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ABSTRACT

Scaling the number of parameters and the size of training data has proven to be
an effective strategy for improving large language model (LLM) performance.
Yet, as these models grow increasingly powerful and widely deployed, the cost
of inference has become a pressing concern. Despite its importance, the trade-
off between model accuracy and inference efficiency remains underexplored. In
this work, we examine how key architectural factors, hidden size, the allocation
of parameters between MLP and attention (mlp-to-attention ratio), and grouped-
query attention (GQA), influence both inference cost and accuracy. We introduce a
conditional scaling law that augments the Chinchilla framework with architectural
information, along with a search framework for identifying architectures that are
simultaneously inference-efficient and accurate. To validate our approach, we
train more than 200 models spanning 80M to 3B parameters and 8B to 100B
training tokens, and fit the proposed conditional scaling law. Our results show
that the conditional scaling law reliably predicts optimal architectural choices and
that the resulting models outperform existing open-source baselines. Under the
same training budget, optimized architectures achieve up to 2.1% higher accuracy
and 26% greater inference throughput compared to LLaMA-3.2.

1 INTRODUCTION

Scaling law studies Kaplan et al.|(2020); [Hoffmann et al.|(2022); Muennighoff et al.| (2023)); Krajew-
ski et al.|(2024); |Abnar et al.| (2025) have shown that increasing model parameters, training tokens,
dataset quality, and compute budget consistently reduces pre-training loss, improves downstream
task performance |Hendrycks et al.|(2021)); |Austin et al.| (2021), and enables the emergence of novel
capabilities |Wei et al.| (2022). These insights have driven the development of many state-of-the-art
large language models [Touvron et al.| (2023); Yang et al.| (2025)); |Guo et al.| (2025).

However, as the field advances, it has become increasingly clear that focusing exclusively on training
overlooks the practical challenges of deploying these models at scale |Chien et al.[(2023)); Wu et al.
(2024). A major limitation of existing scaling laws is their omission of inference costs, which
constitute the dominant expense in deploying large models in real-world applications |[Sardana et al.
(2023). Moreover, the growing use of LLMs in reasoning systems highlights the need for scaling
laws that account for inference costs [Snell et al.[ (2024); Brown et al.| (2024); |[Luo et al.| (2024); Q1
et al.|(2024);|Guan et al.| (2025)). Therefore, we ask the following question:

Can we explicitly capture the trade-off between inference efficiency and accuracy
of large language models?

To address this question, a recent study Sardana et al.[(2023)) proposed scaling laws that incorporate
the total FLOPs from both training and inference. However, their formulation requires estimating
the total number of tokens generated over a model’s entire lifespan. Because inference is performed
repeatedly during deployment, this assumption renders the proposed scaling law impractical for
real-world use. Another study Bian et al.|(2025) extends Chinchilla scaling laws by incorporating
model architecture. However, this work has notable limitations. First, the study considers only
the aspect ratio, defined as hidden size over number of layers, as the architectural factor. Yet, as
shown in Figure([T] aspect ratio alone fails to capture the full range of factors that influence inference
efficiency in large language models. Second, the depth of the model strongly influences accuracy:
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cutting layers tends to impair the model’s generalization after fine-tuning |[Petty et al.|(2023)). Finally,
the study lacks a general framework for incorporating broader architectural factors, including hidden
size and GQA, into scaling laws.

In this work, we fix the number of layers and study
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Figure 1: Although larger models gener-

Finally, we validate this framework by fitting the proposed scaling law on models between 80M and
297M parameters, and evaluating its predictions when scaling up to 3B-parameter models. Our re-
sults demonstrate that, under identical training setups, the derived optimal 1B-parameter architecture
achieves 26% higher inference throughput than the LLaMA-3.2-1B architecture, while maintaining
better accuracy.

2 BACKGROUND

Accurately predicting the performance of large language models during scaling is essential. This
enables us to answer key questions: (i) what is the optimal allocation of available resources between
model size and training tokens, and (ii) what performance gains can be expected from additional
resources? Fortunately, the model loss has been observed to follow a power-law relationship with
respect to the number of parameters NV and training tokens D [Hoffmann et al.| (2022)); Muennighoff
et al.|(2023)) with:

A . B
Ne DS
where L is the model loss, N is the number of total parameters and D is the number of tokens used
for training and A, B, E, a, [ are parameters to be learned.

L(N,D)=E + (1)

To fit the learnable parameters in Eq. (), Chinchilla[Hoffmann et al.| (2022) employs two strategies:
(1) training models with a fixed number of parameters while varying the number of training tokens,
and (ii) training models under a fixed compute budgelﬂ varying both parameters and tokens. The
resulting data are combined to fit the learned parameters in Eq. (I). With the fitted scaling laws,
Chinchilla addresses the following question to determine optimal allocation:

arg r]{]lig L(N, D) s.t. FLOPs(N,D) =C ()

where C' denotes the resource constraint, IV the total number of parameters, and D the number of
training tokens.

'The compute cost is approximated as FLOPs(N, D) ~ 6N D in |[Hoffmann et al.| (2022); Muennighoff
et al.|(2023), where N denotes the number of parameters and D the number of training tokens. In this work,
we adopt the same settings as prior studies.
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Figure 2: Inference throughput vs (left) hidden size d = dpoq4e1 and (right) mlp-to-attention ratio
T = Tip/an ON the 8B model. Under a fixed parameter budget Nyon-embed, larger hidden sizes and
higher mlp-to-attention ratios improve inference throughput for varying batch sizes.

