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ABSTRACT

Diffusion-based extreme image compression methods have achieved impressive
performance at extremely low bitrates. However, constrained by the iterative de-
noising process that starts from pure noise, these methods are limited in both fi-
delity and efficiency. To address these two issues, we present Relay Residual
Diffusion Extreme Image Compression (RDEIC), which leverages compressed
feature initialization and residual diffusion. Specifically, we first use the com-
pressed latent features of the image with added noise, instead of pure noise, as the
starting point to eliminate the unnecessary initial stages of the denoising process.
Second, we design a novel relay residual diffusion that reconstructs the raw image
by iteratively removing the added noise and the residual between the compressed
and target latent features. Notably, our relay residual diffusion network seam-
lessly integrates pre-trained stable diffusion to leverage its robust generative capa-
bility for high-quality reconstruction. Third, we propose a fixed-step fine-tuning
strategy to eliminate the discrepancy between the training and inference phases,
further improving the reconstruction quality. Extensive experiments demonstrate
that the proposed RDEIC achieves state-of-the-art visual quality and outperforms
existing diffusion-based extreme image compression methods in both fidelity and
efficiency. The source code and pre-trained models will be released.

1 INTRODUCTION

Extreme image compression is becoming increasingly important with the growing demand for ef-
ficient storage and transmission of images where storage capacity or bandwidth is limited, such as
in satellite communications and mobile devices. Conventional compression standards like JPEG
(Wallace, 1991), BPG (Bellard, 2014) and VVC (Bross et al., 2021) rely on hand-crafted rules and
block-based redundancy removal techniques, leading to severe blurring and blocking artifacts at low
bitrates. Hence, there is an urgent need to explore extreme image compression methods.

In recent years, learned image compression methods have attracted significant interest, outperform-
ing conventional codecs. However, distortion-oriented learned compression methods (Xie et al.,
2021; Zhu et al., 2021; Liu et al., 2023; Li et al., 2024a) optimize for the rate-distortion func-
tion alone, resulting in unrealistic reconstructions at low bitrates, typically manifested as blurring or
over-smoothing. Perceptual-oriented learned compression methods (Agustsson et al., 2019; Mentzer
et al., 2020; Muckley et al., 2023; Yang & Mandt, 2023) introduce generative models, such as gener-
ative adversarial networks (GANs) (Goodfellow et al., 2014) and diffusion models (Ho et al., 2020),
to enhance the perceptual quality of reconstructions. However, these methods are optimized for
medium to high bitrates instead of extremely low bitrates such as below 0.1 bpp. As a result, these
methods experience significant quality degradation when the compression ratio is increased.

Recently, diffusion-based extreme image compression methods (Lei et al., 2023; Careil et al., 2024;
Li et al., 2024b) leverage the robust generative ability of pre-trained text-to-image (T2I) diffusion
models, achieving superior visual quality at extremely low bitrates. Nonetheless, these methods are
constrained by the inherent characteristics of diffusion models. Firstly, these methods rely on an iter-
ative denoising process to reconstruct raw images from pure noise, which is inefficient for inference
(Li et al., 2024b). Secondly, initiating the denoising process from pure noise introduces significant
randomness, compromising the fidelity of the reconstructions (Careil et al., 2024). Thirdly, there is
a discrepancy between the training and inference phases. During training, each time-step is trained
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Original VVC MS-ILLM Text+Sketch-25 PerCo-20 DiffEIC-50 RDEIC-5 (Ours)

bpp / DISTS↓ 0.0340 / 0.2029 0.0327 / 0.0867 0.0237 / 0.1959 0.0320 / 0.1177 0.0278 / 0.1019 0.0199 / 0.0989

bpp / DISTS↓ 0.0461 / 0.3293 0.0357 / 0.1986 0.0236 / 0.2783 0.0321 / 0.2256 0.0176 / 0.1812 0.0176 / 0.1700

bpp / DISTS↓ 0.0284 / 0.3550 0.0324 / 0.1727 0.0197 / 0.2680 0.0321 / 0.2595 0.0196 / 0.2105 0.0179 / 0.1752

Figure 1: Qualitative comparison between the proposed RDEIC and state-of-the-art methods. The
number of denoising steps is written after the name, e.g. DiffEIC-50 means 50 diffusion steps are
used by DiffEIC. The bpp and DISTS of each method are shown at the bottom of each image.

independently, which is well-suited for image generation tasks where diversity (or randomness) is
encouraged (Ho et al., 2020). However, this training approach is not optimal for image compression
where consistency between the reconstruction and the raw image is crucial.

In this work, we propose Relay Residual Diffusion Extreme Image Compression (RDEIC) to over-
come the three limitations mentioned above. To overcome the first two limitations, we proposed
a novel relay residual diffusion framework. Specifically, we construct the starting point using the
compressed latent features combined with slight noise, transitioning between the starting point and
target latent features by shifting the residual between them. This approach significantly reduces the
number of denoising steps required for reconstruction while ensures that the starting point retains
most of the information from the compressed features, providing a strong foundation for subse-
quent detail generation. To leverage the robust generative capability of pre-trained stable diffusion
for extreme image compression, we derive a novel residual diffusion equation directly from stable
diffusion’s diffusion equation, rather than designing a diffusion equation from scratch as Yue et al.
(2023). To address the third limitation, we introduce a fixed-step fine-tuning strategy to eliminate the
discrepancy between the training and inference phases. By fine-tuning RDEIC throughout the en-
tire reconstruction process, we further improve the reconstruction quality. Moreover, to meet users’
diverse requirements, we introduce a controllable detail generation method that achieves a trade-off
between smoothness and sharpness by adjusting the intensity of high-frequency components in the
reconstructions. As shown in Fig. 1, the proposed RDEIC achieves state-of-the-art perceptual per-
formance at extremely low bitrates, and significantly outperforms existing diffusion-based extreme
image compression methods with fewer inference steps.

