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Abstract

Due to the sparsity of formal knowledge and001
the roughness of non-ontological construc-002
tion methods, relevant facts are often miss-003
ing in Open Knowledge Graphs (OpenKGs).004
Although existing completion methods have005
achieved promising performance, they do not006
alleviate the sparsity problem of OpenKGs.007
Owing to fewer training chances caused by008
sparse links, many few-shot and zero-shot en-009
tities cannot fully learn high-dimensional fea-010
tures. In this paper, we propose a new OpenKG011
Contrastive Learning (OKGCL) model to alle-012
viate the sparsity with contrastive entities and013
relations. OKGCL designs (a) negative entities014
to discriminate different entities with the same015
relation, (b) negative relations to discriminate016
different relations with the same entity-pair,017
and (c) self positive samples to give zero-shot018
and few-shot entities chances to learn discrimi-019
native representations. Extensive experiments020
on benchmark datasets show the superiority of021
OKGCL over state-of-the-art models.022

1 Introduction023

Open Knowledge Graphs (OpenKGs) represent024

objective facts with triples in the form of (“sub-025

ject noun phrase”, “relation phrase”, “object noun026

phrase”). Taking noun phrases as entities and rela-027

tion phrases as relations, OpenKGs form structured028

knowledge that can visually express potential con-029

nections of facts. OpenKGs are extracted from text030

corpora with Open Information Extraction (Ope-031

nIE) tools (Fader et al., 2011; Gashteovski et al.,032

2019), and generally do not rely on the specifica-033

tion of ontology or relational schema. Although034

this approach has the advantage that it can be eas-035

ily bootstrapped to new domains, because of the036

sparsity of formal grammatical knowledge and the037

roughness of non-ontological construction meth-038

ods, relevant facts are often missing from such039

OpenKGs, which makes them difficult to be di-040

rectly usable for end tasks like question answer-041

ing (Chandrahas and Talukdar, 2021). The task of 042

OpenKG completion aims at finding out missing 043

relations, which has become an indispensable step 044

in the application of OpenKGs to downstream tasks 045

(Gupta et al., 2019; Broscheit et al., 2020). 046

With the great success of deep learning, many 047

completion methods have devoted to learning po- 048

tential implicit features of entities and relations. 049

These approaches project the entities and relations 050

into embeddings, and then predict the missing 051

relations by calculating the similarity scores of 052

entity-pairs. Some general completion models fo- 053

cus on mining structural features with linear (Bor- 054

des et al., 2013), bilinear (Wang et al., 2014; Lin 055

et al., 2015), complex (Yang et al., 2015; Trouil- 056

lon et al., 2016) or convolutional (Dettmers et al., 057

2018; Nguyen et al., 2018) operations, while the 058

OpenKG-specific completion models enhance the 059

representations with external information (Gupta 060

et al., 2019) and pretrained language models (Chan- 061

drahas and Talukdar, 2021). 062

Although existing models have achieved better 063

performance, they do not effectively tackle the spar- 064

sity problem of OpenKGs. The sparsity is mainly 065

reflected in the imbalance of entity degrees, that is, 066

many entities have few or zero related links in an 067

OpenKG. According to our statistics, the degree 068

of 54.6% entities in ReVerb20K and 89% entities 069

in ReVerb45K is less than 3. These entities are 070

denoted as few-shot or zero-shot entities. Due to 071

fewer training chances caused by sparse links, few- 072

shot or zero-shot entities are not well trained, re- 073

sulting in poor generalization performance. This 074

motivates a strong need to develop a more effective 075

method to alleviate the sparsity of OpenKGs. 076

Being popular in unsupervised representation 077

learning, contrastive learning aims to learn effec- 078

tive and discriminative representations by introduc- 079

ing a large number of negative samples in contrast 080

with positive samples (He et al., 2020; Gao et al., 081

2021; Zhu et al., 2021). These negative samples can 082
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Figure 1: The proposed OKGCL model to alleviate the sparsity of OpenKGs.

