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ABSTRACT

Graph Neural Networks (GNNs) have shown great promise in tasks like node
and graph classification, but they often struggle to generalize, particularly to
unseen or out-of-distribution (OOD) data. These challenges are exacerbated when
training data is limited in size or diversity. To address these issues, we introduce a
theoretical framework using Rademacher complexity to compute a regret bound on
the generalization error and then characterize the effect of data augmentation. This
framework informs the design of GMM-GDA, an efficient graph data augmentation
(GDA) algorithm leveraging the capability of Gaussian Mixture Models (GMMs)
to approximate any distribution. Our approach not only outperforms existing
augmentation techniques in terms of generalization but also offers improved time
complexity, making it highly suitable for real-world applications.

1 INTRODUCTION

Graphs are a fundamental and ubiquitous structure for modeling complex relationships and interac-
tions. In biology, graphs are employed to represent complex networks of protein interactions and in
drug discovery by modeling molecular relationships. Similarly, in social networks, graphs capture
relationships and community interactions, offering insights into social structures and interactions
(Zeng et al., 2022; Gaudelet et al., 2021; Newman et al., 2002). To address the unique challenges
posed by graph-structured data, GNNs have been developed as a specialized class of neural networks
designed to operate directly on graphs. Unlike traditional neural networks that are optimized for grid-
like data, such as images or sequences, GNNs are engineered to process and learn from the relational
information embedded in graph structures. GNNs have demonstrated state-of-the-art performance
across a range of graph representation learning tasks such as node and graph classification, proving
their effectiveness in various real-world applications (Vignac et al., 2022; Corso et al., 2022; Duval
et al., 2023; Castro-Correa et al., 2024; Chi et al., 2022).

Despite their impressive capabilities, GNNs face significant challenges related to generalization,
particularly when handling unseen or out-of-distribution (OOD) data (Guo et al., 2024; Li et al.,
2022). OOD graphs are those that differ significantly from the training data in terms of graph
structure, node features, or edge types, making it difficult for GNNs to adapt and perform well on
such data. This challenge is also faced when GNNs are trained on small datasets, where the limited
data diversity hampers the model’s ability to generalize effectively. To address these challenges, the
community has explored various strategies to improve the robustness and generalization ability of
GNNs (Abbahaddou et al., 2024; Yang et al., 2022). One promising approach is data augmentation,
which involves artificially expanding the training dataset by introducing variations of the original
graph data. Data augmentation has shown its benefits across different types of data structures such as
images (Krizhevsky et al., 2012) and time series (Aboussalah et al., 2023). For graph data structures,
generating augmented versions of the original graphs, such as by adding or removing nodes and edges
or perturbing node features (Rong et al., 2019; You et al., 2020), allows for the creation of a more
varied training set. Inspired by the success of the Mixup technique in computer vision (Rebuffi et al.,
2021; Dabouei et al., 2021; Hong et al., 2021), additional methods such as G-Mixup and GEOMIX
have been developed to adapt the Mixup technique for graph data (Ling et al., 2023; Han et al.,
2022). These techniques combine different graphs to create new, synthetic training examples, further
enriching the dataset and enhancing the GNN’s ability to generalize to new unseen graph structures.
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In this work, we introduce a novel graph augmentation technique based on Gaussian Mixture Models
(GMMs), which operates at the level of the final hidden representations. Specifically, guided by our
theoretical results, we apply the Expectation-Maximization (EM) algorithm to train a GMM on the
graph representations. We then use this GMM to generate new augmented graph representations
through sampling, enhancing the diversity of the training data.

Contributions. The contributions of our work are as follows:

• Theoretical framework for generalization in GNNs: We introduce a theoretical framework
that rigorously analyzes how graph data augmentation impacts the generalization capabilities
of GNNs. This framework offers new insights into the underlying mechanisms that drive
performance improvements through augmentation.

• Efficient graph data augmentation via GMMs: We propose GMM-GDA, a fast and
efficient graph data augmentation technique, leveraging GMMs. This approach enhances
the diversity of training data while maintaining computational simplicity, making it scalable
for large graph datasets.

• Comprehensive theoretical analysis using influence functions: We perform an in-depth
theoretical analysis of our augmentation strategy through the lens of influence functions, pro-
viding a principled understanding of the approach’s impact on generalization performance.

2 BACKGROUND AND RELATED WORK

Graph Neural Networks. Let G = (V, E) denote a graph, where V represents the set of vertices
and E represents the set of edges. We use L = |V| to denote the number of vertices and m = |E|
to denote the number of edges. For a node v ∈ V , let N (v) be the set of its neighbors, defined as
N (v) = {u : (v, u) ∈ E}. The degree of vertex v is the number of neighbors it has, which is |N (v)|.
A graph is commonly represented by its adjacency matrix A ∈ RL×L, where the (i, j)-th element of
this matrix is equal to the weight of the edge between the i-th and j-th node of the graph and a weight
of zero in case the edge does not exist. Additionally, in some cases, nodes may have associated
feature vectors. We denote these node features by X ∈ RL×D where D is the dimensionality of the
features.

A GNN model consists of multiple neighborhood aggregation layers that use the graph structure and
the feature vectors from the previous layer to generate updated representations for the nodes. Specifi-
cally, GNNs update a node’s feature vector by aggregating information from its local neighborhood.
Consider a GNN model with T neighborhood aggregation layers. Let h(0)

v denote the initial feature
vector of node v, which is the corresponding row in X. At each layer t > 0, the hidden state h

(t)
v of

node v is updated as follows:

a(t)v = AGGREGATE(t)
({

h(t−1)
u : u ∈ N (v)

})
,

h(t)
v = COMBINE(t)

(
h(t−1)
v ,a(t)v

)
,

where AGGREGATE(·) is a permutation-invariant function that combines the feature vectors of v’s
neighbors into an aggregated vector. This aggregated vector, together with the previous feature vector
h
(t−1)
v , is fed to the COMBINE(·) function, which merges these two vectors to produce the updated

feature vector of v. Two popular GNN architechtures are Graph Convolution Networks (GCN) and
Graph Isomorphism Networks (GIN) (Kipf & Welling, 2017; Xu et al., 2019).

After T iterations of neighborhood aggregation, to produce a graph-level representation, GNNs apply
a permutation invariant readout function, e.g., the sum operator, to nodes feature as follows:

hG = READOUT
({

h(T )
v : v ∈ V

})
. (1)

Data Augmentation for Graphs. Graph data augmentation has become an essential aspect of
enhancing the performance and robustness of GNNs. Among the classical techniques, structural
modifications of the graph are widely used to generate augmented training graphs. Key methods in
this category include DropEdge, DropNode, and Subgraph sampling techniques (Rong et al., 2019;
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You et al., 2020). For example, the DropEdge technique randomly removes a subset of edges from the
graph during training, improving the model’s robustness to missing or noisy connections. Similarly,
DropNode removes certain nodes as well as their connections, assuming that the missing part of nodes
will not affect the semantic meaning, i.e., the structural and relational information of the original
graph. Another method is Subgraph, which samples a subgraph from the original graph using random
walk to use as a training graph. By training on these augmented graphs, GNNs can generalize to
unseen graph structures more efficiently.

