SCALING LAWS MEET MODEL ARCHITECTURE: TO-WARD INFERENCE-EFFICIENT LLMS

Anonymous authors

000

001

002003004

010 011

012

013

014

015

016

017

018

019

021

025

026027028

029

031

033

034

035

037

040

041

042

043

044

045 046

047

048

051

052

Paper under double-blind review

ABSTRACT

Scaling the number of parameters and the size of training data has proven to be an effective strategy for improving large language model (LLM) performance. Yet, as these models grow increasingly powerful and widely deployed, the cost of inference has become a pressing concern. Despite its importance, the tradeoff between model accuracy and inference efficiency remains underexplored. In this work, we examine how key architectural factors, hidden size, the allocation of parameters between MLP and attention (mlp-to-attention ratio), and groupedquery attention (GQA), influence both inference cost and accuracy. We introduce a conditional scaling law that augments the Chinchilla framework with architectural information, along with a search framework for identifying architectures that are simultaneously inference-efficient and accurate. To validate our approach, we train more than 200 models spanning 80M to 3B parameters and 8B to 100B training tokens, and fit the proposed conditional scaling law. Our results show that the conditional scaling law reliably predicts optimal architectural choices and that the resulting models outperform existing open-source baselines. Under the same training budget, optimized architectures achieve up to 2.1% higher accuracy and 26% greater inference throughput compared to LLaMA-3.2.

1 Introduction

Scaling law studies Kaplan et al. (2020); Hoffmann et al. (2022); Muennighoff et al. (2023); Krajewski et al. (2024); Abnar et al. (2025) have shown that increasing model parameters, training tokens, dataset quality, and compute budget consistently reduces pre-training loss, improves downstream task performance Hendrycks et al. (2021); Austin et al. (2021), and enables the emergence of novel capabilities Wei et al. (2022). These insights have driven the development of many state-of-the-art large language models Touvron et al. (2023); Yang et al. (2025); Guo et al. (2025).

However, as the field advances, it has become increasingly clear that focusing exclusively on training overlooks the practical challenges of deploying these models at scale Chien et al. (2023); Wu et al. (2024). A major limitation of existing scaling laws is their omission of inference costs, which constitute the dominant expense in deploying large models in real-world applications Sardana et al. (2023). Moreover, the growing use of LLMs in reasoning systems highlights the need for scaling laws that account for inference costs Snell et al. (2024); Brown et al. (2024); Luo et al. (2024); Qi et al. (2024); Guan et al. (2025). Therefore, we ask the following question:

Can we explicitly capture the trade-off between inference efficiency and accuracy of large language models?

To address this question, a recent study Sardana et al. (2023) proposed scaling laws that incorporate the total FLOPs from both training and inference. However, their formulation requires estimating the total number of tokens generated over a model's entire lifespan. Because inference is performed repeatedly during deployment, this assumption renders the proposed scaling law impractical for real-world use. Another study Bian et al. (2025) extends Chinchilla scaling laws by incorporating model architecture. However, this work has notable limitations. First, the study considers only the aspect ratio, defined as hidden size over number of layers, as the architectural factor. Yet, as shown in Figure 1, aspect ratio alone fails to capture the full range of factors that influence inference efficiency in large language models. Second, the depth of the model strongly influences accuracy:

cutting layers tends to impair the model's generalization after fine-tuning Petty et al. (2023). Finally, the study lacks a general framework for incorporating broader architectural factors, including hidden size and GQA, into scaling laws.

In this work, we fix the number of layers and study the effect of other architectural factors, including GQA, hidden size, and the mlp-to-attention ratio. This design choice is motivated by recent open-weight models such as LLaMA Touvron et al. (2023), Qwen Yang et al. (2025), Gemma Team et al. (2024a), and Phi Abdin et al. (2024), which, despite having a comparable number of parameters, adopt markedly different architectural designs.

Our primary goal is to investigate how model architecture influences both inference efficiency and model accuracy. We begin by comparing the inference efficiency of models with identical parameter counts but varying architectures. Next, we train over 200 models, ranging from 80M to 297M parameters on up to 30B tokens, to systematically characterize the relationship between architectural design and accuracy. Guided by these empirical findings, we introduce a conditional extension of the Chinchilla scaling laws that incorporates architecture.

Figure 1: Although larger models generally achieve lower inference throughput than smaller ones, Qwen2.5-1.5B outperforms Qwen3-0.6B. Despite having the same number of layers, Qwen2.5-1.5B benefits from a higher hidden size, GQA, and mlp-to-attention ratio.

tural parameters, establishing a general framework for identifying model architectures that balance inference efficiency and performance.

Finally, we validate this framework by fitting the proposed scaling law on models between 80M and 297M parameters, and evaluating its predictions when scaling up to 3B-parameter models. Our results demonstrate that, under identical training setups, the derived optimal 1B-parameter architecture achieves 26% higher inference throughput than the LLaMA-3.2-1B architecture, while maintaining better accuracy.

2 BACKGROUND

Accurately predicting the performance of large language models during scaling is essential. This enables us to answer key questions: (i) what is the optimal allocation of available resources between model size and training tokens, and (ii) what performance gains can be expected from additional resources? Fortunately, the model loss has been observed to follow a power-law relationship with respect to the number of parameters N and training tokens D Hoffmann et al. (2022); Muennighoff et al. (2023) with:

$$L(N,D) = E + \frac{A}{N^{\alpha}} + \frac{B}{D^{\beta}} \tag{1}$$

where L is the model loss, N is the number of total parameters and D is the number of tokens used for training and A, B, E, α , β are parameters to be learned.

To fit the learnable parameters in Eq. (1), Chinchilla Hoffmann et al. (2022) employs two strategies: (i) training models with a fixed number of parameters while varying the number of training tokens, and (ii) training models under a fixed compute budget¹, varying both parameters and tokens. The resulting data are combined to fit the learned parameters in Eq. (1). With the fitted scaling laws, Chinchilla addresses the following question to determine optimal allocation:

$$\arg\min_{N,D} L(N,D) \text{ s.t. FLOPs}(N,D) = C \tag{2}$$

where C denotes the resource constraint, N the total number of parameters, and D the number of training tokens.

¹The compute cost is approximated as $FLOPs(N, D) \approx 6ND$ in Hoffmann et al. (2022); Muennighoff et al. (2023), where N denotes the number of parameters and D the number of training tokens. In this work, we adopt the same settings as prior studies.

Figure 2: **Inference throughput** vs (left) hidden size $d = d_{\text{model}}$ and (right) mlp-to-attention ratio $r = r_{\text{mlp/attn}}$ on the 8B model. Under a fixed parameter budget $N_{\text{non-embed}}$, larger hidden sizes and higher mlp-to-attention ratios improve inference throughput for varying batch sizes.

In this paper, we do not address how to optimally allocate compute between model size and training data under a fixed compute budget. Instead, our focus is on identifying model architectures that optimize inference efficiency and accuracy under fixed parameter and token budgets. For example, given a model with 7B parameters trained on 14T tokens, we study how to design an architecture that satisfies both efficiency and accuracy requirements.