enrich the understanding of positive samples in the083

form of negative feedback. Because sparse links084

make few-shot entities of OpenKGs unable to fully085

learn high-dimensional features, we propose to gen-086

erate negative samples to contrast with the existing087

links, so as to learn discriminative representations088

of few-shot entities. With this motivation, in this089

work we attempt to design and incorporate negative090

samples to alleviate the sparsity of OpenKGs.091

We propose OpenKG Contrastive Learning092

(OKGCL) to alleviate the sparsity of OpenKGs093

with negative samples. For an OpenKG (Fig. 1a),094

OKGCL investigates three key ideas: (1) Con-095

trastive Entity to generate negative entity samples096

to mine discriminative features of different entities097

with the same relation (Fig. 1b), (2) Contrastive098

Relation to generate negative relation samples to099

capture discriminative features of different rela-100

tions with the same entity-pair (Fig. 1c), and (3)101

Contrastive Self to construct the positive sample102

which gives few-shot and zero-shot entities chances103

to learn discriminative representations (Fig. 1b,c).104

Extensive experiments on benchmarks prove the su-105

periority of OKGCL over state-of-the-art baselines.106

In summary, we highlight our key contributions:107

• We improve the completion performance from108

the perspective of alleviating the sparsity prob-109

lem. To our knowledge, this is the first work to110

alleviate the sparsity of OpenKGs without using111

an external source.112

• We propose OKGCL, a new OpenKG contrastive113

learning model which generates contrastive en-114

tities and contrastive relations to alleviate the115

sparsity of OpenKGs. OKGCL also generates 116

self positive sample to give zero-shot or few-shot 117

entities one or more chances to be contrasted 118

with negative samples. 119

• Extensive experiments show the superiority of 120

OKGCL over the state-of-the-art baselines. We 121

also demonstrate that OKGCL outperforms the 122

baselines with pretrained language models on 123

different sparsity granularity. Source code will 124

be public later. 125

2 Related Work 126

2.1 Open Knowledge Graph 127

OpenKGs represent factual knowledge in struc- 128

tured forms, which are extracted with Open In- 129

formation Extraction (OpenIE) tools (Fader et al., 130

2011; Gashteovski et al., 2019). They do not re- 131

quire the specification of ontology or relational 132

schema, and thus can easily bootstrap to new do- 133

mains. However, this rough construction makes 134

OpenKGs sparse with many valid relations miss- 135

ing (Chandrahas and Talukdar, 2021). Finding out 136

missing relations to complete the OpenKGs has 137

thus become an important research topic. 138

Many completion models have been devoted to 139

learning implicit embeddings of entities and rela- 140

tions. Some translation-based embedding models, 141

such as TransE (Bordes et al., 2013), TransH (Wang 142

et al., 2014), TransR (Lin et al., 2015) and TransD 143

(Ji et al., 2015) apply simple linear or bilinear oper- 144

ations to model the embeddings of entities and re- 145

lations. DistMult (Yang et al., 2015) and ComplEx 146
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(Trouillon et al., 2016) design similarity scoring147