Beyond classical methods, recent advancements have explored more sophisticated augmentation
techniques, focusing on manipulating graph embeddings and leveraging geometric properties of
graphs. Following the effectiveness of the Mixup technique in computer vision (Rebuffi et al., 2021;
Dabouei et al., 2021; Hong et al., 2021), several works describe variations of the Mixup for graphs.
For example, the Manifold-Mixup model conducts a Mixup operation for graph classification in the
embedding space. This technique interpolates between graph-level embeddings after the READOUT
function, blending different graphs in the embedding space (Wang et al., 2021). G-Mixup (Han et al.,
2022) uses graphons to model the topological structures of each graph class and then interpolates
the graphons of different classes, subsequently generating synthetic graphs by sampling from mixed
graphons across different classes. It is important to note that G-Mixup operates under a significant
assumption: graphs belonging to the same class can be produced by a single graphon. The S-Mixup
method, for a given pair of graphs, determines node-level correspondences between the nodes in
both graphs and subsequently interpolates the graphs (Ling et al., 2023). FGW-Mixup adopts the
Fused Gromov–Wasserstein barycenter as the mixup graphs, but suffers from heavy computation
(Ma et al., 2024). Finally, the GeoMix technique (Zeng et al., 2024) uses mixup graphs on the exact
Gromov-Wasserstein geodesics.

Gaussian Mixture Models. GMMs are probabilistic models used for modeling complex data by
representing them as a mixture of multiple Gaussian distributions. The probability density function
p(x) of a data point x in a GMM with K Gaussian components is given by:

p(x) =

K∑
k=1

πkN (x | µk,Σk), (2)

where πk is the weight of the k-th Gaussian component, with πk ≥ 0 and
∑K

k=1 πk = 1, and
N (x | µk,Σk) is the Gaussian probability density function for the k-th component, defined as:

N (x | µk,Σk) =
1

(2π)d/2 det(Σk)1/2
exp

(
−1

2
(x− µk)

⊤Σ−1
k (x− µk)

)
,

where µk and Σk are respectively the mean vectors and the covariance vectors of the k-th Gaussian
component, and d the dimensionality of x. The parameters of a GMM are typically estimated using
the EM algorithm (Dempster et al., 1977), which alternates between estimating the membership
probabilities of data points for each Gaussian component (Expectation step) and updating the
parameters of the Gaussian distributions (Maximization step). GMMs are a powerful tool in statistics
and machine learning and are used for various purposes, including clustering and density estimation
(Ozertem & Erdogmus, 2011; Naim & Gildea, 2012; Zhang et al., 2021).

3 GMM-GDA: GAUSSIAN MIXTURE MODEL FOR GRAPH DATA
AUGMENTATION

In this section, we begin by introducing the mathematical framework for graph data augmentation
and its connection to the generalization of GNNs. Following that, we present our proposed model
GMM-GDA, which is based on GMMs for graph augmentation.

3.1 MATHEMATICAL FORMALISM

We focus on the task of graph classification, where the objective is to classify graphs into predefined
categories. Given a training dataset of graphs Dtrain = {(Gn, yn) | n = 1, . . . , N}, Gn is the n-th
graph and yn is its corresponding label belonging to a set {0, . . . , C}. Each graph Gn is represented as
a tuple (Vn, En,Xn), where Vn denotes the set of nodes with cardinality Ln = |Vn|, En ⊆ Vn × Vn

3
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is the set of edges, and Xn ∈ RLn×D is the node feature matrix of dimension D. The objective
is to train a GNN f(·, θ) that can accurately predict the class labels for unseen graphs in the test
set Dtest = {Gtest

n | n = 1, . . . , Ntest}. The classical training approach involves minimizing the
following loss function,

L =
1

N

N∑
n=1

ℓ(f(Gn, θ), yn), (3)

where ℓ denotes the cross-entropy loss function. To improve the robustness and generalization
ability of the GNN, we introduce data augmentation for graphs. For each graph Gn, we generate an
augmented graph Gλ

n using a data augmentation strategy Aλ, where λ is a parameter sampled from a
prior distribution P , such as a uniform distribution. The data augmentation strategy Aλ is defined as
a function: Aλ : Gn ∈ G → Gλ

n = A(Gn, λ) ∈ G, where G is the set of all possible graphs with n
nodes. With the augmented data, the loss function is modified to account for multiple augmented
versions of each graph:

Laug =
1

N

N∑
n=1

Eλ∼P
[
ℓ(f(Gλ

n , θ), yn)
]
. (4)

For simplicity, we denote the loss for the original graph as ℓ(f(Gn, θ), yn) = ℓ(Gn, θ) and the loss
for an augmented graph as Eλ∼P

[
ℓ(f(Gλ

n , θ), yn)
]
= ℓaug(Gn, θ). The loss ℓaug is empirically

estimated as follows,

ℓaug(Gn, θ) = Eλ∼P
[
ℓ(f(Gλ

n , θ), yn)
]
≃ 1

M

M∑
m=1

ℓ(f(Gλn,m
n , θ), yn), (5)

where M denotes the number of augmented samples per graph and {λn,m}Mm=1 are the param-
eters sampled from P for each training graph Gn. To understand the impact of data augmenta-
tion on the graph classification performance, we analyze the effect of sampling strategy P on the
generalization risk EG∼G [ℓ(G, θ)]. More specifically, we want to study the generalization error
η = EG∼G [ℓ(G, θaug)]− EG∼G [ℓ(G, θ⋆)], where θaug and θ⋆ are the optimal GNN parameters for
the augmented and non-augmented settings,

θ⋆ = argmin
θ

EG∼G [ℓ(G, θ)] , θaug = argmin
θ

EG∼G [ℓaug(G, θ)] = argmin
θ

EG∼GEλ∼P
[
ℓ(Gλ, θ)

]
,

and which can be estimated empirically as follows,

θ̂ = argmin
θ

1

N

N∑
n=1

ℓ(Gn, θ),

θ̂aug = argmin
θ

1

N

N∑
n=1

Eλ∼P
[
ℓ(Gλ

n , θ)
]
≃ argmin

θ

1

N ×M

N∑
n=1

M∑
m=1

ℓ(Gλn,m
n , θ).

By theoretically studying the generalization error η, we aim to quantify the effect of each augmentation
strategy on the overall classification performance, providing insights into the benefits and potential
trade-offs of data augmentation in graph-based learning tasks. In Theorem 3.1, we present a regret
bound of the generalization error using Rademacher complexity defined as follows Yin et al. (2019),

R(ℓ) = Eϵn∼Pϵ

[
sup
θ∈Θ

∣∣∣∣∣ 1N
N∑

n=1

ϵnℓ(Gn, θ)

∣∣∣∣∣
]
,

where ϵn are independent Rademacher variables, taking values +1 or −1 with equal probability,
Pϵ is the Rademacher distribution,and Θ is the hypothesis class. Rademacher complexity is a
fundamental concept in statistical learning which indicates how well a learned function will perform
on unseen data (Shalev-Shwartz & Ben-David, 2014). Lower Rademacher complexity indicates a
better generalization.
Theorem 3.1. Let ℓ be a classification loss function with LLip as a Lipschitz constant such as
ℓ(·, ·) ∈ [0, 1]. Then, with a probability at least 1− δ over the samples Dtrain, we have,