In summary, our contributions are as follows:

• We propose RDEIC, a novel diffusion model for extreme image compression that outper-
forms existing diffusion-based extreme image compression methods in both reconstruction
quality and efficiency.

• We propose a relay residual diffusion process that seamlessly integrates pre-trained stable
diffusion. To the best of our knowledge, we are the first to successfully integrate stable
diffusion into a residual diffusion framework.

• To eliminate the discrepancy between the training and inference phases, we design a fixed-
step fine-tuning strategy that refines the model through the entire reconstruction process,
further improving reconstruction quality.
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• We introduce a controllable detail generation method to balance smoothness and sharpness,
allowing users to explore and customize outputs according to their personal preferences.

2 RELATED WORK

Learned Image Compression. As a pioneer work, Ballé et al. (2017) proposed an end-to-end image
compression framework to jointly optimize the rate-distortion performance. Ballé et al. (2018) later
introduced a hyperprior to reduce spatial dependencies in the latent representation, greatly enhanc-
ing performance. Subsequent works further improved compression models by developing various
nonlinear transforms (Xie et al., 2021; He et al., 2022; Liu et al., 2023; Li et al., 2024a) and entropy
models (Minnen et al., 2018; Minnen & Singh, 2020; He et al., 2021; Qian et al., 2021). However,
optimization for rate-distortion alone often results in unrealistic reconstructions at low bitrates, typ-
ically manifested as blurring or over-smoothness (Blau & Michaeli, 2019). To improve perceptual
quality, generative models have been integrated into compression methods. Agustsson et al. (2019)
added an adversarial loss for lost details generation. Mentzer et al. (2020) explored the generator and
discriminator architectures, as well as training strategies for perceptual image compression. Muck-
ley et al. (2023) introduced a local adversarial discriminator to enhance statistical fidelity. With the
advancement of diffusion models, some efforts have been made to apply diffusion models to image
compression. For instance, Yang & Mandt (2023) innovatively introduced a conditional diffusion
model as decoder for image compression. Kuang et al. (2024) proposed a consistency guidance
architecture to guide the diffusion model in stably reconstructing high-quality images.

Extreme Image Compression. In recent years, extreme image compression has garnered increasing
attention, aiming to compress image to extremely low bitrates, often below 0.1 bpp, while maintain-
ing visually acceptable image quality. Gao et al. (2023) leveraged the information-lossless property
of invertible neural networks to mitigate the significant information loss in extreme image compres-
sion. Jiang et al. (2023) treated text descriptions as prior to ensure semantic consistency between
the reconstructions and the raw images. Wei et al. (2024) achieved extreme image compression by
rescaling images using extreme scaling factors. Lu et al. (2024) combined continuous and codebook-
based discrete features to reconstruct high-quality images at extremely low bitrates. Inspired by the
great success of T2I diffusion models in various image restoration tasks (Lin et al., 2023; Wang
et al., 2024), some methods have incorporated T2I diffusion models into extreme image compres-
sion frameworks. Lei et al. (2023) utilized a pre-trained ControlNet (Zhang et al., 2023) to recon-
struct images based on corresponding short text prompts and binary contour sketches. Careil et al.
(2024) conditioned iterative diffusion models on vector-quantized latent image representations and
textual image descriptions. Li et al. (2024b) combined compressive VAEs with pre-trained T2I dif-
fusion models to achieve realistic reconstructions at extremely low bitrates. However, constrained
by the inherent characteristics of diffusion models, these diffusion-based extreme image compres-
sion methods are limited in both fidelity and efficiency. In this paper, we propose a solution to these
limitations through a relay residual diffusion framework and a fixed-step fine-tuning strategy.

Relay Diffusion. Conventional diffusion models, such as denoising diffusion probabilistic models
(DDPM) (Ho et al., 2020) and its variants, have achieved remarkable results in low-resolution sce-
narios but face substantial challenges in terms of computational efficiency and performance when
applied to higher resolutions. To overcome this, cascaded diffusion methods (Ho et al., 2022; Sa-
haria et al., 2022) decompose the image generation into multiple stages, with each stage responsible
for super-resolution conditioning on the previous one. However, these methods still require com-
plete resampling at each stage, leading to inefficiencies and potential mismatches among different
resolutions.

Relay diffusion, as proposed by Teng et al. (2024), extends the cascaded framework by continu-
ing the diffusion process directly from the low-resolution output rather than restarting from pure
noise, which allows the higher-resolution stages to correct artifacts from earlier stages. This de-
sign is particularly well-suited for tasks such as image restoration and image compression, where
degraded images or features are available. PASD (Yang et al., 2023) and SeeSR (Wu et al., 2024)
directly embed the LR latent into the initial random noise during the inference process to alleviate
the inconsistency between training and inference. ResShift (Yue et al., 2023) further constructs a
Markov chain that transfers between degraded and target features by shifting the residual between
them, substantially improving the transition efficiency. However, its redesigned diffusion equation

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 2: The proposed RDEIC. We first map a raw image x into the latent space using the encoder
E and then perform end-to-end lossy compression to get compressed latent features zc. We then use
zc with added noise as the starting point and apply a denoising process to reconstruct the noise-free
latent feature z0. The decoder D maps z0 back to the pixel space, to get the reconstructed image x̂.
(a) Vanilla diffusion framework that starts from pure noise. (b) The proposed relay residual diffusion
framework that starts from compressed latent features with added noise.

and noise schedule prevent it from leveraging the robust generative capability of pre-trained stable
diffusion. In this work, we directly derive a new residual diffusion equation from stable diffusion’s
diffusion equation, enabling seamlessly integration of stable diffusion to leverage its robust genera-
tive capability.

