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Abstract

Representation learning for proteins is an emerging area in geometric deep learn-
ing. Recent works have factored in both the relational (atomic bonds) and the
geometric aspects (atomic positions) of the task, notably bringing together graph
neural networks (GNNs) with neural networks for point clouds. The equivariances
and invariances to geometric transformations (group actions such as rotations and
translations) so far treat large molecules as rigid structures. However, in many
important settings, proteins can co-exist as an ensemble of multiple stable con-
formations. The conformations of a protein, however, cannot be described as
input-independent transformations of the protein: Two proteins may require differ-
ent sets of transformations in order to describe their set of viable conformations.
To address this limitation, we introduce the concept of conditional transformations
(CT). CT can capture protein structure, while respecting the constraints on dihedral
(torsion) angles and steric repulsions between atoms. We then introduce a Markov
chain Monte Carlo framework to learn representations that are invariant to these
conditional transformations. Our results show that endowing existing baseline
models with these conditional transformations helps improve their performance
without sacrificing computational efficiency.

1 Introduction

The literature on geometric deep learning has achieved much success with neural networks that
explicitly model equivariances (or invariances) to group transformations [10} 46\ 40} [16]. Among
applications to physical sciences, group equivariant graph neural networks and transformers have
specifically found applications to small molecules, as well as large molecules (e.g. proteins) with
tremendous success [39, (1}, 18, 28}, 156} I5]]. Specifically, machine learning for proteins (and 3D
macromolecular structures in general) is a rapidly growing application area in geometric deep learning,
[8}23]. Traditionally, proteins have been modeled using standard 3D CNNs [37, 155]], graph neural
networks (GNNs) 38 24]], and transformers [63]. More recently, several works [32, |33} |35} 26] have
enriched the above models with neural networks that are equivariant (invariant) to transformations
from the Euclidean and rotation groups. While equivariance (invariance) to the transformations in
these groups are necessary properties for the model, unfortunately, they are limited to only capture
rigid transformations of the input object.

However, these models do not yet account for all invariances of the input. And the transformations
they are invariant (equivariant) to do not depend on the input. For instance, invariance to the Euclidean
group restricts the protein representation to act as if the protein were a rigid structure, regardless
of the protein under consideration. Many proteins, however, should not always be treated as rigid
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structures. And different proteins may have different types of conformations (protein 3D structures
with flexible side chains) [25}121}149]] . The existing rigid body assumption in protein representations
may hurt these methods in datasets & tasks that require protein representations to be invariant to
protein conformations. For example, for most proteins, regardless of their side chain conformation (as
long as viable) under consideration — their protein fold class/ other scalar properties remain the same,
their mutation (in)stability remains unaltered, protein ligand binding affinity (apart from changes at
the ligand binding site) remain the same, etc.

In light of this limitation of current methods, a question naturally arises: Is it possible to learn
conformer-invariant protein representations?

Our Approach: We propose a representation method where the set of symmetries in the task are
input-dependent, which we denote conditional invariances. For our specific application, we model
every protein as a directed forest, where every amino acid forms a directed tree. We leverage the
constructed directed forest of the protein to sample viable protein conformations (where viability
is checked with Protein structure validation tools such as Molprobity [12} 9]), which is additionally
coupled with a Markov chain Monte Carlo (MCMC) framework to create data augmentations to train
the neural network to learn conformer invariant representations.

Our contributions can be summarized as follows:

* We provide guiding principles for defining conditional invariant representations as inductive biases,
which serves as a generalization of group invariant neural networks.

* We then provide a principled strategy (in Appendix |B) to sample conformations for any given
protein from the support of its protein conformer distribution (which consists of all its viable protein
conformations) which captures their true flexibility. Viable conformations respect domain specific
constraints such as those on dihedral angles, steric repulsions, among others. This is particularly
useful in the scenario when the set of viable transformations is different across different proteins.

* Further, we develop an MCMC-based learning framework which guides the sampling of protein
conformations such that the (asymptotic empirical) average representation obtained by all viable
conformations of a protein are identical.

* Finally, we perform experimental evaluation of our proposal, where endowing baseline models
with our proposed strategy shows noticeable improvements on multiple different classification and
regression tasks on proteins.

We present detailed related work in Appendix

2 Conditional Invariances for Proteins

The symmetry of an object is the set of transformations that leaves the object invariant. The notion
of symmetries, expressed through the action of a group on functions defined on some domain, has
served as a fundamental concept of geometric deep learning. In this section, we start by defining
the concept of input-dependent conditional symmetries and then proceed to specifically tailor these
conditional symmetries that are both computationally efficient and useful for representing protein
conformations. Some group theoretic preliminaries are presented in the Appendix[A.1]

Definition 2.1 (Conditionally symmetric-invariant functions). A function f : 2 — R, is said to be
conditionally symmetric-invariant if

flty-x)= f(x) ,Viz €Sy, Ve,
where S, is a set of transformations unique to element x and ¢, : 2 — .

It is easy to see that conditionally invariant functions are a generalization of group invariant functions
where S, = G Vz € Q where G is a group. The above definition is motivated by the fact that
representations for proteins may not necessarily be limited to be invariant just to group actions,
but to a more general set of protein specific transformations. In more detail, works over the past
decade [25 121 149] have observed that — while the backbone atoms of all amino acids in a protein
molecule togetherform a rigid structure, its side chains can exhibit flexible (continuous and discrete)
conformations beyond clustered rotamers. The underlying goal of our work is to capture this
inherent flexibility of proteins and to ensure different conformers of the same protein get identical
representations (More details — Appendix [E.4). The above problem of capturing protein conformations
is further compounded by the fact that protein conformations are often times unique to the protein - i.e.



conformations exhibited by a protein are input (protein) specific. The desiderata, therefore is a model
which outputs conformation invariant representations when the conformations (symmetries) exhibited
by a protein varies across proteins when access to only a single protein conformer is available.