EG∼G

[
ℓ(G, θ̂aug)

]
−EG∼G [ℓ(G, θ⋆)] ≤ 2R(ℓaug)+5

√
2 log(4/δ)

N
+2LLipEG∼GEλ∼P

[∥∥Gλ − G
∥∥] .
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Moreover, we have,

R(ℓaug) ≤ R(ℓ) + max
n∈{1,...,N}

LLipEλ∼P
[∥∥Gλ

n − Gn

∥∥] .
Theorem 3.1 relies on the assumption that the loss function is Lipschitz continuous. This assumption
is realistic given that the input node features and graph structures in real-world datasets are typically
bounded. Additionally, we can ensure that the loss function is bounded within [0, 1] by composing any
standard classification loss with a strictly increasing function that maps values to the interval [0, 1]. A
direct implication of Theorem 3.1 is that if we chose the right data augmentation strategy Aλ that min-
imizes the expected distance between original graphs and augmented ones EG∼GEλ∼P

[∥∥Gλ − G
∥∥],

we can guarantee with a high probability that the data augmentation decreases both the Rademacher
complexity and the generalization risk. On the other hand, if the distance is large, we cannot guarantee
that data augmentation will outperform the normal training setting.

The findings of Theorem 3.1 hold for all norms defined on the graph input space. Specifically, let us
consider the graph space (G, ∥·∥G) and the feature space (X, ∥·∥X), where ∥·∥G and ∥·∥X denote the
norms applied to the graph structure and features, respectively. Assuming a maximum number of
nodes per graph, which is a realistic assumption for real-world data, the product space G × X is a
finite-dimensional real vector space, and all the norms are equivalent. Thus, the choice of norm does
not affect the theorem, as long as the Lipschitz constant is adjusted accordingly. Additional details
and insights on the graph distance metrics can be found in Appendix G.

3.2 PROPOSED APPROACH

Based on the theoretical findings, it is crucial to employ a data augmentation technique that effectively
controls the term EG∼GEλ∼P

[∥∥Gλ − G
∥∥], to achieve stronger generalization guarantees. This

consideration leads us to explore universal approximators, particularly GMMs, which are well-suited
for this purpose, and can effectively approximate any data distribution, c.f. Theorem 3.2.
Theorem 3.2. (Goodfellow et al., 2016), Page 65. A Gaussian mixture model is a universal ap-
proximator of densities, in the sense that any smooth density can be approximated with any specific
nonzero amount of error by a Gaussian mixture model with enough components.

To achieve this, we first train a standard GNN on the graph classification task using the training
set. Next, we obtain embeddings for all training graphs using the READOUT output, resulting in
H = {hGn

s.t. Gn ∈ Dtrain}. These embeddings are used as the basis for generating augmented
training graphs. We then partition the training set Dtrain by classes, such that Dtrain =

⋃
c Dc

where Dc = {Gn ∈ Dtrain , yn = c}. The objective is to learn new graph representations from these
embeddings, and create augmented data for improved training.

We use the EM algorithm to learn the best-fitting GMM for the embeddings of each cluster Dc,
denoted as Hc = {hGn

s.t. Gn ∈ Dc}. The EM algorithm finds maximum likelihood estimates for
each cluster Hc. We first initialize the GMM distribution as in Eq. 2. Given a number of Gaussian
distributions K, we specifically initialize the mean vector µk, the covariance vector Σk, and the
weight πk of each Gaussian distribution. The process then evolves iteratively: (i) Evaluate the
posterior probabilities {γik}i,k, using the values of the mean vectors and covariance matrix (E-Step)
Watanabe et al. (2010).

γik =
πkN (xi | µk,Σk)∑K
j=1 πjN (xi | µj ,Σj)

.

(ii) Estimate new parameters µk, Σk and πk with the updated values of {γik}i,k (M-Step),

µk =

∑N
i=1 γikxi∑N
i=1 γik

, πk =
1

N

N∑
i=1

γik,

Σk =

∑N
i=1 γik(xi − µk)(xi − µk)

⊤∑N
i=1 γik

.

Once a GMM distribution pc is fitted for each cluster Dc, we use this GMM to generate new
augmented data by sampling hidden representations from pc. Each new sample drawn from pc is

5
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Output of
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Figure 1: Illustration of GMM-GDA: Step 1. We first train the GNN on the graph classification task
using the training graphs. Step 2. Next, we utilize the weights from the message passing layers to
generate graph representations for the training graphs. Step 3. A GMM is then fit to these graph
representations, from which we sample new graph representations. Step 4. Finally, we fine-tune the
post-readout function for the graph classification task, using both the original training graphs and the
augmented graph representations. For inference on the test set, we use the message passing weights
trained in Step 1 and the post-readout function weights trained in Step 4.

then assigned the corresponding cluster label c, ensuring that the augmented data inherits the label
structure from the original clusters. After merging the hidden representations of both the original
training data and the augmented graph data, we finetune the post-readout function, i.e., the final
part of the GNN, which occurs after the readout function, on the graph classification task. Since the
post-readout function consists of a linear layer followed by a Softmax function, the finetuning process
is relatively fast. To evaluate our model during inference on test graphs, we input the test graphs
into the GNN layers trained in the initial step to compute the hidden graph representations. For the
post-readout function, we use the weights obtained from the second stage of training. Algorithm 1
and Figure 1 provide a summary of this approach.

Algorithm 1: Detailed Steps in the GMM-GDA Algorithm

Inputs: GNN of T layers f(·, θ) = Ψ ◦ READOUT
(
∪T

t=0{AGGREGATE(t) ◦ COMBINE(t)(·)}
)

where Ψ is the post-readout function, Graph classification dataset D, Loss function L,
Steps:

1. Train the GNN f on the graph classification task on the training set Dtrain;
2. Use the trained Message Passing layers and the readout function to generate graph representation

H = {hGn s.t. Gn ∈ Dtrain} for the training set;
3. Partition the training set Dtrain by classes, such that Dtrain =

⋃
c Dc where

Dc = {Gn ∈ Dtrain , yn = c};
foreach c ∈ {0, . . . , C} do

3.1. Fit a GMM distribution pc on the graph representations Hc = {hGn s.t. Gn ∈ Dc};
3.2. Sample new graph representation H̃c = {h̃ s.t. h̃ ∼ pc} from the distribution pc;
3.3. Include the sampled representations H̃c with trained representations Hc = Hc ∪ H̃c;

end foreach
4. Finetune the post-Readout function Ψ on the graph classification task directly on

the new training set H = ∪cHc.

3.3 TIME COMPLEXITY

One advantage of our approach is its efficiency, as it generates new augmented graph representations
with minimal computational time. Unlike baseline methods, which apply augmentation strategies to
each individual training graph (or pair of graphs in Mixup-based approaches) separately, our method
learns the distribution of graph representations across the entire training dataset simultaneously using
the EM algorithm (Ng, 2000). If N = |Dtrain| is the number of training graphs in the dataset, d is
the dimension of graph hidden representations {hG , G ∈ Dtrain}, and K is the number of Gaussian
Components in the GMM, then the complexity to fit a GMM on T iterations is O(N ·K ·T ·d2) (Yang

6
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et al., 2012). We compare the data augmentation times of our approach and the baselines in Table 7.
Due to our different training scheme, i.e., where we first train the message passing layers and then
train the pooling function after learning the GMM distribution, we measured the total backpropagation
time and compared it with the backpropagation time of the baseline methods. The training time
of baseline models varies depending on the augmentation strategy used, specifically, whether it
involves pairs of graphs or individual graphs. Even in cases where a graph augmentation has a low
computational cost for some baselines, training can still be time consuming as multiple augmented
graphs are required to achieve satisfactory test accuracy. In contrast, GMM-GDA generates only one
augmented graph per training graph, demonstrating effective generalization on the test set. Overall,
our data augmentation approach is highly efficient during the sampling of augmented data, with
minimal impact on the overall training time.

