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Abstract

Due to the sparsity of formal knowledge and
the roughness of non-ontological construc-
tion methods, relevant facts are often miss-
ing in Open Knowledge Graphs (OpenKGs).
Although existing completion methods have
achieved promising performance, they do not
alleviate the sparsity problem of OpenKGs.
Owing to fewer training chances caused by
sparse links, many few-shot and zero-shot en-
tities cannot fully learn high-dimensional fea-
tures. In this paper, we propose a new OpenKG
Contrastive Learning (OKGCL) model to alle-
viate the sparsity with contrastive entities and
relations. OKGCL designs (a) negative entities
to discriminate different entities with the same
relation, (b) negative relations to discriminate
different relations with the same entity-pair,
and (c) self positive samples to give zero-shot
and few-shot entities chances to learn discrimi-
native representations. Extensive experiments
on benchmark datasets show the superiority of
OKGCL over state-of-the-art models.

1 Introduction

Open Knowledge Graphs (OpenKGs) represent
objective facts with triples in the form of (“sub-
ject noun phrase”, “relation phrase”, “object noun
phrase”). Taking noun phrases as entities and rela-
tion phrases as relations, OpenKGs form structured
knowledge that can visually express potential con-
nections of facts. OpenKGs are extracted from text
corpora with Open Information Extraction (Ope-
nlE) tools (Fader et al., 2011; Gashteovski et al.,
2019), and generally do not rely on the specifica-
tion of ontology or relational schema. Although
this approach has the advantage that it can be eas-
ily bootstrapped to new domains, because of the
sparsity of formal grammatical knowledge and the
roughness of non-ontological construction meth-
ods, relevant facts are often missing from such
OpenKGs, which makes them difficult to be di-
rectly usable for end tasks like question answer-

ing (Chandrahas and Talukdar, 2021). The task of
OpenKG completion aims at finding out missing
relations, which has become an indispensable step
in the application of OpenKGs to downstream tasks
(Gupta et al., 2019; Broscheit et al., 2020).

With the great success of deep learning, many
completion methods have devoted to learning po-
tential implicit features of entities and relations.
These approaches project the entities and relations
into embeddings, and then predict the missing
relations by calculating the similarity scores of
entity-pairs. Some general completion models fo-
cus on mining structural features with linear (Bor-
des et al., 2013), bilinear (Wang et al., 2014; Lin
et al., 2015), complex (Yang et al., 2015; Trouil-
lon et al., 2016) or convolutional (Dettmers et al.,
2018; Nguyen et al., 2018) operations, while the
OpenKG-specific completion models enhance the
representations with external information (Gupta
etal., 2019) and pretrained language models (Chan-
drahas and Talukdar, 2021).

Although existing models have achieved better
performance, they do not effectively tackle the spar-
sity problem of OpenKGs. The sparsity is mainly
reflected in the imbalance of entity degrees, that is,
many entities have few or zero related links in an
OpenKG. According to our statistics, the degree
of 54.6% entities in ReVerb20K and 89% entities
in ReVerb45K is less than 3. These entities are
denoted as few-shot or zero-shot entities. Due to
fewer training chances caused by sparse links, few-
shot or zero-shot entities are not well trained, re-
sulting in poor generalization performance. This
motivates a strong need to develop a more effective
method to alleviate the sparsity of OpenKGs.

Being popular in unsupervised representation
learning, contrastive learning aims to learn effec-
tive and discriminative representations by introduc-
ing a large number of negative samples in contrast
with positive samples (He et al., 2020; Gao et al.,
2021; Zhu et al., 2021). These negative samples can
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Figure 1: The proposed OKGCL model to alleviate the sparsity of OpenKGs.

enrich the understanding of positive samples in the
form of negative feedback. Because sparse links
make few-shot entities of OpenKGs unable to fully
learn high-dimensional features, we propose to gen-
erate negative samples to contrast with the existing
links, so as to learn discriminative representations
of few-shot entities. With this motivation, in this
work we attempt to design and incorporate negative
samples to alleviate the sparsity of OpenKGs.