We denote a protein as a tuple p = (V, X, X,,) (data from pdb files) where V" is the set of atoms in the
protein, X, € R™*? d > 1 is the scalar atom feature matrix associated with the atoms, X » € R™*3
(where m denotes the number of atoms in the protein) are the positional coordinates associated
with the atoms in the protein. Without loss of generality, we number the nodes in V = {1,...,n}
following the same ordering of the rows in X, X,

Definition 2.2 (Rigid Backbone Protein Conformations). For an m-atom protein p with atom
positional coordinates X, € R™*3 (recall that by definition p contains information about X)), where
C, C R™>3 denotes the set of viable conformations of p, which keeps the positional coordinates
associated with the backbone fixed. We use T}, C R™*3%3 (where a 3x3 matrix is associated with
every single atom) to denote the set of non-isometric transformations of p, which yield the set C),
ie. Ve, € Cp, 3t, € T, s.t. for an atom with index ¢ € {1, ..., m}, the new position of atom ¢ is
X [iltp[i]T = cplil. Xpli] € R, 1,[i] € R®*2.

T, forms a set of transformations which acts on the protein atomic coordinates via matrix multiplica-
tion. Two elements of T}, (with corresponding matrices of individual atoms and then aggregating for
the protein as a whole) may or may not combine via matrix multiplication (as the binary operation) to
result in another element of 7}, i.e. matrix multiplication is not necessarily closed in T},. A concrete
example of the non group structure of protein conformations is provided in Appendix [A.3]

Unfortunately, sampling transformations from 7}, to obtain viable protein conformations is an
unattainable task, since this would entail first sampling a transformation from R*3*3 and then
verifying if the transformation is viable (and the vast majority of transformations are not viable). We
will address this issue using an MCMC method (Details in Appendix[B]) - which is then combined with
MCGD training of the neural network [[60] to learn conformation invariant protein representations
where different viable conformations are obtained via MCMC are used in every batch.

To summarize our requirements, a symmetric-invariant function for proteins (per Definition 2.1)),
should be invariant to (i) transformations which change its atomic coordinates to any of its rigid
backbone conformations in C), (ii) transformations which change the atomic coordinates of all
its atoms via rigid body transformations — group actions such as rotations/ translations (iii) a
combination of the two above which transforms it into one of its viable conformations and is then
further acted upon by rigid body transformations.

3 Learning Framework

We shall employ a learning strategy, where we use the viable conformations obtained via the Markov
chain to learn a function which outputs conformer invariant representations.

Let D = {(z;, yj)}f[:l be the input data (where we have a single conformer for every protein in
the dataset). We shall consider a single data point (x;, ;) henceforth, where z; = (V, X,, X,,) is
the input protein. We consider a supervised learning setting where y; is the associated target. We
consider both classification and regression tasks.

Let C; = {c;, } be the set of viable conformations of protein ;. We only consider viable confor-
mations which defer only in the atomic coordinates matrix X,,. For a given protein x;, we shall use
xj, to denote protein z; but with X, of the original protein modified by ¢;,, and use S; = {z;, } to
denote the set of all viable x;, i.e. the state space.

Let f : Q — R% d > 0 be any function with learnable parameters #/, (for e.g. any neural
network model such as 3D CNN, GNN, Transformer, LSTM, etc.) which takes a protein (in the
form (V, X, X,,)) as input and outputs protein representations. The function f need not necessarily
output conformer invariant representations of the protein ;. Then, a simple way to obtain conformer
invariant representations of protein x; (apart from using trivial functions such as a constant function
or function independent of X ) is computing its expected value over all its viable conformations. We

shall denote ? to denote a function which outputs conformer invariant representations of a protein.

F(25307) = Bxron, [£(X;67)] (1)



where ;(-) is the steady state distribution of the Markov chain associated with the protein z;. As

such, f(z;;07) =7 fal; :67) for any viable protein conformation r’; € S;. Subsequently, to learn an
optimal f (which we denote by f*), we wish to minimize the loss, deﬁned as follows:

L(D; 67, 6°) Zi yi p(F(2;:67);67))
_1 . L
= lim N;L(yi,p@;ﬂx;;ef);ep» @

where L is a convex loss function e.g. cross entropy loss, p is some differentiable function with
parameters 6 (in practice, an MLP) and klim % Zle f (wﬁ, 67) can be employed as an asymp-
—00

totically unbiased and consistent estimate of ? where xj is the i*" sample from the Markov chain
corresponding to the protein

Since Equation (2)) is computationally intractable, we employ a surrogate for the loss given by:
1k
I pr - i .of\. P
J(D;67,67) = lim — Z k;lL yi, p(f(5567);67)) S

Observe that in Equation , the expectation over the conformations is now outside the L and p func-
tions while still remaining conformation invariant (however, the optimal parameters corresponding
to minimizing J are different from minimizing L). Following [52|51], we note that, when p is the
identity function, Equation (3)) serves as an upper bound for Equation (2)) via Jensen’s inequality.
However, learning representations by averaging over multiple conformations (in training) is still
computationally expensive (back-prop and high variance issues). Next, we show how MCGD [60]
can be leveraged to make this tractable (more details in Appendix [E.4).

Making the case for simplicity, we next show convergence properties using the full batch setting. Note
that is procedure and proofs are equally applicable in the mini-batch setting with minor modifications.

Full-batch  training: We consider the data as a single batch B =
{(z1,91), .-, (xj,95), ..., (xn,yn)} and for a data point (z;,y;), denote the corresponding
steady state distributions of the corresponding Markov chains using 7; and the state space as 5.

We denote all learnable parameters of p o f as = (87, 6”) and consider § € © C R™, m > 0 such
that the function p o f may be non-convex for some values of 6.

We consider a sequence of step sizes ()52, which satisfy:
Z’yk:Jroo, Zlnk~'y,%<+oo “)
k k

and follow a gradient scheme where parameters are updated as:

Op =0p—1 — W2y, k>0 (5)

N .
where Z;, = + VoL(y;, p(f(z] k-1, 9}; 1);0%_1)) and x’;_l is the k& — 1" sample from the
Jj=1 '
Markov chain corresponding to the data point (z;, y;) and employ the Markov chain gradient descent
procedure [60] where the loss in epoch k, k > 0 of training is obtained by

jk: = Z (yj,p k71?9£71)?6’£71))~

and minimizes the surrogate loss given in Equation (3) when k is sufficiently large so that the Markov
chain has converged to its unique steady state distribution.

Next, we list the set of assumptions we make to ensure convergence of our conformer invariant
MCGD procedure.



Table 1: GNN(GCN), GVP-GNN, E(N) GNN - Baseline vs Conformation Invariant Strategies for multiple
different tasks on proteins from the ATOM3D dataset. Corresponding to the metric, 1 indicates that higher is
better, while | indicates that lower is better. Bold values indicate best results for a given row. The values for
GNN were obtained from [62] and for the GVP-GNN from [33]. Gray colored cells indicates that the augmented
model outperforms the baseline model.

