
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MODULAR DISTILLATION MAKES SMALL MODELS
THINK LIKE BIG ONES

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have demonstrated exceptional performance in
knowledge-sensitive reasoning tasks, but their practical application is still re-
stricted by high computing demand. To address these challenges, we propose a
novel modular distillation framework that breaks down knowledge-intensive rea-
soning tasks into three distinct components: an Analyzer for question decomposi-
tion, a Informant for context building, and a Reasoner for step-by-step reasoning
inference. Unlike previous distillation methods that focus only on matching final
outputs or step-by-step reasoning, our approach introduces a structured pipeline
that enables the student model to learn both the analytical and reasoning abili-
ties of the teacher model, while also capturing the teacher’s internal knowledge
to guide more accurate and informed inference. This architecture improves inter-
pretability, efficiency, and modularity, allowing for independent optimization of
subcomponents. Empirical tests on three different benchmarks—OBQA, Strate-
gyQA, and MedQA—show that our framework outperforms monolithic baselines
in accuracy and computing efficiency while achieving competitive performance
with much smaller models. Our findings demonstrate that smaller language mod-
els can do reasoning more efficiently when the whole process is divided into more
manageable distinct components. This modular approach offers a practical and
transparent alternative to relying on extremely large, resource-intensive models1.

1 INTRODUCTION

Large Language Models (LLMs) are showing important capabilities in understanding and generat-
ing text, which makes them useful tools for a wide range of applications, from daily conversations to
complex reasoning tasks Vaswani et al. (2017); Brown et al. (2020); Wei et al. (2022); Ouyang et al.
(2022); Touvron et al. (2023); DeepSeek-AI et al. (2025). It is a well-known problem that deploy-
ing these models to real-world applications often encounters challenges due to their computational
cost and latency. At this point, knowledge distillation arises as a viable solution for transferring
expertise from a powerful Teacher model to a smaller Student model Song et al. (2024); Gu et al.
(2024); Mansourian et al. (2025); Tian et al. (2025). Nevertheless, traditional knowledge distillation
methods usually focus on a limited subset of the teacher’s capabilities. They mainly concentrate
on replicating outputs while ignoring critical skills like analyzing, contextual understanding, and
creating reasoning trace Magister et al. (2022).

While traditional knowledge distillation approaches focus on a single teacher-student pair, in this pa-
per we introduce a novel three-module knowledge and reasoning distillation framework. This frame-
work decomposes the knowledge-intensive reasoning process into specialized subtasks, thereby im-
proving both efficiency and interpretability. Our method aims to preserve and transfer the entire
range of capabilities of the teacher model. In other words, our objective is to reproduce not only
the final outputs produced by the teacher model but also the essential reasoning, analytical methods,
and integration of knowledge that support those outputs.

In our approach, the reasoning pipeline is divided into three different components: Analyzer, Infor-
mant, and Reasoner. First, the Analyzer decomposes an input query into a set of useful subquestions,
each targeting a different perspective of the query. This decomposition helps identify the information

1We will publish the complete source code and pretrained models upon publication.
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Question: A 4-year-old boy is brought to the physician because of a generalized rash for 3 days. During this period, he has had severe itching and was not able to sleep well. He has also had

fever, headache, and some muscle pain. Five days ago, he had a runny (...) His temperature is 38.2°C (100.7°F), pulse is 97/min, and blood pressure is 96/60 mm Hg. Examination of the skin shows

several macules, papules, and crusted lesions over his face, trunk, and extremities. There are a few fluid-filled vesicles over his abdomen and back. There is no cervical lymphadenopathy. The

remainder of the examination shows no abnormalities. Which of the following is the most likely diagnosis?

A) Measles B) Urushiol-induced dermatitis C) Chickenpox D) Rubella

Subquestions:
1. What are the typical symptoms and signs of measles, and how do they present in children?

2. What are the distinguishing features of urushiol-induced dermatitis, and does it fit the
patient's symptoms? 

(...) 
6. How do the rash and fever patterns in the options provided correlate with the patient's

clinical history?

