joint probability of Pr(Bi, C
AI
i ) by:1106

Pr(Bi, C
AI
i ) = Pr(Bi|CAI

i )Pr(CAI
i )

Then for each instance xi in the test set, we can list the joint events of Bi and CAI
i , their joint1107

probabilities, and their likelihood of being correctly predicted (Ci = 1) by the decision-maker in1108

Table 7.1109
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Table 7: Four events regarding the combinations of random variable assignments of Bi and CAI
i

for instance xi. P r
i and Pw

i are the plausibility of AI explanation for instance xi when AI predicts
correctly or wrongly, and f(Pi) is the probability of human accepting AI suggestion for instance xi.
Regarding the last column of the likelihood of the decision-maker correctly predicting xi (Ci = 1),
for events v and vi, because the decision-maker is AI, and the events are conditioned on CAI

i being
1 or 0, therefore, Ci = CAI

i . For events vii and viii, because the decision-maker is the human, then
Ci = Chuman

i .

Event: Bi and CAI
i Values of

the r.v.
Probability
of the event:
Pr(Bi, C

AI
i )

Who
is the
decision-
maker?

Likelihood of the
decision-maker cor-
rectly predicting xi

(Ci = 1)
v. Human accepts AI Bi = 1 f(P r

i )m AI 1
AI predicts correctly for
xi

CAI
i = 1

vi. Human accepts AI Bi = 1 f(Pw
i )(1−m) AI 0

AI predicts incorrectly for
xi

CAI
i = 0

vii. Human rejects AI Bi = 0 (1− f(P r
i ))m Human h

AI predicts correctly for
xi

CAI
i = 1

viii.Human rejects AI Bi = 0 (1− f(Pw
i ))(1−

m)
Human h

AI predicts incorrectly for
xi

CAI
i = 0

We use ti to denote the probability of C team
i = 1 for the human-AI team to correctly predict xi. ti can1110

be calculated by aggregating the likelihood of Ci = 1 from the four potential events weighted by the1111

corresponding probabilities of the event:1112

ti = f(P r
i )m+ f(Pw

i )(1−m)0 + (1− f(P r
i ))mh+ (1− f(Pw

i ))(1−m)h

= f(P r
i )m+mh− f(P r

i )mh+ h− f(Pw
i )h−mh+ f(Pw

i )mh

= f(P r
i )m− f(P r

i )mh+ h− f(Pw
i )h+ f(Pw

i )mh (5)

The human-AI team accuracy t on the test set D can be calculated as:1113

t =
E[K team]

N
=

∑N
i=1 E[C team

i ]

N
=

∑N
i=1 ti
N

= m

∑N
i=1 f(P

r
i )

N
−mh

∑N
i=1 f(P

r
i )

N
+ h− h

∑N
i=1 f(P

w
i )

N
+mh

∑N
i=1 f(P

w
i )

N
(6)

The terms
∑N

i=1 f(P r
i )

N ,
∑N

i=1 f(Pw
i )

N are the expectations of f(P r
i ) and f(Pw

i ):1114

∑N
i=1 f(P

r
i )

N
= E[f(P r)] (7)∑N

i=1 f(P
w
i )

N
= E[f(Pw)] (8)

We use E[fr] and E[fw] to simplify the notation. So Eq. (7) and Eq. (8) can be rewritten as:1115

∑N
i=1 f(P

r
i )

N
= E[f(P r)] = E[fr] (9)∑N

i=1 f(P
w
i )

N
= E[f(Pw)] = E[fw] (10)
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Then Eq. (6) can be rewritten as:1116

t = mE[fr]−mhE[fr] + h− hE[fw] +mhE[fw] (11)

The meaning of E[fr] and E[fw] can be interpreted as follows:1117

If we use the definition of f(P r
i ) and f(Pw

i ) in Eq. (3) and Eq. (4), then the term E[fr] and E[fw]1118

can be written as:1119

E[fr] =

∑N
i=1 f(P

r
i )

N

=

∑N
i=1 f(Pi|CAI

i = 1)

N

=

∑N
i=1 Pr(Bi = 1|CAI

i = 1)

N
(12)

E[fw] =

∑N
i=1 f(P

w
i )

N

=

∑N
i=1 f(Pi|CAI

i = 0)

N

=

∑N
i=1 Pr(Bi = 1|CAI

i = 0)

N
(13)

E[fr] means, among the correctly predicted instances (CAI
i = 1), how many are accepted by human1120

(Bi = 1); Similarly, E[fw] means, among the incorrectly predicted instances (CAI
i = 0), how many1121

are accepted by human (Bi = 1). In this sense, E[fr] is a measure of sensitivity (true positive rate),1122

and E[fw] is a measure of false positive rate.1123

From Eq. (11), we can get the conditions for complementary accuracy as follows:1124

If h ≥ m:
t− h = mE[fr]−mhE[fr] + h− hE[fw] +mhE[fw]− h

= mE[fr]−mhE[fr]− hE[fw] +mhE[fw]

= m(1− h)E[fr]− h(1−m)E[fw]