We propose OpenKG Contrastive Learning
(OKGCL) to alleviate the sparsity of OpenKGs
with negative samples. For an OpenKG (Fig. 1a),
OKGCL investigates three key ideas: (1) Con-
trastive Entity to generate negative entity samples
to mine discriminative features of different entities
with the same relation (Fig. 1b), (2) Contrastive
Relation to generate negative relation samples to
capture discriminative features of different rela-
tions with the same entity-pair (Fig. 1¢), and (3)
Contrastive Self to construct the positive sample
which gives few-shot and zero-shot entities chances
to learn discriminative representations (Fig. 1b,c).
Extensive experiments on benchmarks prove the su-
periority of OKGCL over state-of-the-art baselines.
In summary, we highlight our key contributions:

* We improve the completion performance from
the perspective of alleviating the sparsity prob-
lem. To our knowledge, this is the first work to
alleviate the sparsity of OpenKGs without using
an external source.

* We propose OKGCL, a new OpenKG contrastive
learning model which generates contrastive en-
tities and contrastive relations to alleviate the

sparsity of OpenKGs. OKGCL also generates
self positive sample to give zero-shot or few-shot
entities one or more chances to be contrasted
with negative samples.

» Extensive experiments show the superiority of
OKGCL over the state-of-the-art baselines. We
also demonstrate that OKGCL outperforms the
baselines with pretrained language models on
different sparsity granularity. Source code will
be public later.

2 Related Work
2.1 Open Knowledge Graph

OpenKGs represent factual knowledge in struc-
tured forms, which are extracted with Open In-
formation Extraction (OpenlE) tools (Fader et al.,
2011; Gashteovski et al., 2019). They do not re-
quire the specification of ontology or relational
schema, and thus can easily bootstrap to new do-
mains. However, this rough construction makes
OpenKGs sparse with many valid relations miss-
ing (Chandrahas and Talukdar, 2021). Finding out
missing relations to complete the OpenKGs has
thus become an important research topic.

Many completion models have been devoted to
learning implicit embeddings of entities and rela-
tions. Some translation-based embedding models,
such as TransE (Bordes et al., 2013), TransH (Wang
et al., 2014), TransR (Lin et al., 2015) and TransD
(Jietal., 2015) apply simple linear or bilinear oper-
ations to model the embeddings of entities and re-
lations. DistMult (Yang et al., 2015) and ComplEx



(Trouillon et al., 2016) design similarity scoring
functions to learn semantic information. ConvE
(Dettmers et al., 2018) and ConvKB (Nguyen et al.,
2018) apply convolutional neural network technol-
ogy to learn non-linear features.

Previous OpenKG-specific completion models
fake similar entities with side information and pre-
trained language models. CaRe (Gupta et al., 2019)
tries to learn canonicalization infused embeddings,
which fake similar entities of OpenKGs by inte-
grating canonicalization and side information in an
error-conscious manner. OKGIT (Chandrahas and
Talukdar, 2021) employs the output of a pretrained
language model to improve the CaRe model from
type compatibility. However, these approaches are
still limited in alleviating the sparsity of OpenKGs
as shown in our experiments (§5). In contrast, we
propose a contrastive learning method that is more
effective and does not rely on external sources.

2.2 Contrastive Learning

Contrastive representation learning aims to learn
effective representation by pulling semantically
close neighbors together and pushing apart non-
neighbors (Hadsell et al., 2006; Gao et al., 2021).
The effectiveness of contrastive learning is closely
related to the distribution of positive and negative
samples. Some methods pay attention to the choice
of positive samples (Hénaff, 2020; Hjelm et al.,
2019), while others devote to the generation of
negative samples (Bachman et al., 2019; Ye et al.,
2019; Chen et al., 2020).

Contrastive learning has achieved great success
in visual representation learning (He et al., 2020),
natural language processing (Gao et al., 2021) and
graph representation learning (Zhu et al., 2021). A
number of unsupervised graph representation learn-
ing methods attempt to leverage a contrastive learn-
ing loss at node (Velickovic et al., 2019), graph
(Sun et al., 2020) and multi-view levels (Hassani
and Ahmadi, 2020; Zhu et al., 2021). However, to
our knowledge, none has studied contrastive learn-
ing to alleviate the sparsity problem of OpenKGs.

3 Preliminaries

¢ Open Knowledge Graph In an OpenKG G =
(€, R), let a triple be (h,r,t), where h,t € &
represent the head and tail entities, and » € R
represents the relation between entities h and t;
|€| and |R| are the number of entities and rela-
tions, respectively. The entities h, ¢ and relation r

are represented by non-empty word sequences; let
wp, = {Wh,1, -+ W |uw,| } be the word sequence of
entity h, and w, = {wy.1, ..., Wy, |y, } be the word
sequence of relation r. The representations of enti-
ties and relations are denoted as E € RI€I*D and
R € RRIXD where D is the feature dimension.