3 METHODOLOGY

3.1 OVERALL FRAMEWORK

Fig. 2 shows an overview of the proposed RDEIC network. We first use an encoder E and anal-
ysis transform ga to convert the input image x to its latent representation y. Then we perform
hyper transform coding on y with the categorical hyper model (Jia et al., 2024) and use the space-
channel context model Cm to predict the entropy parameters (µ,σ) to estimate the distribution
of quantized latent representation ŷ (He et al., 2022). The side information lp is quantized through
vector-quantization, i.e., l̂p is the mapping of lp to its closest codebook entry. Subsequently, the syn-
thesis transform gs is used to obtain the image content dependent features zc. Random noise is then
added to zc, which is the starting point for reconstructing the noise-free latent features z0 through
an iterative denoising process. The denoising process is implemented by a frozen pre-trained noise
estimator ϵsd of stable diffusion with trainable control network for intermediate feature modulation.
Finally, the reconstructed image x̂ is decoded from z0 using the decoder D.

3.2 ACCELERATING DENOISING PROCESS WITH RELAY RESIDUAL DIFFUSION

Following stable diffusion, existing diffusion-based extreme image compression methods obtain the
noisy latent by adding Gaussian noise with variance βt ∈ (0, 1) to the noise-free latent features z0:

zt =
√
ᾱtz0 +

√
1− ᾱtϵt, t = 1, 2, · · · , T, (1)

where ϵt ∼ N (0, I), αt = 1 − βt and ᾱt =
∏t

i=1 αi. When t is large enough, the noisy latent
zt is nearly a standard Gaussian distribution. In practice, T is typically very large, e.g., 1000, and
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pure noise is set as the starting point for the reverse diffusion process. However, this approach is not
optimal for the image compression task, where the compressed latent features zc are available.

To this end, we set the starting point to zN =
√
ᾱNzc +

√
1− ᾱN ϵN , where N ≪ T . Our relay

residual diffusion is thus defined as:
zn =

√
ᾱn(z0 + ηne) +

√
1− ᾱnϵn, n = 1, 2, · · · , N, (2)

where e denotes the residual between zc and z0, i.e., e = zc−z0, and {ηn}Nn=1 is a weight sequence
that satisfies η1 → 0 and ηN = 1. Since the residual e is unavailable during inference, we refer to
DDIM (Song et al., 2021) and assume that zn−1 is a linear combination of zn and z0:

zn−1 = knz0 +mnzn + σnϵ, (3)
where we set σn = 0 for simplicity. Combining Eq. (2) and Eq. (3), we get

ηn
ηn−1

=

√
1− ᾱn/

√
ᾱn√

1− ᾱn−1/
√
ᾱn−1

→ ηn = λ

√
1− ᾱn√
ᾱn

, (4)

where we set λ =
√
ᾱN√

1−ᾱN
to ensure ηN = 1. Detailed derivation is presented in Appendix A.

Substituting Eq. (4) into Eq. (2), the diffusion process can be further written as follows:

zn =
√
ᾱn(z0 + λ

√
1− ᾱn√
ᾱn

e) +
√
1− ᾱnϵn, (5)

=
√
ᾱnz0 +

√
1− ᾱn (λe+ ϵn)︸ ︷︷ ︸

ϵ̃n

. (6)

Since Eq. (6) has the same structure as Eq. (1), we can easily incorporate stable diffusion into
our framework. For the denoising process, the noise estimator ϵθ is learned to predict ϵ̃n at each
time-step n. The optimization of noise estimator ϵθ is defined as

Lne = Ez0,zc,c,n,ϵn∥z0 − ẑ0∥22, (7)

= ωnEz0,zc,c,n,ϵn∥ϵ̃n − ϵθ(zn, c, n)∥22, (8)

where ωn = 1−ᾱn

ᾱn
. After that, we can start from the compressed latent features zc and reconstruct

the image using Eq. 3 without knowing the residual e.

3.3 FIXED-STEP FINE-TUNING STRATEGY

Most existing diffusion-based image compression methods adopt the same training strategy as
DDPM (Ho et al., 2020), where each time-step is trained independently. However, the lack of co-
ordination among time-steps can lead to error accumulation and suboptimal reconstruction quality.
To address this issue, we employ a two-stage training strategy. As shown in Fig. 3(a), we first train
each time-step n independently, allowing the model to learn to remove noise and residuals at each
step. The optimization objective consists of the rate-distortion loss, codebook loss (Van Den Oord
et al., 2017) and noise estimation loss:

Lstage I = λr∥z0 − zc∥22 +R(ŷ)︸ ︷︷ ︸
rate−distortion loss Lrd

+ ∥sg(lp)− l̂p∥22 + β∥sg(l̂p)− lp∥22︸ ︷︷ ︸
codebook loss Lcb

+λrLne, (9)

where λr is the hyper-parameter that controls the trade-off, R(·) denotes the estimated rate, sg(·)
denotes the stop-gradient operator, and β = 0.25. Thanks to the proposed relay residual diffusion
framework, we can achieve high-quality reconstruction in fewer than 5 denoising steps, as demon-
strated in Fig. 7. This efficiency allows us to fine-tune the model using the entire reconstruction
process with limited computational resources.