Question Analyzer Informant Reasoner

(Informant Generated)(Analyzer Generated)

Reasoning:

The patient presents with a generalized rash, fever, and

severe itching, which are common symptoms of chickenpox.
The rash in chickenpox typically progresses from macules

to papules, pustules, and crusts, matching the
description of the lesions seen in this case. The

presence of fluid-filled vesicles on the abdomen and
back further supports the diagnosis of chickenpox (....)

Final Answer: C

Relevant Knowledge:

1. Measles typically presents with high fever, cough, runny nose, red eyes, and a rash that
starts on the face and ... children between the ages of 6 months and 5 years.

2. Urushiol-induced dermatitis is characterized by intense itching, vesicular lesions, and a

characteristic "tree-like" pattern ... ivy, oak, or sumac. 
(...)

6. The correlation between rash and fever patterns can indicate ... viral infections or
allergic reactions, ... influenced by the patient's clinical history.

INFERENCE

Subquestion Set
Subquestion 1

Subquestion 2

Subquestion N
...

Relevant Knowledge Set
Relevant Knowledge 1

Relevant Knowledge 2

Relevant Knowledge N
...

TRAINING

Teacher

Analyzer

Question

(Teacher Generated)

Subquestion Set

Teacher

Informant
(Teacher Generated)

Teacher

ReasoningReasoner
(Teacher Generated)

Question

Subquestion Set

Relevant Knowledge Set

Subquestion Set

Relevant Knowledge Set

Question

Figure 1: Overview of our modular knowledge distillation framework, showing both inference and training
workflows. Top: Inference Stage — The system operates in three sequential stages for given query: the
Analyzer decomposes the question into a set of useful subquestions; the Informant generates relevant knowledge
for each subquestion and the Reasoner integrates the original question, the subquestions, and the associated
knowledge to perform reasoning and produce the final answer. Bottom: Training Stage — each module is
trained independently using supervision from a Teacher model. The Teacher provides subquestions for training
the Analyzer, relevant knowledge snippets for the Informant, and detailed reasoning traces with final answers
for the Reasoner. This design enables targeted optimization of each module idenependently during inference.

needed to answer the given question. Next, the Informant addresses these subquestions to construct
a comprehensive and well-grounded knowledge base. Finally, the Reasoner synthesizes this infor-
mation to generate a coherent, step-by-step reasoning process that produces the final answer.

This modular design comes with several benefits compared to traditional distillation methods. Divid-
ing the task into parts improves efficiency because each module can be optimized independently. In
addition, the separation of question decomposition, knowledge generation, and reasoning improves
interpretability. This system enables us to trace how each intermediate step contributes to the final
answer. Our framework optimizes the transfer of the teacher model’s different capabilities by dis-
tributing them across three specialized modules, enabling the student to capture a wider spectrum of
reasoning and knowledge skills. Our experiments demonstrate that this approach not only surpasses
the performance of larger monolithic models but also makes the reasoning process fully transparent
and traceable.

The contributions of this work are below:

• A novel three-stage distillation framework: We propose a decomposition-based knowl-
edge and reasoning distillation method that improves both efficiency and interpretability by
splitting monolithic bigger model into Analyzer, Informant, and Reasoner modules.

• Improved question understanding: The Analyzer’s ability to generate subquestions en-
sures more precise knowledge retrieval and reasoning, particularly for complex queries.

• Scalability and adaptability: Each component can be independently fine-tuned or re-
placed, making the system adaptable to diverse applications without retraining the entire
model.
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2 RELATED WORK

LARGE LANGUAGE MODELS

Large Language Models (LLMs) have demonstrated impressive capabilities across diverse tasks,
particularly in applying acquired knowledge to address complex reasoning challenges. Models such
as GPT-4 Achiam et al. (2023), DeepSeek Liu et al. (2024), and LLaMA 3 Dubey et al. (2024)
have performed remarkably well on challenging, knowledge-intensive benchmarks, demonstrating
their skill in effectively applying acquired knowledge during reasoning. While LLMs continue to
improve, their deployment introduces a new challenge forcing users to choose between performance
and control Shanmugarasa et al. (2025); Huang et al. (2025). This challenge mainly comes from
the fact that most LLMs can only be accessed through APIs or require a lot of computing power to
run. As a result, there is an increasing need for alternative methods that can still make use of LLMs’
strengths without needing high computational resources or relying on black-box systems.