In this paper, we do not address how to optimally allocate compute between model size and training
data under a fixed compute budget. Instead, our focus is on identifying model architectures that
optimize inference efficiency and accuracy under fixed parameter and token budgets. For example,
given a model with 7B parameters trained on 14T tokens, we study how to design an architecture
that satisfies both efficiency and accuracy requirements.

3 MODEL ARCHITECTURE-AWARE SCALING LAWS

3.1 MODEL ARCHITECTURE VARIATIONS

The architecture of a decoder-only transformer is composed of a sequence of stacked decoder blocks,
each sharing the same structure to facilitate model-parallel deployment across devices. Under this
design, the overall architecture of dense LLMs is primarily determined by the hidden size and the
MLP intermediate size, which together specify the attention and MLP layers structure. This work
studies the optimal model architecture given a fixed total number of non-embedding parameters
Nion-embed (at different levels). Although the number of layers njayer also plays a critical role (closely
related to aspect ratio (Petty et al., 2023)), varying njayer under a fixed Nyon-embed Substantially im-
pacts both inference cost and accuracy (Tay et al.,|202 1} /Alabdulmohsin et al., [2023)). Therefore, we
fix nayer and focus on the effects of hidden size dioder and the mlp-to-attention ratio 7'y /e ON in-
ference efficiency (§3.2) and accuracy (§3.3), noting that 7j,ye; still varies across different Nyon-embed
levels. In §3.3] we introduce a conditional scaling law to predict the performance of architectural
variants, and in §3.4] we present a lightweight framework for identifying architectures that optimally
balance inference efficiency and accuracy.

Note that the number of attention parameters is primarily determined by the hidden size diogel
and the attention projection dimension, since most open-weight models adopt non-square g, k, v
projection matrices, as seen in Gemma (Team et al., [2024a) and Qwen3 (Yang et al., [2025). For
consistency, we fix the per-head dimension dje,q to 64 for models with Nyopembea <1B and to 128
for models with Nyon-embed >3B. Consequently, to maintain a constant 7y, /4, We adjust the number
of attention heads npe,q rather than altering the projection dimension directly. This design choice
also provides flexibility to incorporate architectural variants such as grouped-query attention.

3.2 INFERENCE EFFICIENCY

Inspired by the success and widespread adoption of open-weight dense models such as Qwen3 (Yang
et al., 2025)), LLaMA-3.2 (Dubey et al., [2024), and the Gemma-2 (Team et al.l [2024b)) family, we
construct architectural variants by modifying the configurations of the LLaMA-3.2 and Qwen3 dense
models (Figure [TO]I2]in Appendix [E). In addition to hidden size and the mlp-to-attention ratio, we
find that group-query attention has a critical impact on inference efficiency, even though it only
modestly reduces the number of attention parameters (by shrinking the key and value matrices). To
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Figure 3: Loss vs. hidden size: (Left) 80M model variants; (Center) 145M model variants; (Right)
297M model variants. Across model sizes, the relationship between training loss and dimeder / VN ex-
hibits a consistent U-shaped curve when architectural factors such as GQA and the MLP-to-attention
ratio are held fixed. The legend denotes the MLP-to-attention ratio 7 = r'jp /aa for each model.
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Figure 4: Loss vs. MLP-to-attention ratio: (Left) 80M model variants; (Center) 145M model
variants; (Right) 297M model variants. Across model sizes, the relationship between training loss
and 71p /ain €Xhibits a consistent U-shaped curve when architectural factors such as GQA and hidden
size are held fixed. The legend denotes the hidden size d = djyqe) for each model.

disentangle these effects, we conduct controlled ablations of hidden size, MLP-to-attention ratio,
and GQA under the following setups:

* hidden size dioger: TiX Nyon-embeds Tmip/atn @ad GQA= 4, vary dpoqe1 and number of attention
heads nneaa (Figure 2]left).

* mlp-to-attention ratio 1y jaimn’ iX Nyon-embeds @model and GQA= 4, vary npe,q and interme-
diate size (Figure [J]right).

* GQOA: fix Npon-embed> @model a0 Tiyip /attn» VALY Tiheag and number of key-value heads (Ap-
pendix [E).

Figure [2f shows the ablation of varying hidden sizes dmogel and mlp-to-attention 7 /aem on the
LLaMA3.1-8B model variants. We observe that larger hidden size (or fewer attention heads)
and higher mlp-to-attention ratios improve inference throughput. Similar trends are observed in
the LLaMA3.2-1B and 3B model variants (Appendix [E). These gains arise in part because larger
dimoder and higher 7, /an Teduce the total FLOPs, as detailed in the inference FLOPs analysis (Ap-
pendix [H). In addition, these architectural choices shrink the KV cache, lowering I/O cost during
inference and further improving throughput [Adnan et al. (2024). Figure [9]in Appendix [E] presents
the GQA ablation, confirming prior observations |Ainslie et al.| (2023) that increasing GQA consis-
tently improves inference throughput. A comparable set of ablation experiments on Qwen3 models,
also reported in Appendix [E] further corroborates these findings.