3 MODEL ARCHITECTURE-AWARE SCALING LAWS

3.1 MODEL ARCHITECTURE VARIATIONS

The architecture of a decoder-only transformer is composed of a sequence of stacked decoder blocks, each sharing the same structure to facilitate model-parallel deployment across devices. Under this design, the overall architecture of dense LLMs is primarily determined by the hidden size and the MLP intermediate size, which together specify the attention and MLP layers structure. This work studies the optimal model architecture given a fixed total number of non-embedding parameters $N_{\rm non-embed}$ (at different levels). Although the number of layers $n_{\rm layer}$ also plays a critical role (closely related to aspect ratio (Petty et al., 2023)), varying $n_{\rm layer}$ under a fixed $N_{\rm non-embed}$ substantially impacts both inference cost and accuracy (Tay et al., 2021; Alabdulmohsin et al., 2023). Therefore, we fix $n_{\rm layer}$ and focus on the effects of hidden size $d_{\rm model}$ and the mlp-to-attention ratio $r_{\rm mlp/attn}$ on inference efficiency (§3.2) and accuracy (§3.3), noting that $n_{\rm layer}$ still varies across different $N_{\rm non-embed}$ levels. In §3.3, we introduce a conditional scaling law to predict the performance of architectural variants, and in §3.4, we present a lightweight framework for identifying architectures that optimally balance inference efficiency and accuracy.

Note that the number of attention parameters is primarily determined by the hidden size $d_{\rm model}$ and the attention projection dimension, since most open-weight models adopt non-square q,k,v projection matrices, as seen in Gemma (Team et al., 2024a) and Qwen3 (Yang et al., 2025). For consistency, we fix the per-head dimension $d_{\rm head}$ to 64 for models with $N_{\rm non-embed} \leq 1\rm B$ and to 128 for models with $N_{\rm non-embed} \geq 3\rm B$. Consequently, to maintain a constant $r_{\rm mlp/attn}$, we adjust the number of attention heads $n_{\rm head}$ rather than altering the projection dimension directly. This design choice also provides flexibility to incorporate architectural variants such as grouped-query attention.

3.2 Inference Efficiency

Inspired by the success and widespread adoption of open-weight dense models such as Qwen3 (Yang et al., 2025), LLaMA-3.2 (Dubey et al., 2024), and the Gemma-2 (Team et al., 2024b) family, we construct architectural variants by modifying the configurations of the LLaMA-3.2 and Qwen3 dense models (Figure 10-12 in Appendix E). In addition to hidden size and the mlp-to-attention ratio, we find that group-query attention has a critical impact on inference efficiency, even though it only modestly reduces the number of attention parameters (by shrinking the key and value matrices). To

Figure 3: Loss vs. hidden size: (Left) 80M model variants; (Center) 145M model variants; (Right) 297M model variants. Across model sizes, the relationship between training loss and $d_{\rm model}/\sqrt{N}$ exhibits a consistent U-shaped curve when architectural factors such as GQA and the MLP-to-attention ratio are held fixed. The legend denotes the MLP-to-attention ratio $r = r_{\rm mlp/attn}$ for each model.

Figure 4: Loss vs. MLP-to-attention ratio: (Left) 80M model variants; (Center) 145M model variants; (Right) 297M model variants. Across model sizes, the relationship between training loss and $r_{\rm mlp/attn}$ exhibits a consistent U-shaped curve when architectural factors such as GQA and hidden size are held fixed. The legend denotes the hidden size $d = d_{\rm model}$ for each model.

disentangle these effects, we conduct controlled ablations of hidden size, MLP-to-attention ratio, and GQA under the following setups:

- hidden size d_{model} : fix $N_{non\text{-embed}}$, $r_{mlp/attn}$ and GQA= 4, vary d_{model} and number of attention heads n_{head} (Figure 2 left).
- mlp-to-attention ratio $r_{mlp/attn}$: fix $N_{non-embed}$, d_{model} and GQA= 4, vary n_{head} and intermediate size (Figure 2 right).
- GQA: fix $N_{\text{non-embed}}$, d_{model} and $r_{\text{mlp/attn}}$, vary n_{head} and number of key-value heads (Appendix E).

Figure 2 shows the ablation of varying hidden sizes $d_{\rm model}$ and mlp-to-attention $r_{\rm mlp/attn}$ on the LLaMA3.1-8B model variants. We observe that larger hidden size (or fewer attention heads) and higher mlp-to-attention ratios improve inference throughput. Similar trends are observed in the LLaMA3.2-1B and 3B model variants (Appendix E). These gains arise in part because larger $d_{\rm model}$ and higher $r_{\rm mlp/attn}$ reduce the total FLOPs, as detailed in the inference FLOPs analysis (Appendix H). In addition, these architectural choices shrink the KV cache, lowering I/O cost during inference and further improving throughput Adnan et al. (2024). Figure 9 in Appendix E presents the GQA ablation, confirming prior observations Ainslie et al. (2023) that increasing GQA consistently improves inference throughput. A comparable set of ablation experiments on Qwen3 models, also reported in Appendix E, further corroborates these findings.

3.3 A CONDITIONAL SCALING LAW

Improving inference efficiency should not come at the expense of significantly reducing model accuracy, making it crucial to understand how architectural choices affect accuracy and training loss. Because training large-scale language models is prohibitively expensive, a common strategy is to study smaller models and use scaling laws to extrapolate insights to larger scales—for example, the Chinchilla scaling laws (Hoffmann et al., 2022). However, incorporating multiple architectural factors into such laws remains challenging. To address this, we examine the effect of architectural

choices on training loss L in a conditional manner, varying one factor at a time while keeping the others fixed.

hidden size d_{model} . We note that d_{model} generally scales linearly with $\sqrt{N_{\text{non-embed}}}$. Assuming squared attention weight matrices, the number of attention parameters N_{attn} can be expressed as

$$4d_{model}^2 \propto N_{\rm attn} = N_{\rm non-embed} imes rac{r}{r+1},$$

where $r=r_{\text{mlp/attn}}$ is fixed, and the constant factor 4 arises from the query, key, value, and output projection layers in each attention block. To capture this scaling behavior, we normalize d_{model} by $\sqrt{N_{\text{non-embed}}}$ and examine its relation to loss L in Figure 3. The resulting U-shaped curves $L(d/\sqrt{N}\mid r,N,D)$ exhibit nearly identical optima across different model sizes. Moreover, Figure 3 confirms that excessively large hidden sizes, which reduce the number of attention heads n_{head} , can degrade accuracy—a phenomenon consistently observed in prior analyses of transformer capacity and head allocation (Kaplan et al., 2020; Hoffmann et al., 2022).

mlp-to-attention ratio $r_{\text{mlp/attn}}$. Figure 4 illustrates how the loss varies with $r_{\text{mlp/attn}}$, conditioned on d_{model} fixed at different levels, where we consistently observe a U-shaped curve $L(r \mid d/\sqrt{N}, N, D)$. While the attention mechanism is central to the success of transformers (Vaswani, 2017), recent open-weight models have allocated a progressively smaller fraction of parameters to attention as overall model size increases (e.g., LLaMA and Qwen families). Our analysis indicates that this trend is not universally optimal: there exists an interior optimum in the allocation of attention parameters, and deviating from it in either direction degrades model performance. This suggests that careful tuning of the mlp-to-attention ratio is critical for scaling transformers effectively.

As shown in Figures 3 and 4, both hidden size and the MLP-to-attention ratio exhibit U-shaped relationships with training loss. To capture these trends, we fit the function $c_0+c_1\log x+c_2/x$ separately for $x=r_{\rm mlp/attn}$ and $d_{\rm model}$. This formulation effectively models the U-shaped behavior while ensuring sublinear growth as x increases. However, incorporating $r_{\rm mlp/attn}$, $d_{\rm model}$, N, and D into a unified, architecture-aware scaling law remains challenging. Since fitting a single all-purpose scaling law $L(d/\sqrt{N},r,N,D)$ is unrealistic across all possible configurations, we instead propose a two-step conditional approach:

- 1. For given N and D, obtain the optimal loss $L_{\text{opt}}(N,D) = \min L(N,D) = \min \left(E + \frac{A}{N^{\alpha}} + \frac{B}{D^{\beta}}\right)$ from the Chinchilla scaling law (Eq. 1) as a reference point.
- 2. Calibrate the loss of architectural variants $L(d/\sqrt{N}, r \mid N, D)$ relative to this reference.