KNOWLEDGE DISTILLATION FOR NEURAL NETWORKS

Knowledge Distillation (KD) is a technique that aims to transfer the capabilities of a large, high-
performing Teacher model to a smaller, more efficient Student model Hinton et al. (2015). In clas-
sical Knowledge Distillation methods, the aim is to minimize the divergence between the output
distributions of the teacher and student, allowing the student to learn not only from ground-truth
labels but also from the teacher’s soft predictions. This improves the generalization ability of the
student model regarding the task.

Since its introduction, Knowledge Distillation has been widely adopted across natural language pro-
cessing (NLP) tasks, ranging from text classification and question answering to machine translation
Sanh et al. (2019); Jiao et al. (2019); Sun et al. (2020). The core motivation is to reduce model size
and computation cost without losing performance. Techniques have evolved to include layer-wise
distillation, attention distillation, and hidden-state matching to capture the internal behaviors of the
Teacher model Wang et al. (2020).

With the advance of Large Language Models, Knowledge Distillation becomes a necessary tech-
nique for making the deployment of these typically resource-demanding models more accessible to
a wider range. However, the complexity of LLM tasks — especially those involving reasoning —
introduces new challenges for traditional KD approaches, which are typically designed for simpler
output matching.

REASONING DISTILLATION IN LLMS

As large language models are increasingly applied to tasks involving multi-step reasoning, attention
is growing not only on their final outputs but also on the reasoning processes behind them. This
introduces a different dimension to reasoning distillation: rather than aligning output probabilities
alone, the student must also replicate intermediate reasoning steps, such as chain-of-thought (CoT)
explanations or sub-question decomposition.

Recent works Li et al. (2024); Ranaldi & Freitas (2024); Magister et al. (2022); Hsieh et al. (2023);
Yuan et al. (2024); Zhang et al. (2025); Lobo et al. (2024); Liu et al. (2023) have investigated how to
distill reasoning processes from teacher LLMs. These studies suggest that guiding smaller models
with CoT outputs from a teacher model allows them to achieve performance close to that of the
teacher. Even with limited data, small models can effectively learn complex reasoning patterns
when trained on carefully selected CoT examples or structured explanations.

Some approaches enhance distillation by integrating external knowledge into the process, where the
teacher provides not only the final answer but also provision for the reasoning path Lee et al. (2024).
Another study explores how to combine different forms of distillation signals. For example, rather
than transferring only rationales, teacher model provides mixed supervision that alternates between
rationales and answers Li et al. (2023).

Some recent approaches attempt to improve distillation by integrating external knowledge through
retrieval systems Kang et al. (2023); Liao et al. (2024); Lyu et al. (2024); Fu et al. (2023). In these
cases, the student model obtains knowledge not from the teacher itself but from external sources,

3
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which may be noisy or inconsistent with the teacher’s internal knowledge. Separating reasoning
from knowledge creates new challenges, as the student model can depend on the teacher’s full under-
standing during distillation. Some studies have addressed this by suggesting that using the teacher’s
own knowledge base during training can provide more stable and reliable guidance Du et al. (2025).
Others have highlighted the value of breaking down complex questions into simpler sub-questions
during distillation Wu et al. (2024). This strategy which is known as question decomposition, helps
student models better grasp and reproduce multi-step reasoning.

3 METHODOLOGY

We propose a modular knowledge distillation framework that factorizes the reasoning process of a
large teacher model into three complementary components: the Analyzer A, the Informant K, and
the Reasoner R. Unlike classical distillation, which directly approximates the conditional distribu-
tion P (ri | qi) of teacher reasoning traces ri given input questions qi, our approach explicitly models
latent variables corresponding to intermediate reasoning structure. This enables the student to learn
not only final outputs but also the teacher’s decomposition and knowledge integration strategies.