To this end, we further employ a fixed-step fine-tuning strategy to eliminate the discrepancy between
the training and inference phases. As shown in Fig. 3(b), in each training step, we utilize spaced
DDPM sampling (Nichol & Dhariwal, 2021) with L fixed time-steps to reconstruct the noise-free
latent features ẑ0 from the starting point zN and map ẑ0 back to the pixel space x̂ = D(ẑ0). The
loss function used in this stage is as follows:

Lstage II = Lrd + Lcb + λr∥z0 − ẑ0∥22 + λr(∥x− x̂∥22 + λlpipsLlpips(x, x̂)), (10)
where Llpips denotes the LPIPS loss and λlpips = 0.5 is the weight of the LPIPS loss. By fine-tuning
the model using the entire reconstruction process, we achieve significant performance improvement.
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Figure 3: The two-stage training strategy of RDEIC. (a) Independent training: we randomly pick a
time-step n and train each time-step n independently. This ensures that the model effectively learns
to remove added noise and residuals at every step. (b) Fixed-step fine-tuning: L fixed denoising
steps are used to iteratively reconstruct a noise-free latent features ẑ0 from zN , which is consistent
with the inference phase.

3.4 CONTROLLABLE DETAIL GENERATION

Although the fixed-step fine-tuning strategy significantly improves reconstruction quality, it requires
a fixed number of denoising steps in the inference phase, making it impossible to achieve a trade-off
between smoothness and sharpness by adjusting the number of denoising steps (Li et al., 2024b).
To address this limitation, we introduce a controllable detail generation method that allows us to
dynamically balance smoothness and sharpness without being constrained by the fixed-step require-
ment, which enables more versatile and user-specific image reconstructions.

Since the compressed latent feature already contains image information, directly using stable diffu-
sion’s noise estimator ϵsd to predict noise ϵsd(zn, n) results in low-frequency reconstructed images,
as shown in the second column of Fig. 8 and Fig. 17. Inspired by classifier-free guidance (Ho &
Salimans, 2021), we decompose the predicted noise ϵθ(zn, c, n) into a low-frequency control com-
ponent ϵsd(zn, n) and a high-frequency control component ϵθ(zn, c, n)−ϵsd(zn, n), and control the
balance between smoothness and sharpness by adjusting the intensity of the high-frequency control
component:

ϵ̂n = ϵsd(zn, n) + λs(ϵθ(zn, c, n)− ϵsd(zn, n)), (11)

where λs is the guidance scale. By adjusting the value of λs, we can regulate the amount of high-
frequency details introduced into the reconstructed image. In the experiments, we set λs = 1 by
default unless otherwise specified.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. The proposed RDEIC is trained on the LSDIR (Li et al., 2023) dataset, which contains
84,911 high-quality images. For evaluation, we use three common benchmark datasets, i.e., the
Kodak (Franzen, 1999) dataset with 24 natural images of 768×512 pixels, the Tecnick (Asuni &
Giachetti, 2014) dataset with 140 images of 1200×1200 pixels, and the CLIC2020 (Toderici et al.,
2020) dataset with 428 high-quality images. For the Tecnick and CLIC2020 datasets, we resize the
images so that the shorter dimension is equal to 768 and then center-crop them with 768×768 spatial
resolution (Yang & Mandt, 2023).

Implementation details. We use Stable Diffusion 2.1-base1 as the specific implementation of stable
diffusion. Throughout all our experiments, the weights of stable diffusion remain frozen. To achieve
different compression ratios, we train five models with λr selected from {2, 1, 0.5, 0.25, 0.1}.
The total number N of denoising steps is set to 300. The size of codebook is set to 16384. For
the fixed-step fine-tuning strategy, we use varying numbers of denoising steps to fine-tune models

1https://huggingface.co/stabilityai/stable-diffusion-2-1-base
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Figure 4: Quantitative comparisons with state-of-the-art methods on the CLIC2020 dataset. Solid
lines are used for diffusion-based methods, while dashed lines represent other methods. For RDEIC,
we use 2 denoising steps for the two models with larger bpp and 5 steps for the remaining models.

with different compression ratios. Specifically, when λr ∈ {2, 1}, the fixed number L is set to 2,
otherwise, it is 5. All experiments are conducted on a single NVIDIA GeForce RTX 4090 GPU.

Metrics. For quantitative evaluation, we employ several established metrics to measure the visual
quality of the reconstructed images, including reference perceptual metrics LPIPS (Zhang et al.,
2018), DISTS (Ding et al., 2020), FID (Heusel et al., 2017) and KID (Bińkowski et al., 2018)
and no-reference perceptual metric NIQE (Mittal et al., 2012). We also employ distortion metrics
PSNR, SSIM and MS-SSIM (Wang et al., 2003) to measure the fidelity of reconstructions. Note
that FID and KID are calculated on 256×256 patches according to Mentzer et al. (2020).

Comparison methods. We compare the proposed RDEIC with several representative extreme im-
age compression methods, including the traditional standards: BPG (Bellard, 2014) and VVC (Bross
et al., 2021); VAE-based method: ELIC (He et al., 2022); GANs-based methods: HiFiC (Mentzer
et al., 2020), MS-ILLM (Muckley et al., 2023), and VQIR (Wei et al., 2024); and diffusion-based
methods: Text+Sketch (Lei et al., 2023), PerCo (Careil et al., 2024),and DiffEIC (Li et al., 2024b).
More details can be found in Appendix B.