We focus on two simple calibration schemes:

• (multiplicative)

$$L(d/\sqrt{N}, r \mid N, D) = (a_0 + a_1 \log(\frac{d}{\sqrt{N}}) + a_2 \frac{\sqrt{N}}{d}) \cdot (b_0 + b_1 \log r + \frac{b_2}{r}) \cdot L_{\text{opt}}$$
 (3)

• (additive)
$$L(d/\sqrt{N}, r \mid N, D) = (a_0 + a_1 \log(\frac{d}{\sqrt{N}}) + a_2 \frac{\sqrt{N}}{d}) + (b_1 \log r + \frac{b_2}{r}) + L_{\text{opt}}$$

Here, a_i and b_i are learnable parameters that are shared across all N, D. Unlike the unified formulation, the conditional scaling law assumes that the effects of $r_{\rm mlp/attn}$ and $d_{\rm model}$ on loss are separable. We further ablate joint, non-separable formulations in Appendix G, where we find that they yield inferior predictive performance.

3.4 SEARCHING FOR INFERENCE-EFFICIENT ACCURATE MODELS

With the conditional scaling law, we can identify architectures that are both inference-efficient and accurate by solving the following optimization problem: given N, D, and a set of architectural choices P,

$$\operatorname{argmax}_{P} I_{N}(P), \quad \text{s.t.} \quad L(P \mid N, D) \leq L_{t}, \tag{4}$$

where $I_N(P)$ denotes the inference efficiency of an architecture P with total $N_{\text{non-embed}}$ parameters, and L_t , $(\geq L_{\text{opt}})$ is the maximum allowable training loss.

As shown in Figure 9 (Appendix E), GQA has a substantial impact on inference efficiency; However, unlike hidden size and the mlp-to-attention ratio, GQA does not exhibit a consistent relationship with loss (Figure 13) and is highly variable, making it challenging to identify settings that achieve both accuracy and efficiency. Fortunately, the search space for GQA is relatively small once $N_{\rm non-embed}$, $d_{\rm model}$, and $r_{\rm mlp/attn}$ are fixed, since GQA must be a prime factor of the number of attention heads $n_{\rm head}$. In practice, we perform a local GQA search by enumerating feasible values and applying early stopping once performance falls below that of the GQA= 4 baseline. Algorithm 1 summarizes our overall framework for identifying inference-efficient and accurate architectures.

Algorithm 1: Searching for Inference-Efficient Accurate Model

Input: Model parameters N, training tokens D, target loss L_t ; inference efficiency $I_N(\cdot)$; optional: the optimal loss $L_{\text{opt}}(N,D)$

Train smaller models to fit the Chinchilla scaling laws (Eq. 1) if $L_{\rm opt}(N,D)$ is unavailable Solve the constrained optimization (Eq. 4) for $d_{\rm model}$, $r_{\rm mlp/attn}$ and corresponding architecture P Perform a local search over GQA values with early stopping to maximize inference efficiency **return** Final model architecture $\{P, {\rm GQA}\}$

4 EXPERIMENT SETUP

We first detail the experimental setup of training, inference, and downstream task evaluation, and then describe how we derive the conditional scaling law and scale up to larger sizes.

Training Setup. We sample the training data from Dolma-v1.7 Soldaini et al. (2024), which contains data from 15 different sources. Tokens are sampled with probability proportional to each source's contribution, ensuring the sampled dataset preserves a similar distribution to Dolma-v1.7. We train decoder-only LLaMA-3.2 (Dubey et al., 2024) style transformers with $N_{\text{non-embed}}$ in $\{80\text{M}, 145\text{M}, 297\text{M}, 18, 3B\}$, for each $N_{\text{non-embed}}$, we obtain model architecture candidates by varying hidden size $d_{\text{model}}/\sqrt{N_{\text{non-embed}}}$ and mlp-to-attention ratio $r_{\text{mlp/attn}}$. (changing intermediate size and number of attention heads n_{head}) while holding other architectural factors fixed e.g. GQA= 4. A full list of over 200 model architectures used can be found in Appendix C. All models are trained on $100N_{\text{non-emb}}$ tokens (5× Chinchilla optimal) to ensure convergence. We tuned training hyperparameters (mainly following prior work Chen et al. (2025)), with a full list in Appendix D.

Inference Setup. We evaluate the inference efficiency using the vLLM framework Kwon et al. (2023). By default, inputs consist of 4096 tokens and outputs of 1024 tokens. We report the averaged inference throughput (tokens/second) from 5 repeated runs. Unless otherwise specified, all experiments are conducted on NVIDIA Ampere A100 GPUs (40GB).

LLM Evaluation Setup. Following prior works Biderman et al. (2023); Zhang et al. (2024), we evaluate pretrained models in the zero-shot setting using lm-evaluation-harness² on nine benchmarks: ARC-Easy Clark et al. (2018), ARC-Challenge Clark et al. (2018), LAM-BADA Paperno et al. (2016), HellaSwag Zellers et al. (2019), OpenBookQA Mihaylov et al. (2018), PIQA Bisk et al. (2020), SciQ Welbl et al. (2017), WinoGrande Sakaguchi et al. (2021), and CoQA Reddy et al. (2019).

Fitting Scaling Laws. Following Gadre et al. (2024); Bian et al. (2025), we use the Levenberg-Marquardt algorithm to fit the conditional scaling laws (Eq. 3). The Levenberg-Marquardt algorithm does least-squares curve fitting by estimating $\hat{\beta}$ as the solution to $\arg\min_{\beta}\sum_{i=1}^{m}\left[y_i-f(x_i,\beta)\right]^2$, where (x_i,y_i) are the observed data pairs. Note that instead of fitting the Chinchilla scaling law, we empirically searched over architecture variants to find the optimal loss $L_{\mathrm{opt}}(N,D)$ for $N_{\mathrm{non-embed}}$ <1B scale.

We scale up the scale law fitting in the following progressive manner:

(Task 1) fit on the 80M results and evaluate on 145M results;

²https://github.com/EleutherAI/lm-evaluation-harness

Figure 5: **Predictive performances** of the fitted conditional scaling law on: (left) Task 1: Fit on 80M, evaluate on 145M; (center) Task 2: Fit on 80, 145M, evaluate on 297M; (right) Task 3: Fit on 80, 145, 297M, evaluate on 1B. Orange dots denote fitting data points, and purple crosses indicate the test data points. We compare scaling-law predicted loss with actual pretraining loss of architectures and observed a consistently low MSE and high Spearman correlation across model scales.

(Task 2) fit on 80, 145M results and evaluate on 297M results; (Task 3) fit on 80, 145, 297M results and evaluate on 1B results;

This ensures a robust and consistent way of scaling up the model sizes and evaluating our conditional scaling law. Following prior work Kumar et al. (2024), we evaluate the fitted scaling law with mean squared error (MSE) metric, defined as $\frac{1}{n} \sum_{i=1}^{n} (l_i - \hat{l}_i)^2$ where l_i denotes the actual loss and \hat{l}_i the predicted loss. We additionally report the Spearman's rank correlation coefficient Spearman (1961) to compare predicted and actual rankings. Both metrics are calculated on the val data points.