PROBLEM SETUP

Given a dataset D = {(qi, ri)}Ni=1 of questions and teacher-generated reasoning traces, we introduce
latent subquestions {si,j}ni

j=1 and associated knowledge snippets {ki,j}ni
j=1. The teacher’s reasoning

pattern can be expressed as

P (ri | qi) =
∑
{si,j}

∑
{ki,j}

P (ri | qi, {si,j}, {ki,j}) P ({ki,j} | {si,j}, qi) P ({si,j} | qi). (1)

This factorization emphasizes three complementary aspects of reasoning: breaking problems down
into subproblems, grounding them through knowledge generation, and integrating the results into a
coherent reasoning process.

MODULE DEFINITIONS

The Analyzer A models P ({si,j} | qi) by decomposing each question into conditionally indepen-
dent subquestions,

si,j ∼ P (si,j | qi; θA), j = 1, . . . , ni, (2)
where the number of subquestions ni adapts to the complexity of qi. The Informant K grounds
each subquestion by generating contextually relevant knowledge,

ki,j ∼ P (ki,j | si,j , qi; θK). (3)
Finally, the Reasoner R synthesizes the reasoning and the final answer by conditioning on the
original question, its subquestions, and their corresponding knowledge,

ri ∼ P (ri | qi, {si,j}, {ki,j}; θR). (4)

TRAINING OBJECTIVES

Each module is trained independently using synthetic labels obtained by the teacher. The Analyzer
is trained to produce teacher-provided subquestions,

LA = −
ni∑
j=1

logP (si,j | qi; θA), (5)

the Informant to generate relevant knowledge,

LK = −
ni∑
j=1

logP (ki,j | si,j , qi; θK), (6)

and the Reasoner to reconstruct the full reasoning trace,
LR = − logP (ri | qi, {si,j}, {ki,j}; θR). (7)

The overall objective is simply the sum of these losses,
Ltotal = LA + LK + LR. (8)

4
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3.1 THEORETICAL GUARANTEES

We now explain why modular distillation—with Analyzer A, Informant K, and Reasoner R—is
theoretically preferable to classical distillation that trains a single student on P (ri | qi). Our analysis
combines a variational perspective, an information-theoretic argument, and an approximation bound.

3.1.1 VARIATIONAL TIGHTNESS

The teacher reasoning process factorizes as

pT ({s}, {k}, r | q) = pT ({s} | q) pT ({k} | {s}, q) pT (r | q, {s}, {k}). (9)

Our modular student mirrors this decomposition (Eq. 1), whereas a monolithic student only models
pϕ(r | q).

Theorem 1 (ELBO Tightness) Training A,K,R with teacher-provided ({s}, {k}, r) maximizes a
tight evidence lower bound:

log pθ(r | q) ≥ EpT

[
log pA({s} | q) + log pK({k} | {s}, q) + log pR(r | q, {s}, {k})

]
,

which reduces to the sum of the module losses in Sec. 3.

Sketch. Follows from Jensen’s inequality and choosing the teacher posterior as variational distribu-
tion. Classical distillation lacks this structure, optimizing only − log pϕ(r | q).

3.1.2 STATISTICAL EFFICIENCY

When latents ({s}, {k}) are supervised, training is effectively on complete data, which increases
Fisher information.

Theorem 2 (Fisher Information Dominance) The Fisher information of modular training
Icomp(θ) dominates that of monolithic training Iobs(θ):

Iobs(θ) ⪯ Icomp(θ),

with strict inequality unless ({s}, {k}) are deterministic functions of (q, r).

Implication. Estimators from modular training have lower asymptotic variance, meaning gradients
are less noisy and sample efficiency is improved.

3.1.3 APPROXIMATION BENEFITS

With limited capacity, modularization also reduces approximation error.

Proposition 1 (Error Decomposition) The divergence between teacher and student marginals sat-
isfies

KL(pT (r | q) ∥ pθ(r | q)) ≤ KL(pT ({s} | q) ∥ pA)+KL(pT ({k} | {s}, q) ∥ pK)+KL(pT (r | q, {s}, {k}) ∥ pR).

Implication. Instead of approximating the entire reasoning distribution at once, modular training
distributes the error across simpler conditional tasks, leading to more faithful approximations under
finite capacity.