3.3 A CONDITIONAL SCALING LAW

Improving inference efficiency should not come at the expense of significantly reducing model ac-
curacy, making it crucial to understand how architectural choices affect accuracy and training loss.
Because training large-scale language models is prohibitively expensive, a common strategy is to
study smaller models and use scaling laws to extrapolate insights to larger scales—for example,
the Chinchilla scaling laws (Hoffmann et al.l [2022). However, incorporating multiple architectural
factors into such laws remains challenging. To address this, we examine the effect of architectural
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choices on training loss L in a conditional manner, varying one factor at a time while keeping the
others fixed.

hidden size dyoqe. We note that dyoqe1 generally scales linearly with v/ Nyop-embed. Assuming
squared attention weight matrices, the number of attention parameters Ny, can be expressed as

r

2
4dm,odgl X Natm = Nnon—embed X m,

where r = rpp/am 18 fixed, and the constant factor 4 arises from the query, key, value, and output
projection layers in each attention block. To capture this scaling behavior, we normalize d0de1 by
v/ Nhon-embed and examine its relation to loss L in Figure The resulting U-shaped curves L(d/ VN |
r, N, D) exhibit nearly identical optima across different model sizes. Moreover, Figure [3| confirms
that excessively large hidden sizes, which reduce the number of attention heads npeaq, can degrade
accuracy—a phenomenon consistently observed in prior analyses of transformer capacity and head
allocation (Kaplan et al.,[2020; Hoffmann et al., [2022).

mlp-to-attention ratio 7pyp/am. Figure El] illustrates how the loss varies with 7y /aum, condi-
tioned on dyeqe fixed at different levels, where we consistently observe a U-shaped curve L(r |
d/v/N,N, D). While the attention mechanism is central to the success of transformers (Vaswani,
2017), recent open-weight models have allocated a progressively smaller fraction of parameters to
attention as overall model size increases (e.g., LLaMA and Qwen families). Our analysis indicates
that this trend is not universally optimal: there exists an interior optimum in the allocation of atten-
tion parameters, and deviating from it in either direction degrades model performance. This suggests
that careful tuning of the mlp-to-attention ratio is critical for scaling transformers effectively.

As shown in Figures [3] and [4] both hidden size and the MLP-to-attention ratio exhibit U-shaped
relationships with training loss. To capture these trends, we fit the function ¢y + ¢1 logx + co/x
separately for = Tmip/aun and diodel. This formulation effectively models the U-shaped behavior
while ensuring sublinear growth as z increases. However, incorporating rmip /attn» @modet, N, and D
into a unified, architecture-aware scaling law remains challenging. Since fitting a single all-purpose
scaling law L(d/+/N,r, N, D) is unrealistic across all possible configurations, we instead propose
a two-step conditional approach:

1. For given N and D, obtain the optimal loss Loy (N, D) = min L(N,D) = min (E +
% + %) from the Chinchilla scaling law (Eq.|1)) as a reference point.
2. Calibrate the loss of architectural variants L(d/v/N,r | N, D) relative to this reference.

We focus on two simple calibration schemes:

* (multiplicative)

L(d/\/ﬁ,r | N,D) = (ap + a1 log(\/dﬁ) +a2g) - (bo + by logr + b72) Lot (3)

* (additive) L(d/v/N,r | N, D) = (ao + a; log(\/iﬁ) + ag‘/TN) + (b1 logr + 2) + Loy

Here, a; and b; are learnable parameters that are shared across all N, D. Unlike the unified formula-
tion, the conditional scaling law assumes that the effects of 7y /atn @and dinoder ON loss are separable.
We further ablate joint, non-separable formulations in Appendix [G| where we find that they yield
inferior predictive performance.

3.4 SEARCHING FOR INFERENCE-EFFICIENT ACCURATE MODELS

With the conditional scaling law, we can identify architectures that are both inference-efficient and
accurate by solving the following optimization problem: given N, D, and a set of architectural
choices P,

argmax pIy (P), st. L(P|N,D) < Ly, 4)

where Iy (P) denotes the inference efficiency of an architecture P with total N;op-embed parameters,
and Ly, (> Lop) is the maximum allowable training loss.
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As shown in Figure[9](Appendix [E), GQA has a substantial impact on inference efficiency; However,
unlike hidden size and the mlp-to-attention ratio, GQA does not exhibit a consistent relationship with
loss (Figure and is highly variable, making it challenging to identify settings that achieve both
accuracy and efficiency. Fortunately, the search space for GQA is relatively small once Non-embeds
dimodel> and Ty1p /ain are fixed, since GQA must be a prime factor of the number of attention heads
Thead- 1IN practice, we perform a local GQA search by enumerating feasible values and applying
early stopping once performance falls below that of the GQA= 4 baseline. Algorithm [I]summarizes
our overall framework for identifying inference-efficient and accurate architectures.

Algorithm 1: Searching for Inference-Efficient Accurate Model

Input: Model parameters N, training tokens D, target loss L;; inference efficiency Iy (-);
optional: the optimal loss Loy (N, D)

Train smaller models to fit the Chinchilla scaling laws (Eq. 1) if Loy (NN, D) is unavailable

Solve the constrained optimization (Eq. @) for diodel, Tmip/an and correspondmg architecture P

Perform a local search over GQA values with early stopping to maximize inference efficiency

return Final model architecture { P, GQA}

4 EXPERIMENT SETUP

We first detail the experimental setup of training, inference, and downstream task evaluation, and
then describe how we derive the conditional scaling law and scale up to larger sizes.

Training Setup. We sample the training data from Dolma-v1.7 |Soldaini et al.| (2024), which
contains data from 15 different sources. Tokens are sampled with probability proportional to
each source’s contribution, ensuring the sampled dataset preserves a similar distribution to Dolma-
v1.7. We train decoder-only LLaMA-3.2 (Dubey et al.,|2024) style transformers with Nyon emped 1
{80M, 145M, 297M, 1B, 3B}, for each Nyon-embed, We obtain model architecture candidates by vary-
ing hidden size dmode1/ v/ Nnon-embed and mlp-to-attention ratio Tmip/awn- (Changing intermediate size
and number of attention heads 7e,q) While holding other architectural factors fixed e.g. GQA= 4.
A full list of over 200 model architectures used can be found in Appendix [C] All models are trained
on 100Nyeon-emp tokens (5x Chinchilla optimal) to ensure convergence. We tuned training hyper-
parameters (mainly following prior work [Chen et al.| (2023)), with a full list in Appendix [D}

Inference Setup. We evaluate the inference efficiency using the vLLM framework [Kwon et al.
(2023). By default, inputs consist of 4096 tokens and outputs of 1024 tokens. We report the av-
eraged inference throughput (tokens/second) from 5 repeated runs. Unless otherwise specified, all
experiments are conducted on NVIDIA Ampere A100 GPUs (40GB).

