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Abstract— The rapid growth of AI in robotics has amplified
the need for high-quality, reusable datasets, particularly in
human robot interaction (HRI) and AI-embedded robotics.
While more robotics datasets are being created, the landscape
of open data in the field is uneven. This is due to lack of
curation standards and consistency in publication practices,
which makes finding, understanding, accessing, and reusing
existing robotics data difficult. To address these challenges, we
introduce a curation and access system developed through our
experience curating and publishing datasets with researchers
from Texas Robotics. The system integrates a data reporting
template, a domain-specific knowledge graph, and a ChatGPT-
powered conversational interface that enables users to explore,
compare, and access robotics datasets published in an institu-
tional data repository. The system’s evaluation demonstrated
that it supports consistent and correct information about, and
access to data, emphasizing the importance of curation to
enhance Fairness (Findability, Accessibility, Interoperability,
and Reusability) of human-centered robotics datasets. Impor-
tantly, the best practices developed in this work can inform the
community how to curate and publish robotics datasets. This
work directly aligns with the goals of the HCRL @ ICRA 2025
workshop and represents a step towards more human-centered
access to data for embodied AI.

I. INTRODUCTION
The rise of AI in robotics has made the need for high-

quality datasets for varied training applications critical.
In response, researchers are increasingly creating datasets
specifically for this purpose. Derived from complex and often
interdisciplinary studies using mixed research methods, these
often large and multimodal datasets reflect both the robots’
and the humans’ perspectives, some gathered in the context
of carefully designed experiments and others during observa-
tions in the physical world. While various such datasets are
available online, the landscape of open data for AI in robotics
remains uneven at best. To begin with, finding these datasets
is not straightforward. While some are published in institu-
tional repositories with permanent digital object identifiers
(DOIs), others are hosted on websites -occasionally behind
restricted access mechanisms- without assurance of their
medium and long-term accessibility. Because there are no
agreed-upon standards for curating robotics datasets, some
are described with great detail, while others are published
with scant information which limits their understanding. For
datasets involving human subjects, little information about
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the characteristics of the participants and the study conditions
can conceal reasons for data usage restrictions. Because each
dataset has its own content and representation, researchers
have to examine them individually to determine if they are
fit for reuse in a study. Coupled with the sheer size of many
of them and their complex structure navigating them and
identifying their quality becomes cumbersome. Not having
the possibility to inquire and compare them at once is time-
consuming and hinders their reusability.

Through our experience curating and publishing HRI and
AI-ready datasets for different research groups, which we
publish via the Texas Robotics Dataverse[1] in the Texas
Data Repository (TDR)[2], we built a system to address
robotics data curation and accessibility challenges. The sys-
tem leverages metadata from curated datasets available in
the Texas Robotics Dataverse to enable context-aware access
via natural language interaction. Based on the different data
curation cases, we developed a human-robotics-specific data
report template and a data model to accurately represent
robotics datasets’ provenance, research methodology, and
technologies involved. The data model is implemented as
a knowledge graph within the Texas Advanced Computing
Center’s (TACC)[3] open infrastructure. Datasets are curated
and documented according to the recommendations in the
template, and their descriptive and structural metadata is
automatically harvested from the Texas Data Repository,
mapped to the data model, and integrated into the knowledge
graph, allowing a normalized description across the different
datasets. The knowledge graph schema and metadata, the
data reports, and the dataset-related publications are used to
train a ChatGPT-based chatbot, allowing users to query and
retrieve data using natural language. To assess the chatbot,
we designed a rigorous evaluation method around four in-
formation targets. The analysis of the answers, which were
rated by experts, showed that the chatbot’s responses are
reliable, and that they retrieve the desired data. We checked
the entire system against the FAIR curation principles to
assess whether data are Findable, Accessible, Interoperable,
and Reusable (FAIR)[4]. Figure1 shows a schematic of the
automated knowledge retrieval system for HRI datasets.