If E[fr] >
h(1−m)

m(1− h)
E[fw],

then m(1− h)E[fr]− h(1−mE[fw]) > 0

then t− h > 0 given h ≥ m and E[fr] >
h(1−m)

m(1− h)
E[fw]

If m > h:
t−m = mE[fr]−mhE[fr] + h− hE[fw] +mhE[fw]−m

= m(1− h)E[fr]− h(1−m)E[fw]− (m− h)

If E[fr] >
h(1−m)

m(1− h)
E[fw] +

m− h

m(1− h)
,

then m(1− h)E[fr]− h(1−m)E[fw]− (m− h) > 0

then t−m > 0 given m > h and E[fr] >
h(1−m)

m(1− h)
E[fw] +

m− h

m(1− h)
1125

Therefore,1126

t > max(h,m) if


h ≥ m and E[fr] >

h(1−m)

m(1− h)
E[fw] , or

m > h and E[fr] >
h(1−m)

m(1− h)
E[fw] +

m− h

m(1− h)

(14)

1127
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From Theorem 2, we can get the following corollaries.1128

Corollary 1. If a human-AI team can achieve complementary accuracy, then the human acceptance1129

rate for correctly predicted data should be greater than the human acceptance rate for incorrectly1130

predicted data, E[fr] > E[fw]. Furthermore, the mean plausibility for correctly predicted data1131

should be greater than the mean plausibility for incorrectly predicted data, E[P r] > E[Pw].1132

Proof. To achieve complementary human-AI accuracy, it should fulfill one of the two conditions in1133

Eq. (14).1134

When h ≥ m,1135

h− hm ≥ m− hm

h(1−m)

m(1− h)
≥ 1

Therefore,1136

E[fr] >
h(1−m)

m(1− h)
E[fw] ≥ E[fw]

When m > h,1137

h(1−m)

m(1− h)
E[fw] +

m− h

m(1− h)
− E[fw] = (

h(1−m)

m(1− h)
− 1)E[fw] +

m− h

m(1− h)

=
h−m

m(1− h)
E[fw] +

m− h

m(1− h)

=
m− h

m(1− h)
(1− E[fw]) ≥ 0

Therefore,1138

E[fr] >
h(1−m)

m(1− h)
E[fw] +

m− h

m(1− h)
≥ E[fw]

And according to Conjecture 1, because P and f(P ) have the monotonically non-decreasing relation-
ship, then1139

E[P r] > E[Pw]

1140

Corollary 1 indicates that to achieve complementary human-AI performance, the difference between1141

E[fr] and E[fw], and accordingly, the plausibility for correct and incorrect decisions P r
i and Pw

i ,1142

should be big enough, i.e., above a threshold. Such relationships of E[fr] > E[fw] and E[P r] >1143

E[Pw] are necessary but not sufficient conditions to achieve complementary human-AI performance.1144

Corollary 2. If complementary human-AI accuracy is achievable for an AI model, then with the1145

assistance of this AI model, both novices and experts can achieve complementary accuracy despite1146

their differences in prior knowledge.1147

Proof. Eq. 14 does not impose constraints on the level of human performance h, therefore, com-1148

plementary human-AI accuracy is achievable for both novices and experts as long as they have the1149

domain knowledge for the given task that allows them to provide a reasonable estimate of P [17].1150

Corollary 2 also indicates that since f(P ) is dependent on the human judgment of P , novices and1151

experts may have different net increases in complementary human-AI accuracy t−max(h,m) from1152

the AI system, due to their different assessments of P and f(P ) accordingly.1153

Corollary 3. It is possible for both an inferior and a superior AI to help humans achieve complemen-1154

tary human-AI accuracy.1155

Proof. Theorem 2 shows both conditions for AI that is either superior (m > h) or inferior (h ≥ m)1156

to human in accuracy to help human achieve complementary human-AI accuracy.1157
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Corollary 3 indicates that as long as the explanation plausibility can be highly indicative of the AI1158

decision correctness, even with the assistance of an inferior AI, humans can still benefit from the1159

inferior AI and achieve complementary human-AI performance. However, as the machine accuracy1160

m decreases, the ratio of E[fr]
E[fw] =

h(1−m)
m(1−h) increases, which indicates that the difference — between1161

the plausibility of correctly and incorrectly predicted instances — should be bigger to achieve1162

complementarity.1163

Limitation analysis1164

A limitation in our analysis of the complementary human-AI task performance in this section is1165

that, to model AI-assisted decision-making and task performance with AI explanations, in our1166

problem setup in Fig. 10, we only utilize the simplest setup where the user delegates the task to AI1167

or herself as a binary decision. And if the user delegates the task to herself, her decision-making1168

is independent of the AI suggestion. In reality, unless otherwise instructed, a user may not accept1169

or reject an AI suggestion in a binary fashion, and may include or exclude AI’s second opinion1170

as a decision option9 in a probabilistic manner depending on plausibility and other factors of AI1171

trustworthiness. Future works can explore various task delegation settings for XAI in AI-assisted1172

decision making, and whether and how the ways of collaboration will influence complementary1173

human-AI task performance.1174

G Analysis of examples on plausibility assessment and misleading1175

explanations1176

We provide a detailed analysis of the examples in Fig. 1 of the paper, to show the subtle differences in1177

human- and computationally-assessed plausibility and the role of human prior knowledge. In Fig. 1 of1178

the paper, we give four examples that cover different combinations of plausible/implausible reasons1179

for correct/incorrect predictions. The examples are on a task to classify bees vs. flies. We use an1180

input image with the ground truth label of an Osmia ribifloris bee (Fig. 12). The AI explanations are1181

given in the form of important feature set A, where the important features are expressed by a feature1182

localization mask on the input image and a text description. This explanation form can be generated1183

using a combination of the forms of a saliency map explanation [41] and concept explanation [45].1184