LLM Evaluation Setup. Followmg prior works Biderman et al.| (2023); Zhang et al. (2024)
we evaluate pretrained models in the zero-shot setting using 1m-evaluation-harnessf|on
nine benchmarks: ARC-Easy |Clark et al| (2018), ARC-Challenge |Clark et al.| (2018), LAM-
BADA |Paperno et al.| (2016), HellaSwag|Zellers et al.[(2019), OpenBookQA Mihaylov et al.[(2018)),
PIQA [Bisk et al.| (2020), SciQ [Welbl et al.| (2017), WinoGrande |Sakaguchi et al,| (2021)), and
CoQA Reddy et al.|(2019).

Fitting Scaling Laws. Following Gadre et al|(2024)); Bian et al|(2025)), we use the Levenberg-
Marquardt algorithm to fit the conditional scaling laws (Eq.3). The Levenberg-Marquardt algorithm
does least-squares curve fitting by estimating 3 as the solution to arg ming > [y; — f (4, B2,
where (z;,y;) are the observed data pairs. Note that instead of fitting the Chinchilla scaling
law, we empirically searched over architecture variants to find the optimal loss Loy (N, D) for
Nion-embed < 1B scale.

We scale up the scale law fitting in the following progressive manner:

(Task 1) fit on the 80M results and evaluate on 145M results;

https://github.com/EleutherAI/lm-evaluation—harness
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Figure 5: Predictive performances of the fitted conditional scaling law on: (left) Task 1: Fit on
80M, evaluate on 145M; (center) Task 2: Fit on 80, 145M, evaluate on 297M; (right) Task 3: Fit on
80, 145, 297M, evaluate on 1B. Orange dots denote fitting data points, and purple crosses indicate the
test data points. We compare scaling-law predicted loss with actual pretraining loss of architectures
and observed a consistently low MSE and high Spearman correlation across model scales.

(Task 2) fit on 80, 145M results and evaluate on 297M results;
(Task 3) fiton 80, 145, 297M results and evaluate on 1B results;

This ensures a robust and consistent way of scaling up the model sizes and evaluating our conditional
scaling law. Following prior work [Kumar et al.| (2024), we evaluate the fitted scaling law with mean
squared error (MSE) metric, defined as % Z?Zl (l; — [1)2 where [; denotes the actual loss and lAl the
predicted loss. We additionally report the Spearman’s rank correlation coefficient|Spearman| (1961)
to compare predicted and actual rankings. Both metrics are calculated on the val data points.

5 EXPERIMENT RESULTS

We begin by evaluating the predictive performances of the conditional scaling laws with multiplica-
tive calibration. We then conduct ablation studies to assess the impact of data selection and to
evaluate the performance of the scaling laws under additive calibration. Finally, we apply the fitted
scaling laws to guide the training of large-scale models following the search framework (§5.1).

Predictive Accuracy. As Task 1-3 described in we fit the conditional scaling laws on 80M,
(80M, 145M), and (80M, 145M, 297M) loss-architecture data points, and subsequently evaluate on
145M, 297M, and 1B data, respectively. In Figure [5] the low MSE and high Spearman correlation
in tasks across different model scales validate the effectiveness and strong predictive performance
of the proposed conditional scaling laws.

Ablation Study of Data and Calibration. The mlp-to-attention ratio 7y am Of Open-weights
models typically fall between 0.5 and 5, for example, the mlp-to-attention ratio for LLaMA-3.2-1B,
LLaMA-3.2-3B, and Qwen3-8B are 4.81, 1.5, and 4.67, respectively. In Figure[5] we fit the condi-
tional scaling law using only model architectures with 7mip/an € [0.5,5]. We ablate this choice by
training model architectures with outlier 7y /an below 0.5 and 5 in Appendix [C} In Figure |14{(left)
and Figure [T4] (center) in Appendix [G] we show on Task 3 a comparison of fitting the conditional
scaling law without and with these outliers (with a clear Spearman correlation score degradation),
which suggests to exclude extreme outliers for better predicted performances.

In Figure[T4] (right), We also ablate an alternative formulation of the scaling laws with additive cali-
bration, as discussed in §3.3] Task 3 results show that multiplicative and additive calibrations achieve
similar MSE and Spearman correlations, underscoring the robustness of our two-step reference plus
calibration framework.

5.1 OPTIMAL MODEL ARCHITECTURE

To train large-scale models with optimal performance, we fit the conditional scaling laws with mul-
tiplicative calibration on Task 3 using data from the (80M, 145M, and 297M) model variants. The
learned parameters are

ap = 2.697,a; = 0.0974, ag = 0.0078, by = 0.3870,b; = 0.0063, and b = 0.0065.
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Table 1: Large-Scale Model Results: We evaluate the scaling laws and framework at the 1B and
3B scales by training Panda-1B, Surefire-1B, and Panda-3B, and compare them with LLaMA-3.2-
1B and LLaMA-3.2-3B, respectively. The Avg. column reports the mean accuracy across the nine
downstream tasks.

