
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

3D-COS: A NEW 3D RECONSTRUCTION PARADIGM
BASED ON VLM CODE SYNTHESIS

Anonymous authors
Paper under double-blind review

ABSTRACT

Most recent 3D reconstruction and editing systems operate on implicit and ex-
plicit representations such as NeRF, point clouds, or meshes. While these repre-
sentations enable high-fidelity rendering, they are inherently low-level and hard to
control automatically. In contrast, we advocate a new 3D reconstruction paradigm
based on vision-language-models (VLMs) Code Synthesis (3D-CoS), where 3D
assets are constructed as executable Blender code, a programmatic and inter-
pretable medium. To assess how well current VLMs can use code to represent
3D objects, we evaluate leading open-source and closed-source VLMs in code-
based reconstruction under a unified protocol. We further introduce two generic
improvements: a planning stage that produces a ratio-based, part-level blueprint
before code synthesis, and Retrieval-Augmented Generation (RAG) over well-
organized Blender API documents. To demonstrate the unique advantages of this
representation, we also present an evaluation focused on localized, text-driven
modifications, comparing our code-based edits to state-of-the-art mesh-editing
methods. Our study shows that code as a 3D representation offers strong con-
trollability and locality, exhibiting significant advantages in edit fidelity, identity
preservation, and overall visual quality. Our work also analyzes the potential of
this paradigm and specifically delineates the current capability frontier of VLMs
for programmatic 3D modeling, demonstrating the promising future of reconstruc-
tion by code.

1 INTRODUCTION

Recent breakthroughs in foundation models, particularly large vision-language models
(VLMs), have led to remarkable progress in multimodal understanding, logical reason-
ing, and tool usage. These models have shown the ability to operate within a “percep-
tion–reasoning–planning–execution” loop, automatically generate executable code to accomplish
complex tasks (Gao et al., 2023; Li et al., 2024b; Liang et al., 2023). This capability suggests
a new path for 3D: instead of recovering geometry purely as meshes, point clouds, or implicit
fields, we can generate executable programs that reconstruct 3D assets inside 3D engines (e.g.,
Blender (Blender Online Community, 2025), Unity (Unity, 2025a), Unreal (Epic, 2025b)). Code as
a 3D representation brings interpretability, editability, and compositional control. 3D components
are constructed in an explicit and parameterized manner, and verifiable by execution. Besides, 3D
engines provides mature API (Blender Foundation, 2025; Epic, 2025a; Unity, 2025b) further makes
programmatic creation, editing, and rendering first-class citizens, providing a practical substrate for
automation (Ahuja & Contributors, 2025).

Several recent works have explored the feasibility of using code to generate and edit 3D assets and
two recent lines of work motivate our study. LL3M (Lu et al., 2025) demonstrates text-driven 3D
asset creation by coordinating agents that write Blender scripts, evidencing that code can serve as
a powerful representation for modeling geometry, layout, and appearance. BlenderGym (Gu et al.,
2025) introduces a benchmark that tasks VLM systems with code-based 3D scene editing and shows
that state-of-the-art models can comprehend programmatic code and further make targeted code-
level modifications. Together, these works validate the feasibility of “code for 3D”, while revealing a
gap in image-conditioned reconstruction and in systematic evaluation specific to 3D reconstruction.
In reconstruction, the image input is essential: it supplies silhouette constraints, object pose, and
disambiguates topology and fine details that text alone cannot specify. Equally importance is a

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

EditionReconstruction

Traditional method Ours

Open the lid… Reset legs and make them slender…

VLMs Codes Evaluation

Figure 1: An overview of our 3D code modeling paradigm. The top workflow summarizes our
core process: code synthesis via VLMs, and its subsequent evaluation. Our work treats codes as a
unified representation for 3D assets. (Left) We demonstrate its capability in reconstruction, gener-
ating high-fidelity objects from single images. (Right) We highlight its advantages in edition, where
code-driven edits achieve superior fidelity compared to traditional methods.

standardized pipeline to evaluate code-as-representation under image conditioning. We fill this gap
with a systematic study of image-conditioned, code-based 3D reconstruction, accompanied by a
unified evaluation protocol across multiple VLM families.

We focus on the image → code → 3D setting and ask two questions: Why use code as the
3D representation? Where is the ceiling for code-based reconstruction? For the first, code is a
high-level, structured, parameterized medium that enables fine-grained control and reliable itera-
tion—advantages that are hard to obtain with purely implicit (e.g., NeRF (Mildenhall et al., 2021),
3D Gaussian Splatting (Kerbl et al., 2023)) or low-level explicit (e.g., mesh, point cloud) forms. Bes-
dies, mature ecosystems such as Blender, with its comprehensive Python API (Blender Foundation,
2025), enable programmable creation and editing of objects, providing a solid interface foundation
for automation. For the second, a significant portion of foundational 3D resources are inherently
programmatic: ModelNet (Wu et al., 2015) and ShapeNet (Chang et al., 2015) organize large col-
lections of Computer-aided design (CAD) models; the Fusion 360 Gallery captures programmatic
parametric CAD by logging human sketch-and-extrude timelines , and it also releases a reconstruc-
tion set of 8,625 design sequences (Willis et al., 2021). If we target “recover an executable modeling
program”, the representational ceiling can at least reach parametric programmatic modeling created
by human.

In this work, we propose a novel paradigm for 3D reconstruction using programmatic code on
Blender platform (Figure 1). We demonstrate its advantages in terms of editability, control gran-
ularity, and interpretability compared to other mesh representations. To systematically evaluate the
capabilities of modern VLMs in this setting, we introduce a code-based reconstruction benchmark
that evaluates state-of-the-art open- and closed-source VLMs on single-image reconstruction under
unified prompting and compare them to mesh-based 3D reconstruction baselines. Our evaluation in-
cludes 3D metrics to measure geometric similarity and 2D metrics to account for occlusion relation-
ships that 3D metrics ignore, and tests the performance under multi-view observations. To address
potential misalignments in pose and scale between generated code-based models and ground truth,
we propose a robust registration protocol. Furthermore, we introduce a reconstruction variant with
an edit intent prompt and demonstrated its effect. Beyond reconstruction, we include a code-based
editing protocol to expose the unique strengths of programmatic control (e.g., targeted parameter
changes, retention of unedited areas) relative to mesh-only pipelines, further validating the great
potential of the code-based representation paradigm.

Our main contributions are threefold:

• We propose a novel paradigm for 3D reconstruction using Blender Python code, analyzing
the potential of this paradigm;

• We construct a reproducible benchmark and metrics suite for Blender-code reconstruction,
systematically evaluate the capabilities of state-of-the-art VLMs on the task of code-based
3D reconstruction and analyze the impact of different prompting strategies;

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• We demonstrate the significant advantages of our code-based paradigm for editing tasks,
validating its superiority over traditional representations through experimental evaluations.

2 RELATED WORK

Classic 3D Reconstruction Representations. Existing methods mainly develop along two lines:
(i) Implicit shape representations such as neural radiance fields based methods (Mildenhall et al.,
2021; Poole et al., 2022; Kosiorek et al., 2021; Wang et al., 2023; 2022), 3D Gaussians based meth-
ods (Kerbl et al., 2023; Chen et al., 2024; Yi et al., 2024; Wu et al., 2025), and other approaches that
learn a latent space and decode it into implicit representations (Zhang et al., 2023; Jun & Nichol,
2023; Lan et al., 2024). This family excels in multi-view consistency and visual fidelity, but typi-
cally offers limited precise control, lacks interoperability with standard graphics pipelines, and often
relies on heavy optimization or bespoke training. (ii) Explicit shape representations (point clouds,
voxels, meshes) are more amenable to geometric measurement and integration with existing engines,
and have been extensively studied (Chen et al., 2021; Li et al., 2021; Ibing et al., 2021; Vahdat et al.,
2022). However, they operate at a lower semantic level: mesh/point-cloud vertices and faces are
the consequences, rather than the intent of modeling. They lack shared high-level primitives and
constraints, making automated control and cross-category, generalizable editing challenging.

Therefore, to jointly pursue interpretability, controllability, and engineering deployability, we advo-
cate using Blender Python code as a unified representation of 3D objects. Its modeling primitives and
operators (e.g., primitive cylinder add, bevel) naturally carry human modeling semantics, support-
ing modularity and compositionality. By editing code, one can readily modify an object’s geometry
and texture, enabling precise control over the resulting mesh and making this representation well
suited for automated 3D workflows.