¢ Relation Prediction Task in OpenKGs The
relation prediction problem of OpenKGs is to pre-
dict answer entities for two questions: (1) predict-
ing the tail Q; = (h,r,?) and (2) predicting the
head Qp, = (7, r,t). For each question, the number
of possible correct answer entities is greater than
or equal to one, because there could be multiple
entities with the same meaning but different forms
in an OpenKG (Broscheit et al., 2020). For exam-
ple, for the question (“NBC-TV”, “has office in”,
7), we expect all answers from the set of entities
{“New York”, “NYC”, “New York City”’}.

e Contrastive Learning Method Contrastive
learning learns high-dimensional feature represen-
tations by contrasting a positive sample with N
negative samples. Specifically, for an input h, it as-
sumes a positive pair P = (h, h"), and N negative
pairs N = {(h, h;) ;\/:1_ It defines the following
contrastive score with the goal to push the positive
pair closer in the representation space while push-
ing apart the representation of the negative pairs:

exp(B(h, h)/7)
Zne{p,j\/} exp(B(n)/7)

where 3(hq, ho) is a similarity function and 7 is a
temperature hyperparameter.

ey

S(h) =

4 Proposed OKGCL Model

In this section, we present our contrastive learning
model, OKGCL. The overall framework of the
OKGCL is shown in Fig. 1. In §4.1, we introduce
a simple but effective embedding model to fuse
the textual and structural features of OpenKGs. In
§4.2, we design contrastive entities and relations to
optimize the above embedding model. Finally, the
training procedure is given in §4.3.

4.1 Embedding Model

For a triple (h,r,t) € G, the initial representa-
tions of entities h,t and relation r is defined as
en,er € E and e, € R, respectively. For the
pair (h,r), the word sequence of head entity h
is wp = {Wp,1, s Wh |, |} and that of relation
ris w, = {wy1, ..., wr7|w7,‘}. We encode each of
these sequences with a single layer bi-directional



Gated Recurrent Unit (BiGRU) (Cho et al., 2014).

e;’ = BiGRU(w;) for w; € {wp,w,} (2)
The embedding (i.e., hidden state) of the first token
wj 1 1s taken as the final embedding of the sequence
w;, that is e}’ = e}’[1]. This way we get the textual
embeddings of head entity h and relation 7 as e}’
and e;’, respectively.

Then, we focus on exploiting potential connec-
tions between entities and relations. We use a two-
dimensional convolutional network (Dettmers et al.,
2018) to learn the potential connections between a
head entity h and a relation r as follows:

p(h,r) = o(Linear(o([en; €] ¥ w)))  (3)
where * denotes a two-dimensional convolutional
layer with filters w, Linear projects the dimen-
sion to D, and o represents a ReLLU activation;
€n, €, € RP1D2 are reshaped from [ey, + el’; e¥]
€ R?P with 2D = D Do; Through the convolu-
tion module, the potential embeddings of entity h
and relation r are jointly encapsulated.

Finally, we compute the similarity score for each
triple (h,r,t). The similarity score is computed
with a cosine similarity function as:

N _ gp(h,T’)Tet
Blhsrst) = T Tl

where e; € E is initial embedding of tail entity ¢.

“)

4.2 Contrastive Learning Model

Taking the model in §4.1 as a basic embedding
module, we design OKGCL, a contrastive learn-
ing model to alleviate the sparsity of OpenKGs
(Fig. 1d). It has four modules: (1) Contrastive
Entity contrasts negative entities with positive enti-
ties, to mine features of different entities with the
same relation. (2) Contrastive Relation contrasts
negative relations with positive relations, to cap-
ture potential features of different relations with
the same head and tail entities. (3) Contrastive Fu-
sion fuses negative entities and negative relations to
contrast with positive samples. (4) Contrastive Self
constructs the positive sample (h, self, h™) and con-
trasts this positive sample with negative samples, to
give zero-shot or few-shot entities chances to learn
discriminative representations through training.

Contrastive Entity We alleviate the sparsity of
OpenKGs from the perspective of nagative entity.