Models dmodel f size Niayers GQA dmodel/ \/N r Loss (\L) AVg~ (T)
LLaMA-3.2-1B 2048 8192 16 4 0.066 4.80 2.803 54.9
Panda-1B 2560 4096 16 4 0.082 1.07 2.782 57.0
Surefire-1B 2560 6144 16 9 0.082 3.6 2.804 554
LLaMA-3.2-3B 3072 8192 28 4 0.058 4.80 2.625 61.9
Panda-3B 4096 4096 28 4 0.077 1 2.619 62.5
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Figure 6: Results for 1B models: (Left) Panda-1B closely follows the scaling law predictions for
minimizing training loss. (Right) Inference throughput comparison between LLaMA-3.2-1B and
Surefire-1B, showing that Surefire-1B consistently achieves higher efficiency across batch sizes.

From this, we obtain the optimal architectural configuration of deder/ VN = 0.08 and r = 1.032
by solving 32“L“del = 0 and g—f = 0. Using these configurations, we train LLaMA-3.2-style dense
1B and 3B models on 100B tokens, denoted as Panda-1B and Panda-3B models, respectively. Their
training losses and downstream task accuracies are summarized in Table [T, where Panda-1B and
Panda-3B outperform the open-weight LLaMA-3.2 baselines configs by 2.1% and 0.6% on average
across downstream tasks. We further validate the effectiveness of the conditional scaling law by
exhaustively pretraining 1B model variants under the same setup. As shown in Figure [6] (left),
Panda-1B indeed achieves the optimal training loss.

With all components in place, we apply the search framework for inference-efficient and accurate
models (Alg. EI) For the Npon-embed = 1B setting trained on 100 Nyon-embed tokens, we set the target
loss L; to match the training loss achieved by the LLaMA-3.2-1B architecture. Although inference
efficiency I (P) could, in principle, be expressed analytically, it depends heavily on hardware and
inference configurations. Therefore, rather than solving for Iy (P) directly, we search over feasible
configurations P; that satisfy the loss constraint and select Pareto-optimal points, which we denote
as Surefire-1B. Surefire-1B not only outperforms LLaMA-3.2-1B on downstream tasks (Table|[I)) but
also achieves up to 26% higher inference throughput (Figure [6] right). Detailed downstream task
accuracies are provided in Appendix

6 RELATED WORK

Large Language Models. Transformers |Vaswani| (2017)) have shown strong performance across
diverse downstream tasks, such as text classification Wang|(2018)); Sarlin et al.|(2020), mathematical
reasoning |Cobbe et al.| (2021)); [Hendrycks et al.| (2021)), and code generation [Chen et al.| (2021);
Austin et al.| (2021)); Jain et al.| (2024). The Transformer architecture serves as the foundation for
many leading large language models, including GPT |Brown et al.| (2020); |Achiam et al.| (2023),



Under review as a conference paper at ICLR 2026

LLaMA [Touvron et al. (2023)), Gemma Team et al.| (2024a)), Qwen |Yang et al.| (2025)), Kimi [Team
et al.| (2025), and DeepSeek Liu et al.| (2024a); |Guo et al.|(2025)).

Scaling Laws for Language Models. Scaling laws are powerful tools to predict the performance
of large language models. Existing scaling laws Hoffmann et al.|(2022); [Muennighoff et al.| (2023);
Sardana et al.| (2023)); Kumar et al.| (2024); |Gadre et al.| (2024); Ruan et al.| (2024) characterize how
model performance varies with model size, dataset size, data quality, and compute budget. With the
rise of Mixture-of-Experts (MoE) [Shazeer et al.| (2017); \Guo et al.[(2025)), a powerful architecture
for large language models, recent studies [Krajewski et al.|(2024); |/Abnar et al.| (2025)) extend scaling
laws to account for the number of experts, expert granularity, active parameters, and sparsity.

Serving Systems. Due to the increased inference cost, many inference systems have been de-
veloped to speed up model serving |Yu et al.| (2022); Kwon et al.| (2023); Zheng et al.| (2023); |Ye
et al.|(2025). Specifically, vLLM [Kwon et al.|(2023) proposes PagedAttention to manage KV cache
memory more effectively, thereby improving throughput. Similarly, SGLang |[Zheng et al.| (2023)
introduces RadixAttention to achieve higher throughput and lower latency.

Inference-Efficient Model Design. Efforts to improve the inference efficiency of large language
models generally fall into two categories: one line of work investigates the trade-offs across differ-
ent model configurations |Alabdulmohsin et al.| (2023); Bian et al.| (2025), while the other focuses
on designing more efficient model architectures |Xiao et al.[ (2023); |Gu & Dao| (2023); |Gao et al.
(2024b); Jiang et al.| (2024); |L1u et al.| (2024b); Dao & Gu| (2024); |X1ao et al.| (2024); |Yuan et al.
(2025)); |Chandrasegaran et al.| (2025).

7 LIMITATIONS AND FUTURE WORK

While our team has made notable progress, several open challenges remain that offer promising
directions for future research. First, due to limitations in resources and time, our evaluation does
not extend to 7B models. Second, our analysis is restricted to dense models, and it remains unclear
whether the results extend to Mixture of Experts (MoE) architectures |Shazeer et al.| (2017). While
we report inference efficiency measurements for MoE models under varying architectural choices
in Appendix [J] we have not yet established scaling laws for MoE architectures. Third, we adopt the
experimental setup from Chen et al.|(2025)), and it is uncertain whether different model architectures
warrant different hyperparameter configurations. Finally, our analysis is limited to pre-training, and
it remains unclear how the results would change under post-training.

