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Abstract— The rapid growth of AI in robotics has amplified
the need for high-quality, reusable datasets, particularly in
human-robot interaction (HRI) and AI-embedded robotics.
While more robotics datasets are being created, the landscape
of open data in the field is uneven. This is due to a lack of
curation standards and consistent publication practices, which
makes it difficult to discover, access, and reuse robotics data.
To address these challenges, this paper presents a curation and
access system with two main contributions: (1) a structured
methodology to curate, publish, and integrate FAIR (Findable,
Accessible, Interoperable, Reusable) human-centered robotics
datasets; and (2) a ChatGPT-powered conversational interface
trained with the curated datasets metadata and documentation
to enable exploration, comparison robotics datasets and data
retrieval using natural language. Developed based on practical
experience curating datasets from robotics labs within Texas
Robotics at the University of Texas at Austin, the system
demonstrates the value of standardized curation and persistent
publication of robotics data. The system’s evaluation suggests
that access and understandability of human-robotics data are
significantly improved. This work directly aligns with the goals
of the HCRL @ ICRA 2025 workshop and represents a step
towards more human-centered access to data for embodied AI.

I. INTRODUCTION

The rise of AI-embedded robotics has made the need
for high-quality datasets for varied training applications
critical. In response, researchers are increasingly creating
datasets specifically for usage in AI applications. Derived
from complex and often interdisciplinary studies using mixed
research methods, these often large and multimodal datasets
reflect both the robots’ and the humans’ perspectives; some
gathered in the context of carefully designed experiments and
others during observations in the physical world. However,
despite the growing interest in creating and sharing data, the
landscape of open human-robotics datasets remains uneven.

To begin with, discovering these datasets is not straightfor-
ward. Many robotics datasets are hosted on platforms such
as GitHub without permanent digital object identifiers (PDI),
or in personal and laboratory servers ,occasionally behind
restricted access mechanisms, without assurance of their
long-term availability due to changes in servers and web-
site maintenance. While more discover,able, many datasets
published in institutional repositories with PDIs are not easy
to reuse, as they are scantly described. Because there are no
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agreed-upon standards about how much and how to describe
the robots and their instrumentation, the participants, or the
experimental conditions used to gather the data, the published
datasets may not be understandable for other researchers to
decide if and how to use them. In addition, HRI datasets
involving human participants present varied ethical concerns.
Since each published dataset has its own landing page,
researchers have to examine them individually to determine
if they are fit for reuse in their applications. The situation
becomes more complex as more training data is needed,
for which researchers have to review multiple datasets for
possible integration. Not having the possibility to inquire and
compare them at once is time-consuming. Either hosted on a
lab server or on an institutional repository, storing, moving,
and downloading large datasets is cumbersome and hinders
their reuse.

To address these challenges, we developed a system with
three interrelated components: robotics data curation and
publication in an institutional repository; a robotics knowl-
edge graph to organize, relate, and integrate curated meta-
data; and a trained ChatGPT instance that allows context-
aware access to multiple datasets via natural language inter-
action. The system is implemented across different reliable
infrastructure components to assure the long-term sustain-
ability and accessibility of the datasets.

Based on experiences curating robotics datasets for differ-
ent Texas Robotics teams, we created a human-robot-specific
data model to accurately represent the provenance, research
methodology, and technologies involved in the development
of HRI datasets. The data model is implemented as a
knowledge graph running on the Texas Advanced Com-
puting Center’s (TACC)[1] cloud infrastructure. In tandem,
we developed a data report template that researchers can
use to document the data model elements . Datasets are
curated and described by their creators according to the
guidance offered in the template, and they are uploaded
to the Texas Robotics Dataverse [2] at the Texas Data
Repository (TDR)[3]. Once datasets are published, their
metadata is automatically harvested from the repository,
mapped to the data model elements, and integrated into
the corresponding nodes in the knowledge graph, enabling
a normalized description across different datasets and thus
their comparison. The knowledge graph schema and meta-
data, the data reports, and the datasets-related publications
are used to feed into a ChatGPT-based chatbot, allowing
users to query and retrieve data using natural language
through a conversational interface. Currently in prototype
mode, the system has seven registered datasets generated
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Fig. 1: Schematic of the system’s curation and access work-
flow

through different robotics studies and published in the Texas
Robotics Dataverse[26], [27], [28], [29], [30], [31], [32],
[33]. Figure 1 shows the system’s components and workflow.

To assess the system, we carried out different evaluations.
We designed an expert assessment around information targets
to identify if the chatbot’s answers are consistently reliable,
and we conducted a think-aloud session with a robotics
expert naive to the registered datasets to observe how he
interacted with the system and his satisfaction with the out-
come. Finally, we checked the entire system against the FAIR
curation principles to assess whether data are Findable, Ac-
cessible, Interoperable, and Reusable (FAIR)[4]. The results
suggest that the system retrieves accurate information, that
it aids data discovery and exploration, and that it facilitates
comparison between datasets. Our contribution highlights
the importance of data curation and structuring to train a
reliable LLM (Large Language Model). It also emphasizes
the importance of a solid infrastructure to address reliable
inquiry and continuous access to robotics datasets. This work
has the potential to promote robust data curation practices
within our research community. The system represents a
step towards a FAIR human-robotics data ecosystem. This
work is aligned with the goals of the HCRL @ ICRA 2025
workshop. In particular, by addressing the challenges of data
accessibility.