Large Models for 3D Generation and Editing via Code. The success of Large Models (LMs) in
leveraging code to solve problems (Gao et al., 2023) has inspired exploration into using LMs to gen-
erate code for manipulating 3D objects. BlenderAlchemy (Huang et al., 2024) generates materials
in Blender for existing geometry. SceneCraft (Hu et al., 2024) retrieves 3D assets and employs an
LLM to organize them into a coherent spatial layout. 3D-GPT (Sun et al., 2025) produces parameters
for Infinigen (Raistrick et al., 2023), a pre-existing procedural generator specializing in predefined
scenes, particularly natural environments. LL3M (Lu et al., 2025) generates 3D assets from text
guidance, incorporating geometry and appearance attributes and BlenderMCP (Ahuja & Contribu-
tors, 2025) uses a single LLM calling Blender functions via the Model Context Protocol (Anthropic
PBC, 2024). BlenderGym (Gu et al., 2025) utilizes VLMs for 3D scene reconstruction through code
editing. However, these methods do not emphasize the unique advantages of code over traditional
3D representations, nor do they leverage more general image inputs for the models’ input.

In contrast, we demonstrate the benefits of code compared to traditional mesh-based representations
and provide a comprehensive evaluation of the capability of current VLMs to reconstruct 3D objects
from image inputs.

3 METHOD

3.1 3D RECONSTRUCTION PARADIGMS FOR CODE SYNTHESIS

Problem setup. Given a single input image I, the goal is to produce an executable programmatic
script that reconstructs geometry such that the rendered result matches I as closely as possible. To
isolate the effect of prompting paradigms on geometric faithfulness, we freeze VLMs and vary only
the prompting workflow and whether external knowledge is injected. We evaluate three pipelines:
Single-call, Planning, and RAG, along with a text-conditional reconstruction variant.

Single-call Paradigm. We issue a single-turn instruction asking the VLM to reconstruct the object
from an input image and return a complete script. The system prompt emphasizes geometry and
enforces all logic encapsulated in one callable function with explicit parameters as input. This
setting is the shortest and fastest to generate a Blender script but tends to miss details or mis-specify
parameters for complex geometry.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Import bpy

Generate footrests
create_tube(bm, bk_bl, bk_br, radius,

12) # Back bar
create_tube(bm, fr_bl, bk_bl, radius,
12) # Left side bar
create_tube(bm, fr_br, bk_br, radius,
12) # Right side bar

num_curve_segments = 8
for i in range(num_curve_segments + 1):
 t = i / num_curve_segments
 p = (1-t)**2 * fr_bl + 2*(1-t)*t *

front_mid_point + t**2 * fr_br
 front_path.append(p)
create_path_tube(bm, front_path,
footrest_radius, 12)

"name": "armrests",
"apis": [

{"symbol": "bpy.ops.curves.add_bezier",

"signature": "add_bezier(radius=1.0, ...",

"parameters": {"radius": "float in [0, inf],

optional ...”, ...}

"category": "bar_stool",
"dimensional_profile": {

"height": 1.0,

"width": 0.42, ……

},

"legs": {
"count": 4,

"profile": "cylindrical",

"diameter": 0.02, ……

}

bpy code script
VLM

Qdrant

Stage 1

Stage 2

Retrieved APIs

Retrieve

Figure 2: RAG pipeline. Given a single image input, the VLM first produces a ratio-based Blueprint
(Stage 1). Conditioned on this blueprint, the VLM issues component-level queries to a Qdrant index
and retrieves Blender 4.4 API entries (Stage 2). Using these, it synthesizes an executable bpy script
that reconstructs the object headlessly in Blender. Only salient lines of the blueprint/APIs/code are
shown for readability. Full versions are provided in Appendix A.5.

Planning Paradigm. We decouple structural perception from API utilization via two stages:
Stage 1 extracts a quantitative blueprint from I; Stage 2 treats that blueprint as a supplement source
of geometric truth and synthesizes a Blender script.

Stage 1: quantitative blueprint. We instruct the VLM to perform base-dimension estimation and
construct a blueprint B: pick a single object-level reference size and set it to 1.0 (e.g., overall
width/height). All sizes, angles, and hierarchical parameters must then be expressed as ratios with
respect to this previously defined base. Besides, we require a physical feasibility check that under
occlusion or perspective ambiguity, the model must propose minor modifications to ensure structural
stability. An example of bluepirnt can be found in Section A.5.

Stage 2: code generation. Conditioned on (I,B), we prompt the VLM under the guideline that
the script should preserve the numeric structure in B, refer to image only when encountering non-
parametric details like complex curves, and only minimal tweaks are allowed to prevent physical
impossibility. Compared to Single-call, the Planning pipeline markedly improves interpretability
by explicitly giving a parameterized blueprint and separating “what to build” from “how to call the
API”.

RAG Paradigm. Relying on model in-built knowledge alone biases generation toward high-
frequency Blender Python APIs seen during training, neglecting more suitable but long-tail APIs.
To this point, we convert the Blender 4.4 documentations into a searchable knowledge base and
provide the most relevant, complete API candidates to the model as background knowledge during
code synthesis.

Doc-to-database. Using the Sphinx inventory (The Sphinx Project) and sphobjinv (Skinn, 2024),
we crawl and parse documentation pages, extracting callable functions, signatures, and parameter
semantics from the bpy, bmesh, and mathutils modules. Each entry is stored under a unified
JSON schema as a database item D with standardized keys, as shown in Figure 10. The result-
ing database contains 1,683 pages with 21,102 functions. We embed entries and index them in
Qdrant (Qdrant Team, 2025) for hybrid (semantic + keyword) retrieval.

Component-level queries generation. Given the components in B, the VLM generates a query per
component with module preferences and keywords constraints to maximize recall while aligning
with the blueprint semantics. The resulting queries express high-level component names as sim-
ple geometric shapes (e.g., “chair base plate” → “plane”) and define key operations (e.g., bevel,
solidify), as shown in Figure 11.

Retrieval and refinement. In Qdrant we retrieve Top-k (k = 8) documentation chunks by hybrid
hits, and instruct the VLM to consolidate them into background knowledge K in a component →
candidate-API list schema. A retrieval result is exhibited in Figure 12.

Knowledge-injected synthesis. Final code generation conditions on (I,B,K): B supplies explicit
parameters, the image informs non-parametric details and the API function K obtained by retriev-

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

ing provides auxiliary knowledge to the model. Retrieval expands the candidate space from high-
frequency to full documentation coverage, especially long-tail ones.

Variant: From Reconstruction to Edition. This variant extends reconstruction to incorporate an
edit intent specified by text (Tedit), producing an edited 3D object from a source image I. This pro-
cess reuses our Planning workflow. Stage 1 predicts an edited blueprint Bedit by jointly interpreting
(I, Tedit). Stage 2 then synthesizes the final programmatic script conditioned on (I, Bedit), pre-
serving the numeric structure. This variant demonstrates the flexibility of our paradigm by unifying
reconstruction and editing into a single, conditional generation process.

3.2 3D EDITION PARADIGM WITH CODE MODIFICATION

A key reason we chose code as the representation for 3D shape is the flexibility and convenience
it provides for subsequent editing operations. When a 3D object generated by code needs to be
modified, we can make adjustments directly at the code level, leveraging the VLM’s powerful com-
prehension and reasoning capabilities.

Code-based 3D Edition Paradigm. This modality is designed for the edition of existing program-
matic 3D assets. The inputs are a source bpy script (Ssrc) and a textual edit instruction (Tedit). In this
paradigm, the source script serves as a complete and structured description of the initial 3D model.
The VLM’s core task here is comprehension and transformation: it must first parse the logic of Ssrc
to identify the code segments corresponding to the instruction, then precisely modify that segment
according to the prompt and output a new, edited bpy script (Sdst).

Localized 3D Edition Assets Construction. We build upon the BlendNet dataset (Du et al., 2024),
which contains pairs of bpy code and corresponding textual descriptions. From this dataset, we
selected 55 representative samples covering a diverse range of objects. We then manually authored a
high-quality and specific editing instruction for each sample. This process resulted in a new dataset,
BlendNet-E, where each entry is a triplet: (source scripti, source descriptioni, edit instructioni).