The triples in the OpenKG are regarded as posi-
tive samples, while negative samples are generated
with contrastive entities. For a positive sample
Pe = (h,7,17), a contrastive entity ¢ is randomly
selected from the entity list £ — £(h,r), where
E(h,r) is the entity list of true answers, that is, the
triple (h,r,t;) € G if entity ¢t; € E(h,r). Fig. 1b
gives two examples of contrastive entities. For each
positive sample P, = (h,r,t), its negative sam-
ples are generated with multiple contrastive entities:

— Ne
Ne = {(h,r, t; )}j:l )
where N, is the number of contrastive entities. The
contrastive score for the positive entity P, is:

exp(B(h,r,tT)/T)
Yone(pen.} EXP(B(n)/7T)

where £3(.) is the similarity score as in Eq. (4).

S(h,r,t") = (6)

Contrastive Relation We also alleviate the spar-
sity of OpenKGs from the perspective of negative
relation. The triples in the OpenKG are regarded
as positive samples, while negative samples are
generated with contrastive relations. For a pos-
itive sample P, = (h,r",t), a contrastive rela-
tion 7, is randomly selected from the relation list
R — R(h,t), where R(h,t) is a relation list that
satisfies the condition: triple (h,r;,t) € G if re-
lation r; € R(h,t). Fig. lc gives two examples
of contrastive relations. For each positive sample
P, = (h,rT,t), its negative samples are generated
with multiple contrastive relations:

NT = {(h7 r;7t)}§y:Tl (7)

where NV, is the number of contrastive relations.
The contrastive score for the positive relation P, is:

exp(B(h,r7,1)/7)
Ene{Pr,Nr} exp(B(n)/T)

Contrastive Fusion In this module, the nega-
tive entity samples and negative relation samples,
which can be generated from the Contrastive En-
tity and Contrastive Relation modules, are fused to
alleviate the sparsity of OpenKGs. The contrastive
score for a positive sample Py = (h,r™,t1) is:
exp(B(h,r*,t%)/7)

Zne{Pf,NmNr} exp(B(n)/7)
where the positive sample Py = (h,r,tT) is a
triple in the OpenKG, the negative samples are

achieved by merging the negative entity samples
N and negative relation samples M.

S(h,rt,t) = ®)

S(h,rt,tH) = ©)



Contrastive Self Due to sparsity, there are many
entities in an OpenKGs with only few or zero links,
referred to as few- or zero-shot entities. Compared
with those entities with many links, few-shot en-
tities are often not fully trained because of fewer
links, and zero-shot entities cannot be trained be-
cause they have no links with rest of the OpenKG.

In view of the above problem, we propose to
add the Self relation to construct the positive sam-
ple P = (h,self,h"). The embeddings of the
same entity h and h™ are different, where the em-
bedding of ht is the initial embedding ej,, and
that of £ is the sum of textual embedding e}’ and
initial embedding e;,. For such a positive sam-
ple Py = (h,self,h"), negative entity samples
Ne = {(h,self, h;)}é\[;l can be generated with
contrastive entities, which are randomly selected
from the entity list £ — h. Similarly, negative
relation samples N, = {(h, self; , th)}j-V:"1 can
be generated with contrastive relations, which are
randomly selected from the relation list R — self.
The contrastive score for a positive sample Ps; =
(h, self, h™) can be computed with Eq. (9). The
examples of contrastive self are shown in Fig. 1b-c.
Through the Self positive sample, these zero-shot
or few-shot entities can have one or more chances
to be trained with contrastive learning.

4.3 Training Procedure

The proposed OKGCL model is trained in Pre-
train and Finetune stages, where the Pretrain stage
aims to learn discriminative representation with
contrastive entities and contrastive relations, and
the Finetune stage aims to select optimal hyperpa-
rameters for specific end tasks.

Pretrain The training objective is as follows:

|P|

’P’Zlog

S(h,r,tT), if Entity
S(h,r*,t), if Relation
S(h,r*,tT), if Fusion

10)
where S(i) =

where |P| is the number of all positive samples.

Finetune The pretrained model is finetuned to
adapt for the relation prediction task of OpenKGs.
Note that, for a pair (h, ), there could be more than
one true object entities in an OpenKG, where the
object entities are put into £(h, ). For a test triple
(hi,r;, t;), the representation ¢(h;, ;) of entity h;

and relation r; is matched with the embeddings E
of all entities via a matrix multiplication as.