3.4 ANALYZING THE GENERALIZATION ABILITY OF THE AUGMENTED GRAPHS VIA
INFLUENCE FUNCTIONS

We used influence functions (Law, 1986; Koh & Liang, 2017; Kong et al., 2021) to understand the
impact of augmented data on the model performance on the test set, and thus motivate the use of
data augmentation strategy which is specific to the model architecture and the model weights. In
Theorem 3.3, we derive a closed-formula for the impact of adding an augmented graph Gλn,m

n on the
GNN’s performance on a test graph Gtest

k , where the GNN is trained solely on the original training
set, without including the augmented graph.

Theorem 3.3. Given a test graph Gk from the test set, let θ̂ = argminθ L be the GNN parameters
that minimize the objective function in Eq. 3. The impact of upweighting the objective function L to
Laug
n,m = L+ ϵn,mℓ(Gλn,m

n , θ), where Gλn,m
n is an augmented graph candidate of the training graph

Gn and ϵn,m is a sufficiently small perturbation parameter, on the model performance on the test
graph Gtest

k is given by

dℓ(Gtest
k , θ̂ϵn,m)

dϵn,m
= −∇θℓ(Gtest

k , θ̂)H−1

θ̂
∇θℓ(Gλn,m

n , θ̂),

where θ̂ϵn,m = argminθ Laug
n,m denotes the parameters that minimize the upweighted objective

function Laug
n,m and Hθ̂ = ∇2

θL(θ̂) is the Hessian Matrix of the loss w.r.t the model parameters.

We provide the proof of Theorem 3.3 in Appendix B. The influence scores are useful for evaluating
the effectiveness of the augmented data on each test graph. The strength of influence function theory
lies in its ability to analyze the effect of adding augmented data to the training set without actually
retraining on this data. As noticed, these influence scores depend not only on the augmented graphs
themselves, but also on the model’s weights and architecture. This highlights the need for a graph
data augmentation strategy tailored specifically to the GNN backbone in use, as opposed to traditional,
techniques like DropNode, DropEdge, and G-Mixup, which are general-purpose methods that can be
applied with any GNN architecture.

We can measure the average influence I(Gλn,m
n ) of a augmented graph Gλn,m

n on the whole test set
by averaging the derivatives as follows,

I(Gλn,m
n ) =

−1

|Dtest|
∑

Gtest
k ∈Dtest

dℓ(Gtest
k , θ̂ϵn,m

)

dϵn,m
.

A negative value of I(Gλn,m
n ) indicates that adding the augmented data to the training set would

increase the prediction loss on the test set, negatively affecting the GNN’s generalization. In contrast,
a good augmented graph is one with a postive I(Gλn,m

n ), indicating improved generalization. In
Figure 2, we present the density of the average influence scores of each augmented data on the test
set.
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Figure 2: The density of the average influence scores of each augmented data on the test set.

4 EMPIRICAL EVALUATION

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate our model on five widely used datasets from the GNN literature, specifically
IMDB-BINARY, IMDB-MULTI, PROTEINS, MUTAG, and DD, all sourced from the TUD Bench-
mark (Morris et al., 2020). These datasets consist of either molecular or social graphs. Detailed
statistics for each dataset are provided in Table 8 in Appendix F.

Baselines. We benchmark the performance of our approach against the state-of-the-art graph data
augmentation strategies. In particular, we consider the DropNode (You et al., 2020), DropEdge (Rong
et al., 2019), SubMix (Yoo et al., 2022), G-Mixup (Han et al., 2022) and GeoMix (Zeng et al., 2024).

Implementation Details. We used the PyTorch Geometric (PyG) open-source library, licensed under
MIT (Fey & Lenssen, 2019). The experiments were conducted on an RTX A6000 GPU. For the
datasets from the TUD Benchmark, we used a size base split. We utilized two GNN architectures,
GIN and GCN, both consisting of two layers with a hidden dimension of 32. The GNN was trained
on graph classification tasks for 300 epochs with a learning rate of 10−2 using the Adam optimizer
Kingma & Ba (2014). To model the graph representations of each class, we fit a GMM using the
EM algorithm, running for 100 iterations or until the average lower bound gain dropped below 10−3.
The number of Gaussians used in the GMM is provided in Table 9 of Appendix F. In 5 of Appendix
D, we also present the performance of using the Variational Bayesian estimation (VB) instead of
EM algorithm Tzikas et al. (2008). After generating new graph representations from each GMM, we
fine-tuned the post-readout function for 100 epochs, maintaining the same learning rate of 10−2.

Computation of Influence Scores. Computing and inverting the Hessian matrix of the empirical risk
is computationally expensive, with a complexity of O(N × p2 + p3), where p = |θ| is the number of
parameters in the GNN. To mitigate the cost of explicitly calculating the Hessian matrix, we employ
implicit Hessian-vector products (iHVPs), following the approach outlined in Koh & Liang (2017).

4.2 EXPERIMENTAL RESULTS

On the Generalization of GNN. In Tables 2 and 1, we compare the test accuracy of our data
augmentation strategy against baseline methods. Overall, our proposed approach consistently achieves
the best or highly competitive performance for most of the datasets. Additionally, we observed that the
results of the baseline methods vary depending on the GNN backbone, motivating further investigation
using influence functions. As demonstrated in Theorem 3.3, the gradient, and more generally, the
model architecture, significantly influence how augmented data impacts the model’s performance on
the test set.

Robustness to Structure Corruption. Besides generalization, we assess the robustness of our data
augmentation strategy, following the methodology outlined by (Zeng et al., 2024). Specifically, we
test the robustness of data augmentation strategies against graph structure corruption by randomly
removing or adding 10% or 20% of the edges in the training set. By corrupting only the training
graphs, we introduce a distributional shift between the training and testing datasets. This approach

8
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Table 1: Classification accuracy (± standard deviation) on different benchmark node classification
datasets for the data augmentation baselines based on the GCN backbone. The higher the accuracy
(in %) the better the model. Highlighted are the first, second best results.