functions to learn semantic information. ConvE148

(Dettmers et al., 2018) and ConvKB (Nguyen et al.,149

2018) apply convolutional neural network technol-150

ogy to learn non-linear features.151

Previous OpenKG-specific completion models152

fake similar entities with side information and pre-153

trained language models. CaRe (Gupta et al., 2019)154

tries to learn canonicalization infused embeddings,155

which fake similar entities of OpenKGs by inte-156

grating canonicalization and side information in an157

error-conscious manner. OKGIT (Chandrahas and158

Talukdar, 2021) employs the output of a pretrained159

language model to improve the CaRe model from160

type compatibility. However, these approaches are161

still limited in alleviating the sparsity of OpenKGs162

as shown in our experiments (§5). In contrast, we163

propose a contrastive learning method that is more164

effective and does not rely on external sources.165

2.2 Contrastive Learning166

Contrastive representation learning aims to learn167

effective representation by pulling semantically168

close neighbors together and pushing apart non-169

neighbors (Hadsell et al., 2006; Gao et al., 2021).170

The effectiveness of contrastive learning is closely171

related to the distribution of positive and negative172

samples. Some methods pay attention to the choice173

of positive samples (Hénaff, 2020; Hjelm et al.,174

2019), while others devote to the generation of175

negative samples (Bachman et al., 2019; Ye et al.,176

2019; Chen et al., 2020).177

Contrastive learning has achieved great success178

in visual representation learning (He et al., 2020),179

natural language processing (Gao et al., 2021) and180

graph representation learning (Zhu et al., 2021). A181

number of unsupervised graph representation learn-182

ing methods attempt to leverage a contrastive learn-183

ing loss at node (Velickovic et al., 2019), graph184

(Sun et al., 2020) and multi-view levels (Hassani185

and Ahmadi, 2020; Zhu et al., 2021). However, to186

our knowledge, none has studied contrastive learn-187

ing to alleviate the sparsity problem of OpenKGs.188

3 Preliminaries189

• Open Knowledge Graph In an OpenKG G =190

(E , R), let a triple be (h, r, t), where h, t ∈ E191

represent the head and tail entities, and r ∈ R192

represents the relation between entities h and t;193

|E| and |R| are the number of entities and rela-194

tions, respectively. The entities h, t and relation r195

are represented by non-empty word sequences; let 196

wh = {wh,1, ..., wh,|wh|} be the word sequence of 197

entity h, and wr = {wr,1, ..., wr,|wr|} be the word 198

sequence of relation r. The representations of enti- 199

ties and relations are denoted as E ∈ R|E|×D and 200

R ∈ R|R|×D, where D is the feature dimension. 201

• Relation Prediction Task in OpenKGs The 202

relation prediction problem of OpenKGs is to pre- 203

dict answer entities for two questions: (1) predict- 204

ing the tail Qt = (h, r, ?) and (2) predicting the 205

head Qh = (?, r, t). For each question, the number 206

of possible correct answer entities is greater than 207

or equal to one, because there could be multiple 208

entities with the same meaning but different forms 209

in an OpenKG (Broscheit et al., 2020). For exam- 210

ple, for the question (“NBC-TV”, “has office in”, 211

?), we expect all answers from the set of entities 212

{“New York”, “NYC”, “New York City”}. 213

• Contrastive Learning Method Contrastive 214

learning learns high-dimensional feature represen- 215

tations by contrasting a positive sample with N 216

negative samples. Specifically, for an input h, it as- 217

sumes a positive pair P = (h, h+), and N negative 218

pairs N = {(h, h−j )}Nj=1. It defines the following 219

contrastive score with the goal to push the positive 220

pair closer in the representation space while push- 221

ing apart the representation of the negative pairs: 222

223

S(h) =
exp(β(h, h+)/τ)∑

n∈{P,N} exp(β(n)/τ)
(1) 224

where β(h1, h2) is a similarity function and τ is a 225

temperature hyperparameter. 226

4 Proposed OKGCL Model 227

In this section, we present our contrastive learning 228

model, OKGCL. The overall framework of the 229

OKGCL is shown in Fig. 1. In §4.1, we introduce 230

a simple but effective embedding model to fuse 231

the textual and structural features of OpenKGs. In 232

§4.2, we design contrastive entities and relations to 233

optimize the above embedding model. Finally, the 234

training procedure is given in §4.3. 235

4.1 Embedding Model 236

For a triple (h, r, t) ∈ G, the initial representa- 237

tions of entities h, t and relation r is defined as 238

eh, et ∈ E and er ∈ R, respectively. For the 239

pair (h, r), the word sequence of head entity h 240

is wh = {wh,1, ..., wh,|wh|}, and that of relation 241

r is wr = {wr,1, ..., wr,|wr|}. We encode each of 242

these sequences with a single layer bi-directional 243
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Gated Recurrent Unit (BiGRU) (Cho et al., 2014).244