MCMC MCMC MCMC
Task  Metric Baseline Augmented Baseline Augmented Baseline Augmented
(GNN[GCN]) GNN (GVP GNN) GVP-GNN (E(N) GNN) E(N) GNN

(Ours) (Ours) (Ours)

PSR Global R, T 0.755+0.004  0.761 4 0.004 | 0.845 4 0.004  0.852= 0.006 | 0.827 & 0.004  0.852 = 0.004
LBA RMSE | 1.570 £0.025  1.519+0.022 | 1.594 +£0.073  1.43540.007 | 1.392 4 0.001 1.384 £ 0.011
MSP AUROC 1 0.621 £0.009  0.662 & 0.008 | 0.680 £0.015  0.857 &+ 0.049 | 0.652+£0.006  0.843 & 0.037

Assumption 3.1. We make the following assumptions:

1. For any § € © and :cf € 5j, the function f is differentiable Vj
2. SUpgeo 2tes. {l|Vo po f(xf)H} < 400 i.e. the gradients are bounded.
'L J
3. Vak € 85, V0, po f(xh) —Va, po f(xh)|| < L||61 — 62| for some L >0

i.e., the gradients are L—Lipschitz.
4. E m ~TT [V@ po f( )] =Vy EI?NW]’ [,0 ° f(xéﬁ)]

Next, we formally state the convergence of our optimization procedure to optimal parameters 6*
which yield conformer invariant protein representations.

Proposition 3.2. Let the step sizes satisfy ({) and the function parameters 6 be updated as (3) and
Assumption[3.1] hold, then the MCGD optimization enjoys properties of almost sure convergence to
the optimal 6.

The use of Markov chain gradient descent procedure to optimize the conformer invariant learning
procedure optimizes the objective .J in Equation (3), and thus has the following implication on how
outputs should be calculated at inference time:

Inference time:  We estimate ? using an empirical average of f evaluated over conformations (in
practice, average final layer [before softmax] representations) visited by the Markov chain :

k
. 1 ;
Folas;07) = EZ 2\ 07y, (6)

where xgl) is the ith state visited by the Markov chain started at x;. Since the Markov chain has a

unique steady state distribution, ?k (x;; 67) is both asymptotically unbiased and consistent. That is

Jim 7 (25:07) 2 F(ay; 07).

4 Results
Tasks on Atom3D Datasets

We evaluate our proposed augmentation procedure on multiple different tasks from the ATOM3D
dataset [62]]. Results are provided in Table ATOMB3D [62]] is a unified collection of datasets
concerning the 3D structure of proteins. These datasets are specifically designed to provide a
benchmark for ML methods which operate on 3D molecular structure, and represent a variety of
important structural, functional, and engineering tasks. As part of our evaluation, we perform the (a)
Protein Structure Ranking (PSR) (b) Ligand Efficacy Prediction (LEP) (c) Protein Mutation Stability
Prediction (MSP) (d) Ligand Binding Affinity (LBA). We describe each of the tasks in detail in
Appendix [E-T] For all the datasets and tasks we report the same metrics as proposed [62]).

Model, Baselines and Discussion

We endow the vector gated GVP-GNN model [33]], a GNN using GCN [38] layers and the E(n) GNN
[56] with conditional transformations from our proposed MCMC method. It is important to note that
when the positions of the atoms are altered the protein graph which are inputs to the base encoders are
changed appropriately in every epoch. Looking at Table[I] we note that models augmented with our
proposed conformer invariance framework, in general, outperforms the baseline models in multiple
tasks for which conformer invariance is a requirement.

Additional results and ablation studies are presented in Appendix and scalability, computation
times in Appendix [E.5



5 Conclusions

This work addresses the limitations of current protein representation learning methods which are
unable to learn conformer invariant representations — and hence unable to capture the inherent
flexibility present in protein side chains. To address these, we introduced conditional transformations
to capture protein structure, while respecting the restrictions posed by constraints on dihedral (torsion)
angles and steric repulsions between atoms. Subsequently, we introduced a Markov chain Monte
Carlo based framework to learn representations that are invariant to these conditional transformations.
Our results have corroborated our proposed strategy on multiple different protein tasks wherein
endowing existing baseline models with these conditional transformations helped improve their
performance without sacrificing computational efficiency.
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A Appendix - Preliminaries

A.1 Group Theory Preliminaries

Definition A.1 (Group). A group is a set GG equipped with a binary operation - : G x G — G obeying
the following axioms:

» forall g1, 92 € G, g1 - g2 € G (closure).

o forall g1, 92,93 € G, g1 - (92 - g3) = (g1 - g2) - g3 (associativity).

* there is a unique e € G such thate- g = g - e = g for all g € G (identity).

1

» forall g € G there exists g~ € G'suchthatg-g~' = g~ - g = e (inverse).

Definition A.2 (Group invariant functions). Let G be a group acting on vector space V. We say that
a function f : V — R is G-invariant if f(g-z) = f(x) Vx € V,g € G.

Definition A.3 ((Left) Group Action). For a group G with identity element e, and X is a set, a (left)
group action o of G on X is a function « : G x X — X that satisfies the following two conditions:

1. Identity: a(e,z) =z, Ve € X
2. Compatibility: «(g, a(h,x)) = a(gh, x)

We will use a short hand of ¢ -  for a(g, x) when the action being considered is clear from context.

A.2 Motivation for Requiring Conformer Invariance of Proteins

A protein molecule is composed of amino acids (say n amino acids), where each atom in the
protein belongs to one amino acid € {1,...,n}. Excluding the hydrogen atoms, every amino acid
contains four atoms known as the backbone atoms (see Figure [I), and other atoms which belong
to the side chain. Traditionally, protein structures are solved by X-ray crystallography or cyro-
EM and the obtained structure is normally considered a unique 3D conformation of the molecule.
Molecules available via the Protein Data Bank [6] generally include only unique sets of coordinates
to demonstrate the 3D structures, which lead to the unique answer as ‘gold standard’ in structure
prediction, such as protein structure prediction competitions - CASP [41]]. Under these assumptions
protein side-chain conformations are usually assumed to be clustered into rotamers, which are rigid
conformations represented by discrete side-chain dihedral angles.