II. THE LANDSCAPE OF LARGE HUMAN-CENTERED
ROBOTICS DATASETS

While most recently, researchers are producing a variety
of robotics datasets, data curation and publication are still
emerging practices in the robotics community. In the Registry
of Research Data Repositories (re3data.org), which maintains
a list of data repositories worldwide, there are no domain-
specific repositories for robotics datasets, and currently there
are no shared metadata schema and best practices to curate
and publish them. As a result, robotics datasets are scat-

tered across different platforms, inconsistently described and
often hard to understand and access. Researchers looking
for reusable robotics data often need to search multiple
platforms, including GitHub, Zenodo[5], or personal lab
websites, which makes the process slow and unreliable. Even
in institutional repositories, search results are often unsat-
isfactory due to poor metadata or missing documentation.
For example, a search in the general-purpose repository
Zenodo using the term “Human Robot Interaction”, retrieves
70 datasets which have to be examined one by one to
know their purpose and characteristics. While some datasets,
such as AFFECT-HRI[6] and HRI-CUES[7], are fairly well
documented, the majority lack basic information, such as
how the data was collected.

P2PSTORY [8] from MIT Media Lab, UE-HRI [9], and
PInSoRo [10] are datasets stored within university websites
and on GitHub. Because these platforms are not data repos-
itories, the datasets lack PIDs, and there is no guarantee
of their long-term sustainability. For example, the dataset
associated with the Deep Fingerprinting project [11], initially
hosted on GitHub project, is no longer accessible through the
provided download link.1 This illustrates how researchers
and students may move on, and websites change. Lacking
the infrastructure needed for permanent preservation, many
datasets are at risk of becoming inaccessible.

Another accessibility roadblock is the size of modern
robotics datasets containing large numbers of heavy Rosbags
and other complex image files. These are difficult to manage
and access via a web browser. Most repositories, such as
Zenodo[5], accept datasets of up to 50 GB to 1 TB, and
GitHub will only hold up to 100 MB[12] per project. Across
the board, what is missing are shared best practices for
curating HRI datasets in ways that support long-term, cross-
domain, and ethical use. Without this, valuable datasets are
at risk of being lost or underused. Our work is motivated by
this gap and seeks to offer a practical solution for improving
how robotics datasets are optimized for reuse in the context
of large-scale, human-centered learning.

III. COMPONENTS OF THE FAIR DATA CURATION AND
ACCESS SYSTEM

Modern HRI experiments and real-world robot observa-
tions entail complex study designs and cutting-edge tech-
nologies. Consequently, the derived datasets are multimodal
and structurally intricate, and the involvement of human
subjects in the studies adds another layer to ensure ethi-
cal data publication. Therefore, curation of HRI and AI-
embedded robotics datasets demands a thoughtful, repro-
ducible approach that captures the complexity of interactions
transparently and ethically. To support this, we developed a
system encompassing curation and access whose components
we describe in the next sections using as case studies human-
centered datasets published in the Texas Robotics Dataverse.
To guide the direction and components of the system, we
use the FAIR principles, a set of standards that address

1See GitHub issue: https://github.com/deep-fingerprinting/df/issues/35
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requirements for curation and publication of datasets and for
the infrastructure that hosts them.

A. A Uniform Data Model for Robotics

Through the process of helping Texas Robotics researchers
to organize their data, and hearing about their studies and
how they collect and process data, we created a hierarchical
data model as an abstract representation of human-centered
robotics datasets. The model defines a set of core classes
and properties, as metadata elements - that reflect common
components of different studies from which robotics datasets
derive. Representative classes and properties include, for
example. robot type - robot model -robot equipment/sensor-
robot control; research method- experiment location - exper-
iment settings - experiment session - experiment condition,
etc. Because all curated datasets conform to this shared
model, the resultant metadata for each dataset will be inter-
nally consistent and generalizable across all, making them
interoperable. This interoperability enables scalable integra-
tion and comparison of datasets from different sources.

B. Curation Challenges and Recommendations, Metadata
Standards, and the Data Report Template

Data curation is at the system’s foundation. Curation
encompasses best practices for data organization and de-
scription, ethical publication, and infrastructure to ensure
long-term sustainability and accessibility. [19]. Since there
are no specific metadata standards or curation guidelines for
robotics data, we gained experience by following general
curation best practices, by observing how existing datasets
were publicly released[20], [21], [22], [23], [24], and through
the process of curating and publishing different types of
datasets for the Texas Robotics research groups.