3.3 EVALUATION

To assess the current capability frontier of VLMs for programmatic 3D modeling, we designed a
comprehensive evaluation protocol, including spatial registration of 3D objects, dedicated evaluation
datasets, and a suite of 3D and 2D metrics to quantify their reconstruction quality.

3D Model Registration. The objects synthesized by code may lack the absolute scale, position,
and orientation compared to the ground truth object. Therefore, a robust registration step is required
before the quantitative comparison. The protocol first normalizes the scale of the generated 3D ob-
ject to the scale of the ground truth 3D object. Subsequently, we employ a coarse-to-fine alignment
strategy to find the optimal rigid transformation, leveraging a RANSAC-based algorithm to match
the Fast Point Feature Histograms (FPFH) (Rusu et al., 2009) and a point-to-plane Iterative Closest
Point (ICP) algorithm to minimize the final alignment error. The resulting transformation matrix is
then applied to the generated mesh.

Datasets for Reconstruction. We use ModelNet10 (Wu et al., 2015) dataset and follow a controlled
rendering protocol: each object is normalized to unit length and rendered from eight viewpoints
evenly distributed on a sphere with radius of 1.76. We also produce depth and normal maps for
analysis. A human annotator selects the most informative RGB view among the eight as the in-
put image to the reconstruction pipeline. Besides, ModelNet10 is split into ModelNet10-easy and
ModelNet10-hard parts based 3D object structure complexity with one human annotator and one
human verifier. Details of splits infomation can be found in Section A.2.

Dataset for Reconstruction Variant. To evaluate the text-conditional reconstruction variant, we
construct a test set derived from the ModelNet10 assets described above. For this new dataset, we
use the same human-selected ‘most informative’ rendered views as the image inputs. For each input
images, we prompt the GPT-4o (OpenAI, 2024) to generate a high-level editing instruction tailored
to the object depicted. This process results in a dataset of 100 triplets, each of which contains
a source rendered view, a synthetic editing instruction, and the ground truth .blend file for the
original object. We refer to this new dataset as ModelNet10-V.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Reconstruction on ModelNet10. 3D metrics: CD = Chamfer Distance, 3D IoU = 3D
Intersection-over-Union, F@5% = F-score at 5% threshold. 2D metrics: NRMSE = Normalized
RMSE, SSIM = Structural Similarity, MAE = Mean Angular Error (normalized to [0, 1]). The best
value in each block is highlighted in green, and the second best value in blue.

Model Planning RAG
ModelNet10

3D Metrics 2D Metrics

CD ↓ 3D IoU ↑ F@5% ↑ NRMSE ↓ SSIM ↑ MAE ↓
Traditional baselines
Unique3D (Wu et al., 2024) — — 0.0536 0.1469 0.6311 0.0970 0.8489 0.2191
InstantMesh (Xu et al., 2024) — — 0.0218 0.3049 0.8809 0.0597 0.9156 0.1241

Open-source VLM families

LLaVA-OneVision-Qwen2-72B (Li et al., 2024a)
✗ ✗ 0.0811 0.1135 0.4631 0.1862 0.7910 0.2375
✓ ✗ 0.0565 0.1563 0.5925 0.1480 0.8340 0.2450
✓ ✓ 0.0673 0.1523 0.5669 0.1342 0.8347 0.2282

InternVL3.5-38B (Wang et al., 2025)
✗ ✗ 0.0609 0.1575 0.5901 0.1462 0.8435 0.2263
✓ ✗ 0.0545 0.1678 0.6243 0.1207 0.8506 0.2150
✓ ✓ 0.0541 0.1675 0.6280 0.1198 0.8542 0.2062

Qwen2.5-VL-72B-Instruct (Bai et al., 2025)
✗ ✗ 0.1730 0.1691 0.6480 0.1308 0.8595 0.2154
✓ ✗ 0.0524 0.1858 0.6382 0.1037 0.8658 0.1953
✓ ✓ 0.0472 0.2009 0.6821 0.1071 0.8507 0.2042

Closed-source VLM families

Claude Sonnet 4.0 (Anthropic PBC, 2025)
✗ ✗ 0.0348 0.2270 0.7664 0.0975 0.8849 0.1758
✓ ✗ 0.0363 0.2314 0.7534 0.1022 0.8811 0.1875
✓ ✓ 0.0345 0.2355 0.7723 0.0954 0.8913 0.1841

o3 (OpenAI, 2025)
✗ ✗ 0.0434 0.1838 0.7007 0.1087 0.8693 0.2041
✓ ✗ 0.0329 0.2309 0.7955 0.0878 0.8934 0.1602
✓ ✓ 0.0302 0.2564 0.8107 0.0830 0.9012 0.1635

Gemini 2.5 Pro (Google DeepMind, 2025)
✗ ✗ 0.0388 0.2137 0.7269 0.1059 0.8733 0.1900
✓ ✗ 0.0285 0.2697 0.8287 0.0807 0.9076 0.1537
✓ ✓ 0.0266 0.2977 0.8626 0.0742 0.9093 0.1530

4 EXPERIMENTS

4.1 3D RECONSTRUCTION EVALUATION

Our goal is to generate executable bpy code from a single input image and render a 3D object that
matches the target as closely as possible. We evaluate three prompting paradigms aforementioned
in Section 3.1 with datasets constructed in Section 3.3.

4.1.1 EXPERIMENTAL SETUP

Models. We evaluate code-based reconstruction on both open-source and closed-source VLMs,
and compare to classical mesh baselines. Open-source VLMs: InternVL3.5-38B (Wang et al.,
2025), LLaVA-OneVision-Qwen2-72B (Li et al., 2024a), Qwen2.5-VL-72B-Instruct (Bai et al.,
2025). Closed-source VLMs: Claude Sonnet 4.0 (Anthropic PBC, 2025), o3 (OpenAI, 2025), Gem-
ini 2.5 Pro (Google DeepMind, 2025). Classical mesh baselines: Unique3D (Wu et al., 2024) and
InstantMesh (Xu et al., 2024). All models receive the same single RGB view, based on which VLMs
emit a Blender script executed in headless Blender 4.4, and classical methods directly reconstruct
meshes.

Metrics. To conduct a comprehensive evaluation, we employ a specific suite of widely-used 3D and
2D metrics. It should be noted that the evaluations are performed after the 3D model registration
described in Section 3.3.
3D Metrics. To evaluate the overall 3D shape, we compute three key metrics: (i) the Chamfer
Distance (CD), which measures the average closeness between the surfaces of the two models;
(ii) the 3D Intersection-over-Union (3D IoU), which assesses volumetric overlap by converting the
models to voxels; and (iii) the F-score@5%, which balances accuracy and completeness with a
distance threshold of 5% relative to the ground-truth bounding box diagonal.
2D Metrics. As a supplement to 3D metrics, 2D metrics explicitly take into account occlusion
relationships between components. To assess view-dependent accuracy, we render both models

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

GT

Qwen

Bed Desk TableSofaBathtub

Gemini

Dresser

Figure 3: Code-based reconstruction on ModelNet10. All inputs come from the ModelNet10
dataset and contain only geometry; the cyan shading is for visualization only.

Table 2: Qualitative reconstruction results on ModelNet10-easy/hard split. The Planning
paradigm is shown for VLMs. Traditional baselines do not use Blueprint/RAG.

ModelNet10 Split Unique3D InstantMesh o3 Gemini 2.5 Pro

CD ↓ IoU ↑ F@5% ↑ CD ↓ IoU ↑ F@5% ↑ CD ↓ IoU ↑ F@5% ↑ CD ↓ IoU ↑ F@5% ↑
Hard 0.0515 0.1544 0.6472 0.0219 0.2946 0.8831 0.0359 0.2137 0.7638 0.0294 0.2552 0.8154
Easy 0.0557 0.1395 0.6151 0.0217 0.3153 0.8788 0.0298 0.2481 0.8271 0.0277 0.2842 0.8419

from the same camera angle and compare their appearance. Specifically, we evaluate two aspects:
(i) Depth Error and Similarity (using NRMSE and SSIM) to verify the correctness of visible surface
structures by comparing depth maps; and (ii) the Mean Angular Error (MAE) to check the accuracy
of surface orientation by comparing normal maps.

