
Balancing Multiple Objectives for Efficient
Metaprompts for Data Labeling Tasks with Extensive

Guidelines

Tobias Schnabel & Jennifer Neville
Microsoft Research

Redmond, WA
{toschnab,jeneville}@microsoft.com

Abstract

Spurred by ever increasing context-window sizes, two recent trends in the applica-
tion of large language models (LLMs) for data annotation and pattern extraction are
(i) longer prompts with complex structures, rich information and task instructions
and (ii) the processing of many data points in the same prompt (minibatching)
to increase query efficiency. In the process of annotating and analyzing data, the
same metaprompts are re-used with many different inputs and are thus worth being
optimized for length as billing is proportional to overall token usage.
Traditional prompt optimization techniques are only insufficiently addressing those
two trends: First, by ignoring the structure of prompts, they are limited in the trans-
formation operations they can perform and second, they do not consider important
factors such as input and output costs or adherence to output specifications. To over-
come these limitations, we propose structure-aware multi-objective metaprompt
optimization (SAMMO), a framework that automatically balances multiple objec-
tives for high level prompt structures and encompasses several existing prompt
optimization methods as special cases.
Drawing from approaches for neural architecture search, SAMMO carries out a
genetic search over a set of mutation operators that can change the structure and
information contained in non-trivial ways. Empirically, we show on a wide range
of annotation tasks that SAMMO succeeds in finding metaprompts that have over
30% fewer tokens while still as accurate as the baseline prompt.

1 Introduction

With the recent advent of LLMs that allow for long inputs and outputs, such as ChatGPT and GPT-4,
models can be given much richer context and more detailed instructions. While some of the data
labeling tasks can rely on pre-defined categories such semantic analysis, many of the more valuable
insights require data being labeled with a custom set of complex categories and guidelines. To feed
this information to LLMs, practioners have to design a metaprompt that defines the task, labeling
guidelines, provides examples and describes the input and output format.

In this work, we consider the problem of using a metaprompt π for labeling task T , which takes user
input X and labels it with annotation Y , i.e., LLM(π[X]) = Y . Conceptually, a metaprompt can be
thought of as a shared prompt template that is re-used with many different inputs X . We consider
longer metaprompts with more complex structure/instructions that are likely to be used for repetitive
data labeling tasks. These metaprompts are core to labeling structured or unstructured text, which in
turn is a crucial step in many real world scenarios and has direct value for numerous applications are
areas such as business analytics, user preference modeling, content recommendation, and dialogue
systems.

Workshop on Instruction Tuning and Instruction Following at NeurIPS 2023.

5k 10k
0

0.2

0.4

0.6

LLM GPT-3.5 GPT-4

input (# tokens)

ac
cu

ra
cy

(a) Prompt length vs. accuracy

GPT-3.5 GPT-4
0

0.2

0.4

0.6

LLM GPT-3.5 GPT-4

LLM

ac
cu
ra
cy

(b) Accuracy scores

Figure 1: Robustness of GPT-3.5 vs. GPT-4 on one of the classification tasks of Section 4. GPT-4 has
much less variance in terms of accuracy (b). The input length is not well correlated with performance,
making it possible to compress prompts without much loss in accuracy (a).

With larger amounts of data, however, the use of LLMs for data annotation can become quite
expensive and redirects some of the importance of predictive accuracy to the cost of running the
metaprompt. Moreover, new generations of LLMs such as GPT-4 are much more flexible in how
prompts can be phrased or formatted as Figure 1 shows. As such, we argue that it is both important
and feasible, with current generation and future language models, to optimize prompts for cost as
well as predictive performance.

Although there has been prior work on prompt optimization (e.g. Zhou et al. (2023); Pryzant et al.
(2023)), there are a few important challenges with metaprompts that have not to date been adequately
addressed. First, many existing methods focus on low-level rewrites of the task instructions and thus
are not optimizing the prompt’s higher level structure. Second, almost all existing methods focus on
optimizing in the context of a single example annotation instead of minibatching, which is inherently
inefficient. Third, these methods focus by definition only on the predictive accuracy itself and ignore
costs.

There has also been recent work on prompt compression. However, the main focus has been
increasing efficiency in scenarios where the practitioner has whitebox access to the model and ability
to learn/finetune model weights. This work includes prompt tuning and prompt distillation, which aim
to increase efficiency of repeated tasks without having to fine tune task-specific models (eg. Lester
et al. (2021); Wingate et al. (2022)). These methods learn new weights for shorter “soft prompts”
that will be used instead of the longer metaprompt, but since they learn auxiliary models they cannot
be applied in cases where there is only API access. Moreover, existing methods have focused on
compressing model input, and to our knowledge, there has been no work on optimizing output length
(even though the current cost of output tokens is roughly double that of input tokens).