Data is deposited in the TDR, a general-purpose in-
stitutional repository at the University of Texas Libraries
that provides long-term preservation, persistent identification
through DOIs, and public access to datasets created by
researchers from a consortium of universities in the state of
Texas. To avoid their dispersion among datasets from differ-
ent disciplines, we curate and publish the robotics datasets
within a Texas Robotics Dataverse. The baseline metadata
for describing and representing the datasets in the repository
is provided by the Dataverse Project, which is the underlying
open source repository software for the TDR. Among other
metadata standards, Dataverse adopts the Data Documen-
tation Initiative (DDI) schema[15], designed to describe
Social Science datasets. DDI offers the possibility to include
a high-level description as well as specific social science
information, which is useful to describe the human subjects
component of an HRI dataset. DDI does not, however, have
elements to describe robotics-specific technical provenance
needed for researchers to decide whether they can reuse it.
As researchers deposit data they fill in the DDI metadata
fields. This metadata is formatted as a JSON file that can be
downloaded from the repository once a dataset is published.
Using an open source repository assures that data is findable,
as the standardized metadata is exposed to search engines and

academic aggregators via standard protocols. It also assures
data interoperability as the standardized metadata can be
exchanged across repositories.

To capture more in-depth robotics information about the
datasets and to guide researchers in their curation process,
we designed a data report template. The template is related
to the elements in the robotics data model. Therefore, from
noting the robot’s model and its sensor equipment, to describ-
ing the experimental or observational methodology and the
participants’ tasks and behavioral or physical measures, to
explaining the data post-processing methods (e.g. segmen-
tation and labeling), all critical aspects about the datasets
are included in the template as descriptive elements. This
information ensures understandability and transparency, and
structured semantic integration in the downstream knowledge
graph.

As we curate new datasets and encounter new elements
that need to be described, we include them in a dedicated
data report appendix developed to track emerging patterns.
As specific elements appear more regularly, we promote
them into the body of the data report and into the data
model. This iterative strategy allows the system to grow
and adapt while moving towards broader standardization.
The approach supports research reproducibility as well as
interoperability between datasets. The data report is included
in the dataset publication in PDF format and used both
for metadata extraction into the knowledge graph and as
a source document in the Retrieval-Augmented Generation
(RAG) pipeline to support accurate, context-aware responses
from ChatGPT.

C. Data Quality

Unlike journals or conference proceedings, institutional
repositories are self-publishing entities and do not have
peer review in place. Thus, it is up to the researchers
and curators to demonstrate a dataset’s quality. Included in
the data report template is a data quality statement section
to record the types of quality control activities performed
prior to releasing the datasets. Quality control items include
standardized data collection (with consistent conditions and
sensor calibration), annotation accuracy (verified through
multi-step review and inter-rater reliability checks), and data
integrity (ensured through automated and manual validation).
In the case of datasets created to train models, we request that
the location of the models/software is referenced, preferably
with DOIs, and that the results of the datasets’ performance
become part of the documentation [28], [33]. Data report
guidelines addressing data quality also include using open
source file formats for long-term preservation and requesting
the inclusion of data dictionaries to explain variables in
tabular data. Comments from users in relation to the robotics
datasets publication’s quality and completeness are received
via the feedback form in the datasets’ landing pages, and we
incorporate those as elements in the template.
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D. Dataset Ethics

Ethical aspects involving human subjects are carefully
gauged and discussed with researchers at the point of study
design and included in the report. Considering compliance
with IRB decisions for data anonymization and access re-
strictions, different strategies can be adopted. In the case
of CODa, recordings of incidental participants were re-
moved upon request, and in the Community Embedded
Robotics dataset[14], participant faces were not included
in the published video data. Because in many cases facial
expressions are important to capture for research purposes,
in [27] researchers sought informed consent, and all but
one participant were comfortable with having their session
recording released to the public without face blurring.

Interdisciplinary teams may exhibit different opinions
about privacy and data sharing. During the Robot En-
counter [13] study, in which participants wearing physio-
logical sensors to measure stress levels shared a common
space with robots, social scientists had concerns about
sharing the full text of focus groups, fearing that the par-
ticipants’ identity may be recognized. Instead, roboticists
considered that anonymized ECG and EDA recordings could
be openly shared pending the participants’ consent. The
resultant dataset publication includes open sensor data but
only excerpts and themes resultant from the focus groups.
Acknowledging the need to find a common ground for
sharing human subjects’ data, we identified topics that need
to be reckoned with by interdisciplinary teams at the design
phase of an HRI study. These include a) analyzing the degree
of disclosure and sensitivity of the interview topics and
potential responses, b) considering the privacy risks of all
the data types that will be recorded about participants, and
c) requesting participants’ consent for sharing each type of
data. In the data report, we also require that all human sub-
ject research instruments, including surveys, questionnaires,
interview protocols, and code books, be published to provide
adequate context.