4 EXPERIMENTAL SETTINGS

We evaluate our system across three benchmark datasets: OBQA (OpenBookQA), StrategyQA,
and MedQA-USMLE. Each dataset poses different reasoning challenges, allowing us to test the
performance and robustness of our modular framework. Table 4 summarizes key statistics and
characteristics of the three datasets. It complements our qualitative descriptions by highlighting
differences in format, complexity, and the type of reasoning each dataset emphasizes.

5
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DATASET DETAILS

OpenBookQA is a multiple-choice question answering dataset focused on elementary science. Each
question typically requires reasoning over a core science fact (the ”open book”) combined with ex-
ternal common-sense knowledge. The dataset emphasizes fact recall and simple inference, making it
suitable for evaluating subquestion decomposition and targeted knowledge injection Mihaylov et al.
(2018).

StrategyQA consists of binary (yes/no) questions that require multi-hop and implicit reasoning. This
dataset is particularly well-suited to evaluating the reasoning capabilities of the Reasoner module
under uncertainty and incomplete evidence Geva et al. (2021).

MedQA (USMLE) is a challenging multiple-choice question dataset sourced from the United States
Medical Licensing Examination. The questions demand advanced medical reasoning and rely heav-
ily on both the recall of factual information and clinical decision-making. We found this dataset
especially demanding for the Informant module, because it’s very detailed and specific to the medi-
cal field Jin et al. (2021).

Statistics about the dataset is given Appendix A.1.3

EXPERIMENTS DETAILS

We evaluate two distillation frameworks under varying model sizes:

• TMDX (Three-Module Distillation): It refers to the proposed 3 module architecture with
each module has X billion parameters. The three modules work sequentially to perform
the task pipeline.

• DRDY (Direct Reasoning Distillation): A simpler baseline, where a single model with Y
billion parameters is fine-tuned end-to-end to directly output reasoning steps—no modular
breakdown involved Magister et al. (2022).

For example, TMD3B consists of three independently fine-tuned 3-billion-parameter models oper-
ating in sequence, whereas DRD8B uses a single 8-billion-parameter model performing direct rea-
soning. This setup allows us to analyze the trade-off between modularization and model size. For
training, we use Llama-3.2-1B-Instruct2 and Llama-3.2-3B-Instruct3 to inspect the performance of
our framework in different parameter sizes. To compare against a single-model baseline that per-
forms direct reasoning via knowledge distillation (without modular decomposition), we selected
Llama-3.1-8B-Instruct4 as a fair reference point. This choice ensures comparable parameter scale,
since our full pipeline includes three separately tuned models.

In addition to the main results, we report:

• Upper bound: Predictions directly generated by the teacher model (e.g., GPT-4 or
DeepSeek), assuming ideal performance.

• Lower bound: Outputs from the base models without any fine-tuning ie. zero-shot. It
represents the raw output of the base LLMs as used in the modular (TMD) or end-to-end
(DRD) settings.

Fine-tuning details. All modules were fine-tuned using LoRA (Low-Rank Adaptation) via the
peft5 library. The following configuration was used for each module:

The models were fine-tuned with a batch size of 2 per GPU and a maximum sequence length of 512
tokens. We used the AdamW optimizer with a linear learning rate scheduler and set the learning
rate to 1e-4. LoRA adaptation was applied with a rank of 16, α = 8, and a dropout rate of 0.1. All
models were trained for 3 epochs using mixed-precision (fp16) training. Gradient accumulation was

2https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct
3https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct
4https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
5https://github.com/huggingface/peft
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used with 4 steps to simulate larger batch sizes, and a weight decay of 0.01 was applied to prevent
overfitting. Our experiments were conducted on 4 NVIDIA RTX A4000 GPUs.

Input prompts were tokenized with padding to 512 tokens, and padding tokens were masked in the
label space to avoid loss contribution.

5 EXPERIMENT RESULTS

We structure our empirical investigation around four guiding questions, each illuminating a distinct
strength of the Three-Module Distillation (TMD) framework. Results are drawn from both fine-
tuning and zero-shot evaluations (Table 1 and Table 2).