4.1.2 MAIN RESULTS

Table 1 compares the performance of VLMs with different prompting paradigms and mesh-based
methods.

Closed-source models outperform open-source overall. On ModelNet10, the best closed-source
result is Gemini–RAG, while the best open-source is Qwen–RAG. At the best-vs-best level, closed-
source improves CD by ∼44%, IoU by ∼48%, and F@5% by ∼26%. This trend holds for 2D
metrics, with significant improvements of ∼28% in NRMSE and ∼22% in MAE. And other closed-
source models are consistently strong. We attribute this to (i) stronger vision–geometry represen-
tations and complex task execution capability (e.g., o3–Single-call already attains F=0.701), and
(ii) better evidence-following when Blueprint/RAG are enabled. Figure 3 shows the qualitative re-
sults of Qwen-single-call,o3-RAG, Gemini-RAG on six different categories. It can be seen that both
the open-source and closed-source models can perceive the general shape, while the closed-source
model is better at depicting details and the results of gemini are very close to the ground truth.

Code-based reconstruction beats Unique3D but still lags InstantMesh. Our strongest code-
based system (Gemini–RAG) significantly outperforms Unique3D on the whole dataset, indicating
more topologically complete and structurally consistent assemblies. However, InstantMesh remains
the strongest classical baseline, surpassing code-based results especially on hard shapes. This is
most likely because reproducing high-curvature details and complex structures requires dedicated
geometry-node manipulation, which current VLMs under-utilize, often opting for “safer” primi-
tives, leading to detail underfitting. Moreover, the two-stage mapping (blueprint→code) tends to
accumulate hierarchy errors, widening the gap to InstantMesh on complex objects.

Blueprint helps broadly while RAG helps closed-source more than open-source. Planning con-
sistently improves over Single-call for most backbones (e.g., InternVL, LLaVA-OneVision, o3,
Gemini) by decoupling “what to build” from “how to call APIs”, thus reducing scale drift and
component errors. RAG further boosts closed-source models, but its effect is mixed on open-source:
Qwen improves, InternVL sees minor changes, while LLaVA-OneVision degrades. This suggests

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Make it more square
and add a flat base…

Add a second
drawer below…

Change the base to
single leg…

G
T

V
ar

ia
nt

OursBlendedPCInput

C
on

ne
ct

 X
-s

ha
pe

d
st

rip
s o

f t
he

 le
gs

…
M

ak
e

th
is

 la
m

p
ta

lle
r…

C
ha

ng
e

to
 a

tri

an
gu

la
r c

on
e

Figure 4: Reconstruction variant & Code edition results. (Left) Examples of our text-conditional
reconstruction variant, which modifies an object based on a source image and a textual instruction.
(Right) A direct comparison of our code edition method against the BlendedPC (Sella et al., 2025)
baseline. Code-driven editing demonstrates superior edit fidelity and overall visual quality. A brief
instruction is provided for each example in the figure; the full instructions are listed in Section A.4.

closed-source models better absorb retrieved API reference and resist distraction from irrelevant
snippets, whereas some open-source models exhibit weaker evidence-following under retrieval.

Easier shapes benefit more from code-based pipelines. As illustrated in Table 2, on Model-
Net10–easy, closed-source models uniformly outperform their hard counterparts. Easy shapes fea-
ture fewer parts and more regular configurations, which align naturally with primitives and common
modifiers, while hard shapes exhibit curved, non-uniform transitions and fine assemblies that pose
more challenges to VLMs.

Reconstruction variants as a bridge to editing. As an extension of our reconstruction evaluation,
we explore the effect of reconstruction with edit intent prompt, which illustrates the flexibility of
our paradigm. As presented in the left part of Figure 4, variants are generated by o3, with a single
source rendered view from ModelNet10-V and corresponding editing instructions. Additional ex-
amples are shown in Figure 8. These examples show that our approach is capable of interpreting
the textual instruction and applying the corresponding geometric modifications to the object in the
source image, showcasing a promising foundation for the code edition paradigm.

4.2 3D CODE EDITION EVALUATION

To evaluate the capability of directly editing 3D assets via their code representation, we designed a
code editing task, where the model is given a source bpy script and a text instruction to modify the
object.

4.2.1 EXPERIMENT SETUP

Method CLIPsim ↑ CLIPdir ↑
BlendedPC 0.0142 0.2017

OursP 0.0578 0.2499
OursA 0.0408 0.2469

Table 3: CLIP-based similarity and direction
scores. OursP is tested on the lamp and ta-
ble category compared with BlendedPC, while
OursA is tested on the entire BlendNet-E.

Dataset. We evaluate the capability of editing
3D assets via code representation on BlendNet-E
constructed in Section 3.2.

Baselines. We compare our method against
BlendedPC (Sella et al., 2025), a state-of-the-
art mesh-based editing baseline. We perform
an evaluation on a subset of BlendNet-E with
lamp and table categories as suggested in its code
demo. BlendedPC takes point clouds as input.
In addition, we evaluate our method with the o3
model across the entire BlendNet-E dataset.

Metrics. We follow “Edit Fidelity” in BlendedPC (Sella et al., 2025) leveraging the multimodal
embedding space of CLIP (Radford et al., 2021), and extend it to multi-view consistency by render-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Input

Edited

All the rings sink
with gravity…

Make the ring
handle smaller…

Make the candle
one and taller…

Make lampshade
into cylindrical…

Close the oil-
paper umbrella…

Position the top
layer off-center…

Figure 5: Qualitative Results for Code Edition. This figure showcases diverse editing results on
objects from the BlendNet-E dataset. Each result is shown with a summary of the text instruction
used; the complete instructions are detailed in Section A.4.

ing images from four orthogonal viewpoints. We use the following metrics to evaluate how well the
generated results capture the target text cues:
(i) CLIP Similarity (CLIPsim). We measure the cosine similarity between rendered edited objects
and their corresponding text descriptions, and report average scores of four views.
(ii) CLIP Directional Similarity (CLIPdir). We use the same method as stated in BlendedPC (Sella
et al., 2025) to assess whether the edit content is correct.

4.2.2 MAIN RESULTS

Our method consistently outperforms the BlendedPC baseline. On the lamp/table subset, code-
based edit achieves CLIPsim = 0.0578 and CLIPdir = 0.2499, while BlendedPC records 0.0142
and 0.2017, respectively, as shown in Table 3 and in the right part of Figure 4, which is a +3.07× rel-
ative increase in similarity and a +23.9% increase in directional consistency, indicating both stronger
text-image alignment and more faithful execution of the intended edit.

Generalization to other categories. Evaluated on the full BlendNet-E dataset, OursA attains
CLIPsim and CLIPdir close to the lamp/table result of OursP , indicating that our edits preserve
the intended semantic direction across a broader set of shapes. Despite this wider scope, OursA
remains stably superior to BlendedPC, and achieves a +187% gain in CLIPsim and a +22.4% gain
in CLIPdir. Furthermore, Figures 5 and 9 demonstrate that code-based edits effectively implement
targeted geometric changes while preserving unmodified parts. This capability highlights the ro-
bustness and scalability of programmatic manipulation.

4.3 LIMITATIONS

Despite promising results, our work also indicates several limitations. Current VLMs still struggle
with fine-grained structural reasoning especially for curved, hierarchical, or interlocking geometries,
and exhibit imperfect 3D spatial understanding. Moreover, generating robust programmatic codes
for complex assemblies remains challenging: models often omit dependencies, break object relation-
ships, or produce non-executable code. Nonetheless, we believe a specially fine-tuned code-centric
VLM could substantially improve this.

5 CONCLUSION

In this work, we propose and systematically evaluate a new paradigm for 3D reconstruction that
treats programmatic code as a bridge between image input and 3D objects, offering significant ad-
vantages in interpretability, controllability, and editability over low-level mesh or implicit field rep-
resentations. We conducted a comprehensive benchmark on state-of-the-art open-source and closed-
source VLMs, analyzing their performance under various prompting strategies. The results confirm
the significant promise of this code-based direction. Furthermore, we analyzed how this code-based
reconstruction paradigm benefits subsequent editing operations, and experimentally validated the
superiority of this approach over traditional methods.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Siddharth Ahuja and BlenderMCP Contributors. Blendermcp - blender model context protocol
integration, 2025. URL https://github.com/ahujasid/blender-mcp.