To overcome these limitations, we propose a structure-aware multi-objective metaprompt optimization
framework (SAMMO) that unifies prompt compression and traditional prompt optimization. SAMMO
addresses shortcomings by (i) representing metaprompts as a structured objects allowing a much
richer set of transformations to be searched over; and (ii) explicitly considering multiple objectives
in order to balance cost and accuracy. Drawing from approaches for neural architecture search,
SAMMO carries out a genetic search over a set of mutation operators that can change the structure and
information contained in non-trivial ways. SAMMO is a general framework that encompasses several
prompt optimization and compression techniques as special cases. It allows practioners to easily
explore and automatically optimize metaprompt candidates by either relying on a pre-configured set
of mutation operators or by defining task and domain-specific operators. Empirically, we show on a
range of annotation tasks that SAMMO succeeds in finding metaprompts that have over 30% fewer
tokens while still as accurate as the baseline prompt.

2

Metaprompt π[XB]

Paragraph

In the following
task, you will have
to classify...

Section

Paragraph

Here are
some examples:

Static examples Dfew

Data formatter

[{“Good meal!”:
“positive”},
...]

Section[XB]

Paragraph

Classify this:

Input XB

Data formatter

[{“Rotten salad!”:
“?”},
...]

Figure 2: An instantiated metaprompt for a review classification task. The metaprompt is a tree of
individual components, some of which are computed dynamically based on the minibatch B to label.
Here, dynamic components are marked in light gray.

2 Problem Definition & Notation

Our goal is to automatically optimize the performance of a metaprompt π by modifying its structure,
attributes, and content. Specifically, we consider K efficiency and predictive performance objectives
such as accuracy and token length, expressed as a vector-valued scoring function S(π,D) ∈ RK ,
which depend on the metaprompt π and a set of labeled input data D = (x1, y1), . . . , (xn, yn).

Motivated by real-world needs, we make the following assumptions:

1. We only have small amounts of data for optimization (∼ 200 examples for each task). This
represents a reasonably small amount of data that can be hand-labeled by a single person;
increasing the amount would limit the applicability in practice substantially.

2. The language model is a closed black box and does not output probabilities, reflecting
recent changes in how access to LLMs is provided. However, we can sample from it:
y ∼ LLM(Y | π[X]).

3. A scalarization function ϕ(S) ∈ R is provided that specifies the trade-offs between individual
quality objectives Si. Let Sϕ = ϕ(S).

More precisely then, our goal is to find a metaprompt π with maximal score across the entire data
distribution:

π∗ = argmax
π∈Π

EDs∼P (X,Y)[Sϕ(π,Ds)]. (1)

Here, P (X,Y) is the data distribution that the labeled samples Ds are drawn from. Since the data
distribution is unknown and the evaluation cost prohibitive, we instead resort to the following sampled
score in the spirit of empirical risk minimization (ERM):

π̂ = argmax
π∈Π

Sϕ(π,Dtrain). (2)

The size of the metaprompt search space is exponentially large—more precisely, it is upper-bounded
by |token vocabulary|Tmax , where Tmax is the size of the longest input a model can handle. To guide
and accelerate the optimization process, we instead search over a set of higher level metaprompt
structures Π representing all valid metaprompt structures.

2.1 Metaprompts

Formally, we use a dynamic function graph π[·] = (V,E) to define the structure and content of a
metaprompt. The function takes a batch of input data XB = (x1, . . . , xk) and maps it to a single
string X ′

B to be fed to the LLM, i.e., YB = LLM(π[XB]). The metaprompt structure is a tree made
up from individual components (e.g., sections, paragraphs), each of which call their child nodes with

3

Algorithm 1 Outline of SAMMO

Require: Set of mutators M , training set Dtrain, baseline prompt π0, objective Sϕ

1: ΠC ← INITIALIZECANDIDATES(π0)
2: while condition do
3: Πparents ← SELECTPARENTS(ΠC , Dtrain,Sϕ

)
4: Πchildren ← ∅
5: for each πpar ∈ Πparents do
6: Mactive = {m can be applied to πpar | m ∈M}
7: Mπpar = CHOOSEMUTATORS(Mactive,Πparents)
8: Add

⋃
m∈MP

MUTATE(m,Πparents) to Πchildren
9: end for

10: ΠC ← ΠC ∪ SELECTCHILDREN(Πchildren, Dtrain, Sϕ)
11: end while
12: return best candidate from ΠC

the input B. Each node is a function v = ft,a[·] with text t and other attributes a. We call v static if
it does not depend on the input data B; otherwise, it is a dynamic node with notation v[·]. We will
sometimes refer to subtrees containing only text as task instructions.