Model GPT-4o DeepSeek

OBQA StrategyQA MedQA OBQA StrategyQA MedQA

Fine-Tuned Models
DRD1B 65.22±.37 62.33±.71 33.22±.31 63.39±.25 61.79±.81 33.02±.28

DRD3B 72.53±.27 64.12±.81 43.60±.44 70.78±.21 63.88±.74 42.27±.30

DRD8B 79.32±.54 68.94±.92 50.56±.34 78.67±.43 67.32±.72 47.84±.46

TMD1B 74.14±.67 64.34±1.12 44.84±.53 72.43±.42 63.12±.92 43.12±.52

TMD3B 82.20±.38 70.48±1.02 53.23±.44 81.18±.44 70.03±.88 51.44±.37

Teacher (Upper Bound)
GPT-4o 92.12 78.47 74.19 – – –
DeepSeek – – – 90.28 76.14 72.88

Table 1: Accuracy (%) of fine-tuned distilled models and teacher upper bounds under GPT-4o and DeepSeek
supervision across OBQA, StrategyQA, and MedQA. We report mean ± std over 3 runs.

Model OBQA StrategyQA MedQA

Zero-Shot Performance (Lower Bound)
DRD1B 36.54±.38 47.23±.90 31.98±.24

DRD3B 53.88±.46 51.72±1.08 33.28±.53

DRD8B 64.17±.44 60.63±1.18 39.11±.67

TMD1B 56.45±.63 54.16±.92 35.57±.41

TMD3B 66.20±.83 61.28±.74 42.11±.54

Table 2: Zero-shot accuracy (%) of base models used in DRD and TMD architectures, before any fine-tuning.
These represent lower bounds in our distillation setup. Results are averaged over 3 runs (mean ± std).

Q1: DOES MODULAR DISTILLATION IMPROVE ZERO-SHOT REASONING?

Zero-shot experiments show that TMD models outperform DRD models, suggesting that our pro-
posed architecture improves reasoning ability. For example, TMD3B attains 66.20% on OBQA com-
pared to 64.17% for DRD8B, and 42.11% on MedQA versus 39.11% for DRD8B. Similarly, TMD1B
achieves 54.16% on StrategyQA, exceeding DRD3B’s 51.72%. These improvements occur with-
out task-specific training, showing that the combination of the Analyzer, Informant, and Reasoner
allows the model to solve complex problems more effectively.

Q2: DOES FINE-TUNING AMPLIFY MODULAR ADVANTAGES?

Supervised fine-tuning under Teacher instruction leads to important gains across all models, but
TMD continues to outperform DRD across various datasets. For instance, under GPT-4o supervi-
sion, TMD3B performs 82.20% on OBQA, outperforming DRD8B at 79.32%. Similarly, TMD1B
scores 74.14% on OBQA, exceeding DRD3B’s 72.53%. We can see similar results are also under
DeepSeek supervision. TMD3B achieves 81.18% on OBQA and 70.03% on StrategyQA, both man-
aging to outperform DRD8B, which scores 78.67% and 67.32% respectively. These results suggest
that the advantages of modular design are not dependent on any teacher model. Rather, the TMD
framework achieves capturing reasoning patterns effectively.

7
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Q3: IS TMD ROBUST ACROSS DIFFERENT SUPERVISION SOURCES?

To evaluate TMD’s performance across different datasets, we use two distinct teacher models: GPT-
4o and DeepSeek. The results show a consistent pattern, and TMD performs well under the super-
vision of both teachers.

Under GPT-4o supervision, TMD3B surpasses DRD8B model across all three datasets: 82.20% on
OBQA, 70.48% on StrategyQA, and 53.23% on MedQA. When fine-tuned with DeepSeek instead,
TMD3B still shows superior results: 81.18% on OBQA, 70.03% on StrategyQA, and 51.44% on
MedQA. It is important observation that DeepSeek shows slightly lower performance compared
to GPT-4o. However, it is clear that performance superiority is consistent and TMD continues to
outperform DRD models, regardless of which teacher model used.

Q4: HOW DO FLOPS AND MEMORY USAGE INFLUENCE THE ADVANTAGE OF TMD?