ewi = BiGRU(wi) for wi ∈ {wh, wr} (2)245

The embedding (i.e., hidden state) of the first token246

wi,1 is taken as the final embedding of the sequence247

wi, that is ewi = ewi [1]. This way we get the textual248

embeddings of head entity h and relation r as ewh249

and ewr , respectively.250

Then, we focus on exploiting potential connec-251

tions between entities and relations. We use a two-252

dimensional convolutional network (Dettmers et al.,253

2018) to learn the potential connections between a254

head entity h and a relation r as follows:255

φ(h, r) = σ(Linear(σ([êh; êr] ∗ ω))) (3)256

where ∗ denotes a two-dimensional convolutional257

layer with filters ω, Linear projects the dimen-258

sion to D, and σ represents a ReLU activation;259

êh, êr ∈ RD1×D2 are reshaped from [eh + ewh ; e
w
r ]260

∈ R2D with 2D = D1D2; Through the convolu-261

tion module, the potential embeddings of entity h262

and relation r are jointly encapsulated.263

Finally, we compute the similarity score for each264

triple (h, r, t). The similarity score is computed265

with a cosine similarity function as:266

β(h, r, t) =
φ(h, r)⊤et

||φ(h, r)|| · ||et||
(4)267

where et ∈ E is initial embedding of tail entity t.268

4.2 Contrastive Learning Model269

Taking the model in §4.1 as a basic embedding270

module, we design OKGCL, a contrastive learn-271

ing model to alleviate the sparsity of OpenKGs272

(Fig. 1d). It has four modules: (1) Contrastive273

Entity contrasts negative entities with positive enti-274

ties, to mine features of different entities with the275

same relation. (2) Contrastive Relation contrasts276

negative relations with positive relations, to cap-277

ture potential features of different relations with278

the same head and tail entities. (3) Contrastive Fu-279

sion fuses negative entities and negative relations to280

contrast with positive samples. (4) Contrastive Self281

constructs the positive sample (h, self, h+) and con-282

trasts this positive sample with negative samples, to283

give zero-shot or few-shot entities chances to learn284

discriminative representations through training.285

Contrastive Entity We alleviate the sparsity of286

OpenKGs from the perspective of nagative entity.287

The triples in the OpenKG are regarded as posi- 288

tive samples, while negative samples are generated 289

with contrastive entities. For a positive sample 290

Pe = (h, r, t+), a contrastive entity t−j is randomly 291

selected from the entity list E − E(h, r), where 292

E(h, r) is the entity list of true answers, that is, the 293

triple (h, r, ti) ∈ G if entity ti ∈ E(h, r). Fig. 1b 294

gives two examples of contrastive entities. For each 295

positive sample Pe = (h, r, t+), its negative sam- 296

ples are generated with multiple contrastive entities: 297

298

Ne = {(h, r, t−j )}
Ne
j=1 (5) 299

where Ne is the number of contrastive entities. The 300

contrastive score for the positive entity Pe is: 301

S(h, r, t+) =
exp(β(h, r, t+)/τ)∑

n∈{Pe,Ne} exp(β(n)/τ)
(6) 302

where β(.) is the similarity score as in Eq. (4). 303

Contrastive Relation We also alleviate the spar- 304

sity of OpenKGs from the perspective of negative 305

relation. The triples in the OpenKG are regarded 306

as positive samples, while negative samples are 307

generated with contrastive relations. For a pos- 308

itive sample Pr = (h, r+, t), a contrastive rela- 309

tion r−j is randomly selected from the relation list 310

R − R(h, t), where R(h, t) is a relation list that 311

satisfies the condition: triple (h, ri, t) ∈ G if re- 312

lation ri ∈ R(h, t). Fig. 1c gives two examples 313

of contrastive relations. For each positive sample 314

Pr = (h, r+, t), its negative samples are generated 315

with multiple contrastive relations: 316

Nr = {(h, r−j , t)}
Nr
j=1 (7) 317

where Nr is the number of contrastive relations. 318

The contrastive score for the positive relation Pr is: 319

320

S(h, r+, t) =
exp(β(h, r+, t)/τ)∑
n∈{Pr,Nr} exp(β(n)/τ)

(8) 321

Contrastive Fusion In this module, the nega- 322

tive entity samples and negative relation samples, 323

which can be generated from the Contrastive En- 324

tity and Contrastive Relation modules, are fused to 325

alleviate the sparsity of OpenKGs. The contrastive 326

score for a positive sample Pf = (h, r+, t+) is: 327

S(h, r+, t+) =
exp(β(h, r+, t+)/τ)∑

n∈{Pf ,Ne,Nr} exp(β(n)/τ)
(9) 328

where the positive sample Pf = (h, r+, t+) is a 329

triple in the OpenKG, the negative samples are 330

achieved by merging the negative entity samples 331

Ne and negative relation samples Nr. 332
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Contrastive Self Due to sparsity, there are many333