X; = 6(o(hi,r)ET) (11)

where § represents a Sigmoid activation. We use a
binary cross-entropy loss to optimize the parame-
ters. The loss function can be defined as:

[M] €]
br== |M||f:\ZZ ba - 108 Xig
Vi) -log(1 - X)) (12

with Y;‘J‘ = 1, if (hz‘,m‘,t]‘) S 5(hi,7”i)
Y%J =0, if (hivriatj) §é g(hiari)

+(1

where |£| i is the

number of all test samples.

S Experiments

5.1 Datasets

The statistics of datasets are summarized in Table
1. ReVerb20K and ReVerb45K are OpenKG bench-
mark datasets (Vashishth et al., 2018), which are
constructed through the ReVerb open knowledge
base (Fader et al., 2011). The ReVerb45K with
27.0K entities and 21.6K relations, is larger and
sparser than the ReVerb20K with 11.1K entities
and 11.1K relations. In the sparsity problem han-
dling, we conduct variants of training sets at differ-
ent sparsity granularity ([100%, 80%, 60%, 40%,
20%]), where x% represents to randomly remove
the percentages (1-x%) of samples from the origi-
nal training sets. Validation sets and test sets are
the same for different sparsity granularity. As can
be seen from Table 1, the average degree decreases
with the decrease of sparsity granularity.

5.2 Evaluation Protocols

For single test triple, we use the classic Mention
Ranking (Gupta et al., 2019; Broscheit et al., 2020)
as evaluation protocol, which is the minimum rank-
ing position of all answer entities. For all test
triples, we use three most commonly used ways to
integrate the above Mention Ranking scores. H@N::
The proportion of answer entity ranking in the top
N position. AR: Average all ranking scores. ARR:
Compute the reciprocal of each ranking score, and
average all the reciprocals. A model with better per-
formance should have higher HQN, higher ARR
and lower AR.



. . . Train Average Degree
Dataset Entity Relation Cluster Valid Test
100% 80% 60% 40% 20% 100% 80% 60% 40% 20%
ReVerb20K 11.1IK 11.IK 108K 16K 24K 155K 124K 93K 62K 3.1K 14 11 08 06 03
ReVerb45K 27.0K 216K 186K 3.6K 54K 360K 288K 21.6K 144K 72K 13 11 08 05 03
Table 1: The statistics of Datasets.
ReVerb20K ReVerb45K
Type Model
AR| ARR HQ@1 HQ@I0 H@50 HQ@100 AR| ARR HQl HQ@I0 HQ50 H®Q@100
TransE 1497 133 22 296 430 492 2222 158 93 259 371 432
DistMult 4569 1.9 13 27 52 7.1 5782 85 17 97 12.0 13.6
General ~ ComlEx 4376 20 14 30 5.6 77 5173 89 715 113 160 189
ConvE 1085 255 199 358  50.1 572 2483 221 166 324 433 479
ConvTransE 1080  26.1  20.5 359 50.0 57.1 2490 234 179 33.8 44.4 48.8
OpenkG ~ CoReTransE 950 303 232 428 584 646 2414 195 78 375 475 514
P CaReConvE 801 316 256 429 567 634 1589 297 234 413 536 587
OpenKG+ OKGIT+Bert 516 348 274 480 644 712 813 322 257 446  58.1 63.9
Pretrained OKGIT+Rob 545 347 272 481 655 720 864 320 253 447 573 626
Our OKGCL 421 381 299 53.3 68.5 75.2 744 332 256 48.1 61.9 67.7
Table 2: The results on ReVerb20K and ReVerb45K test data.
5.3 Models and Settings °6 6 75 g
1
. 3311
To prove the effectiveness of the proposed model, 3
. . 5 4
we compare several high-performing General mod- 5 44
. 1
els: TransE (Bordes et al., 2013), DistMult (Yang 0, $
et al., 2015), ComplEx (Trouillon et al., 2016), 103 5 777 .
ConvE (Dettmers et al., 2018), ConvTransE 3 sty 85
(Shang et al" 2019)’ and OpenKG—spemﬁc mod- (a) OKGIT+Bert / ReVerb20K (b) OKGCL / ReVerb20K
els: CaReTransE (Gupta et al., 2019), CaRe- B & ﬁl
5,
ConvE (Gupta et al., 2019), OKGIT+Bert and 5; 3§f’ &
OKGIT+Rob (Chandrahas and Talukdar, 2021). 5 §¢ Egb
The results of baselines are reproduced with open Jﬁl Q’og 777777 33
. . . 1 6
source implementations. OKGCL is our proposed o7,
model, where the optimizer is set to Adam, the em- 77 55
bedding size is set to 300. The entity and relation Y 4%44 >

embeddings are initialized randomly, and the word
vectors are initialized with the GloVe embeddings.