Anthropic PBC. Introduction to model context protocol, 2024. URL https://www.
anthropic.com/news/model-context-protocol.

Anthropic PBC. Claude sonnet 4 (a.k.a. Claudesonnet4.0), 2025. URL https://www.
anthropic.com/claude/sonnet. Product page.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report. arXiv
preprint arXiv:2502.13923, 2025.

Blender Foundation. Blender Python API reference, 2025. URL https://docs.blender.
org/api/current/index.html. Online; accessed 2025-09-18.

Blender Online Community. Blender: Open-source 3d creation suite. https://www.blender.
org, 2025. Version 4.4 as used in your work.

Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li,
Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and Fisher Yu.
Shapenet: An information-rich 3d model repository, 2015. URL https://arxiv.org/abs/
1512.03012.

Zhiqin Chen, Vladimir G Kim, Matthew Fisher, Noam Aigerman, Hao Zhang, and Siddhartha
Chaudhuri. Decor-gan: 3d shape detailization by conditional refinement. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 15740–15749, 2021.

Zilong Chen, Feng Wang, Yikai Wang, and Huaping Liu. Text-to-3d using gaussian splatting. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 21401–
21412, 2024.

Yuhao Du, Shunian Chen, Wenbo Zan, Peizhao Li, Mingxuan Wang, Dingjie Song, Bo Li, Yan Hu,
and Benyou Wang. Blenderllm: Training large language models for computer-aided design with
self-improvement, 2024. URL https://arxiv.org/abs/2412.14203.

Epic. Unreal engine c++ api reference, 2025a. URL https://dev.epicgames.com/
documentation/en-us/unreal-engine/API.

Epic. Unreal engine, 2025b. URL https://www.unrealengine.com/.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models, 2023. URL https://arxiv.org/
abs/2211.10435.

Google DeepMind. Gemini 2.5 pro (our most intelligent AI model),
2025. URL https://blog.google/technology/google-deepmind/
gemini-model-thinking-updates-march-2025/. Official blog post (Mar 25,
2025).

Yunqi Gu, Ian Huang, Jihyeon Je, Guandao Yang, and Leonidas Guibas. Blendergym: Benchmark-
ing foundational model systems for graphics editing. In Proceedings of the Computer Vision and
Pattern Recognition Conference, pp. 18574–18583, 2025.

Ziniu Hu, Ahmet Iscen, Aashi Jain, Thomas Kipf, Yisong Yue, David A Ross, Cordelia Schmid, and
Alireza Fathi. Scenecraft: An llm agent for synthesizing 3d scenes as blender code. In Forty-first
International Conference on Machine Learning, 2024.

Ian Huang, Guandao Yang, and Leonidas Guibas. Blenderalchemy: Editing 3d graphics with vision-
language models. In European Conference on Computer Vision, pp. 297–314. Springer, 2024.

10

https://github.com/ahujasid/blender-mcp
https://www.anthropic.com/news/model-context-protocol
https://www.anthropic.com/news/model-context-protocol
https://www.anthropic.com/claude/sonnet
https://www.anthropic.com/claude/sonnet
https://docs.blender.org/api/current/index.html
https://docs.blender.org/api/current/index.html
https://www.blender.org
https://www.blender.org
https://arxiv.org/abs/1512.03012
https://arxiv.org/abs/1512.03012
https://arxiv.org/abs/2412.14203
https://dev.epicgames.com/documentation/en-us/unreal-engine/API
https://dev.epicgames.com/documentation/en-us/unreal-engine/API
https://www.unrealengine.com/
https://arxiv.org/abs/2211.10435
https://arxiv.org/abs/2211.10435
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Moritz Ibing, Isaak Lim, and Leif Kobbelt. 3d shape generation with grid-based implicit functions.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
13559–13568, 2021.

Heewoo Jun and Alex Nichol. Shap-e: Generating conditional 3d implicit functions. arXiv preprint
arXiv:2305.02463, 2023.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splat-
ting for real-time radiance field rendering. ACM Trans. Graph., 42(4):139–1, 2023.

Adam R Kosiorek, Heiko Strathmann, Daniel Zoran, Pol Moreno, Rosalia Schneider, Sona Mokrá,
and Danilo Jimenez Rezende. Nerf-vae: A geometry aware 3d scene generative model. In Inter-
national conference on machine learning, pp. 5742–5752. PMLR, 2021.

Yushi Lan, Fangzhou Hong, Shuai Yang, Shangchen Zhou, Xuyi Meng, Bo Dai, Xingang Pan, and
Chen Change Loy. Ln3diff: Scalable latent neural fields diffusion for speedy 3d generation. In
European Conference on Computer Vision, pp. 112–130. Springer, 2024.

Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Yanwei Li,
Ziwei Liu, and Chunyuan Li. Llava-onevision: Easy visual task transfer, 2024a. URL https:
//arxiv.org/abs/2408.03326.

Chengshu Li, Jacky Liang, Andy Zeng, Xinyun Chen, Karol Hausman, Dorsa Sadigh, Sergey
Levine, Li Fei-Fei, Fei Xia, and Brian Ichter. Chain of code: Reasoning with a language model-
augmented code emulator, 2024b. URL https://arxiv.org/abs/2312.04474.

Ruihui Li, Xianzhi Li, Ka-Hei Hui, and Chi-Wing Fu. Sp-gan: Sphere-guided 3d shape generation
and manipulation. ACM Transactions on Graphics (TOG), 40(4):1–12, 2021.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and
Andy Zeng. Code as policies: Language model programs for embodied control, 2023. URL
https://arxiv.org/abs/2209.07753.

Sining Lu, Guan Chen, Nam Anh Dinh, Itai Lang, Ari Holtzman, and Rana Hanocka. Ll3m: Large
language 3d modelers. arXiv preprint arXiv:2508.08228, 2025.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99–106, 2021.

OpenAI. GPT-4o Technical Report. https://openai.com/index/hello-gpt-4o/,
2024.

OpenAI. Introducing OpenAI o3 (a.k.a. GPTo3), 2025. URL https://openai.com/index/
introducing-o3-and-o4-mini/. Model announcement (Apr 16, 2025).

Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d
diffusion. arXiv preprint arXiv:2209.14988, 2022.

Qdrant Team. Qdrant: Vector database and vector search engine, 2025. URL https://github.
com/qdrant/qdrant. GitHub repository, Version v1.15.4.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision, 2021. URL
https://arxiv.org/abs/2103.00020.

Alexander Raistrick, Lahav Lipson, Zeyu Ma, Lingjie Mei, Mingzhe Wang, Yiming Zuo, Karhan
Kayan, Hongyu Wen, Beining Han, Yihan Wang, Alejandro Newell, Hei Law, Ankit Goyal, Kaiyu
Yang, and Jia Deng. Infinite photorealistic worlds using procedural generation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12630–12641, 2023.

Radu Bogdan Rusu, Nico Blodow, and Michael Beetz. Fast point feature histograms (fpfh) for 3d
registration. In 2009 IEEE International Conference on Robotics and Automation, pp. 3212–3217,
2009. doi: 10.1109/ROBOT.2009.5152473.

11

https://arxiv.org/abs/2408.03326
https://arxiv.org/abs/2408.03326
https://arxiv.org/abs/2312.04474
https://arxiv.org/abs/2209.07753
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/
https://github.com/qdrant/qdrant
https://github.com/qdrant/qdrant
https://arxiv.org/abs/2103.00020

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Etai Sella, Noam Atia, Ron Mokady, and Hadar Averbuch-Elor. Blended point cloud diffusion for
localized text-guided shape editing, 2025. URL https://arxiv.org/abs/2507.15399.

Brian Skinn. sphobjinv: A practical tool for manipulating sphinx objects.inv files, 2024. URL
https://github.com/bskinn/sphobjinv.

Chunyi Sun, Junlin Han, Weijian Deng, Xinlong Wang, Zishan Qin, and Stephen Gould. 3d-gpt:
Procedural 3d modeling with large language models. In 2025 International Conference on 3D
Vision (3DV), pp. 1253–1263. IEEE, 2025.

The Sphinx Project. Sphinx documentation. https://www.sphinx-doc.org/.

Unity. Unity real-time development platform, 2025a. URL https://unity.com/.