This work is aligned with the goals of the HCRL @ ICRA
2025 workshop. In particular, it addresses the challenges
of data accessibility for embodied AI, and promotes robust
data curation practices for human-aligned robot learning
within our research community. Our system represents a step
towards a FAIR human-robotics data ecosystem.



Fig. 1: Automated Knowledge Retrieval System for HRI
Datasets

II. THE LANDSCAPE OF LARGE HUMAN-CENTERED
ROBOTICS DATASETS

While most recently, researchers have been producing a
variety of robotics datasets, data curation and publication is
an emerging practice in the community. In the Registry of
Research Data Repositories (re3data.org), which maintains a
list of international data repositories, there are no domain-
specific repositories for robotics datasets, and currently no
shared metadata schema or best practices have been de-
veloped to describe them. Consequently, robotics datasets
are scattered and difficult to find, inconsistently organized
and described, and in many cases, difficult to access. For
researchers trying to find reusable robotics data in the wild,
the process may involve multiple searches in different web
platforms, an effort that is both time-consuming and frus-
trating. Even when datasets are centralized in one repository,
findings can be unsatisfactory. A simple search in a general
purpose digital repository like Zendo[5] using the term
“Human Robot Interaction retrieves” 70 datasets, which have
to be examined one by one. While some datasets, such as
AFFECT-HRI[6] and HRI-CUES[7], are fairly well docu-
mented, many others are published without an explanation
of what they contain or how they were collected.

P2PSTORY Dataset[8] from MIT Media Lab, UE-HRI
Dataset[9] and PInSoRo Dataset[10] are datasets stored
within university websites or on GitHub. These platforms
are not formal data repositories, they lack permanent iden-
tifiers, and there is no guarantee of long-term sustainability.
Researchers and students may move on, and websites can
change. Lacking the infrastructure needed for permanent
preservation and consistent citation datasets are at risk of
becoming inaccessible.

Another accessibility roadblock is the size of modern
robotics datasets, which may contain large numbers of heavy
Rosbags and other complex image files, which are difficult
to manage via a web browser. Most repositories, such as
Zenodo[5], accept datasets sizes of up to 50 GB to 1 TB,
and GitHub will only hold up to 100 MB[11] per project.
In this work, to comply with scalable storage, long-term
preservation, and ease of access, we integrate the Texas
Data Repository interface with the high-performance storage
backend at TACC. This approach is used to store the 4 TB
CODa dataset[24].

Across the board, what is missing are shared best practices
for curating human-robot datasets in ways that support long-
term, cross-domain use. Without this, valuable datasets are at
risk of being underused or forgotten. Our work is motivated
by this gap and seeks to offer a practical solution for
improving how robotics datasets are curated, accessed, and
used, especially in the context of large-scale, human-centered
learning. To guide the direction and components of the
system, we use the FAIR principles, a set of standards that
address requirements for curation and publication of datasets
and for the infrastructure that hosts them.

III. COMPONENTS OF THE FAIR DATA CURATION AND
ACCESS SYSTEM

Modern HRI experiments and real-world observations
entail complex study design and cutting-edge technologies.
Consequently, the derived datasets are multimodal and struc-
turally intricate. The involvement of human subjects in the
studies adds another layer in terms of assuring ethical data
publication. Therefore, curation of HRI and AI-embedded
robotics datasets demands a thoughtful, reproducible ap-
proach that captures the complexity of interactions transpar-
ently. To support this, we developed a system encompassing
curation and access whose components we describe in the
next sections. The system’s framework is shown in Figure 1.

A. Metadata Standardization, Curation Recommendations
and Dataset Report

Data curation is at the system’s foundation. Curation
encompasses processes such as organization, description,
ethical publication, and adherence to digital preservation
practices to ensure the long-term sustainability and acces-
sibility of data[15]. Since there are no specific standards for
robotics data, we achieved experience by following general
curation best practices, by observing how existing datasets
were publicly released[16], [17], [18], [19], [20], and through
the process of curating and publishing different types of
datasets for Texas Robotics research groups via the Texas
Robotics Dataverse.