However, works over the past decade [25, 21} 49] have observed that — while the backbone atoms
of all n amino acids in a protein molecule together (i.e. 4n atoms) form a rigid structure, its side
chains can exhibit flexible (continuous and discrete) conformations beyond clustered rotamers. The
underlying goal of our work is to capture this inherent flexibility of proteins and to ensure different
conformers of the same protein get identical representations (More details — Appendix [E.4). The
above problem of capturing protein conformations is further compounded by the fact that protein
conformations are often times unique to the protein - i.e. conformations exhibited by a protein are
input (protein) specific. The desiderata, therefore is a model which outputs conformation invariant
representations when the conformations (symmetries) exhibited by a protein varies across proteins
when access to only a single protein conformer is available.

A.3 Example demonstrating non group structure of a set of protein conformations

Consider X to be a protein with n atoms and m amino acids and let the set of viable conformations of
X as {X1,Xo,... X;,... X, }. Let X; be the conformation available in our dataset.

In each step of the transition, only a few atoms (<< n) (atoms in a single amino acid of
the entire protein- where the protein is made up of multiple hundreds of amino acids (m) in general)
are subjected to an action from the SO(3) group here. The positions of all other atoms (outside that
amino acid) in the side chain remain unaltered. So, in the R™*3*3 matrix — most of the 3x3 entries
are the identity matrix of 3 dimension.

Let T{ € R™*3%3 where i € {1,2,...,p} be the transformation which yields conformation
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Figure 1: Magnified image of side chain of a single generic amino acid (here, with 6 atoms in the side chain) in
a protein molecule. A protein molecule typically contains tens to hundreds of amino acids

X; from X;.

Now consider T12 (subscript of 1 since we start conformation X;) which takes X; to X,
and T} which takes X to X3 where T2 and T}, do not act on the same amino acid in the protein.
Now, however, consider the case where performing 72 and 77 (or the other way around) sequentially
would result in a case where atoms in two different amino acids would overlap (or come too
close to each other causing steric repulsion) - therefore resulting in a non viable conformation
i.e. a composition of T2 and 7} acting on X, would not be present in the set of all allowed
transformations Ty = {T},...T},...T''}. Therefore the set T} is not closed and doesn’t form a

group.

Also for two different conformations X; and Xs, their allowed transformation sets 73, T,
will not be identical (in the above example T ¢ T5). It also easy to construct a case where | J_, T;
is not a group and all actions from this group acting on any given X; will not necessarily result in
viable/ valid conformation.

A.4 Flexibility allowed by our proposed model

Our proposed model allows every node in the directed tree to be rotated about its parents. For
example, for the side chain shown in Figure[T](Main Paper), the allowed flexibility is Figure[2]

Figure 2: Maximum flexibility allowed by our candidate sampling process when the group associated with
every node in the tree is SO(3) (the special orthogonal group in 3 dimensions). While not candidate is likely to
be accepted such a candidate generation process provides the flexibility for every node to be rotated about its
immediate parent while preserving bond lengths.
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B Appendix - Obtaining Viable Conformations

While there have been prior Monte Carlo and MCMC based techniques for sampling protein confor-
mations [[7, 130} 164]], the overarching goals of the existing MCMC methods are significantly different
compared to ours. The existing methods define a distribution over the conformations (based on the
properties of the bonds, etc.) and then sample highly probable conformations from this distribution.
Our method, is much simpler and only requires that the chain being used is ergodic and is invariant to
the actual form of the distribution. Therefore, we devise a simple chain whose transitions are easier to
sample and don’t require us to compute conditionals of an energy based model. However, we also note
that the existing Markov chains can be used as drop-in replacements to sample conformations as part
of our framework. Before specifying our MCMC procedure, we specify the invariance requirements
for learning protein representations.

Before we describe our MCMC procedure to sample atomic coordinates from the set of rigid backbone
conformations , we need a way to sample from the local neighborhood of a conformation.

B.1 A simple protein conformation sampling strategy

Akin to [30], to efficiently sample a candidate conformation from C),, we will follow a multi-step
approach: First, we (i) construct a directed tree for every amino acid in the protein to capture the
inherent flexibility in protein structures. Then, we (ii) leverage a directed forest of the protein
(described next) to transform its atomic coordinates and check for viability.

Part 1. Directed forest construction. Using the input protein molecule, we construct a directed
forest using the following three step procedure:

1. Each amino acid in the protein gets its own directed tree. The atoms in the amino acid’s backbone
form the base (root) nodes (i.e., there can be multiple base nodes in every amino acid). This is
illustrated as node 1 in Figure 3]s tree. The set of base nodes of all the amino acids in the protein
are jointly referred to as the base nodes of the protein (or equivalently of the directed forest).

2. The atoms adjacent to the amino acid’s backbone via a covalent bond become their immediate
children in the rree. For example, the node SC1 forms the child of aC in the Figure[T]

3. The other covalent bonds of the children establish the grandchildren of the root, and so on, until all
the atoms in the amino acid are a part of the tree. For example, SC2 and SC3 become the children
of the node SC1 in the directed tree constructed for Figure/[T}

Figure[3]is an illustration of some directed tree constructed with the above procedure, where node
1 is the root node, with nodes 2, 4 as its children and so on. It is important to note that, the above
procedure ensures that in the constructed tree, each (non-root) node has a single parent and may have
arbitrarily many children. Further, cycles/rings which are present in the molecule are broken on the
basis of bond length, i.e., larger bonds are chosen before smaller bonds. Ties between same-length
bonds are broken arbitrarily. While multiple directed forests can be created for a given protein since
bonds of equal length are broken arbitrarily, in our implementation, given a protein, the tree is fixed
because the directed forest for every protein is created exactly once (in the preprocessing step) -
where the ties are broken deterministically based on their ordering in the “pdb file".

Next, we shall look at how the atomic coordinates are transformed using the directed tree.

Part 2. Conditional transformations of atomic coordinates. Let X, be the available input atomic
coordinates of the protein. To obtain a new candidate protein conformation (say X ]/D € R™*3), we
sample uniformly, one of the directed trees from the forest. Next, we transform the atomic coordinates
of the subset of atoms in this directed tree. This set is denoted by A C V. That is, in the candidate
conformation, X, [i] = X,,[i], Vi € V' \ A — orequivalently t,[i] = I,Vi € V \ A.

Starting with the root node, we use breadth first search to traverse the directed tree and update all the
descendants of the node currently being considered. For the backbone atoms, we leave X, [i] = X [i]
(or equivalently ¢, [i] = I), i.e., atomic coordinates are unchanged for backbone atoms. Next, we use
pointed sets to describe approximate transformations on a given protein through a directed tree .