entities in an OpenKGs with only few or zero links,334

referred to as few- or zero-shot entities. Compared335

with those entities with many links, few-shot en-336

tities are often not fully trained because of fewer337

links, and zero-shot entities cannot be trained be-338

cause they have no links with rest of the OpenKG.339

In view of the above problem, we propose to340

add the Self relation to construct the positive sam-341

ple Ps = (h, self, h+). The embeddings of the342

same entity h and h+ are different, where the em-343

bedding of h+ is the initial embedding eh, and344

that of h is the sum of textual embedding ewh and345

initial embedding eh. For such a positive sam-346

ple Ps = (h, self, h+), negative entity samples347

Ne = {(h, self, h−j )}
Ne
j=1 can be generated with348

contrastive entities, which are randomly selected349

from the entity list E − h. Similarly, negative350

relation samples Nr = {(h, self−j , h
+)}Nr

j=1 can351

be generated with contrastive relations, which are352

randomly selected from the relation list R− self.353

The contrastive score for a positive sample Ps =354

(h, self, h+) can be computed with Eq. (9). The355

examples of contrastive self are shown in Fig. 1b-c.356

Through the Self positive sample, these zero-shot357

or few-shot entities can have one or more chances358

to be trained with contrastive learning.359

4.3 Training Procedure360

The proposed OKGCL model is trained in Pre-361

train and Finetune stages, where the Pretrain stage362

aims to learn discriminative representation with363

contrastive entities and contrastive relations, and364

the Finetune stage aims to select optimal hyperpa-365

rameters for specific end tasks.366

Pretrain The training objective is as follows:367

LP = − 1

|P|

|P|∑
i=1

log(S(i))

where S(i) =


S(h, r, t+), if Entity
S(h, r+, t), if Relation
S(h, r+, t+), if Fusion

(10)368

where |P| is the number of all positive samples.369

Finetune The pretrained model is finetuned to370

adapt for the relation prediction task of OpenKGs.371

Note that, for a pair (h, r), there could be more than372

one true object entities in an OpenKG, where the373

object entities are put into E(h, r). For a test triple374

(hi, ri, ti), the representation φ(hi, ri) of entity hi375

and relation ri is matched with the embeddings E 376

of all entities via a matrix multiplication as. 377

Xi = δ(φ(hi, ri)E
⊤) (11) 378

where δ represents a Sigmoid activation. We use a 379

binary cross-entropy loss to optimize the parame- 380

ters. The loss function can be defined as: 381

LF = − 1

|M||E|

|M|∑
i=1

|E|∑
j=1

(Yi,j · logXi,j

+(1− Yi,j) · log(1−Xi,j))

with
{

Yi,j = 1, if (hi, ri, tj) ∈ E(hi, ri)
Yi,j = 0, if (hi, ri, tj) /∈ E(hi, ri)

(12) 382

where |E| is the number of all entities, |M| is the 383

number of all test samples. 384

5 Experiments 385

5.1 Datasets 386

The statistics of datasets are summarized in Table 387

1. ReVerb20K and ReVerb45K are OpenKG bench- 388

mark datasets (Vashishth et al., 2018), which are 389

constructed through the ReVerb open knowledge 390

base (Fader et al., 2011). The ReVerb45K with 391

27.0K entities and 21.6K relations, is larger and 392

sparser than the ReVerb20K with 11.1K entities 393

and 11.1K relations. In the sparsity problem han- 394

dling, we conduct variants of training sets at differ- 395

ent sparsity granularity ([100%, 80%, 60%, 40%, 396

20%]), where x% represents to randomly remove 397

the percentages (1-x%) of samples from the origi- 398

nal training sets. Validation sets and test sets are 399

the same for different sparsity granularity. As can 400

be seen from Table 1, the average degree decreases 401

with the decrease of sparsity granularity. 402

5.2 Evaluation Protocols 403

For single test triple, we use the classic Mention 404

Ranking (Gupta et al., 2019; Broscheit et al., 2020) 405

as evaluation protocol, which is the minimum rank- 406

ing position of all answer entities. For all test 407

triples, we use three most commonly used ways to 408

integrate the above Mention Ranking scores. H@N: 409

The proportion of answer entity ranking in the top 410

N position. AR: Average all ranking scores. ARR: 411

Compute the reciprocal of each ranking score, and 412

average all the reciprocals. A model with better per- 413

formance should have higher H@N , higher ARR 414

and lower AR. 415
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Dataset Entity Relation Cluster Valid Test
Train Average Degree