Unity. Unity scripting api, 2025b. URL https://docs.unity3d.com/6000.2/
Documentation/ScriptReference/index.html.

Arash Vahdat, Francis Williams, Zan Gojcic, Or Litany, Sanja Fidler, Karsten Kreis, et al. Lion: La-
tent point diffusion models for 3d shape generation. Advances in Neural Information Processing
Systems, 35:10021–10039, 2022.

Can Wang, Menglei Chai, Mingming He, Dongdong Chen, and Jing Liao. Clip-nerf: Text-and-
image driven manipulation of neural radiance fields. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 3835–3844, 2022.

Tengfei Wang, Bo Zhang, Ting Zhang, Shuyang Gu, Jianmin Bao, Tadas Baltrusaitis, Jingjing Shen,
Dong Chen, Fang Wen, Qifeng Chen, et al. Rodin: A generative model for sculpting 3d digital
avatars using diffusion. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 4563–4573, 2023.

Weiyun Wang, Zhangwei Gao, Lixin Gu, Hengjun Pu, Long Cui, Xingguang Wei, Zhaoyang Liu,
Linglin Jing, Shenglong Ye, Jie Shao, et al. Internvl3.5: Advancing open-source multimodal
models in versatility, reasoning, and efficiency. arXiv preprint arXiv:2508.18265, 2025.

Karl D. D. Willis, Yewen Pu, Jieliang Luo, Hang Chu, Tao Du, Joseph G. Lambourne, Armando
Solar-Lezama, and Wojciech Matusik. Fusion 360 gallery: A dataset and environment for pro-
grammatic cad construction from human design sequences. ACM Transactions on Graphics
(TOG), 40(4), 2021.

Kailu Wu, Fangfu Liu, Zhihan Cai, Runjie Yan, Hanyang Wang, Yating Hu, Yueqi Duan, and
Kaisheng Ma. Unique3d: High-quality and efficient 3d mesh generation from a single image,
2024.

Zhicong Wu, Hongbin Xu, Gang Xu, Ping Nie, Zhixin Yan, Jinkai Zheng, Liangqiong Qu, Ming
Li, and Liqiang Nie. Textsplat: Text-guided semantic fusion for generalizable gaussian splatting.
arXiv preprint arXiv:2504.09588, 2025.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianx-
iong Xiao. 3d shapenets: A deep representation for volumetric shapes, 2015. URL https:
//arxiv.org/abs/1406.5670.

Jiale Xu, Weihao Cheng, Yiming Gao, Xintao Wang, Shenghua Gao, and Ying Shan. Instantmesh:
Efficient 3d mesh generation from a single image with sparse-view large reconstruction models.
arXiv preprint arXiv:2404.07191, 2024.

Taoran Yi, Jiemin Fang, Junjie Wang, Guanjun Wu, Lingxi Xie, Xiaopeng Zhang, Wenyu Liu,
Qi Tian, and Xinggang Wang. Gaussiandreamer: Fast generation from text to 3d gaussians by
bridging 2d and 3d diffusion models. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 6796–6807, 2024.

Biao Zhang, Jiapeng Tang, Matthias Niessner, and Peter Wonka. 3dshape2vecset: A 3d shape
representation for neural fields and generative diffusion models. ACM Transactions On Graphics
(TOG), 42(4):1–16, 2023.

12

https://arxiv.org/abs/2507.15399
https://github.com/bskinn/sphobjinv
https://www.sphinx-doc.org/
https://unity.com/
https://docs.unity3d.com/6000.2/Documentation/ScriptReference/index.html
https://docs.unity3d.com/6000.2/Documentation/ScriptReference/index.html
https://arxiv.org/abs/1406.5670
https://arxiv.org/abs/1406.5670

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 USE OF LLMS

We utilized Large Language Models (LLMs) to assist in preparing this paper in two primary ways:

• For polishing the language and phrasing of the text to enhance clarity, conciseness, and
readability.

• For refining the prompts used to query the Vision Language Models (VLMs) in our exper-
iments, to better align with effective prompt engineering principles.

A.2 RECONSTRUCTION PIPELINE DETAILS

ModelNet10 Easy/Hard Split. We partition ModelNet10 into easy and hard subsets per category:
objects with fewer parts, regular structures, and mild curvature transitions are labeled easy; objects
with more parts, irregular topology, or pronounced/high-curvature transitions are labeled hard.

1. bathtub:
Easy: bathtub 0111, bathtub 0119, bathtub 0139, bathtub 0154, bathtub 0155;
Hard: bathtub 0141, bathtub 0153, bathtub 0124, bathtub 0115, bathtub 0150.

2. Bed:
Easy: bed 0555, bed 0557, bed 0561, bed 0572, bed 0595;
Hard: bed 0548, bed 0566, bed 0571, bed 0614, bed 0598.

3. Chair:
Easy: chair 0894, chair 0897, chair 0950, chair 0901, chair 0896;
Hard: chair 0893, chair 0891, chair 0941, chair 0898, chair 0943.

4. Desk:
Easy: desk 0217, desk 0262, desk 0246, desk 0236, desk 0220;
Hard: desk 0263, desk 0253, desk 0231, desk 0209, desk 0226.

5. Dresser:
Easy: dresser 0248, dresser 0254, dresser 0266, dresser 0232, dresser 0205;
Hard: dresser 0209, dresser 0257, dresser 0243, dresser 0217, dresser 0233.

6. Monitor:
Easy: monitor 0503, monitor 0545, monitor 0535, monitor 0531, monitor 0528;
Hard: monitor 0483, monitor 0522, monitor 0529, monitor 0511, monitor 0539.

7. night stand:
Easy: night stand 0207, night stand 0232, night stand 0263, night stand 0231,
night stand 0283;
Hard: night stand 0225, night stand 0208, night stand 0278, night stand 0270,
night stand 0262.

8. Sofa:
Easy: sofa 0692, sofa 0687, sofa 0770, sofa 0756, sofa 0683;
Hard: sofa 0761, sofa 0777, sofa 0745, sofa 0746, sofa 0743.

9. Table:
Easy: table 0443, table 0439, table 0399, table 0422, table 0447;
Hard: table 0436, table 0405, table 0430, table 0470, table 0423.

10. Toilet:
Easy: toilet 0393, toilet 0438, toilet 0408, toilet 0355, toilet 0439;
Hard: toilet 0419, toilet 0409, toilet 0367, toilet 0436, toilet 0401.

Failure rate of open-source VLMs. We report the proportion of prompts that produced unsuc-
cessful runs on ModelNet10, i.e., the generated bpy script did not compile or crashed in headless
Blender 4.4. For each task, when the first generated code runs into an error, the model has 5 chances
to correct it. If the code still reports an error after the chances are exhausted, the generation is con-
sidered to be failed. The final failure rate is shown at Table. 4. For open sourced models, we only
test metrics on correctly generated samples.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 4: Open-source VLM failure rate on ModelNet 10. Values are fail/total.

Strategy InternVL3.5-38B Qwen2.5-VL-72B LLaVA-OneVision-72B

Single-call 4/100 (4%) 4/100 (4%) 48/100 (48%)
Blueprint 24/100 (24%) 2/100 (2%) 40/100 (40%)
RAG 22/100 (22%) 6/100 (6%) 45/100 (45%)

Table 5: Qualitative reconstruction results on ModelNet10 easy/hard split. The best value in
each block is highlighted in green, and the second best value is blue.

Model Blueprint RAG ModelNet10–easy ModelNet10–hard

CD ↓ IoU ↑ F@5% ↑ CD ↓ IoU ↑ F@5% ↑
Traditional baselines
Unique3D — — 0.0557 0.1395 0.6151 0.0515 0.1544 0.6472
InstantMesh — — 0.0217 0.3153 0.8788 0.0219 0.2946 0.8831

Closed-source VLM families

Claude Sonnet 4.0
✗ ✗ 0.0327 0.2348 0.7845 0.0368 0.2191 0.7483
✓ ✗ 0.0343 0.2522 0.7588 0.0383 0.2106 0.7481
✓ ✓ 0.0338 0.2586 0.7784 0.0352 0.2124 0.7661

o3
✗ ✗ 0.0437 0.1973 0.6941 0.0431 0.1702 0.7073
✓ ✗ 0.0298 0.2481 0.8271 0.0359 0.2137 0.7638
✓ ✓ 0.0281 0.2881 0.8208 0.0323 0.2246 0.8006

Gemini 2.5 Pro
✗ ✗ 0.0385 0.2171 0.7220 0.0391 0.2103 0.7319
✓ ✗ 0.0277 0.2842 0.8419 0.0294 0.2552 0.8154
✓ ✓ 0.0246 0.2977 0.8626 0.0285 0.2699 0.8288

Examples. Blueprint example can be found at List 1, Blender api example at Figure 10, example
of a query generated by Gemini-2.5-pro at Figure 11, retrieved rag example at Figure 12.