Definition B.1 (Pointed sets). A pointed set is an ordered pair (X, ), where X is a setand g € X
is called the basepoint.
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Figure 3: Directed tree corresponding to a set with 5 points which exhibits conditional invariances. Our proposed
model (not limited to proteins), for example, allows node 2 and its descendants to transform its coordinates
about node 1 (its parent) upon actions from group g§9 1'6), g1 € Gi. In practice, for protein molecules we use
G1 = SO(3) and Q;"‘) = SO(3)Vi # 1. We note that in protein molecules not all transformations about a
node would be allowed due to steric repulsions between atoms as well as potential overlaps of atoms.

For instance, let M; = {X,,[j] : j € N;}, where N; is the set containing ¢ and all its descendants in
its directed tree. Then, (M;, X, [i]) is a pointed set.

Let the parent of node ¢ be denoted by o and let Ggg o Xplol) (in practice, SO(3)) be the group from
which actions g; € G z(.g o Xrlol are sampled uniformly — that can transform the positional coordinates
of node ¢ and its descendants about its parents in the directed tree, where g, - X,[o] is the transformed
atomic coordinates of the parent of node ¢ (we use BFS - so a top down approach). In the case of the

root node (for example 1 in Figure , the actions are just drawn from G,.,,; (or GG1 in Figure[3).
The associated transformations of the atomic coordinates of the atoms in N; can be given by the
mapping h; : (M;, X,[i]) — (RIViI*3 g, . X, [0] + g; - (X,[i] — Xp[o])) where the coordinates of
node j € N, are updated as:

X,[5] = 9o - Xplo] + gi - (Xp[5] — Xp[o]) O]
If the node j # 1, its coordinates, i.e., X]’D [7] can be further updated as we traverse the tree. When

GEQO'XP = g O(3) Vi € V, every node in the directed tree can be rotated about its parents as
shown in Figure [J] (Appendix [A.4) - which is the side chain of the amino acid shown in Figure[]

Algorithm 1 Sampling a viable conformation of ¢,

1: Input: Conformation ¢, of protein p
2: Obtain the directed forest corresponding to the protein with n directed trees where n is the
number of amino acids in the protein.

3: repeat

Sample y ~ UNIF({1,2,--- ,n}) and obtain the corresponding directed tree

5:  Traverse through directed tree via BFS and update atomic coordinates via Equation (7)) to
obtain c;, a candidate conformation of c,— where group actions are always sampled uniformly
from SO(3).

6:  Check if ¢}, is a valid protein conformation via protein structure validation tools

7: until ¢}, is a valid conformation

8: Return: c;, a valid conformation of ¢,

»

However, each candidate X zl) obtained via the above transformation process may not belong to C,.
To that end protein structural validation tools may be used to check the validity of these candidates.
Molprobity [[12} 9,166 is such a tool,which outputs scores corresponding to different metrics (such
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as number of dihedral (torsion) angles outside the allowed threshold, number of atom-atom clashes
arising due to steric repulsions, etc) which can be compared with the originally provided conformation
X,,. Note, that while Molprobity is not perfect and we may end up developing models more invariant
than just to viable conformations, alternatively (more precise) tools including those which allow for
the evaluation of molecular force-fields, can be used to check validity. Additionally, the goal of this
work is not to use Molprobity/ other protein structure validation tools as a part of generative models
and a more invariant model does not necessarily affect performance on unseen but valid protein test
data.

Our algorithm to sample viable conformations is summarized in Algorithm[l| The repeat-loop
proposes a conformation in the neighborhood of the current conformation ¢, which is only accepted
when the proposed conformation c; is a valid conformation. As such it is an acceptance-rejection
sampling algorithm. We will see later that the actual sampling probability distribution is not required
to be known by our procedure. Our MCMC procedure defined next only requires Algorithm [I]to
follow certain conditions which we argue it follows.

B.2 Sampling Conformers via MCMC

We now describe the MCMC procedure that, starting at any conformer configuration c,()O) € Cpwe
will, in steady state, sample conformations according to a unique stationary distribution which depends
on the protein p, where C), is the set of all viable conformations of p as defined in Definition @

To that end we first define the transition kernel of the Markov chain. Algorithm [I| samples a
conformation c;, in the neighborhood of a given conformation c, using directed a forest. The
neighborhood A (¢,,) of the conformation ¢, is loosely defined as the set of all possible conformations
¢, which may result from running Algorithm with ¢,, as input. We denote the probability distribution
induced by AlgorithmE] as the transition kernel #(c),|c,) which has support N'(c;).

Definition B.2 (Conformer Sampling Markov Chain (CSMC) ®,,). We define the conformer sampling
Markov chain ®,, as a time-homogenous Markov chain over the state space C), with transition kernel

k as defined above, where C, is the set of valid conformations associated with given protein p as
defined in Definition 2.2

The consistency of our learning procedure does not depend on the precise definition of x. However,
our procedure relies on the fact that any conformer ¢}, € C}, can be sampled by  in a finite number
of steps, starting from a conformer c,. We use this fact to show that the chain ®,, converges to to a
unique stationary distribution regardless of the initial conformer. (All proofs in Appendix [C).

Proposition B.3. Given the CSMC ®,, from Deﬁnitionwhose transitions are governed by k which
is implicitly defined by Algorithm for any pair of conformers c,, c; € C), there exists T, < 00,
independent of cp, such that P;‘; (cp, ) > 0, where P;,”p is the T, step transition probability.

Next, we show the existence of a unique steady state distribution of our Markov chain.

Proposition B.4. The CSMC ®,, defined in Definition[B.2]is uniformly ergodic if Proposition
is satisfied. Specifically there exists a unique steady state distribution T, such that for all c,, € Cy,
[Pg,(cp,) = mp()|| < CR", where ¢ < oo and R < 1 are constants that depend on ®,,, Py is the

n step transition probability and || - || is the £1 norm.

Given that we now have the ability to draw samples from a Markov chain which achieves a unique
stationary distribution 7, on C),, we shall leverage this next, in our learning framework to learn
conformer invariant representations of proteins.