100% 80% 60% 40% 20% 100% 80% 60% 40% 20%

ReVerb20K 11.1K 11.1K 10.8K 1.6K 2.4K 15.5K 12.4K 9.3K 6.2K 3.1K 1.4 1.1 0.8 0.6 0.3
ReVerb45K 27.0K 21.6K 18.6K 3.6K 5.4K 36.0K 28.8K 21.6K 14.4K 7.2K 1.3 1.1 0.8 0.5 0.3

Table 1: The statistics of Datasets.

Type Model
ReVerb20K ReVerb45K

AR ↓ ARR H@1 H@10 H@50 H@100 AR ↓ ARR H@1 H@10 H@50 H@100
TransE 1497 13.3 2.2 29.6 43.0 49.2 2222 15.8 9.3 25.9 37.1 43.2
DistMult 4569 1.9 1.3 2.7 5.2 7.1 5782 8.5 7.7 9.7 12.0 13.6

General ComlEx 4376 2.0 1.4 3.0 5.6 7.7 5173 8.9 7.5 11.3 16.0 18.9
ConvE 1085 25.5 19.9 35.8 50.1 57.2 2483 22.1 16.6 32.4 43.3 47.9
ConvTransE 1080 26.1 20.5 35.9 50.0 57.1 2490 23.4 17.9 33.8 44.4 48.8

OpenKG
CaReTransE 950 30.3 23.2 42.8 58.4 64.6 2414 19.5 7.8 37.5 47.5 51.4
CaReConvE 801 31.6 25.6 42.9 56.7 63.4 1589 29.7 23.4 41.3 53.6 58.7

OpenKG+ OKGIT+Bert 516 34.8 27.4 48.0 64.4 71.2 813 32.2 25.7 44.6 58.1 63.9
Pretrained OKGIT+Rob 545 34.7 27.2 48.1 65.5 72.0 864 32.0 25.3 44.7 57.3 62.6

Our OKGCL 421 38.1 29.9 53.3 68.5 75.2 744 33.2 25.6 48.1 61.9 67.7

Table 2: The results on ReVerb20K and ReVerb45K test data.

5.3 Models and Settings416

To prove the effectiveness of the proposed model,417

we compare several high-performing General mod-418

els: TransE (Bordes et al., 2013), DistMult (Yang419

et al., 2015), ComplEx (Trouillon et al., 2016),420

ConvE (Dettmers et al., 2018), ConvTransE421

(Shang et al., 2019), and OpenKG-specific mod-422

els: CaReTransE (Gupta et al., 2019), CaRe-423

ConvE (Gupta et al., 2019), OKGIT+Bert and424

OKGIT+Rob (Chandrahas and Talukdar, 2021).425

The results of baselines are reproduced with open426

source implementations. OKGCL is our proposed427

model, where the optimizer is set to Adam, the em-428

bedding size is set to 300. The entity and relation429

embeddings are initialized randomly, and the word430

vectors are initialized with the GloVe embeddings.431

5.4 Results432

Overall Performance We evaluate the overall per-433

formance of the proposed OKGCL. The results on434

ReVerb20K and ReVerb45K datasets are given in435

Table 2, where the best score is in bold. OKGCL436

achieves substantial improvements in comparison437

to baselines. For ReVerb20K, OKGCL outper-438

forms all baselines with strong improvements on439

all metrics. Among that, ARR metric increases440

by 3.3 point and H@1,10,50,100 metrics increase441

by 2.5, 5.2, 3.0, 3.2 points. For ReVerb45K, the442

performance of OKGCL is better than that of the443

General and OpenKG baselines with strong im-444

provements on all metrics. Among that, ARR445

metric increases by 3.5 point and H@1,10,50,100446

 