To give some intuition for what this looks like in practice, Figure 2 shows a metaprompt for a review
classification task which has already been instantiated with some input data B. It has a section with
task instructions at the beginning, followed by a set of static in-context examples (although they could
be selected dynamically as well) and the unlabeled input data. Note that the data format is explicitly
represented—here it serializes data to a JSON array with each example being a dictionary. We also
note the similarity with neural architectures—static components can be seen as global parameters,
dynamic components correspond to projection operators or activation layers as they operate on the
input XB . With this notation, we can see how searching over Π in Eq. 2 amounts to searching over
different graph structures (V,E) and node attributes t, a.

3 SAMMO: Structure-aware Multi-Objective Metaprompt Optimization

We outline SAMMO, which is a general framework for optimizing the performance of metaprompts.
SAMMO uses evolutionary search with a rich set of mutating operators to explore the space of prompts,
extending previous approaches such as Automatic Prompt Engineering (APE) Zhang et al. (2022b) in
two important dimensions. First, we represent metaprompts as structured objects which in turn allows
us to do novel transformations such as changing the output format. Second, we consider multiple
objectives when optimizing prompts to balance important properties such as input and output length
with predictive accuracy.

3.1 SAMMO Search Procedure

Algorithm 1 shows an outline of how SAMMO works on a high level. It takes a initial baseline
metaprompt (π0) and small amount of training data as input, and uses evolutionary search for
combinatorial optimization over the multiple objectives specified in Sϕ. The search is initialized
with π0 and SAMMO uses a set of specified mutators to iteratively modify the current metaprompt
candidates and select those with the best objective on the training data.

Algorithm 1 can be used with a variety of search algorithms. Specific choices of the INITIALIZECAN-
DIDATES, SELECTPARENTS, condition, and SELECTCHILDREN operations yield common search
algorithms such as beam search, regularized evolutionary search Real et al. (2019) or breadth-first
search. For example, beam search typically starts with one candidate and then selects all parents
at the current depth, keeping only the top k performing children for the next round. The novelty of
SAMMO lies not in this outer search but in the fact that (i) we represent the higher level structure of
a metaprompt explicitly which in turn allows us to a rich set of operators that can both transform
the structure as well the content and (ii) now can learn on a operator level which ones should be
prioritized in the search process. Below we give more details on each.

4

Table 1: Examples for mutation operators, grouped by what part of a metaprompt π they affect.
SAMMO allows for a rich set of operations whereas traditional prompt optimization techniques have
only focused on operations that change the text.

Type Operator Description

Text t PARAPHRASE Rewrite to keep meaning
INDUCEINSTRUCTIONS Generate instructions from examples
SHORTENTEXT Reduce length to certain number of

words
TEXTTOBULLETPOINTS Turn into bullet list
REMOVESTOPWORDS Filter out stopwords

Attribute a CHANGESECTIONFORMAT How sections are rendered (e.g., mark-
down, XML)

CHANGEDATAFORMAT How data is rendered (e.g., JSON,
XML)

DECREASEINCONTEXTEXAMPLES Resample a smaller number of exam-
ples

Structure (V,E) DROPSECTION Remove a section
REPEATSECTION Repeat a section somewhere

Algorithm 2 Prior-Informed Mutator Sampling

Require: Set of mutators M with counts of (nimproved, ntried) with prior p = (pα, pβ),
1: α = nimproved + pα
2: β = ntried − nimproved + pβ
3: wm = argmaxBeta(α, β) ∀m ∈M
4: normalize w s.t.

∑
m wm = 1

5: return sample(s) from Multinomial(w)

3.2 Mutation Operators

Formally, a mutation operator is a function m : Π −→ Π that maps a metaprompt π to an edited
version π′. This structure-aware component of SAMMO opens up a new and exciting class of
operators. These can range from trivial (e.g., rephrasing a sentence) to complex (e.g., inducing a
new set of task instructions). Table 1 shows a non-comprehensive set of mutation operators, grouped
by what part of a metaprompt they change. To the best of our knowledge, SAMMO is the first
optimization method that can also optimize for large structural changes and data formatting.