C Appendix - Proofs of Propositions

First, we restate and prove Proposition [B.3]

Proposition C.1. Given the CSMC ®,, from Deﬁnition@]whose transitions are governed by k which
is implicitly defined by Algorithmas described above. For any pair of conformers c,, c;, € Cp, there
exists T, < 0o, independent of c,, such that P,;‘; (cp, ) > 0, where P;‘; is the T, step transition
probability.
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Proof. Proof by construction. We prove the proposition by showing that one can construct a path
(cz(,l) =Cp,..., c,(;t) = ¢},) such that cgf) € Cpand m(c}(,l+1)|c](;)) >0, forall0 <4<t andt < T,
The trivial case where ¢, = c’p is proved since every group contains the identity element — sampling
the identity element for every node in the directed tree yields the same conformation. Since we
consider only non backbone transforming conformations, for the non trivial case, a maximum of
m — 4n atoms can differ in positions between any two conformations - where m is the number of
atoms in the protein and n is the the number of amino acids in the protein n. Both m, n are finite
and we are dealing with continuous conformers (and continuous group actions about every node —
groups are closed under their associated binary action, and SO(3) is path connected). So we can
traverse between conformers (until we reach the desired conformer) sequentially in a finite number
of steps, by using the constructed directed forest - selecting a amino acid (which doesn’t violate the
viability), fixing the positions of all other amino acids in the protein and rotating the side chain atoms
in a single conformer to the final desired state. While this process may result in some side chains
being visited multiple times (due to viability constraints), considering continuous conformers and the
SO(3) group (which is path connected) ensures we will never reach a state of deadlock. The second
condition is satisfied because every group action has an inverse and we only use transformations from
SO(3) for every node in the directed trees. O]

Next, we restate and and prove Proposition

Proposition C.2. The CSMC ®,, defined in Definition[B.2]is uniformly ergodic if Proposition @
is satisfied. Specifically there exists a unique steady state distribution T, such that for all c, € C),
[Pg, (cp,) = mp()|| < CR™, where ¢ < 0o and R < 1 are constants that depend on ®,, Pg  is the

n step transition probability and || - || is the £1 norm.

Proof. By Proposition ®,, satisfies Doeblin’s condition as defined in page 396 of Meyn &
Tweedie [48] which states that for ¢, c;, € C), P;Z (¢p, ) > € for some € > 0 !l The uniform
ergodicity then holds due to Theorems 16.2.3 and 16.2.1 from Meyn & Tweedie [48]. O

Next, we restate and prove Proposition We also restate the required assumptions for the
proposition.

Assumption C.3. We make the following assumptions:
1. For any 6 € © and xf € 5;, the function f is differentiable Vj

2. supgeo ghes, Vo po F(@M||} < 4ooi.e. the gradients are bounded.

3. Vak € 5;,V01,0, € ©, ||V, po f(zF) = Vg, po f(z¥)|| < L||61 — 05| for some L > 0
i.e., the gradients are L—Lipschitz.
4 Eprrr, (Vo po f(af)] = Vo By [p o f(27)]

Proposition C.4. Let the step sizes satisfy () and the function parameters 0 be updated as ([3) and
Assumption[3.1] hold, then the MCGD optimization enjoys properties of almost sure convergence to
the optimal 6.

Proof. Given that each protein has an associated time homogeneous Markov Chain with a unique
steady state, independent of other proteins, the set of proteins in a mini-batch also form a Markov
chain with a unique steady state. We then leverage Corollary 2 (Page 12) of Sun et al. [60] along with
Proposition to ensure almost sure convergence to the optimal 6. [

D Appendix - Related Work

Here, we present the related works

'"We note that this is a simplified version of the actual statement which is defined on the o-algebra over C,,
denoted by o(C}). Our proof holds when ¢}, € o(Cp)
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Group Equivariant and Invariant Neural Networks: Group equivariant and invariant
neural networks [10, 42| 40, [16l 28| (18] 19, [14] help capture discrete and continuous groups
symmetries of elements (e.g. images, point clouds). In this work, we learn representations which are
invariant to symmetries which are not just groups, but to input dependent sets of transformations. To
the best of our knowledge, our work is the first to consider conditional (input dependent) invariances.
Prior works on learning invariant models have leveraged Monte Carlo procedures [[16}52] to learn to
be invariant to transformations of the input. Alternatively, our work constructs a Markov Chain with
a unique steady state and leverages MCGD [60] to make it computationally tractable. Secondly, the
aformentioned approaches are limited to being invariant to transformations from any specified Lie
group with a surjective exponential map/ permutation group, while our work is not limited to groups.
Thirdly, our theory ensures that every example/ object in the dataset can have a different set of input
dependent, conditional transformations - and in fact can be seen as a generalization of the above
works. In fact, the ablation study that we perform (Results provided in Appendix [E.3]- Table 4) uses
a Monte Carlo estimator and our MCMC procedure yields better performance than the Monte Carlo
estimator.

While group equivariant neural network capture global symmetries, local symmetries of manifold
spaces can be captured via gauge equivariant networks [11} [13]]. Gauge symmetries require the
manifold to be smooth — which is not the case for proteins. Moreover, different proteins have different
sets of viable conformations, which would not be able to captured by standard gauge equivariant
neural networks.

[42, 23| 18] provide a complete review of the theoretical aspects and a wide variety of applications of
group equivariant neural networks. A more comprehensive theoretical analysis of input dependent
conditionally invariant neural networks is planned for future work.

Graph Neural Networks: Graph Neural Networks (GNNs) [38) 24, 4} 67] have gained
renewed focus over the past few years and have found applications in recommender systems, biology,
chemistry, and many other real world problems which can be formulated as graphs and currently
serve as the state of the art in majority of node and graph classification/ regression tasks. Graph
neural networks work on the principles of permutation equivariance/ invariances [31]] (also groups)
and have exploited a message passing framework to learn powerful and expressive representations of
nodes/ graphs.

Both molecular graphs (both small molecules and macromolecules) as well as graphs based on
intra molecular distances have been used with GNNS, to achieve state of the art for many molecular
datasets and tasks [27, 50]. Here, we leverage three graph based neural networks as baselines for our
model.

Group Equivariant Graph Neural Networks: Group Equivariant GNNs combine contin-
uous symmetries (lie groups such as SE(3), E(3), SO(3)) with permutation equivariances and has
found applications with resounding success on small and large molecules [1} 139,156} 5]

However, the methods are only able to capture rigid body characteristics of molecules and while
capturing the above lie group symmetries is also able to capture input depedent transformations.
Employing [15], would make the neural network excessively invariant and allow the protein to be
more flexible (allows unviable conformations) than it truly is. More recently, they have also been
applied to learning representations of proteins, which is discussed below.