5.4 Results

Overall Performance We evaluate the overall per-
formance of the proposed OKGCL. The results on
ReVerb20K and ReVerb45K datasets are given in
Table 2, where the best score is in bold. OKGCL
achieves substantial improvements in comparison
to baselines. For ReVerb20K, OKGCL outper-
forms all baselines with strong improvements on
all metrics. Among that, ARR metric increases
by 3.3 point and H@1,10,50,100 metrics increase
by 2.5, 5.2, 3.0, 3.2 points. For ReVerb45K, the
performance of OKGCL is better than that of the
General and OpenKG baselines with strong im-
provements on all metrics. Among that, ARR
metric increases by 3.5 point and H@1,10,50,100

(c) OKGIT+Bert / ReVerb45K (d) OKGCL / ReVerb45K

Figure 2: The visualization results, where the same
numbers represent entities with the same meaning.

metrics increase by 2.2, 6.8, 8.3, 9.0 points. Note
that OKGCL outperforms the OpenKG+Pretrained
baselines on all metrics for ReVerb20K and most
metrics for ReVerb45K. OKGCL with simple
structures and contrastive learning strategies, can
achieve better performance at lower costs, than the
OpenKG+Pretrained baselines with complex struc-
tures and pretrained language models, which is a
very favorable discovery. In summary, OKGCL
effectively capture potential discriminative features
of OpenKGs with contrastive entities and relations.

Performance w.r.t. Visualization We use the
t-SNE visualization to prove that the proposed
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Figure 3: The results of sparsity granularity.

OKGCL can make the entities with the same mean-
ing closer in spatial distribution. For this visu-
alization experiment, we selected 10 entity clus-
ters for each dataset, where each cluster has more
than three entities. The state-of-the-art model,
OKGIT+Bert, is as the baseline to compare with
OKGCL. Fig. 2 shows the visualization results
on ReVerb20K and ReVerb45K datasets, where
Fig. 2a and Fig. 2¢ are for OKGIT+Bert and Fig. 2b
and Fig. 2d are for OKGCL. Through observing
the distributions of entities in Fig. 2, we found that
the embeddings of entities with the same mean-
ing (same number) are closer in OKGCL than in
OKGIT+Bert. The qualitative results are consis-
tent with the quantitative results in Table 2, which
further verify the effectiveness of OKGCL.

Performance w.r.t. Sparsity The motivation in
this paper is to alleviate the sparsity problem of
OpenKGs, so we hope OKGCL can perform well
on sparse data. We conduct experiments of differ-
ent sparsity granularity ([100%, 80%, 60%, 40%,
20%]). Fig. 3 gives the results of different spar-
sity granularity on ReVerb20K and ReVerb45K
datasets, where Fig. 3a and Fig. 3c show H@Ql
scores, Fig. 3b and Fig. 3d show the percentage of
performance degradation ((x%-100%)/100%).
First, we analyze the H@Q]1 scores of different
models on different sparsity granularity. OKGCL
achieves the best scores in all sparsity granularity
than CaReConvE and CaReTransE on both datasets.
For ReVerb20K (Fig. 3a), OKGCL achieves the
H@1 scores of 28.2, 26.2, 24.8, 21.4 in the sparsity
granularity of 80%, 60%, 40%, 20%, respectively,
which gains improvements over OKGIT+Bert at
2.4, 1.3, 1.8 and 1.1 points, respectively. For Re-
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Figure 4: The results of the number collocations of
contrastive entities and contrastive relations.

Verb45K (Fig. 3c), the H@1 scores of OKGCL and
OKGIT+Bert are similar in the sparsity granularity
of 100%, 80%, 60%. When the sparse granular-
ity decreases to 40% and 20%, the H@1 scores of
OKGCL becomes better than that of OKGIT+Bert.
This shows that OKGCL performs better than all
baselines on sparse data, even OKGIT+Bert en-
hanced with pretrained language models.