4.2 EXPERIMENTAL RESULTS

Quantitative comparisons. Fig. 4 shows the performance of the proposed and compared meth-
ods on the CLIC2020 dataset. It can be observed that the proposed RDEIC demonstrates superior
performance across different perceptual metrics compared to other methods, particularly achieving
optimal results in DISTS, FID, and KID. For the distortion metrics, RDEIC significantly outperforms
other diffusion-based methods, underscoring its superiority in maintaining consistency. Moreover,
we report the performance of the SD autoencoder in Fig. 4 (see the black horizontal line), which
represents the upper bound of RDEIC’s performance. Compared to DiffEIC (Li et al., 2024b), which
is also based on stable diffusion, RDEIC is significantly closer to this performance upper limit. To
provide a more intuitive comparison of overall performance, we compute the BD-rate (Bjontegaard,
2001) for each metric. The results are shown in Table 3. The comparison results on the Tecnick and
Kodak datasets are shown in Fig. 14 and Fig. 15, respectively.

Qualitative comparisons. Fig. 1 and Fig. 5 provides visual comparisons among the evaluated
methods at extremely low bitrates. VVC (Bross et al., 2021) and MS-ILLM (Muckley et al., 2023)
excel at reconstructing structural information, such as text, but falls significantly short in preserving
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Original VVC MS-ILLM Text+Sketch PerCo DiffEIC RDEIC (Ours)

bpp / DISTS↓ 0.0339 / 0.2063 0.0385 / 0.0857 0.0182 / 0.2939 0.0320 / 0.1313 0.0236 / 0.1265 0.0192 / 0.1014

bpp / DISTS↓ 0.0663 / 0.1238 0.0783 / 0.0569 0.0165 / 0.3409 0.1256 / 0.0567 0.0605 / 0.0624 0.0591 / 0.0485

Figure 5: Visual comparisons of our method to baselines on the CLIC2020 dataset. Compared to
other methods, our method produces more realistic and faithful reconstructions.

Table 1: Encoding and decoding time (in seconds) on Kodak dataset. Decoding time is divided into
the time spent in the denoising stage and the time spent in the remaining parts. DS denotes the
number of denoising steps. The testing platform is RTX4090.

Types Methods DS Encoding Time Decoding time
Denoising Time Remaining Time

VAE-based ELIC – 0.056 ± 0.006 – 0.081 ± 0.011

GAN-based
HiFiC – 0.038 ± 0.004 – 0.059 ± 0.004
MS-ILLM – 0.038 ± 0.004 – 0.059 ± 0.004
VQIR – 0.050 ± 0.003 – 0.179 ± 0.005

Diffusion-based

Text+Sketch 25 62.045 ± 0.516 8.483 ± 0.344 4.030 ± 0.469
DiffEIC 50 0.128 ± 0.005 4.342 ± 0.013 0.228 ± 0.026

PerCo 5 0.236 ± 0.040 0.623 ± 0.003 0.186 ± 0.002
20 0.236 ± 0.040 2.495 ± 0.009 0.186 ± 0.002

RDEIC (Ours) 2 0.119 ± 0.003 0.173 ± 0.001 0.198 ± 0.003
5 0.119 ± 0.003 0.434 ± 0.002 0.198 ± 0.003

textures and fine details. Diffusion-based Text+Sketch (Lei et al., 2023), PerCo (Careil et al., 2024)
and DiffEIC (Li et al., 2024b) achieve realistic reconstruction at extremely low bitrates but often
generate details and structures that are inconsistent with the original image. In comparison, the
proposed RDEIC produces reconstructions with higher visual quality, fewer artifacts, and more
faithful details.

Complexity comparisons. Table 1 summarizes the average encoding/decoding times along with
standard deviations for different methods on the Kodak dataset. For diffusion-based methods, de-
coding time is divided into denoising time and remaining time. Due to relay on stable diffusion,
diffusion-based extreme image compression methods have higher encoding and decoding complex-
ity than other learned-based methods. By reducing the number of denoising steps required for re-
construction, the denoising time of RDEIC is significantly lower than that of other diffusion-based
methods. For instance, compared to DiffEIC (Li et al., 2024b), our RDEIC is approximately 10× to
25× faster in terms of denoising time.
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Figure 6: Ablation studies on the proposed relay residual diffusion and fixed-step fine-tuning.

Table 2: The impact of RRD and FSFT on performance (left) and speed (right). Performance is
represented by BD-rate (%), using DiffEIC-50 as the anchor. Distortion metrics include PSNR, MS-
SSIM, and SSIM. Perceptual metrics include DISTS, FID, KID, NIQE, and LPIPS. DS denotes the
number of denoising steps. 2/5 denotes that we use 2 denoising steps for the two models with larger
bpp and 5 steps for the remaining models. FSFT is a fine-tuning strategy that does not affect speed.

Methods DS Distortion Perception Average

Baseline 50 7.4 -1.8 2.8
+RRD 2/5 -31.0 12.7 -9.1

+RRD+FSFT 2/5 -42.2 -36.6 -39.4

Methods DS Denoising Time Speedup

Baseline 50 4.349 ± 0.013 1×

+RRD 5 0.434 ± 0.002 10×
2 0.173 ± 0.001 25×

4.3 ABLATIONS

To provide a more comprehensive analysis of the proposed method, we conduct ablation studies,
with the results presented in Fig. 6 and Table 2. For the baseline, we employ the same diffusion
framework as DiffEIC (Li et al., 2024b), where the denoising process starts from pure noise. As
shown in Fig. 6, our baseline performs similarly to DiffEIC (Li et al., 2024b).