Monte Carlo and MCMC Methods for Sampling Protein Conformations:  There has
been a lot of prior work — [7, |53} 2 130} 164] which sample protein conformations by internal
coordinate transformations. However, The goals of the existing MCMC methods are significantly
different compared to ours. The existing methods define/inherit a distribution over the conformations
(majorly based on the properties of the bonds, etc.) and then aim to sample highly probable
conformations from this distribution. Our method, is much simpler and only requires that the chain
being used is ergodic and is invariant to the actual form of the distribution. We note that the existing
Markov chains can seamlessly be used as drop-in replacements to sample conformations as part
of our framework as long as the MCMC is ergodic. We consider studying the impact of different
MCMC methods (which sample from different distributions) and their influence on the performance
in different tasks as important future work.

Neural Networks for Representation Learning of Proteins:  Protein representation has
gained a lot of attention especially with the tremendous successes of Alphafold and Alphafold2. A
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variety of neural network architectures including 3D CNNs, LSTM’s and Transformers (treating the
protein as a sequence) as well as graph neural networks have been employed to exploit the rigid body
symmetries of proteins [37, (55} 29,59} 13} 26l 132} [33]].

In this work, while we use GNNs and Group Invariant GNNs as a part of the model, we note that we
can equally replace them with CNNs, LSTMs, Transformers and other models used for proteins
without any change in the underlying theory.

Generative Models: Protein conformation generation models [45] 58, 22| 69, 168} 157, 44]
have also recently gained attend where the goal of the model is to predict 3d structure of molecules
given input 2d structure - our objective in this work is completely different, but can be used to
improve predictions of the aforementioned models.

While our model is explicitly not a generative model, our framework can be leveraged towards
generative modeling with the help of tools such as noise outsourcing (Chapter 6) [36] and we see this
as important future work.

Non-Rigid Body Dynamics: Non-Rigid Body Dynamics of objects has long been studied
both by physicists and in the fields of computer vision to understand and capture the geometric
deformations of objects [61} 47]. To the best of our knowledge, there exists no prior work in
deep learning which captures the non rigidity of protein molecules (which cannot be modeled as
C* manifolds). As important future work, we would like to study the impact of leveraging input
dependent conditional invariances for modeling other geometric objects (which are C'* manifolds) as
well as images and robotics (e.g. the symmetries for a humanoid is different from that of a tractor).

Unrelated Work with similar names: Non classical and conditional symmetries of solutions to
ODE’s, PDE’s have been discussed in the past - these works while they share a similar title, have
very little in common as we are not dealing with jet spaces or manifolds [34, 20, 54].

E Appendix - Experiments

E.1 Details about datasets and tasks

In this section, we describe briefly each of the datasets (and their associated tasks). Information about
the splits and license information is provided in Table 2]

PSR: This task utilizes data from the structural models submitted to the Critical Assessment of
Structure Prediction competition (CASP - [41] - a blind protein structure prediction competition) to
rank protein structures from the experimentally determined structure of the protein. The problem is
formulated as a regression task, where we predict the global distance test of each structural model
from the experimentally determined structure. As prescribed by the dataset authors, the dataset is
split by competition years.

MSP: The goal of this task is to identify mutations that stabilize a protein’s interactions which forms
an important step towards the design of new proteins. This task is significant as probing mutations
experimentally techniques are labor-intensive. Atom3D [62] derives this dataset by collecting single-
point mutations from the SKEMPI database [31] and model each mutation into the structure to
produce a mutated structure. The learning problem is then formulated as a binary classification task
where the goal is to predict whether the stability of the complex increases as a result of the mutation.
We employ the same splits as suggested by the dataset authors wherein the protein complexes are
split such that no protein in the test dataset has more than 30% sequence identity with any protein in
the training dataset.

LBA: This task deals with the problem of predicting the strength (affinity) of a candidate drug
molecule’s interaction with a target protein. The dataset is constructed using the PDBBind database
[65143]], a curated database containing protein-ligand complexes from the PDB and their correspond-
ing binding strengths (affinities). The task is formulated as a regression task with the goal to predict
pK = —log,o(K), where K is the binding affinity in Molar units. The splits are created such that
no protein in the test dataset has more than 30% sequence identity with any protein in the training
dataset.

LEP: The shape of protein impacts whether a protein is in an on or off state which plays an important
role in predicting the shape a protein will favor during drug design.This dataset is obtained by curating
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proteins from several families with both “active" and “inactive" state structures, and model in 527
small molecules with known activating or inactivating function using the program Glide [17]]. The
task is formulated as a binary classification task where the goal is to predict whether a molecule
bound to the structures will be an activator of the protein’s function or not. We use the same split as
recommended by the ATOM3D authors.

Table 2: Summary of the datasets

Task #Train # Val #Test Original Source License
MSP 2864 937 247 SKEMPI [31] Creative Commons CC-BY
. s Creative Commons NonCommercial-NoDerivs
LBA 3563 448 452  PDBBIind [65] (CC-BY-NC-ND)
LEP 304 110 104 PDB [6] Creative Commons CC-BY
PSR 25400 2800 16099 CASP [41] Creative Commons CC-BY

E.2 Experimental Setup

The code for the baseline models (GVP-GNN [33]], E(N) GNN [56] and GNN(GCN) [62} 38]])
were used as provided by the authors (licenses as dictated by the code authors). Our con-
former invariance implementation is in PyTorch using Python 3.8. We also leverage networkx
to create the directed forests. For all three models we tune the hyperparameters — learning rate
(€ {0.1,0.01,0.001,0.0001}) and mini batch size (€ {4, 8, 16, 32, 64}). For the E(n) GNN model -
since there have been no previous models for the aforementioned protein tasks - we also tune the
number of GNN layers (€ {4, 5,6, 7}) as a hyper parameter. The experiments were all performed on
Tesla V100 GPU’s. For more details refer to the code provided.

E.3 Additional Results

In Table 3] we present the results, including additional datasets and tasks, than presented in the main
paper. In the LEP task, the proposed addition outperforms the baseline models for the E(n) GNN
and the GVP-GNN, but not for the GNN(GCN). The LEP result for the GNN(GCN) is an oddity
here, where a GNN which doesn’t incorporate any rigid body transformations outperforms all other
models.