3.3 Operator Selection

During the search process, SAMMO needs to select a subset of mutation operators from the set of all
applicable mutation operators for each candidate. One might be tempted to frame this as a multiarmed
bandit problem, however, best-arm (mutation operator) identification would lead to the algorithm
converging on using only a single mutation operator which is clearly undesirable. Instead, we use a
Beta-Bernoulli distribution to model successes in improving the objective of each mutation operator
and then draw from a Multinomial distribution with probabilities proportional to the maximum
a-posteriori success rate estimates from each mutation operator. The exact steps are given in 2. We
call the resulting method SAMMOprior and also compare it with SAMMOuni, a variant which uses
uniform sampling in the experiments below.

3.4 Specializations of SAMMO

The following methods are examples for special cases of SAMMO:

• APE (Zhou et al., 2023): Having INITIALIZECANDIDATES sample via the templates pro-
vided by APE with a single mutation operation that paraphrases a candidate yields the
well-known APE.

5

• STDC (Yin et al., 2023a): Starts with a single baseline metaprompt π0 and uses sequential
search, maintaining only a candidate set ΠC of size one. The mutation operator looks at the
current level of the syntax tree of the instructions and prunes a node if it does not decrease
accuracy.

4 Experiments

In our experiments, we optimize four objectives:

1. maximize the accuracy on the classification task,

2. minimize the number of tokens in the input,

3. minimize the number of tokens in the output,

4. minimize the rate of parse errors.

We also use a linear scalarization of the overall objective,

Sϕ(π,D) =

K∑
i=1

wiS
′
i(π,D) (3)

Unless otherwise noted, we use uniform weights (wi = 1). Individual objectives will use the
performance of a baseline metaprompt π0 on the training data as a reference:

S′
i(π,D) =

Si(π,D)− Si(π0, Dtrain)

Si(π0, Dtrain)
. (4)

Intuitively, this yields the relative percentage of improvement with respect to the baseline metaprompt.
While there are many other possible scalarization schemes, we settled on linear scalarization due to its
conceptual simplicity and flexibility in trading off objectives. Scalarization schemes based on Lp met-
rics for large p will heavily penalize solutions that fail to improve just a single dimension (Miettinen,
1999).

4.1 Methods & Baselines

Selecting a set of appropriate baselines for metaprompt optimization is challenging for two reasons.
First, most existing work does not handle minibatching; second, we work under the assumption
that the language model is closed and can only be sampled from – in particular, we cannot employ
fine-tuning or rely on token probabilities. We were able to find two previously published methods
that were applicable with only minor modifications, APO and STDC. Below are the details of all
methods:

• APO: Automatic Prompt Engineering (Zhou et al., 2023): The core idea here is to feed
the model labeled examples and let it come up with a set of instructions. We induce a set of
initial instructions via the templates that the authors provide and perform beam search with
the PARAPHRASE mutation operator as in their paper.

• STDC: Syntax-guided Task Definition Compression (Yin et al., 2023a): This approach
builds a syntax parse tree from the task instructions and removes sub-trees in bread-first
order if they do not decrease the accuracy of the prompt.

• SAMMO: We use beam search as the backbone of Algorithm 1 and initialize ΠC to only the
baseline prompt {π0}. We use all mutation operators listed in Table 1 as possible operations,
and choose mutators either uniformly at random (SAMMOuni), or via the prior-informed
sampling of Algorithm 2. We use the success counts from the previous runs of SAMMOuni.

For each method, we set a budget of 48 candidate evaluations. For STDC, this means 48 sequential
steps; for APO we split it into 24 initial candidates and 24 subsequent ones. For SAMMO, we use
beam search with width four and depth six, and let each mutator generate two mutations.