Effectiveness of relay residual diffusion. We first investigate the effectiveness of our proposed
relay residual diffusion framework. As shown in Fig. 6 and Table 2(left), by incorporating the pro-
posed relay residual diffusion framework, we achieve better distortion performance and comparable
perceptual performance with 2/5 denoising steps compared to the Baseline, which uses 50 denoising
steps. The reason behind this is that starting from the compressed latent feature, instead of pure
noise, avoids the error accumulation in the initial stage of the denoising process and provides a solid
foundation for subsequent detail generation. Since the time required for the denoising stage is di-
rectly proportional to the number of denoising steps, incorporating RRD reduces the denoising time
by a factor of 10× to 25× compared to the baseline, as shown in Table 2(right).

Analyze of denoising steps. Next, we analyze the impact of denoising steps on “Baseline+RRD” to
select an appropriate value of L for FSFT strategy. As shown in Fig. 7, for λr ∈ {2, 1}, the number
of denoising steps has minimal effect on compression performance, so that we set L to 2 in this case.
For λr ∈ {0.5, 0.25, 0.1}, increasing the denoising steps achieves better perceptual results (lower
LPIPS and DISTS values), but leads to degraded fidelity (lower PSNR and MS-SSIM values). To
achieve a balance between fidelity and perceptual quality, we set L to 5 here.
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Figure 7: The impact of denoising steps on “Baseline+RRD”.

Original λs=0.0 λs=0.6 λs=1.0 λs=1.3 λs=1.5

Figure 8: Balancing smoothness versus sharpness. The second row shows the absolute difference
between the reconstructed images and the baseline (λs = 0).

Effectiveness of fixed-step fine-tuning. We further demonstrate the effectiveness of the FSFT strat-
egy. As shown in Fig. 6 and Table 2(left), the FSFT strategy significantly improves reconstruction
performance across all metrics, indicating that it effectively eliminates the discrepancy between the
training and inference phases. Furthermore, as FSFT is a fine-tuning strategy, it does not introduce
any additional computational overhead during inference.

Smoothness-sharpness trade-off. To fully leverage the generative potential of pre-trained stable
diffusion, we introduce a controllable detail generation method that allows users to explore and cus-
tomize outputs according to their personal preferences. For this experiment, we used the model
trained with λr = 1. The visualization result is shown in Fig. 8. We control the balance be-
tween smoothness and sharpness by adjusting the parameter λs, which regulates the amount of
high-frequency details introduced into the reconstructed image. Specifically, as the value of λs in-
creases, the image transitions from a smooth appearance to a progressively sharper and more detailed
reconstruction. Additional results are provided in Fig. 17, Fig. 18, and Fig. 19 in Appendix D.

5 CONCLUSION

In this paper, we propose an innovative relay residual diffusion-based method (RDEIC) for ex-
treme image compression. Unlike most existing diffusion-based methods that start from pure noise,
RDEIC takes the compressed latent features of the input image with added noise as the starting point
and reconstructs the image by iteratively removing the noise and reducing the residual between the
compressed latent features and the target latent features. Extensive experiments have demonstrated
the superior performance of our RDEIC over existing state-of-the-art methods in terms of both re-
construction quality and computational complexity.
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A MATHEMATICAL DETAILS

Derivation of Eq. (4). First, according to Eq. (2), zn−1 can be sampled as:

zn−1 =
√
ᾱn−1(z0 + ηn−1e) +

√
1− ᾱn−1ϵn−1, (12)

=
√
ᾱn−1z0 +

√
ᾱn−1ηn−1e+

√
1− ᾱn−1ϵn−1︸ ︷︷ ︸

∼N (0,(1−ᾱn−1)I)

, (13)

where ϵn−1 ∼ N (0, I). Second, for zn defined in Eq. (2) and zn−1 defined in Eq. (3), we have:

zn−1 = knz0 +mnzn + σnϵ, (14)

= knz0 +mn(
√
ᾱn(z0 + ηne) +

√
1− ᾱnϵn) + σnϵ, (15)

= (kn +mn

√
ᾱn)z0 +mn

√
ᾱnηne+ mn

√
1− ᾱnϵn + σnϵ︸ ︷︷ ︸

∼N (0,(m2
n(1−ᾱn)+σ2

n)I)

, (16)

where ϵn ∼ N (0, I) and ϵ ∼ N (0, I). By combining Eq. (13) and Eq. (16), we obtain the following
equations: 

√
ᾱn−1 = kn +mn

√
ᾱn,√

ᾱn−1ηn−1 = mn
√
ᾱnηn,

1− ᾱn−1 = m2
n(1− ᾱn) + σ2

n.

(17)

Note that, referring to DDIM (Song et al., 2021), we set σn = 0 for simplicity. By solving Eq. (17),
we have:

kn =
√
ᾱn−1 −

√
1− ᾱn−1

1− ᾱn

√
ᾱn, mn =

√
1− ᾱn−1

1− ᾱn
,

ηn
ηn−1

=

√
1− ᾱn/

√
ᾱn√

1− ᾱn−1/
√
ᾱn−1

. (18)

Therefore, ηn can be defined as:

ηn = λ

√
1− ᾱn√
ᾱn

, (19)

where we set λ =
√
ᾱN√

1−ᾱN
to ensure ηN = 1.