E. Scalable Organization and Access for Large Robotics
Datasets

The size of a dataset is relevant to its understandability and
accessibility regarding how data is organized and whether it
can be downloaded with ease. In terms of data organization,
we provide guidance on folder and files organization and
naming conventions that reveal the content of the files and
are in alignment with the robotics data model elements.
This alignment supports consistent labeling of experiment
sessions, participant roles, and robot modalities, ensuring
both human and machine-readable consistency for down-
stream indexing and retrieval. This is especially important
to help users navigate large multimodal datasets derived
from experiments with multiple testing sessions, or involving
repeated observations with multiple recording instruments.
The Dataverse software allows tree views of the hierarchy
that reflect the dataset’s organization as well as the possibility
to add descriptions to all data files, improving understanding
and accessibility of the dataset. The data organization and
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Fig. 2: Vid2real Real World Collection Structure and Nam-
ing Convention

file naming convention schema have to be described in
the data report. An example of a documented file naming
schema is shown in Figure 2. The schema is critical for
machine processing, as this defined organization directly
informs the mapping of the dataset’s components to the data
model within the knowledge graph and facilitates automated
metadata extraction from the data report. The explicit organi-
zational schema provides context from the knowledge graph
to the LLM, facilitating accurate natural language retrieval
of specific, knowledge graph-linked files.

Training datasets are often bigger than the 1TB size limit
allowed by the repository. To comply with scalable storage,
long-term preservation, and ease of access, we integrated
the Texas Robotics Dataverse with a high-performance web-
accessible storage resource deployed at the Texas Advanced
Computing Center at TACC to host large-scale collections.
This approach is used to store the 4 TB CODa dataset[28].
This hybrid approach facilitates finding the datasets online
through the repository’s search engine optimization strategy
while enabling permanent storage, scalability, and accessi-
bility. Part of the curation process entails developing scripts
for automated download of large datasets both from TDR
and from TACC’s storage resource. Prepared by researchers
in relation to their data organization, the scripts allow down-
loading all or particular portions of large datasets.

F. Semantic Integration through a Knowledge Graph

Once the data is published, the metadata is mapped to
classes and properties in the robotics data model imple-
mented in the Neo4J-based knowledge graph. The graph
converts individual metadata records into interconnected
networks of nodes and relationships facilitating advanced
reasoning, filtering, and the effective preparation and con-
textualization of data for training machine learning models.
The modeling approach enables queries that go beyond basic

https://tacc.utexas.edu/systems/corral/


Fig. 3: Vid2real Online Study Robot Metadata Class/Node
and corresponding properties in the knowledge graph.

search functions. For instance, since robot models are struc-
tured as nodes in the knowledge graph, users can ask, “Which
datasets use Boston Dynamics Spot?” and retrieve specific
answers. This graph structure reflects metadata best practices
seen in other domains like biology or geoscience[16], [17],
[18], where standard schemas allow complex relationships
and rich semantic queries. By requiring researchers to re-
port consistently across robot types, experimental design,
and human subject details, the system builds a trustworthy
base for LLM interaction (key to avoiding hallucination or
degradation in responses due to missing or inconsistent data)
and facilitates data reuse.

Metadata extraction and knowledge graph population cur-
rently rely on the structured JSON metadata records from the
Texas Robotics Dataverse datasets and the information input
by researchers in the data report template. Python scripts
were designed to parse the structured fields within these
data reports—fields intentionally aligned with our robotics
data model— and to process the DDI-based JSON records.
The scripts utilize pattern matching and keyword detection
(such as identifying terms like “robot”, “participant”, “robot
model”, ”experiment session”, ”interview”, ”survey”, ”con-
dition”, etc.) to locate relevant metadata elements. These
elements are systematically mapped to corresponding node
types within Neo4j, ensuring precise and consistent semantic
structuring. For example, a metadata field such as “Robot
Model: Boston Dynamics Spot” becomes a node labeled
RobotModel, linked to its parent dataset node through a de-
fined usesModel relationship, which signifies the specific
robot model utilized in the study that generated the dataset.
This allows higher-level semantic inference and structured
querying across datasets—capabilities that are not possible
with flat or unstructured metadata. Figure 3 demonstrates this
mapping approach using as an example from [26].

G. Human-Centered Access via an LLM

The final layer of the system connects the knowledge
graph to an interactive chatbot powered by an LLM using
RAG. Instead of relying solely on pre-trained knowledge,
the chatbot retrieves structured metadata from the Neo4j
knowledge graph, combined with other relevant materials
such as related publications and data collection instruments.

This comprehensive context is intended to improve the
chatbot’s delivery.

Researchers can query the datasets through natural lan-
guage, asking questions about one or more datasets, such
as “What robot model was used in the Vid2Real online
study?”, “Which studies use a Boston Dynamics robot?”
“Does the CODa dataset include LiDAR ?”, “How does
the online study compare to the real-world study in terms
of participant experience?” “Which research methods are
used in the online and real-world Vid2Real studies?”. Using
the RAG framework the ChatGPT is paired with structured
responses drawn directly from the trained data. As a result,
the way in which users can interact with this system is very
different from the typical keyword search in Google, GitHub,
or Zenodo. The richness and the structure of the curated
metadata enhance factual grounding and mitigate the risk
of hallucinated or overly generalized answers. It also allows
retrieving specific files by asking questions such as “Point
to all video files for session 1 in the Vid2Real real world
study”.

IV. EVALUATION: ASSESSING THE PERFORMANCE OF
THE CHATBOT SYSTEM

We conducted two evaluations : (1) an expert review of
the chatbot’s performance, and (2) a pilot think-aloud session
with a roboticist to assess the system’s practical utility.