All curated datasets are deposited in TDR, a general-
purpose institutional repository at the University of Texas Li-
braries that provides long-term preservation, persistent iden-
tification through DOI assignment, and centralized access.
To avoid their dispersion amongst datasets from different
domains, we group robotics datasets within a Texas Robotics
Dataverse. We complement the system by layering robotics-
specific metadata and enabling interactive, structured access
to the datasets it hosts.

The baseline for describing the datasets in the repository
is provided by the Dataverse Project. This is the underlying
open source repository software for the TDR, which adopts,
among other standards, the Data Documentation Initiative
(DDI) schema[14]. Designed to describe Social Science
datasets, DDI does not have elements to properly describe
robotics data including collecting methods and technolo-
gies, all information needed for researchers to understand
a dataset’s context and decide whether they can reuse it. The
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DDI schema produces a description of the data provenance
and specific social science information, useful to describe the
human subjects component of an HRI dataset. As researchers
deposit data, they fill in required and recommended metadata
which is formatted as a JSON file that can be downloaded
from the repository once the dataset is published. Using
an open source repository software assures that data will
be findable as the metadata is exposed to search engines
and academic aggregators via standard protocols. In turn,
interoperability is ensured by the use of standard metadata
schemas.

So that the technical and human characteristics of the
datasets are captured, we designed a data report template.
This template, which we refine in iterative fashion, guides the
researchers in their curation process. From the robot models
and their control methods and equipment, to the experimental
design or the observational methods, from the participants’
roles and behavioral measures, to data post-processing meth-
ods such as segmentation and labeling, critical aspects of
how datasets are collected are included in the template as
descriptive elements. These will be later mapped to classes
and properties in a robotics data model implemented in the
Neo4J-based knowledge graph.

As we curate new datasets and encounter new elements
that need to be described, we include them in a dedicated
appendix section of the data report. This appendix is sub-
categorized to track emerging patterns across datasets. As
specific element types appear more regularly, we promote
them into the main body of the data report and formally
incorporate them into the data model. This iterative strategy
allows the system to grow and adapt while steadily moving
towards broader standardization. The structured approach
supports reproducibility as well as interoperability between
datasets while also making them easier to understand and
reuse for those outside the original research team.

After some datasets became publicly available, we re-
ceived recurring feedback -through the repository- from users
related to their quality and completeness. Unlike journals
or conference proceedings, institutional repositories are self-
publishing entities and do not have peer review in place.
Thus, it is up to the researchers and curators to demonstrate
a dataset’s quality. Included in the data report template
is a data quality statement section to record the types of
quality control activities performed prior to releasing the
datasets including standardized data collection (with consis-
tent conditions and sensor calibration), annotation accuracy
(verified through multi-step review and inter-rater reliability
checks), and data integrity (ensured through automated and
manual validation). In the case of datasets specifically created
to train models, we also request that the location of the
models/software is referenced preferably with DOIs, and that
results of the datasets’ performance or of experiments con-
ducted for validation become part of the documentation[24],
[26]. Data report guidelines addressing data quality also
include using open source file formats for long-term preser-
vation, and requesting the inclusion of data dictionaries to
explain variables in tabular data.

Ethical aspects involving human subjects are carefully
gauged and discussed with researchers at the point of study
design and included in the report. Considering compliance
with IRB decisions involving data anonymization and access
restrictions, different approaches to protecting personally
identifiable information can be adopted. In the case of
CODa[24] recordings of incidental participants could be
removed upon request, and in the Community Embedded
Robotics dataset[13], participant faces were not included in
the published video data. Because in many cases, facial ex-
pressions are important to capture, in[23] researchers sought
informed consent for publishing such identifiable informa-
tion. In this case, all but one participant were comfortable
with having the recordings of their sessions released to the
public without face blurring.