8 CONCLUSION

This work explores the trade-off between model accuracy and inference cost under a fixed training
budget. We begin by demonstrating how architectural choices influence both inference throughput
and model accuracy. Building on this, we extend Chinchilla scaling laws to incorporate architectural
factors and propose a framework for optimal model architecture search. Using the fitted scaling laws
and our framework, we trained models up to 3B parameters, achieving up to 26% higher inference
throughput and 2.1% accuracy gains across nine downstream tasks.

REPRODUCIBILITY STATEMENT

All experiments in this work were conducted using publicly available frameworks. Section [] pro-
vides details of our training, inference, and evaluation setups. We used Megatron—LM (Shoeybi
et all 2019) for model training, vLILM (Kwon et all [2023) for efficient inference, and
lm-eval-harness (Gao et al.,|2024a) for standardized evaluations. To facilitate reproducibility,
we will release configuration files and scripts.
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A LLM USAGE

We used an LLM to improve the writing by correcting grammar in our draft. It was not used to
generate research ideas.

B OPEN-WEIGHTED MODEL ARCHITECTURES

Table 2] presents an overview of the open-weight model architectures utilized in this paper.

Table 2: Open-Weighted Model Architectures: We list the architectural configurations of all mod-
els used in this paper. njayers is the number of layers, dmoder is the hidden size, 7peaqs is the number
of attention heads, and f;;,. is the intermediate size.

Model Name Tayers dmodel TMheads f size GQA

Qwen2.5-1.5B 28 1536 12 8960 6
Qwen3-0.6B 28 1024 16 3072 2

C MODEL ARCHITECTURES

Table[3|provides an overview of the model architectures, all configured with GQA =4 and employing
LLaMA-3.2 as the tokenizer.

Table 3: Model Architectures: We list the architectural configurations of all models trained in this
Paper. Nijayers 1S the number of layers, dyogel i the hidden size, 7npeads i the number of attention
heads, and fi;,. is the intermediate size.

Model Size  Variant Niayers dmodel  Mheads fsize

80M vl 12 768 16 2048
80M v2 12 768 4 2688
80M v3 12 768 8 2560
80M v4 12 768 24 1536
80M v5 12 768 32 1152
80M v6 12 768 40 768
80M v7 12 768 48 256
80M v8 12 384 32 4096
80M v9 12 384 8 5376
80M v10 12 384 16 5120
80M vll 12 384 48 3072
80M v12 12 384 64 2304
80M v13 12 384 80 1536
80M vl4 12 384 96 512
80M v15 12 1536 8 1024
80M v16 12 1536 4 1280
80M v17 12 1536 12 768
80M v18 12 1536 16 640
80M v19 12 1536 20 384
80M v20 12 1536 24 128
80M v21 12 512 24 3072
80M v22 12 512 12 3840
80M v23 12 512 16 3584
80M v24 12 512 36 2304
80M v25 12 512 48 1792
80M v26 12 512 60 1152
80M v27 12 512 72 384
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Model Size Variant Niayers dmodel Tlheads fsize
8OM v28 12 1024 12 1536
SOM v29 12 1024 8 1792
SOM v30 12 1024 16 1280
8OM v31 12 1024 24 896
8OM v32 12 1024 36 256
SOM v33 12 2048 4 896
8OM v34 12 2048 8 640
8OM v35 12 2048 16 256
SOM v48 12 768 20 1792
8OM v49 12 768 28 1408
8OM v50 12 384 40 3584
SOM v51 12 384 52 3072
8OM v52 12 384 56 2816
8OM v53 12 384 60 2560
SOM v54 12 512 32 2560
8OM v55 12 512 40 2176
8OM v56 12 512 44 1920
SOM v57 12 1024 20 1152
145M vl 12 1024 16 3072
145M v2 12 1024 8 3584
145M v3 12 1024 24 2560
145M v4 12 1024 32 2304
145M v5 12 1024 40 1792
145M v6 12 1024 48 1280
145M v7 12 1024 64 512
145M v8 12 512 32 6144
145M vo 12 512 16 7168
145M v10 12 512 48 5120
145M vll 12 512 64 4608
145M vi2 12 512 80 3584
145M v1l3 12 512 96 2560
145M vi4 12 512 128 1024
145M vl5 12 2048 8 1536
145M v16 12 2048 4 1792
145M v17 12 2048 12 1280
145M vi8 12 2048 16 1152
145M v19 12 2048 20 896
145M v20 12 2048 24 640
145M v21 12 2048 32 256
145M v22 12 768 24 3840
145M v23 12 768 32 3584
145M v24 12 768 40 3072
145M v25 12 768 48 2560
145M v26 12 768 56 2304
145M v27 12 768 64 1792
145M v28 12 1536 12 1920
145M v29 12 1536 16 1792
145M v30 12 1536 20 1536
145M v31 12 1536 24 1280
145M v32 12 1536 28 1152
145M v33 12 1536 32 896
145M v34 12 4096 4 768
145M v35 12 4096 16 128
145M v48 12 1024 28 2368
145M v49 12 1024 36 2048
145M v50 12 512 52 5120
145M v51 12 512 60 4800
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Model Size Variant Niayers dmodel Tlheads fsize
145M v52 12 512 68 4224
145M v53 12 512 72 3968
145M v54 12 768 44 2944
145M v55 12 768 52 2432
297TM vl 12 1536 24 4096
297TM v2 12 1536 8 4864
297TM v3 12 1536 16 4608
297TM v4 12 1536 32 3584
297TM v5 12 1536 48 2816
297TM v6 12 1536 64 2048
297 v7 12 1536 80 1024
297TM v8 12 768 48 8192
297M v9 12 768 16 9728
297TM v10 12 768 32 9216
297TM vll 12 768 64 7168
297TM v12 12 768 96 5632
297TM vl3 12 768 128 4096
297TM vl4 12 768 160 2048
297TM vl5 12 3072 12 2048
297TM v16 12 3072 4 2432
297TM v17 12 3072 8 2304
297M v18 12 3072 16 1792
297TM v19 12 3072 24 1408
297TM v20 12 3072 32 1024
297TM v21 12 3072 40 512
297TM v22 12 1024 36 6144
297TM v23 12 1024 12 7296
297TM v24 12 1024 24 6912
297TM v25 12 1024 48 5376
297TM v26 12 1024 72 4224
297M v27 12 1024 96 3072
297TM v28 12 1024 120 1536
297TM v29 12 2048 12 3456
297M v30 12 2048 24 2688
297TM v31 12 2048 48 1536
297TM v32 12 2048 60 768
297M v45 12 1536 40 3200
297TM v46 12 1536 44 3072
297TM v47 12 1536 52 2688
297M v48 12 1536 56 2432
297TM v49 12 768 80 6400
297TM v50 12 768 88 6016
297M v51 12 768 104 5376
297TM v52 12 768 112 4736
297TM v53 12 3072 20 1664
297TM v54 12 3072 28 1152
297TM v55 12 1024 56 4864
297TM v56 12 1024 64 4608
297M v57 12 1024 80 3840
297TM v58 12 1024 88 3328
297TM v59 12 2048 32 2432
297M v60 12 2048 36 2048
297TM v61 12 2048 40 1920
297 v62 12 2048 44 1792
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D HYPER-PARAMETERS