A. Expert Review of Chatbot Information Quality

The evaluation was conducted using the following cu-
rated datasets [26], [27], [28], [29], [30], [31], [32]. These
datasets originated from five different robotics laboratories
and cover distinct HRI objectives—multimodal perception,
social navigation, online video annotation, and object-centric
mapping—giving the system’s prototype a heterogeneous
and realistic testbed. Experts rated the chatbot’s performance
against four dimensions [34], [35]. Each dimension was
tested using a set of ten task-specific natural language
questions. The chatbot/s responses were assessed on four
dimensions: accuracy, consistency, comparison capability,
and information completeness, each of which was rated on
a 0–5 scale. The experts were the creators or curators of the
datasets, which equips them with deep, first-hand knowledge
necessary to judge the veracity and completeness of the
chatbot’s responses. The four dimensions are: Information
Retrieval: Ability to provide complete, relevant, and clearly
structured answers to user queries regarding specific dataset
content. Example queries included, “Provide me with the
questionnaire link for the VID2REAL real-world study” and
“List the robot behavioral conditions in the VID2REAL
study.”

Answer Stability: Consistency of responses across semanti-
cally similar queries phrased differently. Examples of tested
queries include, “What kind of robot is used in Vid2Real
Real World?” versus “What type of robot was utilized in the
Vid2Real real-world study?” and queries posed in multiple
languages like Chinese.



Fig. 4: Example of Evaluation: Comparison Capability

Factual Accuracy: Correctness and precision of the infor-
mation provided based on the underlying metadata. Queries
assessed details such as IRB approval, sensor types, robot
models, and specific experimental setups.

Comparison Capability: Ability to accurately compare
two or more datasets, highlighting their key differences.
Example queries included, “What are the differences between
Vid2Real Real World and Vid2Real Online studies regarding
robot control and sensory input?” and “Which datasets use
joystick-based teleoperation versus autonomous navigation?”
An example comparison query and the chatbot’s answer are
shown in Figure 4.

To reduce individual rating biases, we applied a Bayesian
hierarchical model to normalize the scores across reviewers.
Bayesian hierarchical modeling (BHM) is well suited to our
small sample scenario because it employs ’partial pooling’,
a technique in which the model makes more informed
estimates for each expert and each question while simultane-
ously learning from overall patterns across the entire dataset.
Essentially, information gleaned from one expert’s rating
behavior can help refine the understanding of others, and
similarly, observed response patterns for some questions can
inform estimates related to different questions. This produces
stable and uncertainty-aware estimates while adjusting for
each rating tendency. No dataset-query combination was
repeated to ensure a consistent and unbiased assessment
across the four evaluation dimensions.

B. Pilot Session: Exploratory User Interaction

To gain initial qualitative insight into the system’s utility,
we conducted a pilot think-aloud session with a robotics

research professor unfamiliar with the system’s registered
datasets. The goal was to observe the participants’ explo-
ration strategy, understand natural interaction patterns, ease
of navigating from general to specific information, and the
system’s overall effectiveness in finding and revealing the
dataset attributes, thereby highlighting both strengths and
areas for refinement. After a brief orientation on the system’s
purpose, we asked the participant to freely interact with the
chatbot to find a dataset relevant to his research interest. This
involved initiating broad queries to progressively refining
his inquiries to delve deeper into specific characteristics
such as provenance, methodology, technical details, and
data types. The session lasted twenty minutes. Observations
of interaction sequences, verbalized thoughts, and feedback
from a brief post-session discussion were recorded.

V. RESULTS SUMMARY

A. Results from the Experts Review

The following expert review results detail the chatbot’s
performance across the aforementioned dimensions. The
scores, adjusted for objectivity using the Bayesian Hierarchi-
cal Model (BHM), built upon already favorable unadjusted
figures, remained strong, consistently reflecting the chatbot’s
capabilities. 1) Information Retrieval: The chatbot achieved
an average expert rating of 4.65 out of 5, demonstrating
consistency in providing structured and relevant answers.
Reviewers noted that responses directly referenced precise
metadata elements, including links to supporting documenta-
tion, questionnaire materials, and descriptions of experimen-
tal components. Since the experts preferences mostly varied
in this dimension, we use it to illustrate how BHM corrects
for individual bias, as shown in Figure 5.

To make the rating process explicit, each expert–prompt
score yij was modeled as

yij ∼ N
(
µ+ αi + θj + γcomp, σ

2
)
,

Here yij denotes the score assigned by expert i to evaluation
prompt j, with i ∈ {1, 2} (our two raters) and j ∈
{1, . . . , 10} (the ten prompts).

Fitting the model resulted in

γcomp = +0.01 (95% Credible Interval [−0.015, 0.035]).

This indicates that the chatbot’s answers were, on average,
marginally more complete than the global baseline, confirm-
ing that structured metadata enhances the model’s precision
by enabling it to include the key details researchers expect.

2) Answer Stability: In this dimension, the chatbot re-
ceived an average score of 4.9. Responses remained consis-
tent despite variations in query phrasing. Experts highlighted
the system’s robustness to linguistic variations, which sig-
nificantly enhances its usability in interdisciplinary research
contexts.