5 EXPERIMENT RESULTS

We begin by evaluating the predictive performances of the conditional scaling laws with multiplicative calibration. We then conduct ablation studies to assess the impact of data selection and to evaluate the performance of the scaling laws under additive calibration. Finally, we apply the fitted scaling laws to guide the training of large-scale models following the search framework (§5.1).

Predictive Accuracy. As Task 1-3 described in §4, we fit the conditional scaling laws on 80M, (80M, 145M), and (80M, 145M, 297M) loss-architecture data points, and subsequently evaluate on 145M, 297M, and 1B data, respectively. In Figure 5, the low MSE and high Spearman correlation in tasks across different model scales validate the effectiveness and strong predictive performance of the proposed conditional scaling laws.

Ablation Study of Data and Calibration. The mlp-to-attention ratio $r_{\text{mlp/attn}}$ of open-weights models typically fall between 0.5 and 5, for example, the mlp-to-attention ratio for LLaMA-3.2-1B, LLaMA-3.2-3B, and Qwen3-8B are 4.81, 1.5, and 4.67, respectively. In Figure 5, we fit the conditional scaling law using only model architectures with $r_{\text{mlp/attn}} \in [0.5, 5]$. We ablate this choice by training model architectures with outlier $r_{\text{mlp/attn}}$ below 0.5 and 5 in Appendix C. In Figure 14 (left) and Figure 14 (center) in Appendix G, we show on Task 3 a comparison of fitting the conditional scaling law without and with these outliers (with a clear Spearman correlation score degradation), which suggests to exclude extreme outliers for better predicted performances.

In Figure 14 (right), We also ablate an alternative formulation of the scaling laws with additive calibration, as discussed in §3.3. Task 3 results show that multiplicative and additive calibrations achieve similar MSE and Spearman correlations, underscoring the robustness of our two-step reference plus calibration framework.

5.1 OPTIMAL MODEL ARCHITECTURE

To train large-scale models with optimal performance, we fit the conditional scaling laws with multiplicative calibration on Task 3 using data from the (80M, 145M, and 297M) model variants. The learned parameters are

$$a_0 = 2.697, a_1 = 0.0974, a_2 = 0.0078, b_0 = 0.3870, b_1 = 0.0063, and b_2 = 0.0065.$$

Table 1: Large-Scale Model Results: We evaluate the scaling laws and framework at the 1B and 3B scales by training Panda-1B, Surefire-1B, and Panda-3B, and compare them with LLaMA-3.2-1B and LLaMA-3.2-3B, respectively. The Avg. column reports the mean accuracy across the nine downstream tasks.

Models	d_{model}	$f_{ m size}$	n_{layers}	GQA	$d_{\mathrm{model}}/\sqrt{N}$	r	Loss (↓)	Avg. (†)
LLaMA-3.2-1B	2048	8192	16	4	0.066	4.80	2.803	54.9
Panda-1B	2560	4096	16	4	0.082	1.07	2.782	57.0
Surefire-1B	2560	6144	16	9	0.082	3.6	2.804	55.4
LLaMA-3.2-3B	3072	8192	28	4	0.058	4.80	2.625	61.9
Panda-3B	4096	4096	28	4	0.077	1	2.619	62.5

Figure 6: **Results for 1B models:** (Left) Panda-1B closely follows the scaling law predictions for minimizing training loss. (Right) Inference throughput comparison between LLaMA-3.2-1B and Surefire-1B, showing that Surefire-1B consistently achieves higher efficiency across batch sizes.

From this, we obtain the optimal architectural configuration of $d_{\rm model}/\sqrt{N}=0.08$ and r=1.032 by solving $\frac{\partial L}{\partial d_{\rm model}}=0$ and $\frac{\partial L}{\partial r}=0$. Using these configurations, we train LLaMA-3.2-style dense 1B and 3B models on 100B tokens, denoted as Panda-1B and Panda-3B models, respectively. Their training losses and downstream task accuracies are summarized in Table 1, where Panda-1B and Panda-3B outperform the open-weight LLaMA-3.2 baselines configs by 2.1% and 0.6% on average across downstream tasks. We further validate the effectiveness of the conditional scaling law by exhaustively pretraining 1B model variants under the same setup. As shown in Figure 6 (left), Panda-1B indeed achieves the optimal training loss.

With all components in place, we apply the search framework for inference-efficient and accurate models (Alg. 1). For the $N_{\text{non-embed}} = 1\text{B}$ setting trained on $100N_{\text{non-embed}}$ tokens, we set the target loss L_t to match the training loss achieved by the LLaMA-3.2-1B architecture. Although inference efficiency $I_N(P)$ could, in principle, be expressed analytically, it depends heavily on hardware and inference configurations. Therefore, rather than solving for $I_N(P)$ directly, we search over feasible configurations P_i that satisfy the loss constraint and select Pareto-optimal points, which we denote as Surefire-1B. Surefire-1B not only outperforms LLaMA-3.2-1B on downstream tasks (Table 1) but also achieves up to 26% higher inference throughput (Figure 6, right). Detailed downstream task accuracies are provided in Appendix I.

6 RELATED WORK

Large Language Models. Transformers Vaswani (2017) have shown strong performance across diverse downstream tasks, such as text classification Wang (2018); Sarlin et al. (2020), mathematical reasoning Cobbe et al. (2021); Hendrycks et al. (2021), and code generation Chen et al. (2021); Austin et al. (2021); Jain et al. (2024). The Transformer architecture serves as the foundation for many leading large language models, including GPT Brown et al. (2020); Achiam et al. (2023),

LLaMA Touvron et al. (2023), Gemma Team et al. (2024a), Qwen Yang et al. (2025), Kimi Team et al. (2025), and DeepSeek Liu et al. (2024a); Guo et al. (2025).

Scaling Laws for Language Models. Scaling laws are powerful tools to predict the performance of large language models. Existing scaling laws Hoffmann et al. (2022); Muennighoff et al. (2023); Sardana et al. (2023); Kumar et al. (2024); Gadre et al. (2024); Ruan et al. (2024) characterize how model performance varies with model size, dataset size, data quality, and compute budget. With the rise of Mixture-of-Experts (MoE) Shazeer et al. (2017); Guo et al. (2025), a powerful architecture for large language models, recent studies Krajewski et al. (2024); Abnar et al. (2025) extend scaling laws to account for the number of experts, expert granularity, active parameters, and sparsity.

Serving Systems. Due to the increased inference cost, many inference systems have been developed to speed up model serving Yu et al. (2022); Kwon et al. (2023); Zheng et al. (2023); Ye et al. (2025). Specifically, vLLM Kwon et al. (2023) proposes PagedAttention to manage KV cache memory more effectively, thereby improving throughput. Similarly, SGLang Zheng et al. (2023) introduces RadixAttention to achieve higher throughput and lower latency.

Inference-Efficient Model Design. Efforts to improve the inference efficiency of large language models generally fall into two categories: one line of work investigates the trade-offs across different model configurations Alabdulmohsin et al. (2023); Bian et al. (2025), while the other focuses on designing more efficient model architectures Xiao et al. (2023); Gu & Dao (2023); Gao et al. (2024b); Jiang et al. (2024); Liu et al. (2024b); Dao & Gu (2024); Xiao et al. (2024); Yuan et al. (2025); Chandrasegaran et al. (2025).