Table 4| lists the detailed hyper-parameters used for training in this paper.

Table 4: Hyper-parameters: We show the hyper-parameters used for training in this paper.

Model Size 8OM  145M 297M 1B
Batch Size 256 256 512 512
Max LR 1.5e-3 1.0e-3 8.0e-4 6.0e-4
Min LR 0.1x Max LR
Optimizer AdamW (31 = 0.9, B> = 0.95)
Weight Decay 0.1
Clip Grad Norm 1.0
LR Schedule Cosine
Warmup Steps 500
Sequence Length 2048
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E ADDITIONAL INFERENCE EVALUATION RESULTS

In this section, we present additional inference efficiency results on NVIDIA A100 GPUs. Figure 9]
presents that, when parameter count, MLP-to-Attention ratio, and hidden size are fixed, increasing
GQA leads to higher inference throughput, consistent with the findings of |Ainslie et al.[(2023). We
alter model configurations of LLaMA-3.2-1B, 3B, and LLaMA-3.1-8B in Figure El
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Figure 7: Hidden size on Inference Throughput: (left) 1B model variants; (center) 3B model
variants; (right) 8B model variants. Across varying batch sizes and model scales, larger hidden sizes
yield higher inference throughput under a fixed parameter budget. The legend indicates the hidden
size of the models, where d = dpodel-
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Figure 8: MLP-to-Attention ratio on Inference Throughput: (left) 1B model variants; (center)
3B model variants; (right) 8B model variants. Across varying batch sizes and model scales, a larger
MLP-to-Attention ratio increases inference throughput under a fixed parameter budget. The legend
indicates the MLP-to-Attention ratio of the models, where r = 71 /ain-
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Figure 9: GQA on Inference Throughput: (left) 1B model variants; (center) 3B model variants;
(right) 8B model variants. This figure shows the impact of GQA on inference throughput. With the
total parameter count fixed, hidden size is set to 2048 (1B), 3072 (3B), and 4096 (8B), and the MLP-
to-Attention ratio is 4.0, 2.67, and 4.2, respectively. Across varying batch sizes, models with larger
GQA achieve higher throughput. All evaluations are performed using the vLLM framework [Kwon
et al.| (2023) on a single NVIDIA Ampere 40GB A100 GPU with 4096 input and 1024 output tokens.

Furthermore, we derive architectural variants by altering the configurations of Qwen3-0.6B, 1.7B,
and 4B to investigate the impact of model architectural factors on inference efficiency. The results

are shown in Figure [I012]
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Figure 10: Hidden size on Inference Throughput (Qwen3): (left) Qwen3-0.6B model variants;
(center) Qwen3-1.7B model variants; (right) Qwen3-4B model variants. Across varying batch sizes
and model scales, larger hidden sizes yield higher inference throughput under a fixed parameter
budget. The legend indicates the hidden size of the models, where d = do4e1- All evaluations are
performed using the vLLM framework [Kwon et al.|(2023) on a single NVIDIA Ampere 40GB A100
GPU with 4096 input and 1024 output tokens.
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Figure 11: MLP-to-Attention ratio on Inference Throughput (Qwen3): (left) Qwen3-0.6B model
variants; (center) Qwen3-1.7B model variants; (right) Qwen3-4B model variants. Across varying
batch sizes and model scales, a larger MLP-to-Attention ratio increases inference throughput under
a fixed parameter budget. The legend indicates the MLP-to-Attention ratio of the models, where
T = Tmip/an- All evaluations are performed using the vLLM framework [Kwon et al (2023) on a
single NVIDIA Ampere 40GB A100 GPU with 4096 input and 1024 output tokens.
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Figure 12: GQA on Inference Throughput (Qwen3): (left) Qwen3-0.6B model variants; (cen-
ter) Qwen3-1.7B model variants; (right) Qwen3-4B model variants. This figure shows the impact
of GQA on inference throughput. With the total parameter count fixed, hidden size is set to 1024
(0.6B), 2048 (1.7B), and 2560 (4B), and the MLP-to-Attention ratio is 1.5, 3.0, and 2.85, respec-
tively. Across varying batch sizes, models with larger GQA achieve higher throughput. All evalu-
ations are performed using the vLLM framework Kwon et al|(2023) on a single NVIDIA Ampere
40GB A100 GPU with 4096 input and 1024 output tokens.
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F ADDITIONAL RESULTS: LOSS VS. MODEL ARCHITECTURE