G.1 The analytical framework: explanation is an explanatory argument with three1185

propositions1186

Since plausibility is related to the human interpretation of explanation, we first detail the analytical1187

framework we introduced in Section 3.3.3 on how humans make sense of a conclusion given an1188

explanation. We regard an explanation as an argument that provides reasons for this question: why is1189

the input X predicted as the output Y ? And humans’ interpretation of a given explanation is in a1190

deductive manner. We apply syllogism in logical reasoning to analyze the human interpretation of1191

explanation. For different explanation forms in predictive tasks, including saliency map, concept,1192

prototype, example, and rule-based explanations, they have a common element of presenting the1193

evidence of prediction in the form of features. In a syllogistic view, the feature set A is the middle1194

term, input X is the minor term, and output Y is the major term. Then, a general form of explanatory1195

argument is the following:1196

Proposition 1 X has A. Minor premise
Proposition 2 A is the set of important features for Y . Middle term
Proposition 3 A is discriminative for Y. Major premise

X is predicted to be Y . Conclusion

The above form slightly differs from the standard form of a syllogism, as we separate the feature set1197

A from the major premise (proposition 3 ) as a standalone proposition 2 that states: A is the set1198

of important features for the prediction Y . And 3 further states the detailed inference process on1199

how A is discriminative for Y . Making A a standalone proposition is to facilitate the assessment of1200

plausibility.1201

9For example, in doctor’s differential diagnosis [87].
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This form dissects human’s interpretation process of an explanation so that we can analyze each1202

proposition for plausibility. Plausibility denotes a person’s judgment of the degree of an argument or1203

proposition being true according to the person’s knowledge 10. The human assessment of plausibility1204

thus includes the plausibility judgment of all three propositions being true. And the computational1205

assessment of plausibility includes the plausibility judgment of proposition 2 being true.1206

In AI explanation, the main information is the feature set A, and the two premises are not always given1207

by AI explanation. According to the ostensive-inferential model in human communication, premises1208

are context, which is the audience’s assumption of the world [76]. When contextual information is1209

lacking, users have to use their knowledge to infer the most probable premises given the evidence1210

presented in the features. Therefore, it depends on the audience’s assumptions and knowledge to infer1211

the premises and their level of plausibility. Since human inference relies on human prior knowledge,1212

the audience’s inferential process may not be faithful to the model’s underlying inference process,1213

unless an explicit machine inferential process is provided by the AI explanation.1214

G.2 Four examples presenting different combinations of the degree of plausibility and1215

decision correctness1216

How X identifies A? How A infers Y?Input Output② Important feature set 

③ Major premise
A is discriminative for Y

① Minor premise
X has A

Bee 
✅ 

Bee 
✅ 

Fly 
❌ 

Fly 
❌ 

Features: big eyes, green 
body 
Both are important features 
for flies.
∴ ② is plausible.

Features: long antennae, wide 
hairy legs 
Both are important features for 
bees.
∴ ② is plausible.

Both features can be 
identified from the input.
∴ ① is plausible.

Computationally-
assessed 
plausibility 
Assess 
only ②

Human-
assessed 
plausibility
Assess 
all ①②③

② is 
plausible.
∴ Plausible.

Both are distinctive 
features to discriminate 
bees from flies.
∴ ③ is plausible.

All ①②③ 
are 
plausible.
∴ Plausible.

Green body can be identified 
from the input;
Big eyes cannot be identified 
from the input, as the eyes 
do not cover the whole face 
to be deemed big*.
∴ ① is implausible.

Green body cannot 
discriminate flies from 
bees*;
Big eyes are a distinctive 
feature for flies.
∴ ③ is implausible.

Feature: toothbrush
It is not an important feature 
for flies.
∴ ② is implausible.

Feature: flower
It is not an important feature for 
bees.
∴ ② is implausible.

② is 
plausible.
∴ Plausible.

② is 
implausible.
∴ Implausible.

② is 
implausible.
∴ Implausible.

Flower can be identified 
from the input.
∴ ① is plausible.

Toothbrush cannot be 
identified from the input.
∴ ① is implausible.

Toothbrush is an irrelevant 
feature to differentiate 
bees and flies.
∴ ③ is implausible.

Flower is an irrelevant 
feature to differentiate 
bees and flies.
∴ ③ is implausible.

①③ are 
implausible.
∴ Implausible.

All ①②③ 
are 
implausible.
∴ Implausible.

②③ are 
implausible.
∴ Implausible.