Model IMDB-BINARY IMDB-MULTI MUTAG PROTEINS DD

No Aug. 73.00 (4.94) 47.73 (2.64) 73.92 (5.09) 69.99 (5.35) 69.69 (2.89)
DropEdge 71.70 (5.42) 45.67 (2.46) 73.39 (8.86) 70.07 (3.86) 69.35 (3.37)
DropNode 74.00 (3.44) 43.80 (3.54) 73.89 (8.53) 69.81 (4.61) 69.01 (3.95)
SubMix 72.70 (5.59) 46.00 (2.44) 77.13 (9.69) 67.57 (4.56) 70.11 (4.48)
G-Mixup 72.10 (3.27) 48.33 (3.06) 88.77 (5.71) 65.68 (5.03) 61.20 (3.88)
GeoMix 69.69 (3.37) 49.80 (4.71) 74.39 (7.37) 69.63 (5.37) 68.50 (3.74)
GMM-GDA 71.00 (4.40) 49.82 (4.26) 76.05 (6.47) 70.97 (5.07) 71.90 (2.81)

Table 2: Classification accuracy (± standard deviation) on different benchmark node classification
datasets for the data augmentation baselines based on the GIN backbone. The higher the accuracy (in
%) the better the model. Highlighted are the first, second best results.

Model IMDB-BINARY IMDB-MULTI MUTAG PROTEINS DD

No Aug. 70.30 (3.66) 48.53 (4.05) 83.42 (11.82) 69.54 (3.61) 68.00 (3.18)
DropEdge 70.40 (4.03) 46.80 (3.91) 74.88 (9.62) 68.27 (5.21) 67.82 (4.46)
DropNode 70.30 (3.49) 45.20 (4.24) 75.53 (7.89) 65.40 (4.71) 69.01 (3.95)
SubMix 72.50 (4.98) 48.13 (2.12) 81.90 (9.21) 70.44 (2.58) 68.59 (5.04)
G-Mixup 70.70 (3.10) 47.73 (4.95) 87.77 (7.48) 68.82 (3.48) 63.91 (2.09)
GeoMix 70.60 (4.61) 47.20 (3.75) 81.90 (7.55) 69.80 (5.33) 68.34 (5.30)
GMM-GDA 71.70 (4.24) 49.20 (2.06) 88.83 (5.02) 71.33 (5.04) 68.61 (4.62)

allows us to evaluate GMM-GDA’s ability to generalize well and predict the labels of test graphs,
which can be considered OOD examples. The results of these experiments are presented in Table 3 for
the IMDB-BINARY, IMDB-MULTI, PROTEINS, and DD datasets. As noted, our data augmentation
strategy exhibits the best test accuracy in all cases and improves model robustness against structure
corruption.

Influence Functions. In Figure 2, we show the density distribution of the average influence of
augmented data sampled using GMM-GDA. For the MUTAG and PROTEINS datasets, we observe
that GMM-GDA data augmentation has a positive impact on both GCN and GIN models. In contrast,
for the DD dataset, GMM-GDA shows no effect on GIN, while it generates many augmented samples
with positive values of the influence scores on GCN, thereby enhancing its performance. These
findings are consistent with the empirical results presented in Tables 1 and 2.

Configuration Models. As part of an ablation study, we propose a simple yet effective graph
augmentation strategy inspired by Configuration Models (Newman, 2013). As shown in Theorem
3.1, the objective is to control the term EG∼GEλ∼P [∥hGλ − hG∥], which can be achieved by
regulating the distance between the original and the sampled graph within the input manifold, i.e.,
EG∼GEλ∼P

[∥∥Gλ − G
∥∥]. The approach involves generating a sampled version of each training

graph while preserving its label by breaking a fraction q of the existing edges (a percentage of the
total number of edges |En|) into half-edges, using a Bernoulli prior distribution B(r) with probability
r. This process continues until all half-edges are connected. The strength of this method lies in its
simplicity and in preserving the degree distribution, as the degree of each node and the total number
of edges in the graph remain unchanged. If the distance norm in the input manifold is the L1 distance
between adjacency matrix, |E| × r × r is an upper bound of EG∼GEλ∼P

[∥∥Gλ − G
∥∥], where |E|

is the average of number of edges in training graphs. The results of this experiment are available
in Appendix C. As noticed, the configuration model-based graph augmentation method performs
competitively with the baselines and even outperforms them in certain cases. This underscores
the importance of Theorem 3.1. When compared to our approach GMM-GDA, the latter gives
better results across different datasets and GNN backbones. This difference is primarily due to
the configuration model based approach being model-agnostic, whereas GMM-GDA leverages the
model’s weights and architecture, as explained in Section 3.4 and supported by Theorem 3.3.
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Table 3: Robustness against structure corruption: We present the Classification accuracy (± standard
deviation). We highlighted the best data augmentation strategy bold. For this experiment, we use the
GCN backbone.

Noise Budget 10% 20%

Dataset IMDB-BINARY IMDB-MULTI PROTEINS DD IMDB-BINARY IMDB-MULTI PROTEINS DD

DropNode 66.40 (5.51) 44.46 (2.13) 69.18 (4.87) 65.79 (3.23) 64.80 (5.01) 43.06 (2.86) 67.73 (6.43) 64.35 (4.56)
DropEdge 66.70 (5.10) 43.80 (3.11) 69.36 (5.90) 68.42 (4.76) 63.20 (6.30) 41.80 (3.15) 68.10 (5.05) 67.06 (2.53)
SubMix 69.30 (3.76) 46.73 (2.67) 69.80 (4.73) 68.04 (7.64) 63.70 (5.64) 43.73 (3.60) 69.09 (4.58) 59.18 (6.29)
GeoMix 72.20 (5.19) 49.20 (4.31) 70.25 (4.75) 68.00 (3.64) 70.90 (3.85) 48.86 (5.18) 68.36 (6.01) 67.31 (3.91)
G-Mixup 68.30 (5.13) 45.53 (4.12) 61.71 (5.81) 51.26 (8.76) 63.20 (5.54) 44.00 (4.63) 46.63 (5.05) 43.71 (7.12)

NoisyGNN 70.50 (4.71) 40.66 (3.12) 69.45 (4.32) 64.18 (5.71) 63.50 (5.43) 38.66 (4.12) 69.99 (3.78) 63.24 (5.02)
GMM-GDA 72.80 (2.99) 49.36 (4.53) 70.61 (4.30) 68.68 (3.72) 73.10 (3.04) 49.53 (3.54) 70.32 (4.04) 69.01 (3.09)

5 CONCLUSION

In this paper, we introduced a novel approach for graph data augmentation that enhances both the
generalization and robustness of GNNs. Our method uses Gaussian Mixture Models (GMMs) applied
at the output level of the Readout function, an approach motivated by theoretical findings. Using the
universal approximation property of GMMs, we can sample new graph representations to effectively
control the upper bound of Rademacher Complexity, ensuring improved generalization of Graph
Neural Networks (GNNs), as shown in Theorem 3.1. Through extensive experiments on widely
used datasets, we demonstrated that our approach not only exhibits strong generalization ability but
also maintains robustness against structural perturbations. An additional advantage of our method is
its efficiency in terms of time complexity. Unlike baselines that generate augmented data for each
individual or pair of training graphs, our approach fits the GMM to the entire training dataset at once,
allowing for fast graph data augmentation without incurring significant additional backpropagation
time.
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A PROOF OF THEOREM 3.1

In this section, we provide a detailed proof of Theorem 3.1, aiming to derive a theoretical upper
bound for both the generalization gap and the Rademacher complexity. Theorem 3.1 Let ℓ be a
classification loss function with LLip as a Lipschitz constant such as ℓ(·, ·) ∈ [0, 1]. Then, with a
probability at least 1− δ over the samples Dtrain, we have,

EG∼G

[
ℓ(G, θ̂aug)

]
−EG∼G [ℓ(G, θ⋆)] ≤ 2R(ℓaug)+5

√
2log(4/δ)

N
+2LLipEG∼GEλ∼P

[∥∥Gλ − G
∥∥] .