7 LIMITATIONS AND FUTURE WORK

While our team has made notable progress, several open challenges remain that offer promising directions for future research. First, due to limitations in resources and time, our evaluation does not extend to 7B models. Second, our analysis is restricted to dense models, and it remains unclear whether the results extend to Mixture of Experts (MoE) architectures Shazeer et al. (2017). While we report inference efficiency measurements for MoE models under varying architectural choices in Appendix J, we have not yet established scaling laws for MoE architectures. Third, we adopt the experimental setup from Chen et al. (2025), and it is uncertain whether different model architectures warrant different hyperparameter configurations. Finally, our analysis is limited to pre-training, and it remains unclear how the results would change under post-training.

8 Conclusion

This work explores the trade-off between model accuracy and inference cost under a fixed training budget. We begin by demonstrating how architectural choices influence both inference throughput and model accuracy. Building on this, we extend Chinchilla scaling laws to incorporate architectural factors and propose a framework for optimal model architecture search. Using the fitted scaling laws and our framework, we trained models up to 3B parameters, achieving up to 26% higher inference throughput and 2.1% accuracy gains across nine downstream tasks.

REPRODUCIBILITY STATEMENT

All experiments in this work were conducted using publicly available frameworks. Section 4 provides details of our training, inference, and evaluation setups. We used Megatron-LM (Shoeybi et al., 2019) for model training, vLLM (Kwon et al., 2023) for efficient inference, and lm-eval-harness (Gao et al., 2024a) for standardized evaluations. To facilitate reproducibility, we will release configuration files and scripts.

REFERENCES

- Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar, Michael Harrison, Russell J Hewett, Mojan Javaheripi, Piero Kauffmann, et al. Phi-4 technical report. *arXiv preprint arXiv:2412.08905*, 2024.
- Samira Abnar, Harshay Shah, Dan Busbridge, Alaaeldin Mohamed Elnouby Ali, Josh Susskind, and Vimal Thilak. Parameters vs flops: Scaling laws for optimal sparsity for mixture-of-experts language models. *arXiv preprint arXiv:2501.12370*, 2025.
- Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.
- Muhammad Adnan, Akhil Arunkumar, Gaurav Jain, Prashant J Nair, Ilya Soloveychik, and Purushotham Kamath. Keyformer: Kv cache reduction through key tokens selection for efficient generative inference. *Proceedings of Machine Learning and Systems*, 6:114–127, 2024.
- Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit Sanghai. Gqa: Training generalized multi-query transformer models from multi-head checkpoints. arXiv preprint arXiv:2305.13245, 2023.
- Ibrahim M Alabdulmohsin, Xiaohua Zhai, Alexander Kolesnikov, and Lucas Beyer. Getting vit in shape: Scaling laws for compute-optimal model design. *Advances in Neural Information Processing Systems*, 36:16406–16425, 2023.
- Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language models. arXiv preprint arXiv:2108.07732, 2021.
- Song Bian, Minghao Yan, and Shivaram Venkataraman. Scaling inference-efficient language models. *arXiv preprint arXiv:2501.18107*, 2025.
- Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O'Brien, Eric Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al. Pythia: A suite for analyzing large language models across training and scaling. In *International Conference on Machine Learning*, pp. 2397–2430. PMLR, 2023.
- Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical commonsense in natural language. In *Proceedings of the AAAI conference on artificial intelligence*, volume 34, pp. 7432–7439, 2020.
- Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling. *arXiv preprint arXiv:2407.21787*, 2024.
- Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.
- Keshigeyan Chandrasegaran, Michael Poli, Daniel Y Fu, Dongjun Kim, Lea M Hadzic, Manling Li, Agrim Gupta, Stefano Massaroli, Azalia Mirhoseini, Juan Carlos Niebles, et al. Exploring diffusion transformer designs via grafting. *arXiv preprint arXiv:2506.05340*, 2025.
- Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large language models trained on code. *arXiv preprint arXiv:2107.03374*, 2021.
- Mengzhao Chen, Chaoyi Zhang, Jing Liu, Yutao Zeng, Zeyue Xue, Zhiheng Liu, Yunshui Li, Jin Ma, Jie Huang, Xun Zhou, et al. Scaling law for quantization-aware training. *arXiv preprint arXiv:2505.14302*, 2025.
- Andrew A Chien, Liuzixuan Lin, Hai Nguyen, Varsha Rao, Tristan Sharma, and Rajini Wijayawardana. Reducing the carbon impact of generative ai inference (today and in 2035). In *Proceedings of the 2nd workshop on sustainable computer systems*, pp. 1–7, 2023.

- Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge. *arXiv preprint arXiv:1803.05457*, 2018.
- Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve math word problems. *arXiv* preprint arXiv:2110.14168, 2021.
- Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through structured state space duality. *arXiv preprint arXiv:2405.21060*, 2024.
- Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. *arXiv preprint arXiv:2407.21783*, 2024.
- Samir Yitzhak Gadre, Georgios Smyrnis, Vaishaal Shankar, Suchin Gururangan, Mitchell Wortsman, Rulin Shao, Jean Mercat, Alex Fang, Jeffrey Li, Sedrick Keh, et al. Language models scale reliably with over-training and on downstream tasks. *arXiv preprint arXiv:2403.08540*, 2024.
- Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence Golding, Jeffrey Hsu, Alain Le Noac'h, Haonan Li, Kyle McDonell, Niklas Muennighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model evaluation harness, 07 2024a. URL https://zenodo.org/records/12608602.
- Yizhao Gao, Zhichen Zeng, Dayou Du, Shijie Cao, Peiyuan Zhou, Jiaxing Qi, Junjie Lai, Hayden Kwok-Hay So, Ting Cao, Fan Yang, et al. Seerattention: Learning intrinsic sparse attention in your llms. *arXiv preprint arXiv:2410.13276*, 2024b.
- Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. *arXiv* preprint arXiv:2312.00752, 2023.
- Xinyu Guan, Li Lyna Zhang, Yifei Liu, Ning Shang, Youran Sun, Yi Zhu, Fan Yang, and Mao Yang. rstar-math: Small llms can master math reasoning with self-evolved deep thinking. *arXiv* preprint *arXiv*:2501.04519, 2025.
- Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.
- Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *arXiv* preprint arXiv:2103.03874, 2021.
- Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.
- Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free evaluation of large language models for code. *arXiv preprint arXiv:2403.07974*, 2024.
- Huiqiang Jiang, Yucheng Li, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua Han, Amir H Abdi, Dongsheng Li, Chin-Yew Lin, et al. Minference 1.0: Accelerating pre-filling for long-context llms via dynamic sparse attention. *arXiv preprint arXiv:2407.02490*, 2024.
- Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models. *arXiv preprint arXiv:2001.08361*, 2020.
- Jakub Krajewski, Jan Ludziejewski, Kamil Adamczewski, Maciej Pióro, Michał Krutul, Szymon Antoniak, Kamil Ciebiera, Krystian Król, Tomasz Odrzygóźdź, Piotr Sankowski, et al. Scaling laws for fine-grained mixture of experts. *arXiv preprint arXiv:2402.07871*, 2024.