Ex. I

Ex. II

Ex. III

Ex. IV

Figure 11: Analysis of the four examples in Fig. 1 of the paper regarding computationally- and
human-assessed plausibility.

We provide an analysis of the four examples based on the above framework, which separates the1217

plausibility of an explanation into the plausibility of the three propositions, illustrated in the top row1218

of Fig. 11. Example (Ex.) I is a plausible explanation for a right prediction; Ex. II is a plausible1219

explanation for a wrong prediction; Ex. III is an implausible explanation for a wrong prediction;1220

And Ex. IV is an implausible explanation for a right prediction. Here, the plausible or implausible1221

explanations are assessed computationally on the feature set A only.1222

For computationally-assessed plausibility, it calculates the similarity between humans’ and AI’s1223

important feature set A to the prediction Y , which is the plausibility of proposition 2 . In Ex. I and1224

II, A is plausible because it identifies the characteristic body parts of the insect. In Ex. III and IV, A1225

is not plausible because it focuses on the background rather than the insect.1226

10Strictly speaking, the truth and falsehood judgment can only apply to a proposition, not an argument. And
the judgment of the faithfulness of an argument is termed soundness [36]. In the assessment of plausibility, we
do not emphasize the distinction between a proposition and an argument.
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For human-assessed plausibility, in addition to assessing the plausibility of proposition 2 , a human1227

will also assess propositions 1 and 3 . Such information is not provided by AI explanations in our1228

examples, and is mainly inferred by the users. Proposition 1 states “how the feature set A can be1229

identified from the input X .” Features in Ex. I (long antennae, wide hairy legs) and IV (flower) are1230

plausible because they can be directly localized from the input image. Ex. II has two features: a1231

green body and big eyes. Although the saliency map correctly localizes both features, the feature of1232

big eyes cannot be identified from X , as the eyes are not big enough to cover the whole face, which1233

is a criterion that distinguishes flies from bees. Note that such information requires some in-depth1234

domain knowledge, which we mark with a ∗. Whether one possesses such knowledge or not makes1235

a difference in the assessment of plausibility. For Ex. III, although the saliency map highlights the1236

location of the feature, it cannot be recognized as a toothbrush. Therefore, the toothbrush feature1237

cannot be identified from X , and proposition 1 is implausible.1238

Proposition 3 states “how the feature set A is discriminative features for the prediction Y .” Human1239

knowledge is used to both infer the most possible premise that constructs the proposition based on the1240

provided A, and judge the plausibility of the proposition. A in Ex. I provides distinctive features (long1241

antennae and wide hairy legs) to discriminate bees from flies, thus this proposition is plausible. In Ex.1242

II, the feature of a green body is not a distinguishing feature for flies, and can be a characteristic of1243

some bees as well; the feature of big eyes that cover the entire face is a distinguishing feature for flies.1244

Because the green body feature is implausible, the whole proposition is implausible. In Ex. III and1245

IV, both features (toothbrush and flowers) are irrelevant features to differentiate bees and flies, thus1246

both propositions are implausible.1247

With the above analysis of the plausibility of each proposition in the four examples, we have1248

plausibility of an explanation assessed by human or machine, as shown in Fig. 11. There is a1249

discrepancy between the two ways of assessment in Ex. II: the explanation is plausible by only1250

assessing the feature set A; but when humans carefully examine its premises 1 and 3 , we will1251

identify flaws in its argument that deem it implausible. A person without in-depth domain knowledge1252

could also judge premises 1 and 3 as plausible. This is a misleading explanation that misleads1253

users to take the wrong suggestions of AI with its seemingly plausible explanation. We discuss1254

misleading explanations in the next two subsections.1255

G.3 Where do misleading explanations come from?1256

From the above analysis of the four examples, we can see misleading explanations (plausible1257

explanations for wrong predictions) exist because the computational assessment of plausibility cannot1258

well distinguish plausible explanations from implausible ones. The computational assessment of1259

plausibility can only assess the plausibility of feature set A, but not the contextual information of1260

the premises (propositions 1 and 3 ) that are inferred by human audiences. Only human-assessed1261

plausibility may sometimes be able to identify the unreasonableness of misleading explanations.1262

Even with human-assessed plausibility, misleading explanations may still be unavoidable due to1263

humans’ or AI’s epistemic gaps: 1) As shown in Ex. II, users may lack in-depth domain knowledge1264

to discern misleading explanations; 2) The AI model may not know it is predicting incorrectly despite1265

the best effort to calibrate its decision certainty. Even though misleading explanations may not be1266

eliminated, we cannot increase the number of misleading explanations to exacerbate this issue. As1267

we have argued in the paper, using plausibility to evaluate or optimize XAI algorithms will increase1268

the percentage of misleading explanations, which should be avoided.1269

G.4 What are the dangers of misleading explanations?1270

In some tasks, misleading explanations may not be a big concern if humans can clearly recognize1271

the misleading explanation being implausible by incorporating contextual information from human1272

prior knowledge, as we show in the analysis of Ex. II in Fig. 11. This typically happens when the1273

task is not ambiguous, very easy for humans to perform, or humans have complete information or1274

knowledge about the task. However, such ideal scenarios are not always the case in real-world tasks,1275

especially in cases where AI explanations are needed.1276

First, the common triggering motivations for users to check AI explanations include: resolving1277

disagreements between users and AI, verifying AI suggestions to ensure the safety and reliability1278

of decisions, detecting biases, improving user’s own skills and knowledge, or making new discov-1279
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eries [39]. For scenarios where users need AI explanations the most, they usually do not meet the1280

above conditions that allow users to easily recognize misleading explanations.1281