3) Factual Accuracy: The chatbot scored an average
of 4.9 in Factual Accuracy. Human experts verified that
responses accurately reflected the datasets’ documentation,
IRB status, robot types, and specific sensor modalities. The



Fig. 5: Bayesian Correction in Information Retrieval

evaluation confirmed that the system consistently retrieved
accurate, grounded information from the structured metadata
and supplementary files.

4) Comparison Capability: The Comparison capability
averaged a score of 4.9. The chatbot effectively identified
key differences between the datasets, such as robot control
methods and sensory configurations. However, it relies on
precise queries that include specific dataset names. Gen-
eral or vague questions (e.g., “What is the robot model
difference?”) often yield poor results, while more targeted
queries (e.g., “What is the robot model difference between
CODa and SCAND?”) are handled well. This highlights
a key limitation: the system’s ability to compare is tied
to how well the users can specify their intent. Still, the
chatbot successfully utilizes standardized metadata to support
structured comparisons, which underscores the utility of the
underlying knowledge graph. Recognizing these limitations
is crucial for understanding the system’s practical use and
for guiding future improvements.

Across all four dimensions (Information Retrieval, Answer
Stability, Factual Accuracy, and Comparison Capability), the
evaluation revealed that the chatbot’s strong performance is
largely due to the structured metadata foundation. Unlike tra-
ditional systems, this meticulously curated, graph-structured
knowledge allows the chatbot to interpret precise natural
language inquiries.

B. Findings from the Pilot Exploratory Session

The exploratory session provided valuable qualitative feed-
back on the system’s utility and user interaction. The par-
ticipant found the conversational interface to be an intu-
itive starting point for his search process. Throughout the
session, the participant was generally able to direct the
conversation towards obtaining specific responses regarding
the characteristics he was interested in. His feedback likened
the system to an ”intelligent dataset library,” highlighting its
effectiveness in helping him narrow the scope of his search
and obtain detailed information (such as specific data types
or methodological aspects) pertinent to his research goals.
He also noted the system’s potential to reduce the time
and effort associated with searching for academic datasets
in comparison to traditional browse and search functions.
These positive observations were accompanied by construc-
tive suggestions. For instance, he commented on the need to
enhance the clarity and conciseness of some initial chatbot

responses, which were occasionally perceived as slightly
vague or overly wordy. He also suggested training the system
to find models and libraries relevant to robotics research.
These insights from the pilot session are being used to guide
further iterations of the chatbot interface and interaction
design.

VI. CONCLUSION AND FUTURE WORK

We introduced a prototype system for the FAIR cura-
tion, publication, and natural language access of human-
centered robotics datasets. The evaluation of our system
demonstrated its effectiveness in enhancing HRI datasets’
findability, accessibility, interoperability, and reuse. Specif-
ically, findability is ensured through their publication in
an institutional repository with persistent digital identifiers;
accessibility is improved by combining repository access
with scalable online storage; interoperability is supported
by a shared data model structured into a knowledge graph;
and reuse is achieved through rich metadata, detailed data
reports, and clear documentation. These efforts directly align
with FAIR principles and address long-standing challenges
in robotics data sharing.

The system comprises tightly coupled components. A
robust data model, curation best practices, a Neo4j-based
knowledge graph, and a sustainable infrastructure including
TDR and TACC’s cloud and storage resources as the back-
bone for permanent dataset access. These components work
in concert to ensure the long-term availability and usability
of ethical HRI data. In turn, by enabling interactive natural
language inquiry and data retrieval, the chatbot highlights
and synthesizes the FAIR capabilities and the reliable back-
end infrastructure. While the chatbot is a powerful tool for
sophisticated exploration, the underlying curation process
and infrastructure form the foundation for trustworthy and
reusable datasets.

Future work will explore the system’s applicability to
broader robotics datasets beyond HRI, and we plan to con-
duct comparative studies using chatbots trained on datasets
of varied curation quality. We also aim to register datasets
from multiple repositories. Recognizing the challenge of
automating integration across disparate repositories, we will
pursue scalable strategies for metadata standardization and
ingestion. We will also expand the think-aloud session into
a larger, structured study to refine the interaction design.
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G. Skantze, and A. Pereira, “Human-Robot Interaction Conver-
sational User Enjoyment Scale (HRI CUES),” arXiv preprint
arXiv:2405.01354, 2024, doi: 10.48550/arXiv.2405.01354.

[8] MIT Media Lab, “P2PSTORY: Dataset of Children as Storytellers
and Listeners in Peer-to-Peer Interactions,” Accessed Apr. 6, 2025.
[Online]. Available: https://www.media.mit.edu/projects/
p2pstory/overview/

[9] A. Ben-Youssef, C. Clavel, and S. Essid, “UE-HRI: A Dataset
for the Study of User Engagement in Spontaneous Human-
Robot Interactions,” Accessed Apr. 6, 2025. [Online]. Available:
https://adasp.telecom-paris.fr/resources/2017-
05-18-ue-hri/

[10] S. Lemaignan, C. E. R. Edmunds, E. Senft, and T. Belpaeme,
“The PInSoRo Dataset,” Accessed Apr. 6, 2025. [Online]. Available:
https://freeplay-sandbox.github.io

[11] P. Sirinam, M. Juarez, J. Hayes, and G. Danezis, “Deep Fingerprinting:
Undermining Website Fingerprinting Defenses with Deep Learning,”
arXiv preprint arXiv:1805.03595 [cs.CR], 2018. [Online]. Available:
https://github.com/deep-fingerprinting/df.