It has to be noted that interdisciplinary teams exhibit
different opinions about privacy and data sharing. During the
Robot Encounter [12] study, in which participants wearing
multimodal physiological sensors to measure their stress
levels shared a common space with robots, social scientists
had concerns about sharing the full text of focus groups
conducted after the experiment sessions, fearing that the
participants identity may be recognized. Instead, roboticists
considered that anonymized sensor data with ECG and EDA
recordings could be openly shared pending the participants’
consent. In this dataset, the sensor data is open, but only
excerpts and themes resultant from the analysis of the focus
groups are shared. Acknowledging the need to find a com-
mon ground for sharing human subjects’ data, we identified
topics that need to be reckon with by interdisciplinary teams
at the design phase of an HRI study. These include, a)
analyzing the degree of disclosure and sensitivity of the
interview topics and potential responses, b) considering the
privacy risks of all the data types that will be recorded
about participants, and c) requesting participants’ consent
for sharing each type of data. In the data report we also
require that all human subject research instruments, including
surveys, questionnaires, interview protocols, and code books
are published as part of the dataset to provide adequate
context.

1) Scalable Organization and Access for Large Robotics
Datasets: The size of a dataset is relevant to its accessibility,
directly related to how the data is organized and how it
can be uploaded and downloaded with ease. In terms of
data organization, we work with the researchers on file
organization and naming conventions that reveal the content
of the dataset components. The adopted schema is explained
in the data report. This is especially important to help users
navigate large multimodal datasets derived from experiments
with multiple sessions and tests, or involving repeated obser-
vations with different kinds of recording instruments. A data
organizational schema and file naming convention (example
from Vid2real real world study) is shown in Figure2. The
Dataverse software allows tree views that reflect the dataset’s
organization, and also adding descriptive metadata to all
data files, improving understanding and accessibility of the
dataset.
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Fig. 2: Vid2real Real World Collection Structure and Nam-
ing Convention

We mentioned that all datasets are published in TDR.
However, training datasets are often bigger than the 1TB
size limit storage allowed by the repository. To address
this shortcoming, we partner with TACC so that data is
preserved in its high performance storage resource . This
hybrid approach enables permanent storage scalability while
facilitating findability via the dataset’s landing page and
machine-readable metadata, and accessibility . In fact, part
of the curation process also entails developing scripts to
facilitate automated download of large datasets both from
TDR and from TACC’s storage resource. Prepared by the
researchers in relation to how data is organized, the scripts
allow access to specific sections of the datasets, an important
accessibility feature for large and complex datasets.

B. A Uniform Data Model for Robotics

Through the process of curation and following the work-
flows narrated by researchers about their studies and how
they collect and process data, we created a hierarchal data
model as an abstract representation. The model defines a
set of core classes and properties as metadata that reflects
common and uncommon components across the different
studies from which the datasets derive. Representative classes
and properties include for ex. robot type - robot model -robot
equipment/sensor- robot control; research method- experi-
ment location - experiment settings - experiment session -
experiment condition, etc. In the data report, each metadata

Fig. 3: Vid2real Datasets Neo4j Nodes and Relationships

field corresponds to a class or property in the data model,
allowing for one-to-one mapping between contributor input
and graph-ready metadata structure. Because all curated
datasets conform to this shared model, the resultant metadata
for each dataset is internally consistent and generalizable
across datasets, making the datasets interoperable. This in-
teroperability enables scalable integration and comparison of
datasets from different sources.

C. Semantic Integration through a Knowledge Graph

Once a dataset is curated, its metadata is structured into
a Neo4j-based knowledge graph according to the robotics
data model. This graph converts individual metadata records
into interconnected networks of nodes and relationships, as
illustrated in Figure3 using as case studies the Vid2real on-
line and real-world studies. The knowledge graph preserves
curated metadata in a structured form, facilitating advanced
reasoning, filtering, and integration with machine learning
workflows.