Second, identifying misleading explanations requires in-depth domain knowledge (such as the1282

knowledge of how big the eyes should be for a fly in Fig. 11 Ex. II) with the complete information1283

provided for a task (such as the right perspective of the photo to capture the characteristics of1284

the insect), as we show in the analysis of Ex. II. There are many real-world tasks where humans1285

or AI would not have access to complete information, and need to make decisions under limited1286

information, such as medical or financial decisions. In this scenario, it may be difficult for users to1287

discern misleading explanations given incomplete information of the task or users’ lack of in-depth1288

domain knowledge.1289

Third, even if users can potentially discern misleading explanations, misleading explanations can1290

still make the evidence for incorrect decisions more accessible to users than the evidence for correct1291

decisions. It may cause users to overweigh and latch onto the evidence for wrong decisions. This is1292

the anchoring effect in human judgment [82, 74].1293

Therefore, the dangers of misleading explanations are that they have negative impacts on users’1294

decision correctness and task performance as stated in the paper, and may not be easily recognizable1295

in real-world tasks.1296

The fallacy of misleading explanations is that they use seemingly plausible explanations to support1297

the wrong decisions. In logic, this is an invalid argument as it breaks the logical link between true1298

premises and true conclusion. In this sense, the plausibility of explanation acts as an indicator for1299

decision certainty or confidence. And we should set the same goal for plausibility of XAI algorithms1300

as uncertainty estimation [1] or confidence calibration [29], to avoid the model confidently being1301

wrong.1302

H Additional figure1303

Figure 12: The original image used in Fig. 1, Fig. 2, and Fig. 11 of the paper. Photo of an Osmia
ribifloris bee on a barberry flower. Photo by Jack Dykinga, USDA Agricultural Research Service.
Public domain image, image source link: https://www.ars.usda.gov/oc/images/photos/may00/k5400-
1/.
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NeurIPS Paper Checklist1304

The checklist is designed to encourage best practices for responsible machine learning research,1305

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove1306

the checklist: The papers not including the checklist will be desk rejected. The checklist should1307

follow the references and follow the (optional) supplemental material. The checklist does NOT count1308

towards the page limit.1309

Please read the checklist guidelines carefully for information on how to answer these questions. For1310

each question in the checklist:1311

• You should answer [Yes] , [No] , or [NA] .1312

• [NA] means either that the question is Not Applicable for that particular paper or the1313

relevant information is Not Available.1314

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).1315

The checklist answers are an integral part of your paper submission. They are visible to the1316

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it1317

(after eventual revisions) with the final version of your paper, and its final version will be published1318

with the paper.1319

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.1320

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a1321

proper justification is given (e.g., "error bars are not reported because it would be too computationally1322

expensive" or "we were unable to find the license for the dataset we used"). In general, answering1323

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we1324

acknowledge that the true answer is often more nuanced, so please just use your best judgment and1325

write a justification to elaborate. All supporting evidence can appear either in the main paper or the1326

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification1327

please point to the section(s) where related material for the question can be found.1328

IMPORTANT, please:1329

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",1330

• Keep the checklist subsection headings, questions/answers and guidelines below.1331

• Do not modify the questions and only use the provided macros for your answers.1332

1. Claims1333

Question: Do the main claims made in the abstract and introduction accurately reflect the1334

paper’s contributions and scope?1335

Answer: [NA]1336

Justification: This is a position paper, and this type of paper does not make claims as1337

technical papers do. We make our position clear in the abstract and introduction (the bold1338

text).1339

Guidelines:1340

• The answer NA means that the abstract and introduction do not include the claims1341

made in the paper.1342

• The abstract and/or introduction should clearly state the claims made, including the1343

contributions made in the paper and important assumptions and limitations. A No or1344

NA answer to this question will not be perceived well by the reviewers.1345

• The claims made should match theoretical and experimental results, and reflect how1346

much the results can be expected to generalize to other settings.1347

• It is fine to include aspirational goals as motivation as long as it is clear that these goals1348

are not attained by the paper.1349

2. Limitations1350

Question: Does the paper discuss the limitations of the work performed by the authors?1351

Answer: [Yes]1352
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Justification: The limitation analysis for the first empirical study is provided in the Variables1353

part, and the limitation analysis for the second and third empirical studies are provided in1354

the Limitation part at the end of each study in Appendix E. We provide the Limitation1355

analysis part of theoretical problem setup at the end of Appendix F.1356

Guidelines:1357

• The answer NA means that the paper has no limitation while the answer No means that1358

the paper has limitations, but those are not discussed in the paper.1359

• The authors are encouraged to create a separate "Limitations" section in their paper.1360