Derivation of Eq. (8). Substituting Eq. (6) into Eq. (7), we have:

∥z0 − ẑ0∥22 = ∥( zn√
ᾱn

−
√
1− ᾱn√
ᾱn

ϵ̃n)− (
zn√
ᾱn

−
√
1− ᾱn√
ᾱn

ϵθ(zn, c, n))∥22, (20)

= ∥
√
1− ᾱn√
ᾱn

ϵ̃n −
√
1− ᾱn√
ᾱn

ϵθ(zn, c, n))∥22, (21)

=
1− ᾱn

ᾱn
∥ϵ̃n − ϵθ(zn, c, n)∥22. (22)

B EXPERIMENTAL DETAILS

Evaluation of third-party models. The quality factor of BPG (Bellard, 2014) was selected from
{43, 45, 46, 48, 49, 51}. For VVC (Bross et al., 2021), we used the reference software VTM-23.02

with intra configuration. The quality factor was selected from the set {41, 43, 45, 47, 49, 52}. To
compare ELIC (He et al., 2022) and HiFiC (Mentzer et al., 2020) at extremely low bitrates, we uti-
lized their PyTorch implementation34 and retrained the model to achieve higher compression ratios,
enabling a more direct comparison with our proposed method. For PerCo (Careil et al., 2024), since
the official source codes and models are not available, we used a reproduced version5 as a substitute,
which employs stable diffusion as the latent diffusion model. For MS-ILLM (Muckley et al., 2023),
VQIR (Wei et al., 2024), Text+Sketch (Lei et al., 2023) and DiffEIC (Li et al., 2024b), we used the

2https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM/-/tree/VTM-23.0
3https://github.com/JiangWeibeta/ELIC
4https://github.com/Justin-Tan/high-fidelity-generative-compression
5https://github.com/Nikolai10/PerCo/tree/master
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Figure 9: Quantitative performance on the MS-COCO 30k dataset.

publicly released checkpoints from their GitHub repositories, and used them for evaluation with the
provided code.

Additional implementation details. We use Stable Diffusion 2.1-base as the specific implemen-
tation of stable diffusion. Throughout all our experiments, the weights of stable diffusion remain
frozen. Similar to DiffEIC (Li et al., 2024b), the control module in our RDEIC has the same encoder
and middle block architecture as stable diffusion and reduces the channel number to 20% of the orig-
inal. The variance sequence {βt}Tt=1 used for adding noise is identical to that in Stable Diffusion.
The number N of denoising steps is set to 300. For the update of codebook, we use the clustering
strategy proposed in CVQ-VAE (Zheng & Vedaldi, 2023).

For training, we use the Adam (Kingma & Ba, 2014) optimizer with β1 = 0.9 and β2 = 0.999
for a total of 300K iterations. To achieve different compression ratios, we train five models with
λr selected from {2, 1, 0.5, 0.25, 0.1}. The batch size is set to 4. As described in Section 3.3, the
training process is divided into two stages. 1) Independent training. During this stage, the initial
learning rate is set to 1×10−4 and images are randomly cropped to 512×512 patches. We first train
the proposed RDEIC with λr = 2 for 100K iterations. The learning rate is then reduced to 2×10−5

and the model is trained with target λr for another 100K iterations. 2) Fixed-step fine-tuning. In this
stage, the learning rate is set to 2×10−5 and images are randomly cropped to 256×256 patches. We
fine-tune the model through the entire reconstruction process for 100K iterations. When λr ∈ {2, 1},
the fixed number L is set to 2, otherwise, it is 5. All experiments are conducted on a single NVIDIA
GeForce RTX 4090 GPU.

C FURTHER ABLATION EXPERIMENTS

Robustness and generalization ability. To assess the robustness and generalization ability of
RDEIC, we conducted additional experiments on the larger MS-COCO 30k dataset, which com-
prises 30,000 images spanning a diverse range of categories and content types. This dataset was
constructed by selecting the same images from the COCO2017 training set (Caesar et al., 2018) as
Careil et al. (2024).

As shown in Fig. 9, RDEIC maintains consistent performance across this expanded dataset, demon-
strating its ability to generalize effectively to unseen data, even in scenarios with more diverse and
challenging content. Visualized examples of reconstructed images are provided in Fig. 16 to further
illustrate the robustness of our approach.

Role of the diffusion mechanism. To further investigate the role of the diffusion mechanism in
RDEIC, we design two variants for comparison: 1) W/o denoising process: In this variant, the
compression module is trained jointly with the noise estimator, but the denoising process is bypassed
during the inference phase. 2) W/o diffusion mechanism: In this variant, the compression module
is trained independently, completely excluding the influence of the diffusion mechanism.

As shown in Fig. 10, bypassing the denoising process results in significant degradation, particu-
larly in perceptual quality. This demonstrates that the diffusion mechanism plays a crucial role in
enhancing perceptual quality during reconstruction. As shown in Fig. 11, the diffusion mechanism
effectively adds realistic and visually pleasing details.
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Figure 10: Ablation studies of the diffusion mechanism on CLIC2020 dataset. In the W/o denois-
ing process setting, we train the compression module jointly with the noise estimator but bypass the
denoising process during inference. In the W/o diffusion mechanism setting, we train the compres-
sion module independently, completely excluding the influence of the diffusion mechanism.

Original W/o diffusion mechanism W/o denoising process RDEIC

bpp / DISTS↓ / PSNR↑ 0.0711 / 0.1203 / 24.8603 0.0672 / 0.1126 / 25.2282 0.0672 / 0.0709 / 25.9719

bpp / DISTS↓ / PSNR↑ 0.0398 / 0.1650 / 24.6967 0.0316 / 0.1652 / 24.9232 0.0316 / 0.0762 / 25.4705

Figure 11: Impact of diffusion mechanism on reconstruction results.