Metadata extraction and knowledge graph population cur-
rently rely on structured JSON records from the Texas
Robotics Dataverse datasets which employ the Data Doc-
umentation Initiative (DDI) schema. Although DDI captures
general metadata elements like authors, titles, and social
science details, it lacks robotics-specific as well as more
detailed interdisciplinary aspects of the studies. We address
this gap by integrating detailed metadata from the data
report template. We employ Python-based scripts that utilize
pattern matching and keyword detection (such as identifying
terms like “robot”, “participant”, “robot model”, ”experiment
session”, ”interview”, ”survey”, ”condition”, etc.) to locate
relevant metadata elements. These elements are systemat-
ically mapped to corresponding node types within Neo4j,
ensuring precise and consistent semantic structuring. Figure4
demonstrates this mapping approach using as an example
the Vid2real online study robot’s metadata. This structured
extraction method effectively captures both the technical and
human-centered dimensions necessary for robotics research
and enhances the dataset’s reusability.

D. Human-Centered Access via Large Language Model

The final layer of the system connects the knowledge
graph and associated files to an interactive chatbot pow-
ered by a large language model (LLM) using Retrieval-
Augmented Generation (RAG). Instead of relying solely



Fig. 4: Vid2real Online Study Robot Metadata Class/Node
and corresponding properties in the knowledge graph.

on pre-trained knowledge, our chatbot retrieves structured
metadata from the Neo4j knowledge graph, combined with
supplementary materials such as related publications, IRB
documentation, and selected data collection protocols and
files. This comprehensive context is intended to improve the
chatbot’s delivery. It enables researchers to query datasets
through natural language, asking questions about individual
or more than one dataset, such as “What robot model was
used in the Vid2Real online study?”, “Which studies use a
Boston Dynamic robot?” “Does the CODa dataset includes
LiDAR ?”, “How does the online study compare to the real-
world study in terms of participant experience?” “Which
research methods are involved in the online and real-world
Vid2Real studies?” and receive trustworthy answers. It also
allows retrieving specific files by asking questions such as
“Point to all video files for session 1 in the Vid2Real real
world study”.

IV. EVALUATION: ASSESSING THE PERFORMANCE OF
THE CHATBOT SYSTEM

To evaluate how effectively our chatbot system supports
interaction with robotics datasets, we conducted a human
expert evaluation. Rather than measuring the model’s gen-
erative performance, we focused on the chatbot’s ability
to deliver useful, reliable, and consistent answers across
four key dimensions: information retrieval, answer stability,
factual accuracy, and comparison capability.

A. Evaluation Methodology

The evaluation was conducted using four curated
datasets—Vid2Real Real World [21], [23], Vid2Real On-
line [22], CODa [24], and SCAND [25]. Human experts
familiar with robotics and data curation rated the chatbot’s
performance according to predefined criteria[27], [28]. Each
dimension was tested using a set of ten task-specific natural
language queries. Experts scored the chatbot’s responses on
a 0–5 scale based on the following criteria:

Information Retrieval: Ability to provide complete, rele-
vant, and clearly structured answers to user queries regarding
specific dataset content. Example queries included, “Provide
me with the questionnaire link for the VID2REAL real-

Fig. 5: Example of Evaluation: Comparison Capability

world study” and “List the robot behavioral conditions in
the VID2REAL study.”

Answer Stability: Consistency of responses across semanti-
cally similar queries phrased differently. Examples of tested
queries include, “What kind of robot is used in Vid2Real
Real World?” versus “What type of robot was utilized in the
Vid2Real real-world study?” and queries posed in multiple
languages like Chinese.

Factual Accuracy: Correctness and precision of infor-
mation provided based on underlying metadata. Queries
assessed details such as IRB approval, sensor types, robot
models, and specific experimental setups.

Comparison Capability: Ability to accurately compare
two or more datasets, highlighting key differences. Exam-
ple queries included, “What are the differences between
Vid2Real Real World and Vid2Real Online studies regarding
robot control and sensory input?” and “Which datasets use
joystick-based teleoperation versus autonomous navigation?”
An example comparison query and the chatbot’s answer is
shown in Figure5.