• The paper should point out any strong assumptions and how robust the results are to1361

violations of these assumptions (e.g., independence assumptions, noiseless settings,1362

model well-specification, asymptotic approximations only holding locally). The authors1363

should reflect on how these assumptions might be violated in practice and what the1364

implications would be.1365

• The authors should reflect on the scope of the claims made, e.g., if the approach was1366

only tested on a few datasets or with a few runs. In general, empirical results often1367

depend on implicit assumptions, which should be articulated.1368

• The authors should reflect on the factors that influence the performance of the approach.1369

For example, a facial recognition algorithm may perform poorly when image resolution1370

is low or images are taken in low lighting. Or a speech-to-text system might not be1371

used reliably to provide closed captions for online lectures because it fails to handle1372

technical jargon.1373

• The authors should discuss the computational efficiency of the proposed algorithms1374

and how they scale with dataset size.1375

• If applicable, the authors should discuss possible limitations of their approach to1376

address problems of privacy and fairness.1377

• While the authors might fear that complete honesty about limitations might be used by1378

reviewers as grounds for rejection, a worse outcome might be that reviewers discover1379

limitations that aren’t acknowledged in the paper. The authors should use their best1380

judgment and recognize that individual actions in favor of transparency play an impor-1381

tant role in developing norms that preserve the integrity of the community. Reviewers1382

will be specifically instructed to not penalize honesty concerning limitations.1383

3. Theory assumptions and proofs1384

Question: For each theoretical result, does the paper provide the full set of assumptions and1385

a complete (and correct) proof?1386

Answer: [Yes]1387

Justification: The whole section Appendix F provides the proof for Theorems 1 and 2. The1388

full set of assumptions are provided at the beginning of Appendix F in Problem Setup.1389

Guidelines:1390

• The answer NA means that the paper does not include theoretical results.1391

• All the theorems, formulas, and proofs in the paper should be numbered and cross-1392

referenced.1393

• All assumptions should be clearly stated or referenced in the statement of any theorems.1394

• The proofs can either appear in the main paper or the supplemental material, but if1395

they appear in the supplemental material, the authors are encouraged to provide a short1396

proof sketch to provide intuition.1397

• Inversely, any informal proof provided in the core of the paper should be complemented1398

by formal proofs provided in appendix or supplemental material.1399

• Theorems and Lemmas that the proof relies upon should be properly referenced.1400

4. Experimental result reproducibility1401

Question: Does the paper fully disclose all the information needed to reproduce the main ex-1402

perimental results of the paper to the extent that it affects the main claims and/or conclusions1403

of the paper (regardless of whether the code and data are provided or not)?1404

Answer: [Yes]1405
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Justification: We provide the data and code in the supplementary material to run the three1406

empirical studies in Appendix E.1407

Guidelines:1408

• The answer NA means that the paper does not include experiments.1409

• If the paper includes experiments, a No answer to this question will not be perceived1410

well by the reviewers: Making the paper reproducible is important, regardless of1411

whether the code and data are provided or not.1412

• If the contribution is a dataset and/or model, the authors should describe the steps taken1413

to make their results reproducible or verifiable.1414

• Depending on the contribution, reproducibility can be accomplished in various ways.1415

For example, if the contribution is a novel architecture, describing the architecture fully1416

might suffice, or if the contribution is a specific model and empirical evaluation, it may1417

be necessary to either make it possible for others to replicate the model with the same1418

dataset, or provide access to the model. In general. releasing code and data is often1419

one good way to accomplish this, but reproducibility can also be provided via detailed1420

instructions for how to replicate the results, access to a hosted model (e.g., in the case1421

of a large language model), releasing of a model checkpoint, or other means that are1422

appropriate to the research performed.1423

• While NeurIPS does not require releasing code, the conference does require all submis-1424

sions to provide some reasonable avenue for reproducibility, which may depend on the1425

nature of the contribution. For example1426

(a) If the contribution is primarily a new algorithm, the paper should make it clear how1427

to reproduce that algorithm.1428

(b) If the contribution is primarily a new model architecture, the paper should describe1429

the architecture clearly and fully.1430

(c) If the contribution is a new model (e.g., a large language model), then there should1431

either be a way to access this model for reproducing the results or a way to reproduce1432

the model (e.g., with an open-source dataset or instructions for how to construct1433

the dataset).1434

(d) We recognize that reproducibility may be tricky in some cases, in which case1435

authors are welcome to describe the particular way they provide for reproducibility.1436

In the case of closed-source models, it may be that access to the model is limited in1437

some way (e.g., to registered users), but it should be possible for other researchers1438

to have some path to reproducing or verifying the results.1439

5. Open access to data and code1440

Question: Does the paper provide open access to the data and code, with sufficient instruc-1441

tions to faithfully reproduce the main experimental results, as described in supplemental1442

material?1443

Answer: [Yes]1444

Justification: We provide a readme file for the data and code files. The code files contain1445

detailed instructions to reproduce all experimental results.1446

Guidelines:1447

• The answer NA means that paper does not include experiments requiring code.1448