Second, we analyze the percentage of perfor-
mance degradation. For ReVerb45K (Fig. 3d),
the performance degradation of OKGCL is better
than OKGIT+Bert and CaReConvE models. CaRe-
TransE seems to have the best performance degra-
dation, but there is no room to step back due to
the low H@1 score. For ReVerb20K (Fig. 3b),
the performance degradation of OKGCL is better
than that of CaReTransE and CaReConvE, but is
almost similar to that of OKGIT+Bert. Note that
OKGIT+Bert enhances the representation learn-
ing with pretrained language models, which have
loaded a lot of commonsense knowledge with the
training of large-scale data and a great quantity of
hyperparameters. OKGCL does not introduce side
information and pretrained language models, but its
performance degradation is similar or better than
that of OKGIT+Bert. The above experiments and
analysis demonstrate the effectiveness of OKGCL
in alleviating the sparsity problem of OpenKGs.

Performance w.r.t. Number of Contrastive En-
tities and Relations The Fusion module in §4.2
pays attention to fusing negative samples of con-
trastive entities and relations. Our assumption is
that the number of contrastive entities and relations
could affect the performance of OKGCL. So, we
design several collocations of contrastive entities
(left) and contrastive relations (right) with different
numbers: (00, 00), (00, 10), (10, 00), (10, 10), (10,
50), (50, 10), (50, 20), (50, 50).
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Figure 5: The results of hyperparameters.

Fig. 4 gives the results of number collocations
on ReVerb20K and ReVerb45K datasets. Through
observation, we have several findings: First, con-
trastive entities are more important than contrastive
relations in improving model performance. For ex-
ample, the performance of (10, 00) is better than
that of (00, 10), and the performance of (50, 10) is
also better than that of (10, 50). Second, the role of
contrastive relations can be more stimulated with
the help of contrastive entities. For example on
ReVerb45K, the performance of (00, 10) is worse
than that of (00, 00) without any contrastive entities
and relations, while the performance of (10, 10) is
a little better than that of (10, 00). Third, OKGCL
achieves the best result with the number colloca-
tion of (50,10) on both datasets. The above colloca-
tions also give the results of ablation study, where
(00, 00) removes all contrastive modules, (00, 10)
removes Contrastive Entity module, and (10, 00)
removes Contrastive Relation module. The per-
formance decreases when any module is removed,
which proves the effectiveness of each module.

Performance w.r.t. Contrastive Self The results
of removing the self relation and its related positive
and negative samples, are shown in (50,10,-s) of
Fig. 4. Compared with the H@1 scores of (50,10),
the performance of OKGCL decreases prominently
when the Contrastive Self is removed (50,10,-s),
especially for the sparser ReVerb45K. This proves
the effectiveness of Contrastive Self.

Performance w.r.t. Hyperparameters We ex-
plore the sensitivity of OKGCL to hyperparameters.
The list of hyperparameters are from two aspects:
(1) Hyperparameters for Pretrain stage: learning

rate € {le-3, le-4, 5e-5, 1e-5}, temperature regu-
lation value € {0.1, 0.05, 0.01}. (2) Hyperparame-
ters for Finetune stage: learning rate € {1e-3, le-4,
8e-5, Se-5, le-5}, batch size € {32, 64, 128, 256,
512}. The results of hyperparameters are shown
in Fig. 5. For Pretrain stage, the optimal value of
learning rate is 5e-5 on both datasets, where too
large a learning rate, such as 1E-3, may skip the
optimal results. And the optimal value of tempera-
ture regulation value is 0.05 on both datasets. For
Finetune stage, the optimal value of learning rate
is 5e-5 on both datasets, where too small a learning
rate, such as 1E-5, brings worse performance than
too large a learning rate, such as 1E-3. The optimal
value of batch size is 128 on both datasets, where
OKGCL is not very sensitive to batch size, but too
large a batch size could have a negative impact.

6 Conclusion

In this paper, we provide empirical insights about
the sparsity of OpenKGs, and propose a new con-
trastive learning model, OKGCL, to alleviate the
sparsity of OpenKGs with contrastive entities and
contrastive relations. Through extensive experi-
ments and comprehensive analysis on real-world
datasets, the proposed OKGCL achieves better per-
formance than state-of-the-art models.

According to observation, there may be more
than one object entity for a pair (h,r) in an
OpenKG, which produces multiple positive sam-
ples. That challenges the existing contrastive learn-
ing mechanism with only one positive sample. As
part of future work, we hope to improve the con-
trastive learning to deal with the above problem.
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