The Figure 2 shows the analysis of performance versus FLOPs and performance versus memory
usage. It clearly illustrates the advantages of our modular framework in terms of computational
costs. It is observed that TMD consistently delivers higher accuracy at comparable or lower FLOPs.
This demonstrates that decomposing reasoning into specialized modules can achieve the same or
better accuracy with a smaller computational cost.

Although TMD is built from three models, they work one after another, so during inference only
one module needs to be loaded at a time. Consequently, TMD3B requires roughly the same VRAM
as a single 3B model, yet achieves accuracy superior to DRD8B, which demands more than twice
the memory. This feature makes TMD particularly attractive for deployment in real-world settings,
where GPU memory is often the main limitation.

Analyzer Informant Reasoner GPT-4o DeepSeek
OBQA StrategyQA MedQA OBQA StrategyQA MedQA

✓ ✗ ✗ 69.12 64.61 43.41 67.58 64.10 43.11

✗ ✓ ✗ 73.14 64.91 45.89 72.63 63.58 45.42

✗ ✗ ✓ 71.16 66.80 45.51 70.98 66.36 45.38

✓ ✓ ✗ 76.90 65.74 48.21 76.56 65.82 47.88

✓ ✗ ✓ 76.53 69.44 46.72 76.12 68.80 46.03

✗ ✓ ✓ 78.44 69.24 51.16 77.17 68.71 50.74

Table 3: TMD ablation study on OBQA, StrategyQA, and MedQA using GPT-4o and DeepSeek teachers.
✓ indicates the corresponding module is fine-tuned; ✗ indicates the corresponding module is zero-shot. All
models are 3B.

6 ABLATION STUDY

To better understand how each of the three modules contribute to the overall system, we ran an
ablation study. We tested different combinations where some modules were fine-tuned and others
were used zero-shot (without fine-tuning). We did this on three different QA datasets: OBQA,
StrategyQA, and MedQA. The results are shown in Table 3 for two teacher models: GPT-4o and
DeepSeek.

In the table, a checkmark (✓) means that the module was fine-tuned, while a cross (✗) means the
zero-shot module was used. All models have 3 billion parameters (TMD3B architecture).

SINGLE-MODULE CONTRIBUTIONS

Fine-tuning each module separately improves performance over the zero-shot baseline, although the
size of the gain depends on the dataset. The Analyzer gives important improvements on OBQA
and StrategyQA. Its effect on MedQA is smaller, since analyzing the context alone is not enough
for medical reasoning. The Informant consistently outperforms the Analyzer across all tasks, and
is particularly effective on MedQA, where it reaches 45.89%, shows the importance of domain
knowledge for datasets. The Reasoner shows the strongest single-module performance, especially
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Figure 2: Comparison of distilled models under GPT-4o supervision on OBQA. (a) Accuracy as
a function of inference FLOPs. (b) Accuracy as a function of estimated VRAM usage. Ellipses
highlight the key comparison pairs (TMD vs DRD).

on StrategyQA with a score of 66.80%, demonstrating its ability to handle complex reasoning even
without external knowledge.

TWO-MODULE COMBINATION

Using two modules together generally gets better results than relying on a single module, though
the most effective pairing varies by dataset. The Analyzer + Informant combination performs well
on OBQA, achieving 76.90%. It is expected due to its strength in organizing and contextualizing
factual information. However, this pair is less effective on StrategyQA and MedQA datasets, where
deeper reasoning is required to get final answer. The Analyzer + Reasoner pair performs the best
results on StrategyQA with 69.44%, suggesting that the synergy between question decomposition
and reasoning is especially beneficial for abstract or implicit questions. On MedQA, the highest-
performing two-module setup is Informant + Reasoner, which achieves 51.16%. This highlights
the value of combining domain-specific knowledge with reasoning capabilities when addressing
complex medical questions.

DATASET-SPECIFIC MODULE IMPORTANCE

The ablation results also match what we expect based on each dataset’s needs. OBQA benefits most
from the Analyzer and Informant because it focuses on breaking down questions and using facts.
StrategyQA, which requires logical, multi-step thinking, relies mainly on the Reasoner. MedQA
needs both the Informant and Reasoner since it depends on specialized knowledge and careful clin-
ical reasoning.