- Tanishq Kumar, Zachary Ankner, Benjamin F Spector, Blake Bordelon, Niklas Muennighoff, Mansheej Paul, Cengiz Pehlevan, Christopher Ré, and Aditi Raghunathan. Scaling laws for precision. *arXiv preprint arXiv:2411.04330*, 2024.
- Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model serving with pagedattention. In *Proceedings of the 29th Symposium on Operating Systems Principles*, pp. 611–626, 2023.
- Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint arXiv:2412.19437*, 2024a.
- Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint arXiv:2412.19437*, 2024b.
- Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Harsh Lara, Yunxuan Li, Lei Shu, Yun Zhu, Lei Meng, Jiao Sun, et al. Improve mathematical reasoning in language models by automated process supervision. *arXiv preprint arXiv:2406.06592*, 2024.
- Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct electricity? a new dataset for open book question answering. *arXiv preprint arXiv:1809.02789*, 2018.
- Niklas Muennighoff, Alexander Rush, Boaz Barak, Teven Le Scao, Nouamane Tazi, Aleksandra Piktus, Sampo Pyysalo, Thomas Wolf, and Colin A Raffel. Scaling data-constrained language models. *Advances in Neural Information Processing Systems*, 36:50358–50376, 2023.
- Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi, Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The lambada dataset: Word prediction requiring a broad discourse context. *arXiv preprint arXiv:1606.06031*, 2016.
- Jackson Petty, Sjoerd van Steenkiste, Ishita Dasgupta, Fei Sha, Dan Garrette, and Tal Linzen. The impact of depth on compositional generalization in transformer language models. *arXiv preprint arXiv:2310.19956*, 2023.
- Zhenting Qi, Mingyuan Ma, Jiahang Xu, Li Lyna Zhang, Fan Yang, and Mao Yang. Mutual reasoning makes smaller llms stronger problem-solvers. *arXiv* preprint arXiv:2408.06195, 2024.
- Siva Reddy, Danqi Chen, and Christopher D Manning. Coqa: A conversational question answering challenge. *Transactions of the Association for Computational Linguistics*, 7:249–266, 2019.
- Yangjun Ruan, Chris J Maddison, and Tatsunori Hashimoto. Observational scaling laws and the predictability of language model performance. *arXiv* preprint arXiv:2405.10938, 2024.
- Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adversarial winograd schema challenge at scale. *Communications of the ACM*, 64(9):99–106, 2021.
- Nikhil Sardana, Jacob Portes, Sasha Doubov, and Jonathan Frankle. Beyond chinchilla-optimal: Accounting for inference in language model scaling laws. *arXiv preprint arXiv:2401.00448*, 2023.
- Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. Superglue: Learning feature matching with graph neural networks. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 4938–4947, 2020.
- Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. *arXiv preprint arXiv:1701.06538*, 2017.
- Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catanzaro. Megatron-lm: Training multi-billion parameter language models using model parallelism. *arXiv preprint arXiv:1909.08053*, 2019.

- Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally can be more effective than scaling model parameters. *arXiv* preprint arXiv:2408.03314, 2024.
 - Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin Schwenk, David Atkinson, Russell Authur, Ben Bogin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar, et al. Dolma: An open corpus of three trillion tokens for language model pretraining research. *arXiv preprint arXiv:2402.00159*, 2024.
 - Charles Spearman. The proof and measurement of association between two things. 1961.
 - Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan Narang, Dani Yogatama, Ashish Vaswani, and Donald Metzler. Scale efficiently: Insights from pre-training and fine-tuning transformers. *arXiv preprint arXiv:2109.10686*, 2021.
 - Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open models based on gemini research and technology. *arXiv preprint arXiv:2403.08295*, 2024a.
 - Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al. Gemma 2: Improving open language models at a practical size. *arXiv preprint arXiv:2408.00118*, 2024b.
 - Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen, Yanru Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. *arXiv* preprint arXiv:2507.20534, 2025.
 - Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.
 - A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.
 - Alex Wang. Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv preprint arXiv:1804.07461, 2018.
 - Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language models. *arXiv preprint arXiv:2206.07682*, 2022.
 - Johannes Welbl, Nelson F Liu, and Matt Gardner. Crowdsourcing multiple choice science questions. *arXiv preprint arXiv:1707.06209*, 2017.
 - Carole-Jean Wu, Bilge Acun, Ramya Raghavendra, and Kim Hazelwood. Beyond efficiency: Scaling ai sustainably. *IEEE Micro*, 44(5):37–46, 2024.
 - Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming language models with attention sinks. *arXiv preprint arXiv:2309.17453*, 2023.
 - Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, Junxian Guo, Shang Yang, Haotian Tang, Yao Fu, and Song Han. Duoattention: Efficient long-context llm inference with retrieval and streaming heads. *arXiv preprint arXiv:2410.10819*, 2024.
 - An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*, 2025.
 - Zihao Ye, Lequn Chen, Ruihang Lai, Wuwei Lin, Yineng Zhang, Stephanie Wang, Tianqi Chen, Baris Kasikci, Vinod Grover, Arvind Krishnamurthy, et al. Flashinfer: Efficient and customizable attention engine for llm inference serving. *arXiv preprint arXiv:2501.01005*, 2025.
 - Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and Byung-Gon Chun. Orca: A distributed serving system for {Transformer-Based} generative models. In *16th USENIX Symposium on Operating Systems Design and Implementation (OSDI 22)*, pp. 521–538, 2022.

Jingyang Yuan, Huazuo Gao, Damai Dai, Junyu Luo, Liang Zhao, Zhengyan Zhang, Zhenda Xie, YX Wei, Lean Wang, Zhiping Xiao, et al. Native sparse attention: Hardware-aligned and natively trainable sparse attention. arXiv preprint arXiv:2502.11089, 2025. Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019. Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An open-source small language model. arXiv preprint arXiv:2401.02385, 2024. Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Jeff Huang, Chuyue Sun, Cody_Hao Yu, Shiyi Cao, Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al. Efficiently programming large language models using sglang. 2023.

A LLM USAGE

We used an LLM to improve the writing by correcting grammar in our draft. It was not used to generate research ideas.

B OPEN-WEIGHTED MODEL ARCHITECTURES

Table 2 presents an overview of the open-weight model architectures utilized in this paper.

Table 2: **Open-Weighted Model Architectures:** We list the architectural configurations of all models used in this paper. n_{layers} is the number of layers, d_{model} is the hidden size, n_{heads} is the number of attention heads, and f_{size} is the intermediate size.

Model Name	n_{layers}	d_{model}	n_{heads}	$f_{ m size}$	GQA
Qwen2.5-1.5B	28	1536	12	8960	6
Qwen3-0.6B	28	1024	16	3072	2

C MODEL ARCHITECTURES

Table 3 provides an overview of the model architectures, all configured with GQA = 4 and employing LLaMA-3.2 as the tokenizer.

Table 3: **Model Architectures:** We list the architectural configurations of all models trained in this paper. n_{layers} is the number of layers, d_{model} is the hidden size, n_{heads} is the number of attention heads, and f_{size} is the intermediate size.

Model Size	Variant	n_{layers}	d_{model}	n_{heads}	$f_{ m size}$
80M	v1	12	768	16	2048
80M	v2	12	768	4	2688
80M	v3	12	768	8	2560
80M	v4	12	768	24	1536
80M	v5	12	768	32	1152
80M	v6	12	768	40	768
80M	v7	12	768	48	256
80M	v8	12	384	32	4096
80M	v9	12	384	8	5376
80M	v10	12	384	16	5120
80M	v11	12	384	48	3072
80M	v12	12	384	64	2304
80M	v13	12	384	80	1536
80M	v14	12	384	96	512
80M	v15	12	1536	8	1024
80M	v16	12	1536	4	1280
80M	v17	12	1536	12	768
80M	v18	12	1536	16	640
80M	v19	12	1536	20	384
80M	v20	12	1536	24	128
80M	v21	12	512	24	3072
80M	v22	12	512	12	3840
80M	v23	12	512	16	3584
80M	v24	12	512	36	2304
80M	v25	12	512	48	1792
80M	v26	12	512	60	1152
80M	v27	12	512	72	384