A.3 MORE EXPERIMENTAL RESULTS

Complete Results on ModelNet10-easy and hard. We fully tested the three closed-source VLMs
on both ModelNet10-easy and hard across the Single-call, Planning, and RAG pipelines; results
are summarized in Table 5. Overall, the conclusions on the full setting are consistent with those
reported in the main paper (where we focused on InstantMesh/Unique3D and the RAG variants of
o3 and Gemini). Code-based reconstruction generally outperforms hard parts on easy parts, while
mesh-based reconstruction does not exhibit this phenomenon. This suggests that code-based recon-
struction methods struggle to accurately restore complex structures, as VLMs struggle to accurately
capture them.

Reconstruction Bad Cases Analysis. Figure 7 demonstrates several failure cases of Gemini-2.5-
pro within the RAG paradigm. For Chair 0898, while the generated object exhibits a plausible shape
and successfully produces chair legs with complex intersecting lines, it does not conform to the
specifications of the ground truth. The reconstruction of Chair 0941 captures the general structure;
however, the size of the ”Y”-shaped backrest is incorrect, and the interconnecting components be-
tween the legs are missing. In Chair 0950, the individual components are generated approximately
correctly, but their spatial arrangement is inaccurate, resulting in an overall structure that deviates
significantly from the ground truth. At first glance, Table 0423 appears somewhat similar, but a
detailed inspection reveals that the orientation of the legs and the angles of the connecting bars are
rotated by 90 degrees. Furthermore, while the ground truth features four A-shaped leg structures, the
generated object exhibits only two. For Desk 0217, the model misjudges the relative spacing, plac-
ing a horizontal bar at the midpoint instead of the correct position at one-quarter of the height. Desk
0226 possesses a complex structure with numerous curved elements and components. Although the
final generated result bears a rough resemblance, the details differ substantially.

The primary failure modes can be summarized as follows:

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

M
u
lt

i-
v
ie

w

R
e
n
d
er

in
g

D
ep

th
N

o
rm

a
l

Figure 6: Rendered multi-view images of 3D object Chair 0891 in ModelNet10, with depth and
surface normals.

G
ro

u
n
d

 T
ru

th
G

e
n
e
ra

te
d

Chair 0898 Chair 0941 Chair 0950 Table 0423 Desk 0217 Desk 0226

Figure 7: Caption

• Incomplete comprehension of the input image, leading to missing components.
• Difficulty in accurately interpreting complex images, resulting in structures that are only

coarsely similar to the ground truth.
• Insufficient spatial reasoning capability, causing failures in the correct assembly of compo-

nents even when they are generated accurately.

Depth and Normal rendering examples. We render 3D objects from multiple perspectives, as
shown in Figure 6. This ensures that the reconstructed input image contains as much structural
information as possible. Furthermore, when testing 2D metrics, we can perform tests on images
from multiple perspectives and take the average for a comprehensive evaluation.

Additional Qualitative Results. We provide additional qualitative examples for both the text-
conditional reconstruction variant in Figure 8 and for code edition in Figure 9. The specific text
instructions used for each example of code edition are detailed in Section A.4.

A.4 EDITION PIPELINE DETAILS

Complete Instructions Used for Edition. For the sake of aesthetics, we only show the most
critical text instruction when showing the edit figures, and omit the long part with Here we list
the complete instructions.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

GT

Variant

GT

Variant

Figure 8: Additional examples of the text-conditional reconstruction variant. The model gen-
erates a modified 3D asset based on a source image from ModelNet10 and a corresponding text
instruction.

In Figure 1, the instructions we use in the right part are:

1. Open the lid of this cup.
2. The legs of this table are out of proportion to the tabletop. Optimize it by making the legs

more slender.

In Figure 4, the instructions we use are:

1. Make the bathtub more square and add a flat base for stability.
2. Add a second drawer below the existing one.
3. Change the base legs to a single centered pedestal.
4. Replace the cylindrical lampshade above this desk lamp with a triangular cone.
5. Make this table lamp taller. The column mistakenly passes through the lampshade and

protrudes a little from the top. Remove this small part.
6. Lengthen the four cylindrical legs of this table and connect X-shaped wooden strips at the

bottom of the four legs that is connect the legs at opposite corners at the bottom to make its
structure more stable.

In Figure 5, the instructions we use are:

• Left part:
1. Let all the rings on the pillar sink with gravity and fit together.
2. The ring handle on the side of this cup is too big and does not match the cup body.

Make it smaller.
3. The candle on this cake is too thick and short. Make it thinner and longer and reduce

the number to 1 and insert it in the middle of the top of the cake.
• Right part:

1. Let all the rings on the pillar sink with gravity and fit together.
2. The ring handle on the side of this cup is too big and does not match the cup body.

Make it smaller.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Input

Edited

Figure 9: Further examples of code edition on the BlendNet-E dataset. These results show
targeted geometric modifications based on textual instructions.

3. The candle on this cake is too thick and short. Make it thinner and longer and reduce
the number to 1 and insert it in the middle of the top of the cake.

In Figure 8, the instructions we use are:

• Upper part:
1. Add a lower shelf between the two legs.
2. Convert the corner bath to an oval shape.
3. Convert one of the crib’s sides into a removable panel.
4. Cut a large opening in the middle of the backrest.
5. Extend the basin to double its current length.

• Lower part:
1. Add a central open shelf in the knee space area for additional storage.
2. Add a headboard to the bed.
3. Add a fifth drawer at the bottom.
4. Add a second, smaller screen on top to create a dual-monitor setup.
5. Add a lower central support beam between the sofa legs.

In Figure 9, the instructions we use are:

1. This sofa has armrests on only one side and the modification makes it have armrests on
both sides.

2. The keychain circle on this cup is too big, make it smaller
3. The cylindrical portion of this cup was incorrectly generated as a solid shape. Make it

hollow.
4. Add a handguard in the middle of this sofa to give it two separate seats.
5. Separate the spherical part of this bulb from the base.
6. This bucket has an ugly ring around the cylindrical waist. Remove it.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A.5 DETAILED PIPELINE ARTIFACTS

Listing 1: Blueprint JSON for object in Figure 2. The blueprint normalizes to a base dimension
(overall height=1.0) and encodes part-wise parametrics used by the code generator.

1 {
2 "object_category": "bar_stool",
3 "base_dimension": "overall_height",
4 "dimensional_profile": {
5 "overall_height": 1.0,
6 "overall_width_at_base_ratio_to_height": 0.42,
7 "overall_depth_at_base_ratio_to_height": 0.4,
8 "seat_height_from_ground_ratio_to_overall_height": 0.65
9 },