[12] GitHub, “About large files on GitHub,” GitHub Docs, 2024. [Online].
Available: https://docs.github.com/en/repositories/
working-with-files/managing-large-files/about-
large-files-on-github.

[13] R. Gupta, H. Shin, E. Norman, Z. Deng, M. Esteva, N. Lu, K.
K. Stephens, and L. Sentis, “Community Embedded Robotics: A
Multimodal Dataset on Perceived Safety during Indoor Mobile Robot
Encounters,” Texas Data Repository, 2024, Version 2. [Online]. Avail-
able: https://doi.org/10.18738/T8/FT9VYS.

[14] R. Gupta, E. Norman, X. Zhou, M. Esteva, K. K. Stephens, and L.
Sentis, “Community Embedded Robotics: A Dataset to Study Per-
ceived Social Intelligence and Safety During Unexpected Encounters
with Quadrupedal Robots,” Texas Data Repository, 2025, Version 1.
[Online]. Available: https://doi.org/10.18738/T8/IYJES1.

[15] DDI Alliance, “Data Documentation Initiative (DDI) Metadata Speci-
fication,” 2021. [Online]. Available: https://ddialliance.org.

[16] J. T. Reese, A. D. Himmelstein, J. K. Lovell, et al., “KG-Hub: A
Framework for Building and Sharing Biological Knowledge Graphs,”
arXiv preprint arXiv:2302.10800 [q-bio.QM], 2023. [Online]. Avail-
able: https://doi.org/10.48550/arXiv.2302.10800.

[17] C. T. Hoyt, D. Domingo-Fernandez, M. Mendez-Carmona,
et al., “BioCypher: A Reproducible Knowledge Graph
Construction Toolkit for Biomedical Data,” arXiv preprint
arXiv:2212.13543 [q-bio.QM], 2022. [Online]. Available:
https://doi.org/10.48550/arXiv.2212.13543.

[18] K. Janowicz, M. Regalia, P. Hitzler, et al., “KnowWhereGraph: A
Knowledge Graph Infrastructure for Geospatial AI,” arXiv preprint
arXiv:2410.13948 [cs.AI], 2024. [Online]. Available: https://
doi.org/10.48550/arXiv.2410.13948.

[19] Digital Curation Centre, “About Digital Curation,” Accessed Apr.
6, 2025. [Online]. Available: https://www.dcc.ac.uk/about/
digital-curation

[20] M. Ahn et al., “The Open X-Embodiment Dataset: Enabling Real-
World Robot Learning at Scale,” 2023. [Online]. Available: https:
//robotics-transformer-x.github.io/.

[21] E. Zhang et al., “DROID: A Large-Scale In-the-Wild Robot Ma-
nipulation Dataset,” 2023. [Online]. Available: https://droid-
dataset.github.io/.

[22] S. A. Thompson et al., “Verti-Wheelers Dataset: Human Teleoperation
for Vertical Terrain Navigation,” ORC Dataverse, George Mason Uni-
versity, 2020. [Online]. Available: https://doi.org/10.13021/
orc2020/QSN50Q.

[23] A. Mandal et al., “RH20T: Learning Diverse Robot Skills in One-
Shot from Human Videos and Language,” 2023. [Online]. Available:
https://arxiv.org/abs/2307.00595.

[24] X. Choi et al., “DexYCB: A Benchmark for Capturing Hand Grasp-
ing of Objects,” 2021. [Online]. Available: https://arxiv.org/
abs/2104.04631.

[25] E. Hauser, Y.-C. Chan, S. Modak, J. Biswas, and J. Hart, “Vid2Real
HRI: Align video-based HRI study designs with real-world settings,”
in Proc. 33rd IEEE Int. Conf. Robot. Hum. Interactive Commun. (RO-
MAN), 2024.

[26] Y.-C. Chan, S. Modak, E. Hauser, J. Biswas, and J. Hart, “Commu-
nity Embedded Robotics: Vid2Real—An online video dataset about
perceived social intelligence in human–robot encounters (Version 1)
[Data set],” Texas Data Repository, 2024, doi: 10.18738/T8/KAHJIB.

[27] Y.-C. Chan, S. Modak, E. Hauser, J. Biswas, and J. Hart, “Community
Embedded Robotics: Vid2Real—A real-world dataset about perceived
social intelligence in human–robot encounters (Draft version) [Data
set],” Texas Data Repository, 2024, doi: 10.18738/T8/UOES4S.