Model Size	Variant	n_{layers}	$d_{ m model}$	$n_{ m heads}$	$f_{ m size}$
80M	v28	12	1024	12	1536
80M	v29	12	1024	8	1792
80M	v30	12	1024	16	1280
80M	v31	12	1024	24	896
80M	v32	12	1024	36	256
80M	v33	12	2048	4	896
80M	v34	12	2048	8	640
80M	v35	12	2048	16	256
80M	v48	12	768	20	1792
80M	v49	12	768	28	1408
80M	v50	12	384	40	3584
80M	v51	12	384	52 56	3072
80M	v52 v53	12 12	384	56	2816
80M 80M	v54	12	384 512	60 32	2560 2560
80M	v55	12	512	40	2176
80M	v56	12	512	44	1920
80M	v50 v57	12	1024	20	1152
145M	v37	12	1024	16	3072
145M	v2	12	1024	8	3584
145M	v3	12	1024	24	2560
145M	v4	12	1024	32	2304
145M	v5	12	1024	40	1792
145M	v6	12	1024	48	1280
145M	v7	12	1024	64	512
145M	v8	12	512	32	6144
145M	v9	12	512	16	7168
145M	v10	12	512	48	5120
145M	v11	12	512	64	4608
145M	v12	12	512	80	3584
145M	v13	12	512	96	2560
145M	v14	12	512	128	1024
145M	v15	12 12	2048	8 4	1536
145M 145M	v16 v17	12	2048 2048	4 12	1792 1280
145M 145M	v17 v18	12	2048	16	1152
145M 145M	v16 v19	12	2048	20	896
145M	v20	12	2048	24	640
145M	v20 v21	12	2048	32	256
145M	v21 v22	12	768	24	3840
145M	v23	12	768	32	3584
145M	v24	12	768	40	3072
145M	v25	12	768	48	2560
145M	v26	12	768	56	2304
145M	v27	12	768	64	1792
145M	v28	12	1536	12	1920
145M	v29	12	1536	16	1792
145M	v30	12	1536	20	1536
145M	v31	12	1536	24	1280
145M	v32	12	1536	28	1152
145M	v33	12	1536	32	896
145M	v34	12	4096	4	768
145M	v35	12	4096	16	128 2368
	1,/10				
145M	v48	12	1024	28 36	
	v48 v49 v50	12 12 12	1024 1024 512	36 52	2048 5120

	Model Size	Variant	n_{layers}	d_{model}	$n_{ m heads}$	$f_{ m size}$
	145M	v52	12	512	68	4224
	145M	v53	12	512	72	3968
	145M	v54	12	768	44	2944
	145M	v55	12	768	52	2432
	297M	v1	12	1536	24	4096
	297M	v2	12	1536	8	4864
	297M	v3	12	1536	16	4608
	297M	v4	12	1536	32	3584
	297M	v5	12	1536	48	2816
	297M	v6	12	1536	64	2048
	297M	v7	12	1536	80	1024
	297M	v8	12	768	48	8192
	297M	v9	12	768	16	9728
	297M	v10	12	768	32	9216
	297M	v11	12	768	64	7168
	297M	v12	12	768	96	5632
	297M	v13	12	768	128	4096
	297M	v14	12	768	160	2048
	297M	v15	12	3072	12	2048
	297M	v16	12	3072	4	2432
	297M	v17	12	3072	8	2304
	297M	v18	12	3072	16	1792
	297M	v19	12	3072	24	1408
	297M	v20	12	3072	32	1024
	297M	v21	12	3072	40	512
	297M	v22	12	1024	36	6144
	297M	v23	12	1024	12	7296
	297M	v24	12	1024	24	6912
	297M	v25	12	1024	48	5376
	297M	v26	12	1024	72	4224
	297M	v27	12	1024	96	3072
	297M	v28	12	1024	120	1536
	297M	v29	12	2048	12	3456
	297M	v30	12	2048	24	2688
	297M	v31	12	2048	48	1536
	297M	v32	12	2048	60	768
	297M	v45	12	1536	40	3200
	297M	v46	12	1536	44	3072
	297M	v47	12	1536	52	2688
	297M	v48	12	1536	56	2432
	297M	v49	12	768	80	6400
	297M	v50	12	768	88	6016
	297M	v51	12	768	104	5376
	297M	v52	12	768	112	4736
	297M	v53	12	3072	20	1664
	297M	v54	12	3072	28	1152
	297M	v55	12	1024	56	4864
	297M	v56	12	1024	64	4608
	297M	v57	12	1024	80	3840
	297M	v58	12	1024	88	3328
	297M	v59	12	2048	32	2432
	297M	v60	12	2048	36	2048
	297M	v61	12	2048	40	1920
	297M	v62	12	2048	44	1792
•		-				

D HYPER-PARAMETERS

Table 4 lists the detailed hyper-parameters used for training in this paper.

Table 4: **Hyper-parameters:** We show the hyper-parameters used for training in this paper.

Model Size	80M	145M	297M	1B		
Batch Size	256	256	512	512		
Max LR	1.5e-3	1.0e-3	8.0e-4	6.0e-4		
Min LR		$0.1 \times N$	Iax LR			
Optimizer	AdamW ($\beta_1 = 0.9, \beta_2 = 0.95$)					
Weight Decay	0.1					
Clip Grad Norm	n 1.0					
LR Schedule	Cosine					
Warmup Steps	500					
Sequence Length		20	48			

ADDITIONAL INFERENCE EVALUATION RESULTS

In this section, we present additional inference efficiency results on NVIDIA A100 GPUs. Figure 9 presents that, when parameter count, MLP-to-Attention ratio, and hidden size are fixed, increasing GQA leads to higher inference throughput, consistent with the findings of Ainslie et al. (2023). We alter model configurations of LLaMA-3.2-1B, 3B, and LLaMA-3.1-8B in Figure 9.

Figure 7: **Hidden size on Inference Throughput:** (left) 1B model variants; (center) 3B model variants; (right) 8B model variants. Across varying batch sizes and model scales, larger hidden sizes yield higher inference throughput under a fixed parameter budget. The legend indicates the hidden size of the models, where $d = d_{\text{model}}$.

Figure 8: MLP-to-Attention ratio on Inference Throughput: (left) 1B model variants; (center) 3B model variants; (right) 8B model variants. Across varying batch sizes and model scales, a larger MLP-to-Attention ratio increases inference throughput under a fixed parameter budget. The legend indicates the MLP-to-Attention ratio of the models, where $r = r_{\text{mlp/attn}}$.

Figure 9: **GQA on Inference Throughput:** (left) 1B model variants; (center) 3B model variants; (right) 8B model variants. This figure shows the impact of GQA on inference throughput. With the total parameter count fixed, hidden size is set to 2048 (1B), 3072 (3B), and 4096 (8B), and the MLPto-Attention ratio is 4.0, 2.67, and 4.2, respectively. Across varying batch sizes, models with larger GQA achieve higher throughput. All evaluations are performed using the vLLM framework Kwon et al. (2023) on a single NVIDIA Ampere 40GB A100 GPU with 4096 input and 1024 output tokens.

Furthermore, we derive architectural variants by altering the configurations of Qwen3-0.6B, 1.7B, and 4B to investigate the impact of model architectural factors on inference efficiency. The results are shown in Figure 10-12.

Figure 10: **Hidden size on Inference Throughput (Qwen3):** (left) Qwen3-0.6B model variants; (center) Qwen3-1.7B model variants; (right) Qwen3-4B model variants. Across varying batch sizes and model scales, larger hidden sizes yield higher inference throughput under a fixed parameter budget. The legend indicates the hidden size of the models, where $d=d_{\rm model}$. All evaluations are performed using the vLLM framework Kwon et al. (2023) on a single NVIDIA Ampere 40GB A100 GPU with 4096 input and 1024 output tokens.