Moreover, we have,

R(ℓaug) ≤ R(ℓ) + max
n∈{1,...,N}

LLipEλ∼P
[∥∥Gλ

n − Gn

∥∥] .
Proof. We will decompose EG∼G

[
ℓ(G, θ̂aug)

]
− EG∼G [ℓ(G, θ⋆)] into a finite sum of 5 terms as

follows,
EG∼G

[
ℓ(G, θ̂aug)

]
− EG∼G [ℓ(G, θ⋆)] = u1 + u2 + u3 + u4 + u5

where,

u1 = EG∼G

[
ℓ(G, θ̂aug)

]
− EG∼G

[
Eλ∼P

[
ℓ(Gλ, θ̂aug)

]]
,

u2 = EG∼G

[
Eλ∼P

[
ℓ(Gλ, θ̂aug)

]]
− 1

N

N∑
n=1

Eλ∼P

[
ℓ(Gλ

n , θ̂aug)
]
,

u3 =
1

N

N∑
n=1

Eλ∼P

[
ℓ(Gλ

n , θ̂aug)
]
− 1

N

N∑
n=1

Eλ∼P
[
ℓ(Gλ

n , θ⋆)
]
,

u4 =
1

N

N∑
n=1

Eλ∼P
[
ℓ(Gλ

n , θ⋆)
]
− EG∼G

[
Eλ∼P

[
ℓ(Gλ, θ⋆)

]]
,

u5 = EG∼G

[
Eλ∼P

[
ℓ(Gλ, θ⋆)

]]
− EG∼G [ℓ(G, θ⋆)] .

We upperbound each of the terms in the sum. We get,

u1 + u5 = EG∼G

[
ℓ(G, θ̂aug)

]
− EG∼G

[
Eλ∼P

[
ℓ(Gλ, θ̂aug)

]]
+ EG∼G

[
Eλ∼P

[
ℓ(Gλ, θ⋆)

]]
− EG∼G [ℓ(G, θ⋆)]

≤
∣∣∣EG∼G

[
ℓ(G, θ̂aug)

]
− EG∼G

[
Eλ∼P

[
ℓ(Gλ, θ̂aug)

]]∣∣∣+ ∣∣EG∼G

[
Eλ∼P

[
ℓ(Gλ, θ⋆)

]]
− EG∼G [ℓ(G, θ⋆)]

∣∣
≤ 2 sup

θ∈Θ

∣∣EG∼G

[
Eλ∼P

[
ℓ(Gλ, θ)

]]
− EG∼G [ℓ(G, θ)]

∣∣
≤ 2 sup

θ∈Θ

∣∣EG∼G

[
Eλ∼P

[
ℓ(Gλ, θ)

]
− ℓ(G, θ)

]∣∣
≤ 2 sup

θ∈Θ

∣∣EG∼G

[
Eλ∼P

[
ℓ(Gλ, θ)− ℓ(G, θ)

]]∣∣
≤ 2LLip sup

θ∈Θ
EG∼GEλ∼P

[∥∥Gλ − G
∥∥] .

For the term u4, we apply McDiarmid’s inequality. Since the classification loss satisfy ℓ(·) ∈ [0, 1],
we get for k ∈ {0, . . . , N},

∀{(Gn, yn)}Nn=1, {(G′
n, y

′
n)}Nn=1, θ, such that ∀n ̸= k, Gn = G′

n and Gk ̸= G′
k:

∣∣∣∣∣ 1N
N∑

n=1

Eλ∼P [ℓ(Gn, θ)]−
1

N

N∑
n=1

Eλ∼P [ℓ(G′
n, θ)]

∣∣∣∣∣ = 1

N

∣∣∣∣∣
N∑

n=1

Eλ∼P [ℓ(Gn, θ)− ℓ(G′
n, θ)]

∣∣∣∣∣
≤ 1

N
|Eλ∼P [ℓ(Gk, θ)− ℓ(G′

k, θ)]|

≤ 2/N.
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The first equality is obtained by your claim that ∀n ̸= k, Gn = G′
n and Gk ̸= G′

k, the last
inequality is obtained by the fact that ℓ(·) ∈ [0, 1].

Thus,

∀t > 0, P (u4 ≥ t) = P

(
1

N

N∑
n=1

Eλ∼P
[
ℓ(Gλ

n , θ⋆)
]
− EG∼G

[
Eλ∼P

[
ℓ(Gλ, θ⋆)

]]
≥ t

)

≤ exp

(
− 2t2∑N

n=1 4/N
2

)

= exp

(
−Nt2

2

)
.

Therefore, for δ ∈]0, 1], and for t =
√
2log(1/δ)/(N), i.e. exp

(
−Nt2

2

)
= δ., we have,

P
(
u4 ≥

√
2log(1/δ)/(N)

)
≤ δ.

Therefore,

P

(
u4 <

√
2log(1/δ)

N

)
= 1− P

(
u4 ≥

√
2log(1/δ)

N

)
≥ 1− δ.

Thus, with a probability of at least 1− δ,

u4 ≤
√

2log(1/δ)

N
<

√
2log(4/δ)

N
.

Moreover, Rademacher complexity holds for u2,

u2 = EG∼G

[
Eλ∼P

[
ℓ(Gλ, θ̂aug)

]]
− 1

N

N∑
n=1

Eλ∼P

[
ℓ(Gλ

n , θ̂aug)
]
≤ 2R(ℓaug) + 4

√
2log(4/δ)

N
.

The above inequality tells us that the true risk EG∼G

[
Eλ∼P

[
ℓ(Gλ, θ̂aug)

]]
is bounded by the

empirical risk 1
N

∑N
n=1 Eλ∼P

[
ℓ(Gλ

n , θ̂aug)
]

plus a term depending on the Rademacher complexity
of the augmented hypothesis class and an additional term that decreases with the size of the sample
N .

Additionally, since θ̂aug is the optimal parameter for the loss 1
N

∑N
n=1 Eλ∼P

[
ℓ(Gλ

n , θ)
]
, thus,

u3 ≤ 0

By summing all the inequalities, we conclude that,

EG∼G

[
ℓ(G, θ̂aug)

]
−EG∼G [ℓ(G, θ⋆)] < 2R(ℓaug)+5

√
2log(4/δ)

N
+2LLipEG∼GEλ∼P

[∥∥Gλ
n − Gn

∥∥] .
14
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Part 2 of the proof.