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/1449

public/guides/CodeSubmissionPolicy) for more details.1450

• While we encourage the release of code and data, we understand that this might not be1451

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not1452

including code, unless this is central to the contribution (e.g., for a new open-source1453

benchmark).1454

• The instructions should contain the exact command and environment needed to run to1455

reproduce the results. See the NeurIPS code and data submission guidelines (https:1456

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.1457

• The authors should provide instructions on data access and preparation, including how1458

to access the raw data, preprocessed data, intermediate data, and generated data, etc.1459
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• The authors should provide scripts to reproduce all experimental results for the new1460

proposed method and baselines. If only a subset of experiments are reproducible, they1461

should state which ones are omitted from the script and why.1462

• At submission time, to preserve anonymity, the authors should release anonymized1463

versions (if applicable).1464

• Providing as much information as possible in supplemental material (appended to the1465

paper) is recommended, but including URLs to data and code is permitted.1466

6. Experimental setting/details1467

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-1468

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the1469

results?1470

Answer: [Yes]1471

Justification: The experimental setting/details are described in parts labeling the Data,1472

Variables, AI models and XAI algorithms, and Experiment setup in Appendix E.1473

Guidelines:1474

• The answer NA means that the paper does not include experiments.1475

• The experimental setting should be presented in the core of the paper to a level of detail1476

that is necessary to appreciate the results and make sense of them.1477

• The full details can be provided either with the code, in appendix, or as supplemental1478

material.1479

7. Experiment statistical significance1480

Question: Does the paper report error bars suitably and correctly defined or other appropriate1481

information about the statistical significance of the experiments?1482

Answer: [Yes]1483

Justification: We use a significance level of 0.05 and reported it in Appendix E. The statistical1484

test details are described in paragraphs labeling the Statistical test in Appendix E.1485

Guidelines:1486

• The answer NA means that the paper does not include experiments.1487

• The authors should answer "Yes" if the results are accompanied by error bars, confi-1488

dence intervals, or statistical significance tests, at least for the experiments that support1489

the main claims of the paper.1490

• The factors of variability that the error bars are capturing should be clearly stated (for1491

example, train/test split, initialization, random drawing of some parameter, or overall1492

run with given experimental conditions).1493

• The method for calculating the error bars should be explained (closed form formula,1494

call to a library function, bootstrap, etc.)1495

• The assumptions made should be given (e.g., Normally distributed errors).1496

• It should be clear whether the error bar is the standard deviation or the standard error1497

of the mean.1498

• It is OK to report 1-sigma error bars, but one should state it. The authors should1499

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis1500

of Normality of errors is not verified.1501

• For asymmetric distributions, the authors should be careful not to show in tables or1502

figures symmetric error bars that would yield results that are out of range (e.g. negative1503

error rates).1504

• If error bars are reported in tables or plots, The authors should explain in the text how1505

they were calculated and reference the corresponding figures or tables in the text.1506

8. Experiments compute resources1507

Question: For each experiment, does the paper provide sufficient information on the com-1508

puter resources (type of compute workers, memory, time of execution) needed to reproduce1509

the experiments?1510

Answer: [Yes]1511
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Justification: The data analyses were not resource intensive, and the computational resources1512

are provided in the beginning of Appendix E.1513

Guidelines:1514

• The answer NA means that the paper does not include experiments.1515

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,1516

or cloud provider, including relevant memory and storage.1517

• The paper should provide the amount of compute required for each of the individual1518

experimental runs as well as estimate the total compute.1519

• The paper should disclose whether the full research project required more compute1520

than the experiments reported in the paper (e.g., preliminary or failed experiments that1521

didn’t make it into the paper).1522

9. Code of ethics1523

Question: Does the research conducted in the paper conform, in every respect, with the1524

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?1525

Answer: [Yes]1526

Justification: The research conducted in the paper conform, in every respect, with the1527

NeurIPS Code of Ethics.1528

Guidelines:1529

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.1530

• If the authors answer No, they should explain the special circumstances that require a1531

deviation from the Code of Ethics.1532

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-1533

eration due to laws or regulations in their jurisdiction).1534

10. Broader impacts1535

Question: Does the paper discuss both potential positive societal impacts and negative1536

societal impacts of the work performed?1537

Answer: [Yes]1538

Justification: We provide an Impact Statement section after Conclusion.1539

Guidelines:1540

• The answer NA means that there is no societal impact of the work performed.1541

• If the authors answer NA or No, they should explain why their work has no societal1542

impact or why the paper does not address societal impact.1543

• Examples of negative societal impacts include potential malicious or unintended uses1544

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations1545

(e.g., deployment of technologies that could make decisions that unfairly impact specific1546

groups), privacy considerations, and security considerations.1547

• The conference expects that many papers will be foundational research and not tied1548

to particular applications, let alone deployments. However, if there is a direct path to1549

any negative applications, the authors should point it out. For example, it is legitimate1550

to point out that an improvement in the quality of generative models could be used to1551

generate deepfakes for disinformation. On the other hand, it is not needed to point out1552

that a generic algorithm for optimizing neural networks could enable people to train1553

models that generate Deepfakes faster.1554

• The authors should consider possible harms that could arise when the technology is1555

being used as intended and functioning correctly, harms that could arise when the1556

technology is being used as intended but gives incorrect results, and harms following1557

from (intentional or unintentional) misuse of the technology.1558

• If there are negative societal impacts, the authors could also discuss possible mitigation1559

strategies (e.g., gated release of models, providing defenses in addition to attacks,1560