    
       (a) OKGIT+Bert / ReVerb20K                (b) OKGCL / ReVerb20K 

    
   (c) OKGIT+Bert / ReVerb45K                (d) OKGCL / ReVerb45K 

Figure 2: The visualization results, where the same
numbers represent entities with the same meaning.

metrics increase by 2.2, 6.8, 8.3, 9.0 points. Note 447

that OKGCL outperforms the OpenKG+Pretrained 448

baselines on all metrics for ReVerb20K and most 449

metrics for ReVerb45K. OKGCL with simple 450

structures and contrastive learning strategies, can 451

achieve better performance at lower costs, than the 452

OpenKG+Pretrained baselines with complex struc- 453

tures and pretrained language models, which is a 454

very favorable discovery. In summary, OKGCL 455

effectively capture potential discriminative features 456

of OpenKGs with contrastive entities and relations. 457

Performance w.r.t. Visualization We use the 458

t-SNE visualization to prove that the proposed 459
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Figure 3: The results of sparsity granularity.

OKGCL can make the entities with the same mean-460

ing closer in spatial distribution. For this visu-461

alization experiment, we selected 10 entity clus-462

ters for each dataset, where each cluster has more463

than three entities. The state-of-the-art model,464

OKGIT+Bert, is as the baseline to compare with465

OKGCL. Fig. 2 shows the visualization results466

on ReVerb20K and ReVerb45K datasets, where467

Fig. 2a and Fig. 2c are for OKGIT+Bert and Fig. 2b468

and Fig. 2d are for OKGCL. Through observing469

the distributions of entities in Fig. 2, we found that470

the embeddings of entities with the same mean-471

ing (same number) are closer in OKGCL than in472

OKGIT+Bert. The qualitative results are consis-473

tent with the quantitative results in Table 2, which474

further verify the effectiveness of OKGCL.475

Performance w.r.t. Sparsity The motivation in476

this paper is to alleviate the sparsity problem of477

OpenKGs, so we hope OKGCL can perform well478

on sparse data. We conduct experiments of differ-479

ent sparsity granularity ([100%, 80%, 60%, 40%,480

20%]). Fig. 3 gives the results of different spar-481

sity granularity on ReVerb20K and ReVerb45K482

datasets, where Fig. 3a and Fig. 3c show H@1483

scores, Fig. 3b and Fig. 3d show the percentage of484

performance degradation ((x%-100%)/100%).485

First, we analyze the H@1 scores of different486

models on different sparsity granularity. OKGCL487

achieves the best scores in all sparsity granularity488

than CaReConvE and CaReTransE on both datasets.489

For ReVerb20K (Fig. 3a), OKGCL achieves the490

H@1 scores of 28.2, 26.2, 24.8, 21.4 in the sparsity491

granularity of 80%, 60%, 40%, 20%, respectively,492

which gains improvements over OKGIT+Bert at493

2.4, 1.3, 1.8 and 1.1 points, respectively. For Re-494
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Figure 4: The results of the number collocations of
contrastive entities and contrastive relations.