Figure 11: **MLP-to-Attention ratio on Inference Throughput (Qwen3):** (left) Qwen3-0.6B model variants; (center) Qwen3-1.7B model variants; (right) Qwen3-4B model variants. Across varying batch sizes and model scales, a larger MLP-to-Attention ratio increases inference throughput under a fixed parameter budget. The legend indicates the MLP-to-Attention ratio of the models, where $r = r_{\rm mlp/attn}$. All evaluations are performed using the vLLM framework Kwon et al. (2023) on a single NVIDIA Ampere 40GB A100 GPU with 4096 input and 1024 output tokens.

Figure 12: **GQA on Inference Throughput (Qwen3):** (left) Qwen3-0.6B model variants; (center) Qwen3-1.7B model variants; (right) Qwen3-4B model variants. This figure shows the impact of GQA on inference throughput. With the total parameter count fixed, hidden size is set to 1024 (0.6B), 2048 (1.7B), and 2560 (4B), and the MLP-to-Attention ratio is 1.5, 3.0, and 2.85, respectively. Across varying batch sizes, models with larger GQA achieve higher throughput. All evaluations are performed using the vLLM framework Kwon et al. (2023) on a single NVIDIA Ampere 40GB A100 GPU with 4096 input and 1024 output tokens.

F ADDITIONAL RESULTS: LOSS VS. MODEL ARCHITECTURE

In this section, we analyze the relationship between training loss and GQA while fixing the number of parameters, hidden size, and MLP-to-Attention ratio. As shown in Figure 13, unlike hidden size and MLP-to-Attention ratio, the relationship between loss and GQA is highly fluctuating.

Figure 13: **Loss vs. GQA:** (left) 80M model variants; (center) 145M model variants; (right) 297M model variants. Across different model sizes, the relationship between training loss and GQA varies substantially when hidden size and the mlp-to-attention ratio are fixed. The legend denotes the hidden size of each trained model.

G MORE ABLATION STUDY

In this section, we first evaluate the impact of fitting data on the scaling laws in Figure 14 (left) and Figure 14 (center). Then, we evaluate the fitting performance of multiplicative calibrations and additive calibrations in Figure 14 (center) and Figure 14 (right). Finally, we evaluate the performance of Joint and non-separable calibrations shown below:

$$(a_0 + a_1 \log(\frac{dr}{\sqrt{N}}) + a_2/(\frac{dr}{\sqrt{N}})) \cdot L_{\text{opt}}$$

Figure 14: **Ablation Study:** (left) use multiplicative calibrations without outliers; (center) use multiplicative calibrations with outliers; (right) use additive calibrations without outliers. The outlier refers to models trained with an mlp-to-attention ratio below 0.5 or above 5. We observe that outlier data points harm the scaling law fit. Moreover, while multiplicative and additive calibrations differ in formulation, their MSE and Spearman values remain nearly identical. Dots denote the data points used for fitting, while crosses indicate the test data points.

Figure 15: **Joint and non-separable calibrations:** (left) use multiplicative calibrations; (right) use joint and non-separable calibrations. We observe that joint and non-separable calibrations yield higher MSE and lower Spearman scores than multiplicative calibrations, indicating inferior performance. Dots denote the data points used for fitting, while crosses indicate the test data points.

H INFERENCE FLOPS ANALYSIS

Building on the inference FLOPs analysis from prior work Kaplan et al. (2020), we begin with the following definition:

- d_{model} : hidden size
- f_{size} : intermediate (feed-forward) size
- n_{layers} : number of layers
- A: number of query heads
- K: number of key/value heads
- d_h : per-head hidden dimension (query and value)
- T: per-head hidden dim the KV length prior to token generation

Based on the above definition, we have $d_q = Ad_h$ and $d_{kv} = Kd_h$. We focus exclusively on non-embedding FLOPs, resulting in:

Attention: QKV and Project

$$n_{\mathrm{layers}}(\underbrace{2d_{\mathrm{model}}d_q}_{Q} + \underbrace{2d_{\mathrm{model}}d_{kv}}_{K} + \underbrace{2d_{\mathrm{model}}d_{kv}}_{V} + \underbrace{2d_{\mathrm{model}}d_q}_{Q})$$

Attention: Mask

$$n_{\text{layers}}(2Td_q)$$

Feedforward:

$$n_{\text{lavers}}(3 \cdot 2d_{\text{model}}f_{\text{size}})$$

Total Inference non-embedding FLOPs:

$$\text{Total-FLOPs} = n_{\text{layers}} \underbrace{(2d_{\text{model}}d_q}_{Q} + \underbrace{2d_{\text{model}}d_{kv}}_{K} + \underbrace{2d_{\text{model}}d_{kv}}_{V} + \underbrace{2d_{\text{model}}d_q}_{Q} + \underbrace{2Td_q}_{qK^{\top}} + \underbrace{3 \cdot 2d_{\text{model}}f_{\text{size}}}_{\text{up, gate, down}})$$

Since $P_{\text{non-emb}} \approx n_{\text{layers}}(2d_{\text{model}}d_q + 2d_{\text{model}}d_{kv} + 3d_{\text{model}}f_{\text{size}})$. Therefore, Total-FLOPs = $2P_{\text{non-emb}} + 2n_{\text{layers}}Td_q$

we adopt the following three approaches to accelerate inference:

- Increasing the MLP-to-Attention ratio reduces the term $2Td_q$, thereby lowering the total FLOPs.
- Increasing the hidden size reduces the term $2Td_q$, thereby lowering the total FLOPs.

I MORE LARGE-SCALE TRAINING RESULTS

In this section, we first show the detailed result over downstream tasks of large-scale models in Table 5.

Table 5: **Detailed Results over Downstream Tasks:** In this table, we show detailed results of large-scale models over 9 downstream tasks.

Downstream Tasks	LLaMA-3.2-1B	Panda-1B	Surefire-1B	LLaMA-3.2-3B	Panda-3B
Arc-easy	58.8	60.9	59.7	66.4	65.5
Arc-Challenge	29.8	28.9	30.2	33.3	35.2
LAMBADA	52.8	55.1	52.0	60.6	61.8
HellaSwag	56.9	58.4	56.6	66.7	66.9
OpenBookQA	32.0	33.2	32.0	38.4	38.6
PIQA	73.6	75.2	73.0	76.8	76.9
SciQ	84.8	87.2	84.9	89.4	91.2
WinoGrande	57.1	58.6	57.5	62.5	63.2
COQA	48.7	55.3	52.7	63.3	63.4
Avg.	54.9	57.0	55.4	61.9	62.5

MoE Inference

In this section, we examine how the Mixture-of-Experts (MoE) architecture affects inference efficiency. Figure 16 indicates that larger hidden sizes and higher Active-Experts-to-Attention ratios improve the inference throughput of MoE models, consistent with observations in dense models.

Figure 16: Active-Experts-to-Attn on Inference Throughput: (left) 3B-A1.1B model variants; (center) 5.3B-A1.7B model variants; (right) 8.3B-A1.5B model variants. We study the effect of the Active-Experts-to-Attention ratio on inference throughput by fixing the total number of active parameters, setting GQA to 4, and using a batch size of 2048 to reduce MoE inference variance in this figure. All evaluations are performed using the vLLM framework Kwon et al. (2023) on a single NVIDIA Ampere 40GB A100 GPU with 1024 input and 256 output tokens.