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1561

feedback over time, improving the efficiency and accessibility of ML).1562

11. Safeguards1563
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Question: Does the paper describe safeguards that have been put in place for responsible1564

release of data or models that have a high risk for misuse (e.g., pretrained language models,1565

image generators, or scraped datasets)?1566

Answer: [NA]1567

Justification: The paper poses no such risks.1568

Guidelines:1569

• The answer NA means that the paper poses no such risks.1570

• Released models that have a high risk for misuse or dual-use should be released with1571

necessary safeguards to allow for controlled use of the model, for example by requiring1572

that users adhere to usage guidelines or restrictions to access the model or implementing1573

safety filters.1574

• Datasets that have been scraped from the Internet could pose safety risks. The authors1575

should describe how they avoided releasing unsafe images.1576

• We recognize that providing effective safeguards is challenging, and many papers do1577

not require this, but we encourage authors to take this into account and make a best1578

faith effort.1579

12. Licenses for existing assets1580

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1581

the paper, properly credited and are the license and terms of use explicitly mentioned and1582

properly respected?1583

Answer: [Yes]1584

Justification: The secondary data analysis in Appendix E.1 has obtained ethics approval1585

from the university Research Ethics Board.1586

Guidelines:1587

• The answer NA means that the paper does not use existing assets.1588

• The authors should cite the original paper that produced the code package or dataset.1589

• The authors should state which version of the asset is used and, if possible, include a1590

URL.1591

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1592

• For scraped data from a particular source (e.g., website), the copyright and terms of1593

service of that source should be provided.1594

• If assets are released, the license, copyright information, and terms of use in the1595

package should be provided. For popular datasets, paperswithcode.com/datasets1596

has curated licenses for some datasets. Their licensing guide can help determine the1597

license of a dataset.1598

• For existing datasets that are re-packaged, both the original license and the license of1599

the derived asset (if it has changed) should be provided.1600

• If this information is not available online, the authors are encouraged to reach out to1601

the asset’s creators.1602

13. New assets1603

Question: Are new assets introduced in the paper well documented and is the documentation1604

provided alongside the assets?1605

Answer: [NA]1606

Justification: The paper does not release new assets.1607

Guidelines:1608

• The answer NA means that the paper does not release new assets.1609

• Researchers should communicate the details of the dataset/code/model as part of their1610

submissions via structured templates. This includes details about training, license,1611

limitations, etc.1612

• The paper should discuss whether and how consent was obtained from people whose1613

asset is used.1614
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• At submission time, remember to anonymize your assets (if applicable). You can either1615

create an anonymized URL or include an anonymized zip file.1616

14. Crowdsourcing and research with human subjects1617

Question: For crowdsourcing experiments and research with human subjects, does the paper1618

include the full text of instructions given to participants and screenshots, if applicable, as1619

well as details about compensation (if any)?1620

Answer: [NA]1621

Justification: The paper does not involve crowdsourcing nor research with human subjects.1622

Guidelines:1623

• The answer NA means that the paper does not involve crowdsourcing nor research with1624

human subjects.1625

• Including this information in the supplemental material is fine, but if the main contribu-1626

tion of the paper involves human subjects, then as much detail as possible should be1627

included in the main paper.1628

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1629

or other labor should be paid at least the minimum wage in the country of the data1630

collector.1631

15. Institutional review board (IRB) approvals or equivalent for research with human1632

subjects1633

Question: Does the paper describe potential risks incurred by study participants, whether1634

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1635

approvals (or an equivalent approval/review based on the requirements of your country or1636

institution) were obtained?1637

Answer: [Yes]1638

Justification: IRB approval was obtained for the secondary data analysis in Appendix E.1.1639

Guidelines:1640

• The answer NA means that the paper does not involve crowdsourcing nor research with1641

human subjects.1642

• Depending on the country in which research is conducted, IRB approval (or equivalent)1643

may be required for any human subjects research. If you obtained IRB approval, you1644

should clearly state this in the paper.1645

• We recognize that the procedures for this may vary significantly between institutions1646

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1647

guidelines for their institution.1648

• For initial submissions, do not include any information that would break anonymity (if1649

applicable), such as the institution conducting the review.1650

16. Declaration of LLM usage1651

Question: Does the paper describe the usage of LLMs if it is an important, original, or1652

non-standard component of the core methods in this research? Note that if the LLM is used1653

only for writing, editing, or formatting purposes and does not impact the core methodology,1654

scientific rigorousness, or originality of the research, declaration is not required.1655

Answer: [NA]1656

Justification: The core method development in this research does not involve LLMs as any1657

important, original, or non-standard components.1658

Guidelines:1659

• The answer NA means that the core method development in this research does not1660

involve LLMs as any important, original, or non-standard components.1661

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1662

for what should or should not be described.1663
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