In this section, we analyze the relationship between training loss and GQA while fixing the number
of parameters, hidden size, and MLP-to-Attention ratio. As shown in Figure[I3] unlike hidden size
and MLP-to-Attention ratio, the relationship between loss and GQA is highly fluctuating.
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Figure 13: Loss vs. GQA: (left) 8O0M model variants; (center) 145M model variants; (right) 297M
model variants. Across different model sizes, the relationship between training loss and GQA varies
substantially when hidden size and the mlp-to-attention ratio are fixed. The legend denotes the
hidden size of each trained model.

G MORE ABLATION STUDY

In this section, we first evaluate the impact of fitting data on the scaling laws in Figure [T4] (left)
and Figure (14| (center). Then, we evaluate the fitting performance of multiplicative calibrations and
additive calibrations in Figure[T4](center) and Figure[I4](right). Finally, we evaluate the performance
of Joint and non-separable calibrations shown below:
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Figure 14: Ablation Study: (left) use multiplicative calibrations without outliers; (center) use mul-
tiplicative calibrations with outliers; (right) use additive calibrations without outliers. The outlier
refers to models trained with an mlp-to-attention ratio below 0.5 or above 5. We observe that outlier
data points harm the scaling law fit. Moreover, while multiplicative and additive calibrations differ
in formulation, their MSE and Spearman values remain nearly identical. Dots denote the data points
used for fitting, while crosses indicate the test data points.
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Figure 15: Joint and non-separable calibrations: (left) use multiplicative calibrations; (right) use
joint and non-separable calibrations. We observe that joint and non-separable calibrations yield
higher MSE and lower Spearman scores than multiplicative calibrations, indicating inferior perfor-
mance. Dots denote the data points used for fitting, while crosses indicate the test data points.

H INFERENCE FLOPS ANALYSIS

Building on the inference FLOPs analysis from prior work [Kaplan et al.| (2020), we begin with the
following definition:

* dmodel: hidden size
* fize: intermediate (feed-forward) size
* Niayers: NUMber of layers
* A: number of query heads
* K: number of key/value heads
* dj: per-head hidden dimension (query and value)
* T': per-head hidden dim the KV length prior to token generation
Based on the above definition, we have d; = Adj, and dy, = Kdj. We focus exclusively on
non-embedding FLOPs, resulting in:
Attention: QKV and Project
nlayers(Qdmodeldq + 2dmodeldkv + 2dmodeldkv + 2dm0deldq)
5 T x v T

Attention: Mask
Niayers (2qu )

Feedforward:
nlayers('?) : 2dmodel fsize)
Total Inference non-embedding FLOPs:
Total-FLOPs = nlayers(Qdmodeldq + 2dmodeldkv + 2dmodeldkv + 2dmodeldq + Qqu +3- 2dmodel fsize)
v endihD S S i e r—
Q )

Since Pnon—emb ~ nlayers(Qdmodeldq + 2dm0deldkv + 3dmodelfsize)-
2PBon-emb + 2nlayersqu

gKT up, gate, down

Therefore, Total-FLOPs =

we adopt the following three approaches to accelerate inference:

* Increasing the MLP-to-Attention ratio reduces the term 27'd,, thereby lowering the total
FLOPs.

* Increasing the hidden size reduces the term 27'd,, thereby lowering the total FLOPs.
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I MORE LARGE-SCALE TRAINING RESULTS

In this section, we first show the detailed result over downstream tasks of large-scale models in
Table[3

Table 5: Detailed Results over Downstream Tasks: In this table, we show detailed results of large-
scale models over 9 downstream tasks.

Downstream Tasks LLaMA-3.2-1B Panda-1B  Surefire-1B LLaMA-3.2-3B  Panda-3B

Arc-easy 58.8 60.9 59.7 66.4 65.5
Arc-Challenge 29.8 28.9 30.2 333 352
LAMBADA 52.8 55.1 52.0 60.6 61.8
HellaSwag 56.9 58.4 56.6 66.7 66.9
OpenBookQA 32.0 332 320 38.4 38.6
PIQA 73.6 75.2 73.0 76.8 76.9
SciQ 84.8 87.2 84.9 89.4 91.2
WinoGrande 57.1 58.6 57.5 62.5 63.2
COQA 48.7 553 52.7 63.3 63.4
Avg. 54.9 57.0 55.4 61.9 62.5
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J MOE INFERENCE

In this section, we examine how the Mixture-of-Experts (MoE) architecture affects inference effi-
ciency. Figure [16]indicates that larger hidden sizes and higher Active-Experts-to-Attention ratios
improve the inference throughput of MoE models, consistent with observations in dense models.
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Figure 16: Active-Experts-to-Attn on Inference Throughput:
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(left) 3B-A1.1B model variants;
(center) 5.3B-A1.7B model variants; (right) 8.3B-A1.5B model variants. We study the effect of
the Active-Experts-to-Attention ratio on inference throughput by fixing the total number of active
parameters, setting GQA to 4, and using a batch size of 2048 to reduce MoE inference variance in
this figure. All evaluations are performed using the vLLM framework |Kwon et al.| (2023)) on a single
NVIDIA Ampere 40GB A100 GPU with 1024 input and 256 output tokens.
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