R(ℓaug)−R(ℓ) = Eϵn∼Pϵ

[
sup
θ∈Θ

∣∣∣∣∣ 1N
N∑

n=1

ϵnℓaug(Gn, θ)

∣∣∣∣∣− sup
θ∈Θ

∣∣∣∣∣ 1N
N∑

n=1

ϵnℓ(Gn, θ)

∣∣∣∣∣
]

≤ Eϵn∼Pϵ

[
sup
θ∈Θ

∣∣∣∣∣ 1N
N∑

n=1

ϵnℓaug(Gn, θ)−
1

N

N∑
n=1

ϵnℓ(Gn, θ)

∣∣∣∣∣
]

= Eϵn∼Pϵ

[
sup
θ∈Θ

∣∣∣∣∣ 1N
N∑

n=1

ϵn (ℓaug(Gn, θ)− ℓ(Gn, θ))

∣∣∣∣∣
]

≤ Eϵn∼Pϵ

[
sup
θ∈Θ

1

N

N∑
n=1

|ϵn (ℓaug(Gn, θ)− ℓ(Gn, θ))|

]

≤ sup
θ∈Θ

1

N

N∑
n=1

|ℓaug(Gn, θ)− ℓ(Gn, θ)|

= sup
θ∈Θ

1

N

N∑
n=1

∣∣Eλ∼P
[
ℓ(Gλ

n , θ)− ℓ(Gn, θ)
]∣∣

≤ max
n∈{1,...,N}

LLipEλ∼P
[∥∥Gλ

n − Gn

∥∥] .

B PROOF OF THEOREM 3.3

In this section, we present the detailed proof of Theorem 3.3, which allows us to e perform an in-depth
theoretical analysis of our augmentation strategy through the lens of influence functions.

Theorem 3.3 Given a test graph Gk from the test set, let θ̂ = argminθ L be the GNN parameters that
minimize the objective function in Equation 3. The impact of upweighting the objective function L to
Laug
i,j = L+ ϵn,mℓ(Gλn,m

n , θ), where Gλn,m
n is an augmented graph candidate of the training graph Gn

and ϵn,m is a sufficiently small perturbation parameter, on the model performance on the test graph
Gtest
k is given by

dℓ(Gtest
k , θ̂ϵn,m

)

dϵn,m
= −∇θℓ(Gtest

k , θ̂)H−1

θ̂
∇θℓ(Gλn,m

n , θ̂),

where θ̂ϵn,m
= argminθ L

aug
n,m denotes the parameters that minimize the upweighted objective

function Laug
n,m and Hθ̂ = ∇2

θL(θ̂) is the Hessian Matrix of the loss w.r.t the model parameters.

Proof. Lets Gλn,m
n be an augmented graph candidate of the training graph Gn and ϵn,m is a sufficiently

small perturbation parameter. The parameters θ̂ and θ̂ and θ̂ϵn,m
the parameters that minimize the

empirical risk on the train set, i.e.,

θ̂ = argmin
θ

L.

θ̂ϵn,m
= argmin

θ
Laug
n,m = argmin

θ
L+ ϵn,mℓ(Gλn,m

n , θ).

Therefore, we examine its firstorder optimality conditions,

0 = ∇θ̂L (6)

0 = ∇θ̂ϵn,m

(
L+ ϵn,mℓ(Gλn,m

n , θ)
)
. (7)
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Using Taylor Expansion, we now develop the Equation 7. We have limϵn,m→0 θ̂ϵn,m
= θ̂, thus,

0 ≃
[
∇θ̂L(θ̂) + ϵn,m∇θ̂ℓ(G

λn,m
n , θ̂)

]
+
[
∇2

θ̂
L(θ̂) + ϵn,m∇2

θ̂
ℓ(Gλn,m

n , θ̂)
] (

θ̂ϵn,m
− θ̂
)
.

Therefore,

θ̂ϵn,m
− θ̂ = −

[
∇2

θ̂
L(θ̂) + ϵn,m∇2

θ̂
ℓ(Gλn,m

n , θ̂)
]−1 [

∇θ̂L(θ̂) + ϵn,m∇θ̂ℓ(G
λn,m
n , θ̂)

]
.

Dropping the ◦(ϵn,m) terms, and using the Equation 6, i.e. ∇θ̂L = 0, we conclude that,

θ̂ϵn,m
− θ̂

ϵn,m
= −

[
∇2

θ̂
L(θ̂)

]−1

∇θ̂ℓ(G
λn,m
n , θ̂).

Therefore,

dθ̂ϵn,m

dϵn,m
≃

θ̂ϵn,m
− θ̂

ϵn,m
= −

[
∇2

θ̂
L(θ̂)

]−1

∇θ̂ℓ(G
λn,m
n , θ̂).

dℓ(Gtest
k , θ̂ϵn,m)

dϵn,m
=

dℓ(Gtest
k , θ̂ϵn,m)

dθ̂ϵn,m

dθ̂ϵn,m

dϵn,m
.

C CONFIGURATION MODELS

In this section, we present a novel adaptation of Configuration Models as a graph data augmentation
technique for GNN. Configuration Models Newman (2013) enable the generation of randomized
graphs that maintain the original degree distribution. We can, therefore, leverage this strategy to
improve the generalization of GNNs. Below, we present the steps involved in our approach to using
Configuration Models for Graph Data Augmentation:

1. Extract Edges: For each training graph Gn, we first extract the complete set of edges En.
2. Stub Creation: Using a Bernoulli distribution with parameter p ∈ [0, 1], we randomly

select a subset of candidate edges and break them to create stubs (half-edges).
3. Stub Pairing: We then randomly pair these stubs to form new edges, creating a randomized

graph structure with the same degree distribution.

Table 4 shows the performance of this approach on the two GNN backbone GCN and GIN.

Table 4: Classification accuracy (± standard deviation) on different benchmark node classification
datasets for the data augmentation baselines based on the GIN backbone. The higher the accuracy (in
%) the better the model.

Model IMDB-BINARY IMDB-MULTI MUTAG PROTEINS DD

Config Models w/ GCN 71.70 (3.16) 48.40 (3.88) 74.97 (6.77) 70.08 (4.93) 69.01 (3.44)
Config Models w/ GIN 71.70 (4.24) 49.00 (3.44) 81.43 (10.05) 68.34 (5.30) 71.61 (5.96)

D ABLATION STUDY

To provide additional comparison and motivate the use of GMMs with the EM algorithm, we
expanded our evaluation to include additional methods for modeling the distribution of the graph
representations. Specifically, the comparison includes:

• GMM w/ Variational Bayesian Inference (VBI): We specifically compared the
Expectation-Maximization (EM) algorithm, discussed in the main paper, with the Vari-
ational Bayesian (VB) estimation technique for parameter estimation of each Gaussian

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Mixture Model (GMM) (Tzikas et al., 2008) for both the GCN and GIN models. The
objective of including this baseline is to explore alternative approaches for fitting GMMs to
the graph representations.

• Kernel Density Estimation (KDE) : KDE is a Neighbor-Based Method and a non-
parametric approach to estimating the probability density (Härdle et al., 2004). KDE
estimates the probability density function by placing a kernel function (e.g., Gaussian) at
each data point. The sum of these kernels approximates the underlying distribution. Sam-
pling can be done using techniques like Metropolis-Hastings. The purpose of using KDE
as a baseline is to evaluate alternative distributions different from the Gaussian Mixture
Model (GMM).

• Copula-Based Methods: We model the dependence structure between variables using
copulas, while marginal distributions are modeled separately. We sample from marginal
distributions and then transform them using the copula (Nelsen, 2006).

• Generative Adversarial Network (GAN): GANs are powerful generative models that
learn to approximate the data distribution through an adversarial process between two
neural networks. To evaluate the performance of deep learning-based generative approaches
for modeling graph representations, we included tGAN, a GAN architecture specifically
designed for tabular data (Yang et al., 2012). We particularly train tGAN on the graph
representations and then sample new graph representations from the generator.