[28] A. Zhang, C. Eranki, C. Zhang, R. Hong, P. Kalyani, L. Kalyanaraman,
A. Gamare, A. Bagad, M. Esteva, and J. Biswas, “UT Campus
Object Dataset (CODa) [Data set],” Texas Data Repository, 2023, doi:
10.18738/T8/BBOQMV.

[29] R. Gupta, H. Shin, E. Norman, Z. Deng, M. Esteva, N. Lu,
K.K. Stephens, and L. Sentis, “Community Embedded Robotics:
A Multimodal Dataset on Perceived Safety during Indoor Mobile
Robot Encounters [Data set],” Texas Data Repository, 2024, doi:
10.18738/T8/FT9VYS.

[30] E.A.Norman, J.Liu, E.Hauser, Y.Xu, and K.Stephens, “Community
Embedded Robotics: Non-Robot Pre-Deployment Interviews Analy-
sis Dataset, PhaseI [Data set],” Texas Data Repository, 2024, doi:
10.18738/T8/SSHQHM.

[31] S. Sharma, M.Huang, S. Nair, A. Wen, C.Petlowany, S.Wanna, and
M. Pryor, “Hand and Glove Segmentation Dataset for Department of
Energy Glovebox Environments [Data set],” Texas Data Repository,
2024, doi: 10.18738/T8/85R7KQ.

[32] H. Karnan, A. Nair, X. Xiao, G. Warnell, S. Pirk, A. Toshev,
J. Hart, J. Biswas, and P. Stone, “Socially Compliant Navigation
Dataset (SCAND) [Data set],” Texas Data Repository, 2022, doi:
10.18738/T8/0PRYRH.

[33] W. B. Knox, S. Hatgis-Kessell, S. Booth, S. Niekum, P. Stone, and
A. Allievi, “Reproduction Data for: Models of Human Preference for
Learning Reward Functions,” Texas Data Repository, 2023, Version 2.
[Online]. Available: https://doi.org/10.18738/T8/S4WTWR.

[34] J. Wu, Z. Wu, R. Li, H. Qin, and G. Wang, “Effective Bug Detection
in Graph Database Engines: An LLM-based Approach,” arXiv preprint
arXiv:2402.00292 [cs.DB], 2024. [Online]. Available: https://
doi.org/10.48550/arXiv.2402.00292.

[35] S. Di Bartolomeo, G. Severi, V. Schetinger, and C. Dunne, “Ask
and You Shall Receive (a Graph Drawing): Testing ChatGPT’s
Potential to Apply Graph Layout Algorithms,” arXiv preprint
arXiv:2303.08819 [cs.HC], 2023. [Online]. Available: https://
doi.org/10.48550/arXiv.2303.08819.

https://www.media.mit.edu/projects/p2pstory/overview/
https://www.media.mit.edu/projects/p2pstory/overview/
https://adasp.telecom-paris.fr/resources/2017-05-18-ue-hri/
https://adasp.telecom-paris.fr/resources/2017-05-18-ue-hri/
https://freeplay-sandbox.github.io
https://github.com/deep-fingerprinting/df
https://docs.github.com/en/repositories/working-with-files/managing-large-files/about-large-files-on-github
https://docs.github.com/en/repositories/working-with-files/managing-large-files/about-large-files-on-github
https://docs.github.com/en/repositories/working-with-files/managing-large-files/about-large-files-on-github
https://doi.org/10.18738/T8/FT9VYS
https://doi.org/10.18738/T8/IYJES1
https://ddialliance.org
https://doi.org/10.48550/arXiv.2302.10800
https://doi.org/10.48550/arXiv.2212.13543
https://doi.org/10.48550/arXiv.2410.13948
https://doi.org/10.48550/arXiv.2410.13948
https://www.dcc.ac.uk/about/digital-curation
https://www.dcc.ac.uk/about/digital-curation
https://robotics-transformer-x.github.io/
https://robotics-transformer-x.github.io/
https://droid-dataset.github.io/
https://droid-dataset.github.io/
https://doi.org/10.13021/orc2020/QSN50Q
https://doi.org/10.13021/orc2020/QSN50Q
https://arxiv.org/abs/2307.00595
https://arxiv.org/abs/2104.04631
https://arxiv.org/abs/2104.04631
https://doi.org/10.18738/T8/S4WTWR
https://doi.org/10.48550/arXiv.2402.00292
https://doi.org/10.48550/arXiv.2402.00292
https://doi.org/10.48550/arXiv.2303.08819
https://doi.org/10.48550/arXiv.2303.08819

	INTRODUCTION
	The Landscape of Large Human-Centered Robotics Datasets
	Components of the FAIR Data Curation and Access System
	A Uniform Data Model for Robotics
	Curation Challenges and Recommendations, Metadata Standards, and the Data Report Template
	Data Quality
	Dataset Ethics
	Scalable Organization and Access for Large Robotics Datasets
	Semantic Integration through a Knowledge Graph
	Human-Centered Access via an LLM

	Evaluation: Assessing the Performance of the Chatbot System
	Expert Review of Chatbot Information Quality
	Pilot Session: Exploratory User Interaction

	Results Summary
	Results from the Experts Review
	Findings from the Pilot Exploratory Session

	Conclusion and Future Work
	References