Overall, the ablation study validates the design of the TMD framework, showing that different com-
binations of modules are optimal for different tasks, and that full integration yields robust perfor-
mance across diverse QA domains.

7 CONCLUSION

In this work, we proposed a modular distillation framework that improves the reasoning capabili-
ties of small language models by decomposing the knowledge-intensive reasoning task into three
specialized modules: Analyzer, Informant, and Reasoner. Each module is fine-tuned using super-
vision from a powerful teacher model, enabling the student model to learn structured reasoning.
Our approach outperforms monolithic baselines across diverse QA benchmarks, including OBQA,
StrategyQA, and MedQA. Ablation studies confirm the complementary nature of the modules and
highlight their dataset-specific importance.
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A APPENDIX

PROMPT TEMPLATES

This appendix provides the prompt templates used to guide each of the three modules in our distil-
lation framework: Analyzer, Informant, and Reasoner. Each prompt is carefully designed to elicit
module-specific behavior while maintaining consistency across the overall reasoning pipeline.

A.1 ANALYZER PROMPT

The Analyzer module is responsible for decomposing complex questions into focused subquestions.
This decomposition facilitates targeted knowledge retrieval and modular reasoning. The prompt en-
courages the generation of only relevant subquestions, with a fallback response when decomposition
is unnecessary.

Your task is to break down a given complex question
into the most relevant and helpful subquestions.
You will also consider the provided options to
generate subquestions that aid in understanding
and solving the main question effectively. Only
return subquestions that directly aid in answering
the original question, avoiding any that could be
harmful or irrelevant. If the question does not need
breaking down to be answered, return ’No decomposition’.
Otherwise, strictly list the necessary subquestions.
Question: {question}
Options: {options}
Write Subquestions

A.1.1 INFORMANT PROMPT

The Informant module generates concise, focused knowledge snippets in response to each sub-
question. Its goal is to surface grounded and relevant background information without unnecessary
elaboration. The prompt emphasizes brevity, precision, and the avoidance of speculation.

You are an expert assistant with a vast knowledge base.
For the given question, provide a short, concise, and
relevant background without adding any extra
information or questions.
Question: {subquestion}
Write Relevant Knowledge

A.1.2 REASONER PROMPT

The Reasoner module performs structured reasoning by integrating the main question, candidate
options, subquestions, and retrieved knowledge. The prompt enforces a format that encourages
clarity, step-by-step inference, and selection of a final answer from the given options. This supports
interpretability and traceability of the reasoning process.

You are an expert assistant specializing in reasoning
and providing structured answers. Given a main question,
options, subquestions, and relevant knowledge, determine
the correct option based on the reasoning process.
Strictly adhere to the provided format.
Provide the final answer as one of the given
options (e.g., ’ending0’, ’ending1’).
Keep the reasoning concise and structured.
Main Question: {question}
Options: {endings}
Subquestions and Relevant Knowledge:
{subquestions and knowledge}
Write Reasoning and Final Answer

A.1.3 DIRECT REASONING DISTILLATION PROMPT

The Reasoner module performs structured reasoning by integrating the main question, candidate
options, subquestions, and retrieved knowledge. The prompt enforces a format that encourages
clarity, step-by-step inference, and selection of a final answer from the given options. This supports
interpretability and traceability of the reasoning process.
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You are given a multiple-choice question and possible
answer options. Your task is to reason through the
question in a clear, structured way using numbered steps.
Each step should be factual, concise, and contribute
to evaluating the correctness of the options.
The reasoning should resemble a scientific or
biological explanation if relevant.
After the numbered reasoning,
conclude with the Final Answer using the format:

Final Answer: [Correct Option Letter]

Question: {question}
Options: {options}

Write Reasoning and Final Answer

DATASET STATISTICS

Dataset # Examples Format Reasoning Type

OBQA 4957 train / 500 val / 500 test 4-way MCQ 2–3-step inference using core science
facts and common-sense knowledge

StrategyQA 1603 train / 687 val / 687 test Binary (Y/N) Implicit multi-hop reasoning requiring
strategic decomposition

MedQA 10178 train / 1272 val / 1273 test 4-way MCQ Expert-level multi-step clinical reasoning

Table 4: Overview of datasets used in experiments.
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