Table 5: Ablation Study on the density estimation scheme for learned GCN representations.
Model IMDB-BINARY IMDB-MULTI MUTAG PROTEINS DD

GMM w/ EM 71.00 (4.40) 49.82 (4.26) 76.05 (6.47) 70.97 (5.07) 71.90 (2.81)
GMM w/ VBI 71.00 (4.21) 49.53 (4.26) 76.05 (6.47) 70.97 (4.52) 71.64 (2.90)
KDE 55.90 (10.29) 39.53 (2.87) 66.64 (6.79) 59.56 (2.62) 58.66 (3.97)
Copula 69.80 (4.04) 47.13 (3.45) 74.44 (6.26) 65.04 (3.37) 65.70 (3.04)
GAN 70.60 (3.41) 48.80 (5.51) 75.52 (4.96) 69.98 (5.46) 66.26 (3.72)

Table 6: Ablation Study on the density estimation scheme for learned GIN representations.
Model IMDB-BINARY IMDB-MULTI MUTAG PROTEINS DD

GMM w/ EM 71.70 (4.24) 49.20 (2.06) 88.83 (5.02) 71.33 (5.04) 68.61 (4.62)
GMM w/ VBI 71.40 (2.65) 47.80 (2.22) 88.30 (5.19) 70.25 (4.65) 67.82 (4.96)
KDE 69.10 (3.93) 41.46 (3.02) 77.60 (6.83) 60.37 (3.04) 67.48 (6.18)
Copula 70.60 (2.61) 47.60 (2.29) 88.30 (5.19) 70.16 (4.55) 67.91 (4.90)
GAN 70.50 (3.80) 48.40 (1.71) 88.83 (5.02) 71.33 (5.55) 67.74 (4.82)

We compare these approaches for both the GCN and GIN models in Tables 5 and 6, respectively.
As noticed, GMM with EM consistently outperforms the alternative methods across most datasets
in terms of accuracy. The VBI method, an alternative approach for estimating GMM parameters,
yields comparable performance to the EM algorithm. This consistency across datasets highlights the
effectiveness and robustness of GMMs in capturing the underlying data distribution.

In certain cases, particularly with the GIN model, we observed competitive performance from the
GAN approach, which, unlike GMM, requires additional training. Hence, GMMs provide a more
straightforward and efficient solution.

E TRAINING AND AUGMENTATION TIME

We compare the data augmentation times of our approach and the baselines in Table 7. In addition
to outperforming the baselines on most datasets, our approach offers an advantage in terms of time
complexity. The training time of baseline models varies depending on the augmentation strategy used,
specifically, whether it involves pairs or individual graphs. Even in cases where a graph augmentation
has a low computational cost for some baselines, training can still be time-consuming as multiple
augmented graphs are required to achieve satisfactory test accuracy. For instance, methods like
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DropEdge, DropNode, and SubMix, while computationally simple, require generating multiple
augmented samples at each epoch, thereby increasing the overall training time. In contrast, GMM-
GDA introduces a more efficient approach by generating only one augmented graph per training
instance, which is reused across all epochs. This design ensures a balance between computational
efficiency and augmentation effectiveness, reducing the overall training burden while maintaining
strong performance. The only baseline that is more time-efficient than our approach is GeoMix;
however, our method consistently outperforms GeoMix across all settings, as shown in Tables 1 and 2.

Table 7: Mean training and augmentation time in seconds of our model in comparison to the other
benchmarks.

Attack Model IMDB-BINARY MUTAG DD

1⃝
Aug. Time

Vanilla - - -
DropEdge 0.02 0.01 0.01
DropNode 0.01 0.02 0.01
SubMix 1.27 0.23
G-Mixup 0.74 0.11 4.26
GeoMix 2,344.12 73.52 1,005.35
GMM-GDA 2.87 0.51 3.25

2⃝
Train. Time

Vanilla 765.96 99.32 428.10
DropEdge 892.14 596.82 3,037.30
DropNode 884.71 803.63 3,325
SubMix 1,711.01 1,487.03
G-Mixup 148.71 28.14 177.55
GeoMix 89.01 101.82 123.41
GMM-GDA 774.47 101.56 438.39

F DATASETS AND IMPLEMENTATION DETAILS

F.1 GRAPH CLASSIFICATION

Characteristics and information about the datasets utilized for the graph classification task are
presented in Table 8. As outlined in the main paper, we conduct experiments on IMDB-BINARY,
IMDB-MULTI, PROTEINS, MUTAG, and DD, all sourced from the TUD Benchmark Ivanov et al.
(2019). These datasets consist of either molecular or social graphs.

Table 8: Statistics of the graph classification datasets used in our experiments.

Dataset #Graphs Avg. Nodes Avg. Edges #Classes

IMDB-BINARY 1,000 19.77 96.53 2
IMDB-MULTI 1,500 13.00 65.94 3
MUTAG 188 17.93 19.79 2
PROTEINS 1,113 39.06 72.82 2
DD 1,178 284.32 715.66 2

F.2 IMPLEMENTATION DETAILS

For all the used models, the same number of layers, hyperparameters, and activation functions were
used. The models were trained using the cross-entropy loss function with the Adam optimizer,
the number of epochs and learning rate were kept similar for the different approaches across all
experiments. In Table 9, we present the optimal number of Gaussian distributions in the GMM for
each dataset and GNN backbone
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Table 9: The optimal number of Gaussian distributions in the GMM for each pair of dataset and GNN
backbone.

Dataset IMDB-BINARY IMDB-MULTI MUTAG PROTEINS DD

GCN 40 50 10 10 2
GIN 50 5 2 2 50

G GRAPH DISTANCE METRICS

Let us consider the graph space (G, ∥·∥G) and the feature space (X, ∥·∥X), where ∥·∥G and ∥·∥X

denote the norms applied to the graph structure and features, respectively. When considering only
structural changes, with fixed node features, the distance between two graphs Gλ,G is defined as∥∥Gλ − G

∥∥ = ∥A−Aλ∥G, (8)

where Aλ, A are respectively the adjacency matrix of Gλ,G, and the norm ∥·∥G can be for example
the Frobenius or spectral norm. If both structural and feature changes are considered, the distance
extends to: ∥∥Gλ − G

∥∥ = α∥A−Aλ∥G + β∥X −Xλ∥X, (9)

where Xλ, X are the node feature matrices of Gλ,G respectively, and α, β are hyperparameters
controlling the contribution of structural and feature differences.

In most baselines graph augmentation techniques, such as for instance G-Mixup, SubMix, and
DropNode, the alignment between nodes in the original graph G and the augmented graph Gλ is
known. However, in cases where the node alignment is unknown, we must take into account node
permutations. The distance between the two graphs is then defined as∥∥Gλ − G

∥∥ = min
P∈Π

(
α∥A− PAλPT ∥G + β∥X − PXλ∥X

)
, (10)

where Π is the set of permutation matrices. The matrix P corresponds to a permutation matrix used
to order nodes from different graphs. By using Optimal Transport, we find the minimum distance
over the set of permutation matrices, which corresponds to the optimal matching between nodes in
the two graphs. This formulation represents the general case of graph distance, which has been used
in the literature (Abbahaddou et al., 2024).
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