10 "geometric_components": {
11 "legs": {
12 "count": 4,
13 "profile_shape": "cylindrical",
14 "diameter_ratio_to_overall_height": 0.02,
15 "splay_angle_from_vertical_degrees": 6.0
16 },
17 "footrest": {
18 "structure_type": "continuous_four_sided_brace",
19 "height_from_ground_ratio_to_overall_height": 0.18,
20 "cross_section_diameter_ratio_to_leg_diameter": 1.0,
21 "front_bar_outward_curve_depth_ratio_to_overall_depth": 0.15
22 },
23 "seat": {
24 "plan_shape": "rounded_square",
25 "width_ratio_to_overall_width_at_base": 0.86,
26 "depth_ratio_to_overall_depth_at_base": 0.85,
27 "thickness_ratio_to_overall_height": 0.03,
28 "ergonomic_concave_dip_ratio_to_seat_depth": 0.05,
29 "front_edge_waterfall_radius_ratio_to_seat_thickness": 1.0,
30 "cutouts": {
31 "count": 2,
32 "type": "slot",
33 "slot_length_ratio_to_seat_depth": 0.7,
34 "slot_width_ratio_to_seat_width": 0.08,
35 "slot_spacing_from_centerline_ratio_to_seat_width": 0.25
36 }
37 },
38 "backrest": {
39 "height_above_seat_ratio_to_overall_height": 0.35,
40 "width_ratio_to_seat_width": 0.95,
41 "tilt_angle_from_vertical_degrees": 12.0,
42 "horizontal_lumbar_curve_depth_ratio_to_width": 0.08,
43 "structure": {
44 "type": "slatted_frame",
45 "frame_thickness_ratio_to_leg_diameter": 1.2,
46 "slat_count": 3,
47 "slat_height_ratio_to_backrest_height": 0.12,
48 "slat_vertical_gap_ratio_to_slat_height": 1.1,
49 "vertical_support_count": 2,
50 "vertical_support_width_ratio_to_frame_thickness": 1.0
51 }
52 },
53 "armrests": {
54 "count": 2,
55 "structure_type": "continuous_loop_from_backrest_to_seat",
56 "height_above_seat_at_rear_ratio_to_overall_height": 0.15,
57 "length_ratio_to_seat_depth": 0.8,
58 "cross_section_diameter_ratio_to_leg_diameter": 1.0,
59 "downward_slope_angle_degrees": 3.0,
60 "outward_bow_distance_ratio_to_seat_width": 0.05
61 }
62 }
63 }

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

1 {
2 "symbol": "bpy.ops.curves.add_bezier",
3 "language": "python",
4 "module": "bpy.ops.curves",
5 "signature": ".ops.curves.add_bezier(*, radius=1.0, enter_editmode=False,

↪→ align=’WORLD’, location=(0.0, 0.0, 0.0), rotation=(0.0, 0.0, 0.0), scale=(0.0,
↪→ 0.0, 0.0))",

6 "parameters": [
7 {"name": "radius", "description": "radius (float in [0, inf], (optional))

↪→ Radius"},
8 {"name": "enter_editmode", "description": "enter_editmode (boolean, (optional))

↪→ Enter Edit Mode, Enter edit mode when adding this object"},
9 {"name": "align", "description": "align (enum in [’WORLD’, ’VIEW’, ’CURSOR’],

↪→ (optional)) Align, The alignment of the new object\n\nWORLD\nWorld
↪→ Align the new object to the world.\nVIEW\nView Align the new object to
↪→ the view.\nCURSOR\n3D Cursor Use the 3D cursor orientation for the new
↪→ object.\n\n"},

10 {"name": "location", "description": "location (mathutils.Vector of 3 items in [-inf,
↪→ inf], (optional)) Location, Location for the newly added object"},

11 {"name": "rotation", "description": "rotation (mathutils.Euler rotation of 3 items
↪→ in [-inf, inf], (optional)) Rotation, Rotation for the newly added
↪→ object"},

12 {"name": "scale", "description": "scale (mathutils.Vector of 3 items in [-inf, inf],
↪→ (optional)) Scale, Scale for the newly added object"}

13],
14 "doc_text": "Add new bezier curve",
15 "version": "4.4"
16 }

Figure 10: Blender 4.4 Python API database entry (structured JSON).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

1 {
2 "intent_queries": {
3 "queries": {
4 "legs": {
5 "prefer_modules": ["bpy.ops.mesh", "bpy.ops.object"],
6 "keywords": ["primitive_cylinder_add", "cylinder", "duplicate_move", "rotate",

↪→ "splay"],
7 "query": "Create four cylindrical legs for a bar stool. Start by adding a

↪→ cylinder primitive, then duplicate it and rotate the legs to create a
↪→ splayed angle from the vertical."

8 },
9 "footrest": {

10 "prefer_modules": ["bpy.ops.curve", "bpy.ops.object"],
11 "keywords": ["curve", "bezier", "bevel", "extrude", "depth", "join"],
12 "query": "Model a continuous four-sided footrest brace with a curved front. Use

↪→ a bezier curve with bevel depth to form the cylindrical rails and join
↪→ the segments."

13 },
14 "seat": {
15 "prefer_modules": ["bpy.ops.mesh", "bpy.ops.object"],
16 "keywords": ["primitive_cube_add", "subdivision_set", "bevel", "boolean",

↪→ "proportional_edit", "loop_cut"],
17 "query": "Create a rounded square seat with an ergonomic dip and two slot

↪→ cutouts. Start with a cube, use subdivision and proportional editing for
↪→ the dip, bevel the edges, and apply a boolean difference modifier for the
↪→ slots."

18 },
19 "backrest": {
20 "prefer_modules": ["bpy.ops.mesh", "bpy.ops.object"],
21 "keywords": ["plane", "extrude", "inset", "boolean", "loop_cut", "curve_deform",

↪→ "modifier"],
22 "query": "Create a slatted backrest frame that is tilted and curved. Model the

↪→ basic shape from a plane using extrude and inset, use a boolean modifier
↪→ to create the slats, and bend the result with a curve deform modifier."

23 },
24 "armrests": {
25 "prefer_modules": ["bpy.ops.curve", "bpy.ops.object"],
26 "keywords": ["curve", "bezier", "extrude", "bevel", "depth", "mirror"],
27 "query": "Create two continuous loop armrests extending from the backrest to the

↪→ seat. Model one armrest using a bezier curve with a circular bevel depth,
↪→ then use a mirror modifier to create the second one."

28 }
29 }
30 }
31 }

Figure 11: VLM-generated intent queries per blueprint component.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

1 {
2 "components": [
3 {
4 "name": "legs",
5 "apis": [
6 {
7 "symbol": "bpy.ops.mesh.primitive_cylinder_add",
8 "signature": "primitive_cylinder_add(vertices=32, radius=1.0, depth=2.0,

↪→ end_fill_type=’NGON’, calc_uvs=True, enter_editmode=False,
↪→ align=’WORLD’, location=(0.0, 0.0, 0.0), rotation=(0.0, 0.0, 0.0),
↪→ scale=(0.0, 0.0, 0.0))",

9 "parameters": {
10 "vertices": "int in [3, 10000000], optional - The number of vertices for the

↪→ cylinder’s circular caps.",
11 "radius": "float in [0, inf], optional - The radius of the cylinder.",
12 "depth": "float in [0, inf], optional - The depth (height) of the cylinder.",
13 "end_fill_type": "enum in [’NOTHING’, ’NGON’, ’TRIFAN’], optional - The

↪→ method to fill the ends of the cylinder.",
14 "location": "3D vector, optional - Location for the newly added object.",
15 "rotation": "3D Euler rotation, optional - Rotation for the newly added

↪→ object.",
16 "scale": "3D vector, optional - Scale for the newly added object."
17 }
18 }
19]
20 },
21 { "name": "footrest", "apis": [] },
22 { "name": "seat", "apis": [] },
23 { "name": "backrest", "apis": [] },
24 {
25 "name": "armrests",
26 "apis": [
27 {
28 "symbol": "bpy.ops.curves.add_bezier",
29 "signature": "add_bezier(radius=1.0, enter_editmode=False, align=’WORLD’,

↪→ location=(0.0, 0.0, 0.0), rotation=(0.0, 0.0, 0.0), scale=(0.0, 0.0,
↪→ 0.0))",

30 "parameters": {
31 "radius": "float in [0, inf], optional - The radius to set for the curve

↪→ points.",
32 "enter_editmode": "boolean, optional - If true, enter Edit Mode after

↪→ creating the object.",
33 "align": "enum in [’WORLD’, ’VIEW’, ’CURSOR’], optional - The alignment of

↪→ the new object. WORLD: Align the new object to the world. VIEW: Align
↪→ the new object to the view. CURSOR: Use the 3D cursor orientation for
↪→ the new object."

34 }
35 }
36]
37 }
38]
39 }

Figure 12: Retrieved APIs organized by component (post-retrieval structuring).

21

	Introduction
	Related work
	Method
	3D Reconstruction Paradigms for Code Synthesis
	3D Edition paradigm with Code Modification
	Evaluation

	Experiments
	3D Reconstruction Evaluation
	Experimental Setup
	Main Results

	3D Code Edition Evaluation
	Experiment Setup
	Main Results

	Limitations

	Conclusion
	Appendix
	Use of LLMs
	reconstruction pipeline details
	More Experimental Results
	Edition pipeline details
	Detailed Pipeline Artifacts