Verb45K (Fig. 3c), the H@1 scores of OKGCL and 495

OKGIT+Bert are similar in the sparsity granularity 496

of 100%, 80%, 60%. When the sparse granular- 497

ity decreases to 40% and 20%, the H@1 scores of 498

OKGCL becomes better than that of OKGIT+Bert. 499

This shows that OKGCL performs better than all 500

baselines on sparse data, even OKGIT+Bert en- 501

hanced with pretrained language models. 502

Second, we analyze the percentage of perfor- 503

mance degradation. For ReVerb45K (Fig. 3d), 504

the performance degradation of OKGCL is better 505

than OKGIT+Bert and CaReConvE models. CaRe- 506

TransE seems to have the best performance degra- 507

dation, but there is no room to step back due to 508

the low H@1 score. For ReVerb20K (Fig. 3b), 509

the performance degradation of OKGCL is better 510

than that of CaReTransE and CaReConvE, but is 511

almost similar to that of OKGIT+Bert. Note that 512

OKGIT+Bert enhances the representation learn- 513

ing with pretrained language models, which have 514

loaded a lot of commonsense knowledge with the 515

training of large-scale data and a great quantity of 516

hyperparameters. OKGCL does not introduce side 517

information and pretrained language models, but its 518

performance degradation is similar or better than 519

that of OKGIT+Bert. The above experiments and 520

analysis demonstrate the effectiveness of OKGCL 521

in alleviating the sparsity problem of OpenKGs. 522

Performance w.r.t. Number of Contrastive En- 523

tities and Relations The Fusion module in §4.2 524

pays attention to fusing negative samples of con- 525

trastive entities and relations. Our assumption is 526

that the number of contrastive entities and relations 527

could affect the performance of OKGCL. So, we 528

design several collocations of contrastive entities 529

(left) and contrastive relations (right) with different 530

numbers: (00, 00), (00, 10), (10, 00), (10, 10), (10, 531

50), (50, 10), (50, 20), (50, 50). 532
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Figure 5: The results of hyperparameters.

Fig. 4 gives the results of number collocations533

on ReVerb20K and ReVerb45K datasets. Through534

observation, we have several findings: First, con-535

trastive entities are more important than contrastive536

relations in improving model performance. For ex-537

ample, the performance of (10, 00) is better than538

that of (00, 10), and the performance of (50, 10) is539

also better than that of (10, 50). Second, the role of540

contrastive relations can be more stimulated with541

the help of contrastive entities. For example on542

ReVerb45K, the performance of (00, 10) is worse543

than that of (00, 00) without any contrastive entities544

and relations, while the performance of (10, 10) is545

a little better than that of (10, 00). Third, OKGCL546

achieves the best result with the number colloca-547

tion of (50,10) on both datasets. The above colloca-548

tions also give the results of ablation study, where549

(00, 00) removes all contrastive modules, (00, 10)550

removes Contrastive Entity module, and (10, 00)551

removes Contrastive Relation module. The per-552

formance decreases when any module is removed,553

which proves the effectiveness of each module.554

Performance w.r.t. Contrastive Self The results555

of removing the self relation and its related positive556

and negative samples, are shown in (50,10,-s) of557

Fig. 4. Compared with the H@1 scores of (50,10),558

the performance of OKGCL decreases prominently559

when the Contrastive Self is removed (50,10,-s),560

especially for the sparser ReVerb45K. This proves561

the effectiveness of Contrastive Self.562

Performance w.r.t. Hyperparameters We ex-563

plore the sensitivity of OKGCL to hyperparameters.564

The list of hyperparameters are from two aspects:565

(1) Hyperparameters for Pretrain stage: learning566

rate ∈ {1e-3, 1e-4, 5e-5, 1e-5}, temperature regu- 567

lation value ∈ {0.1, 0.05, 0.01}. (2) Hyperparame- 568

ters for Finetune stage: learning rate ∈ {1e-3, 1e-4, 569

8e-5, 5e-5, 1e-5}, batch size ∈ {32, 64, 128, 256, 570

512}. The results of hyperparameters are shown 571

in Fig. 5. For Pretrain stage, the optimal value of 572

learning rate is 5e-5 on both datasets, where too 573

large a learning rate, such as 1E-3, may skip the 574

optimal results. And the optimal value of tempera- 575

ture regulation value is 0.05 on both datasets. For 576

Finetune stage, the optimal value of learning rate 577

is 5e-5 on both datasets, where too small a learning 578

rate, such as 1E-5, brings worse performance than 579

too large a learning rate, such as 1E-3. The optimal 580

value of batch size is 128 on both datasets, where 581

OKGCL is not very sensitive to batch size, but too 582

large a batch size could have a negative impact. 583

6 Conclusion 584

In this paper, we provide empirical insights about 585

the sparsity of OpenKGs, and propose a new con- 586

trastive learning model, OKGCL, to alleviate the 587

sparsity of OpenKGs with contrastive entities and 588

contrastive relations. Through extensive experi- 589

ments and comprehensive analysis on real-world 590

datasets, the proposed OKGCL achieves better per- 591

formance than state-of-the-art models. 592

According to observation, there may be more 593

than one object entity for a pair (h, r) in an 594

OpenKG, which produces multiple positive sam- 595

ples. That challenges the existing contrastive learn- 596

ing mechanism with only one positive sample. As 597

part of future work, we hope to improve the con- 598

trastive learning to deal with the above problem. 599
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