In Table[d] we present an ablation study, where we provide a strategy where all the transformations are
created from “gold standard” X, rather than via the MCMC method, i.e., the MCMC is restarted at
every epoch during training. From the table, we note that the MCMC method tends to outperform the
non MCMC method, which can be attributed to the guarantees it provides to the learning framework.

Table 3: GNN(GCN), GVP-GNN, E(N) GNN - Baseline vs Conformation Invariant Strategies for
multiple different tasks on proteins from the ATOM3D dataset. Corresponding to the metric, 1
indicates that higher is better, while | indicates that lower is better. Bold values indicate best results
for a given row. The values for GNN were obtained from [62] and for the GVP-GNN from [33]]. Gray
colored cells indicates that the augmented model outperforms the baseline model.

MCMC MCMC MCMC
Task  Metric Baseline Augmented Baseline Augmented Baseline Augmented
(GNN[GCN]) GNN (GVP GNN) GVP-GNN (E(N) GNN) E(N) GNN

(Ours) (Ours) (Ours)

PSR Global R, T 0.755+0.004  0.761 4 0.004 | 0.845 4+ 0.004  0.852= 0.006 | 0.827 & 0.004  0.852 + 0.004
LEP AUROC 1 0.740 +0.010  0.672 +0.012 | 0.628 +0.055  0.704 £ 0.039 | 0.677 +£0.014  0.714 £ 0.005
LBA RMSE | 1.570 £0.025  1.519+0.022 | 1.594+0.073  1.4354+0.007 | 1.3924+0.001  1.384 &+ 0.011
MSP AUROC 1 0.621 +£0.009  0.662 4 0.008 | 0.680 + 0.015 ~ 0.857 & 0.049 | 0.652+0.006  0.843 & 0.037

E.4 Case against using average representations in training and for requiring a single
invariant representation

The case for the requirement of a single conformer invariant representations — can be seen from the
fact that different protein conformations, say X, Xo of the same protein X, may be seen during
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Table 4: GVP-GNN, GNN (GCN) - Baseline vs Ablation vs Conformation Invariant Strategies for
four different tasks on proteins from the ATOM3D [62] dataset. Corresponding to the metric, 1
indicates that higher is better, while | indicates that lower is better. Bold values indicate best results
for a given row. Gray colored cells indicates that the augmented model outperforms the baseline
model.

Baseline Non MCMC MCMC Baseline Non MCMC MCMC
. Augmented Augmented Augmented Augmented
Task  Metric (GV[P3 SNN ) GVP-GNN GVP-GNN (G[é\Ile\I ) GNN GNN
(Ablation) (Ours) (Ablation) (Ours)

PSR Global R, 1 0.845£0.004 0.806 £0.011 0.852+ 0.006 0.755 4 0.004 0.766 +0.001 0.761 £ 0.004
LEP AUROC 1 0.628 +0.055 0.739 + 0.060 0.704 + 0.039  0.740 + 0.010 0.657 + 0.008 0.672 + 0.012
LBA RMSE | 1.594 +£0.073 1.635+0.007 1.435+0.007 1.570+0.025 1.520+0.022 1.519 +0.022
MSP AUROC 1 0.680 £ 0.015 0.799 +0.016  0.857 +0.049 0.621 +0.009 0.610 + 0.021  0.662 + 0.008

train and test phases. Without conformer invariant representations - this may lead to different
representations and therefore different predictions for the same protein (bad).

One may argue, that an approximate conformer invariant neural network can be learned by
averaging representations of multiple Monte Carlo conformations during training. However, this is
computationally expensive as this would need to back-propagate and update parameters for multiple
conformations for every protein in every epoch — bad as this leads to an exponential overhead. On
the other hand, our procedure with MCGD, in every epoch uses only one conformation from our
Markov Chain and still ensures convergence to optimal parameters. It is important to note that,
during inference we still do average representations over multiple conformations (from our Markov
chain) to output conformer invariant representations - which again due to MCGD training procedure
and the unique steady state of our Markov Chain, ensures confomer invariant representations are
achieved — which yield better performance than current state of the art on multiple datasets and tasks.
As stated in the main paper, our framework can work well with other Markov chains as well. We
chose the proposed chain purely because it is simpler than the existing methods (in that it doesn’t
require a distribution over conformations to be assumed) and as such is easier to sample from.

E.5 Computational Complexity & Scalability:

The directed forest for every protein is computed only once as a preprocessing step (a fixed ~ 5-10
minutes per dataset). At every epoch, for a given protein, we select only one among all its constituent
amino acids & perform a sequence of 3 x 3 matrix multiplications to obtain a new conformer. If &
denotes the number of atoms in the side chain of an amino acid, and height of a directed tree is in the
order of log(k), the computational complexity to obtain a conformation is O(k log k) (where k ~ 15
in avg in our datasets), & this can be run in parallel for all proteins in a mini-batch. Molprobity (run
in parallel again, currently runs externally on a web server via a command line call) adds 2s delay per
minibatch (we could reduce to milliseconds if we integrated Molprobity into our code). The rejection
rate from Molprobity is also very small (less than 1 reject in average across 100 molprobity calls). As
an example, training (100 epochs) GVP-GNN - MSP requires ~ 45 min, and LBA requires ~ 34
min. In both cases our method requires an additional 4 min overhead. A complete training time table
(on a Nvidia Tesla V100 GPU) for all models & datasets can be found in Appendix[E.6

E.6 Training Time

In Table[5] we present the training time (for 100 epochs) for each of the baseline models as well as
well for models with our proposed conformer invariance framework addition. From the table, we note
that, on an average the increase in training time over 100 epochs is ~ 3-4 minutes which is negligible
in comparison to the training time (without the proposed framework addition).
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Table 5: Training Time (in minutes for 100 epochs — rounded to closest integer) - GNN(GCN),
GVP-GNN, E(N) GNN - Baseline vs Conformation Invariant Strategies for multiple different tasks
on proteins from the ATOM3D dataset. Lower is better.

MCMC MCMC MCMC

Task Baseline Augmented Baseline Augmented Baseline Augmented
(GNN[GCN]) GNN (GVPGNN) GVP-GNN | (E(N) GNN) E(N) GNN

(Ours) (Ours) (Ours)
PSR 184 190 \ 1112 1118 \ 485 492
LEP 6 8 \ 8 9 \ 10 11
LBA 26 28 \ 34 38 \ 59 62
MSP 58 61 \ 45 49 \ 125 128
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