6

Table 2: Averages across 10 tasks using GPT-3.5 (16k) as a backend model, best values in bold.
SAMMO compresses both the number of input and output tokens while maintaining similar accuracy
levels as the baseline prompt π0.

train test

method obj acc input output parse obj acc input output parse

Baseline π0 0.00 0.56 12992 2267 0.98 0.01 0.58 12241 2377 0.97
APE 0.11 0.52 9516 589 0.97 0.10 0.53 9288 702 0.97
STDC -0.13 0.59 10637 2108 1.00 -0.27 0.54 9806 3046 0.96
SAMMOuni 0.19 0.59 9039 486 0.96 0.17 0.56 8488 533 0.95
SAMMOprior 0.18 0.57 9764 591 0.92 0.14 0.55 9364 657 0.90

Table 3: Averages across 10 tasks using GPT-4 (32k) as a backend model. SAMMO again achieves
the highest compression rates under comparable accuracy.

train test

method obj acc input output parse obj acc input output parse

Baseline π0 0.00 0.76 12992 600 1.00 0.00 0.75 12747 601 1.00
APE 0.08 0.76 9972 603 1.00 0.06 0.72 9727 602 1.00
STDC 0.05 0.78 10971 600 1.00 0.04 0.74 10726 600 1.00
SAMMOuni 0.16 0.77 8708 455 1.00 0.15 0.72 8364 450 0.99
SAMMOprior 0.22 0.77 8275 321 0.98 0.20 0.73 7726 315 0.96

4.2 Tasks

In this paper, our focus is on tasks that require extensive guidelines for annotation. To find appropriate
tasks, we sampled ten tasks from the Super-NaturalInstructions benchmark (Wang et al., 2022) which
(i) were in English, (ii) had more than 200 labeled examples, (iii) had less than ten possible output
labels so they can be treated as classification problems and (iv) had instructions of 1000 characters or
above. We sample training and test sets of sizes 100 each, plus a set of five in-context examples. Our
baseline prompt π0 uses the instructions provided with a task followed by five in-context examples.
We use the newline delimited format of Cheng et al. (2023) to render batched data.

4.3 Results: Overall Performance

Tables 2 and 3 show the the average performance across the ten tasks with either GPT-3.5 or GPT-4 as
a backbone LLM. We report both the overall objective (obj) as well as the four individual objectives:
accuracy (acc), input length in tokens (input), output length and parse success rate.

Starting with the results on GPT-3.5 in Table 2, we can see that both SAMMO variants outperform all
other baselines substantially in terms of the overall objective. They also manage to compress both
input and output by a considerable amount – SAMMOuni reduces input length by 30% and output
length by almost 78% while seeing very little drop in accuracy. Interestingly, STDC actually results
in an increased output length; this is due to the model adding explanations or repeating parts of the
input in the face of uncertainty. Between the two variants, SAMMOprior with prior-informed sampling
does slightly worse than uniform sampling; we return to this difference in the next subsection.

On GPT-4, most trends are similar, albeit with higher average accuracy across all methods. Again,
we find that SAMMO achieves respectable compression rates, all while maintaining high accuracy.
SAMMOprior manages to compress the number of output tokens by another 50% compared to GPT-3.5,
mostly due due to greater overall LLM flexibility and robustness. Moreover, it also manages to
compress the input even more – over 36% compared to the baseline metaprompt. However, one key
difference is that SAMMOprior outperforms uniform sampling on this benchmark.

7

0 10 20 30 40
0

0.05

0.1

0.15

0.2

0.25

method
APE Baseline STDC

candidate evaluations

ob
je

ct
iv

e

(a) GPT-3.5

0 10 20 30 40
0

0.05

0.1

0.15

0.2

0.25

method
APE Baseline STDC

candidate evaluations

ob
je

ct
iv

e

(b) GPT 4

Figure 3: Learning curves of all methods showing the training objective vs. the number of evaluated
candidates. SAMMO increases performance quickly and continues to improve throughout.

4.4 Results: Learning curves

Figure 3 shows the learning curves of all methods in terms of the training objective over the number
of candidate evaluations. Note that many methods employ parallel stages, and so we plot the best
current value of Sϕ after the parallel initialization or mutation stage has been completed (cf. lines 1
and 10 in Algorithm 1). SAMMO manages to optimizes the objective quickly and continues to see
improvements as the search deepens. APE sees the biggest jump in performance after the candidate
generation stage and sees only small gains during paraphrasing which is in line with the authors’
observations.

5 Related Work

Related work can be categorized into two areas: prompt optimization and prompt compression.

In prompt optimization, the main focus in on improving the accuracy of the prompts. Past work
has typically focused on simpler (eg. single task) prompts with less structure. Automatic Prompt
Engineer (APE) Zhou et al. (2023) uses beam search, generating instruction candidates from just
input-output pairs, followed by rewriting steps. Automatic Prompt Optimization (APO) Pryzant
et al. (2023) re-writes instructions by generating explanations for errors, changing the prompt to
reflect explanations, and then generating more prompt candidates by paraphrasing. GrIPS Prasad
et al. (2022) uses beam search with edit, add and delete operations on the syntax tree after parsing the
instructions. InstructZero Chen et al. (2023) optimizes the prompt locally via Bayesian Optimization
using a smaller surrogate model and uses calls to LLM API as feedback.