By comparing the performance of W/o diffusion mechanism and W/o denoising process in Fig.
10 and Fig. 11, we observe that the compression module trained jointly with the noise estimator
outperforms the one trained independently. This demonstrates that the diffusion mechanism also
contributes to the compression module. Moreover, Fig. 12(a) visualizes an example of bit allocation.
It is evident that the model trained jointly with the noise estimator allocates bits more efficiently,
assigning fewer bits to flat regions (e.g., the sky in the image). Fig. 12(b) visualizes the cross-
correlation between each spatial pixel in (y − µ)/σ and its surrounding positions. Specifically, the
value at position (i, j) represents cross-correlation between spatial locations (x, y) and (x+ i, y+j)
along the channel dimension, averaged across all images on Kodak dataset. It is evident that the
model trained jointly with the noise estimator exhibits lower latent correlation, suggesting reduced
redundancy and more compact feature representations. These results indicate that the diffusion
mechanism provides additional guidance for optimizing the compression module during training,
enabling it to learn more efficient and compact feature representations.

D ADDITIONAL EXPERIMENTAL RESULTS

BD-rate (%) on the CLIC2020 dataset. To provide a more intuitive comparison of overall per-
formance on CLIC2020 dataset, we set DiffEIC (Li et al., 2024b) as the anchor and compute the
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0.0287 0.1051 0.1577 0.0927 0.0303

0.1231 0.1733 1.0000 0.1728 0.1231

0.0306 0.0923 0.1580 0.1049 0.0290

0.0276 0.0247 0.0949 0.0321 0.0355

0.0312 0.0357 0.0896 0.0321 0.0269

0.0285 0.1045 0.1075 0.1074 0.0250

0.1134 0.1427 1.0000 0.1423 0.1138

0.0251 0.1072 0.1079 0.1044 0.0291

0.0271 0.0332 0.0897 0.0360 0.0325

0.0487 bpp 0.0460 bpp 0.0667 bpp 0.0654 bpp

(a) Bit allocation (b) Cross-correlation

Figure 12: Impact of the diffusion mechanism on the compression module. W/o diffusion denotes
the compression module trained independently, while W/ diffusion denotes the compression module
trained jointly with the noise estimator. All results are obtained from models trained with λr = 0.5.
(a) An example of bit allocation on the Kodak dataset, with the values normalized for consistency.
(b) Latent correlation of (y − µ)/σ.

Table 3: BD-rate (%) for different methods on the CLIC2020 dataset with DiffEIC as the anchor.
For distortion-oriented methods (i.e., BPG, VVC, and ELIC), we omit their perceptual metrics. The
best and second best results are highlighted in bold and underline.

Methods Perception Distortion AverageDISTS FID KID NIQE LPIPS PSNR MS-SSIM SSIM

BPG – – – – – -66.2 -32.8 -40.3 –
VVC – – – – – -77.8 -51.3 -58.6 –
ELIC – – – – – -82.7 -54.6 -66.7 –

HiFiC 201.8 248.2 372.6 -28.7 63.4 -29.1 2.7 14.7 105.7
VQIR 71.8 183.9 156.7 32.4 51.3 16.4 43.9 57.8 76.8
PerCo 66.1 67.6 65.1 5.2 67.7 33.9 69.2 77.7 56.6
MS-ILLM 28.5 40.9 34.6 -85.4 -44.7 -75.4 -44.7 -38.5 -21.5

RDEIC(Ours) -17.9 -18.3 -22.1 -83.7 -40.8 -61.3 -32.7 -32.7 -38.7

BD-rate (Bjontegaard, 2001) for each metric. As shown in Table 3, our method outperforms all
perception-oriented comparison methods, achieving the lowest average BD-rate value among them.

Quantitative comparisons on the Tecnick and Kodak datasets. We present the performance of
the proposed and compared methods on the Tecnick and Kodak datasets in Fig. 14 and Fig. 15, re-
spectively. The proposed RDEIC achieves state-of-the-art perceptual performance and significantly
outperforms other diffusion-based methods in terms of distortion metrics. Since the Kodak dataset
is too small to reliably calculate FID and KID scores, we do not report these results for this dataset.

Smoothness-sharpness trade-off. As shown in Fig. 17, Fig. 18, and Fig. 19, we control the balance
between smoothness and sharpness by adjusting the parameter λs, which regulates the amount of
high-frequency details introduced into the reconstructed image.

E LIMITATIONS

Using pre-trained stable diffusion may generate hallucinated lower-level details at extremely low
bitrates. For instance, as shown in Fig. 13, the generated human faces appear realistic but are
inaccurate, which may lead to a misrepresentation of the person’s identity. Furthermore, although
the proposed RDEIC has shown promising compression results, the potential of incorporating a text-
driven strategy has not yet been explored within our framework. We leave detailed study of this to
future work.
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Figure 13: Faces generated at extremely low bitrates.
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Figure 14: Quantitative comparisons with state-of-the-art methods on the Tecnick dataset.
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Figure 15: Quantitative comparisons with state-of-the-art methods on the Kodak dataset.
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Figure 16: Visualization results of RDEIC on the MS-COCO 30k dataset at different bitrates.
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Figure 17: More results regarding the balance between smoothness and sharpness.
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Figure 18: More results regarding the balance between smoothness and sharpness.
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Figure 19: More results regarding the balance between smoothness and sharpness.
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