Scores from human reviewers were normalized using a
Bayesian hierarchical model to mitigate individual rater
biases. No dataset-query combination was repeated to ensure
consistent and unbiased assessment across the four evaluation
dimensions.

V. RESULTS SUMMARY

Before presenting the evaluation breakdown, we apply a
Bayesian hierarchical model to adjust for individual expert
preferences across criteria. Although the unadjusted scores



Fig. 6: Bayesian Correction in Information Retrieval

suggest highly favorable evaluations—often appearing as if
the chatbot’s outputs were perfectly aligned with human
expectations—we use this correction to present more neu-
tral, preference-independent scores. This approach ensures
greater fairness and minimizes bias in the evaluation. The
corrected scores below remain strong and reflect the chatbot’s
consistent performance across all aspects.

1) Information Retrieval: The chatbot achieved an aver-
age expert rating of 4.65 out of 5. In Information Retrieval,
demonstrating its ability to consistently provide structured
and relevant answers. Reviewers noted that responses directly
referenced precise metadata elements, including links to sup-
porting documentation, questionnaire materials, and descrip-
tions of experimental components. Since expert preferences
varied most in this aspect, we use it to illustrate how our
Bayesian hierarchical model corrects for individual bias, as
shown in Figure 6.

2) Answer Stability: In this dimension, the chatbot re-
ceived an average score of 4.9. Responses remained consis-
tent despite variations in query phrasing. Experts highlighted
the system’s robustness to linguistic variations, which sig-
nificantly enhances its usability in interdisciplinary research
contexts.

3) Factual Accuracy: The chatbot scored an average
of 4.9 in Factual Accuracy. Human experts verified that
responses accurately reflected dataset documentation, IRB
statuses, robot types, and specific sensor modalities. The
evaluation confirmed that the system consistently retrieved
accurate, grounded information from the structured metadata
and supplementary files.

4) Comparison Capability: The Comparison Capability
averaged a score of 4.9. The chatbot effectively identified
key differences between datasets, such as robot control
methods and sensory configurations. However, it relies on
precise queries that include specific dataset names. Gen-
eral or vague questions (e.g., “What is the robot model
difference?”) often yield poor results, while more targeted
queries (e.g., “What is the robot model difference between
CODa and SCAND?”) are handled well. This highlights
a key limitation: the system’s ability to compare is tied
to how well the user can specify their intent. Still, the
chatbot successfully utilizes standardized metadata to support
structured comparisons, which underscores the utility of the
underlying knowledge graph. Recognizing these limitations
is crucial for understanding the system’s practical use and

for guiding future improvements.

VI. CONCLUSION AND FUTURE WORK

In this paper, we introduced a practical system designed
to support the FAIR curation and natural language access of
robotics datasets, with a focus on Human-Robot Interaction
(HRI) and AI-embedded systems. Depositing datasets in an
institutional repository assures findability and permanence.
By making metadata interoperable through a shared data
model and surfacing it via a conversational chatbot interface,
we aim to make robotics datasets more accessible and
reusable for a broader range of users.

Given that datasets form the foundation of most robotics
research, curation and standardized metadata are a significant
steps forward. Establishing these best practices within the re-
search community could bring much-needed consistency and
visibility to datasets produced in the space, offering strong
motivation for their broader adoption amongst researchers
that create and engage with data in robotics.

As we look ahead, our next steps include continuing to
iterate on the data report template to support more detailed,
domain-specific metadata. For example, by adding prompts
that better reflect the needs of different HRI or embodied AI
research tasks. We also plan to expand the Texas Robotics
Dataverse by curating and publishing more datasets, further
enriching the data landscape for human-centered robotics. In
addition, we are exploring ways to add datasets from external
Dataverses and repositories to the knowledge graph and
chatbot. Albeit these datasets are well curated, mapping them
into our data model and system will make these valuable
and often underused datasets more visible, accessible, and
reusable within a larger, more unified data ecosystem.
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