In prompt compression, the main focus has been on prompt tuning to increase efficiency of repeated
tasks without having to fine tune task-specific models (eg. Lester et al. (2021)). This allows to use
of frozen LLMs, but requires learning a separate sets of weights for the “soft prompt” tokens that
will be appended for each task (eg. Chevalier et al. (2023)). Following this direction, there are other
works that focus on prompt distillation or meta finetuning. For example, Wingate et al. (2022) uses a
distillation objective to steer text generation with compressed instructions and Mu et al. (2023) use
meta-learning to compresses prompts into “gist” tokens.

When practitioners only have access to LLMs through an API, they do not have the ability to access
the probability distribution of the output tokens or the gradient information. In this case, a method to
compress the discrete choice of tokens in a prompt is needed. Jung & Kim (2023) use a reinforcement
learning approach to learn which tokens can be excluded from a prompt without degradation in
accuracy. However, this requires model-specific tokenization knowledge that may also be opaque to
API users.

8

Yin et al. (2023b) specifically considers prompts with complex task definitions with different types
of content. They propose a syntax-guided compression algorithm that learns which instruction
components can be excluded without drop in accuracy.

6 Conclusion

In this paper, we introduce a new framework, Structure-aware Multi-Objective Metaprompt Optimiza-
tion (SAMMO), to make annotating large amounts of data via LLMs more viable. This framework
is designed to balance multiple objectives efficiently, taking both operational costs as well as task
performance into consideration.

SAMMO represents metaprompts as dynamic function graphs, and employs a set of mutation operators
to alter the structure and content of metaprompts. This approach notably outperforms existing methods
of prompt optimization, as demonstrated through several annotation tasks in our experimental
evaluation.

The experimental results consistently show that SAMMO can substantially improve the efficiency and
predictive accuracy of metaprompts on LLM-based annotation tasks, with a 30% or more reduction
in token usage. Our results further show that SAMMO works efficiently with small search budgets
and performs robustly regardless of whether the underlying LLM was GPT-3.5 or the more powerful
GPT-4.

Future research will further explore the potential of this structure-aware method to optimize complex
metaprompts. Additional mutation operators could be considered as well as more complex annotation
output structures. We also anticipate future adaptations of our method to yield not only a single
solution, but a set of candidates that are on the Pareto front.

References
Lichang Chen, Jiuhai Chen, Tom Goldstein, Heng Huang, and Tianyi Zhou. Instructzero: Efficient

instruction optimization for black-box large language models, 2023.

Zhoujun Cheng, Jungo Kasai, and Tao Yu. Batch prompting: Efficient inference with large language
model apis. arXiv preprint arXiv:2301.08721, 2023.

Alexis Chevalier, Alexander Wettig, Anirudh Ajith, and Danqi Chen. Adapting language models to
compress contexts. arXiv preprint arXiv:2305.14788, 2023.

Hoyoun Jung and Kyung-Joong Kim. Discrete prompt compression with reinforcement learning.
arXiv preprint arXiv:2308.08758, 2023.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691, 2021.

Kaisa Miettinen. Nonlinear multiobjective optimization, volume 12. Springer Science & Business
Media, 1999.

Jesse Mu, Xiang Lisa Li, and Noah Goodman. Learning to compress prompts with gist tokens. arXiv
preprint arXiv:2304.08467, 2023.

Archiki Prasad, Peter Hase, Xiang Zhou, and Mohit Bansal. Grips: Gradient-free, edit-based
instruction search for prompting large language models. arXiv preprint arXiv:2203.07281, 2022.

Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Chenguang Zhu, and Michael Zeng. Automatic prompt
optimization with" gradient descent" and beam search. arXiv preprint arXiv:2305.03495, 2023.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image
classifier architecture search. In Proceedings of the aaai conference on artificial intelligence,
volume 33, pp. 4780–4789, 2019.

Tianxiang Sun, Zhengfu He, Hong Qian, Yunhua Zhou, Xuanjing Huang, and Xipeng Qiu. Bbtv2:
Towards a gradient-free future with large language models, 2022a.

9

Tianxiang Sun, Yunfan Shao, Hong Qian, Xuanjing Huang, and Xipeng Qiu. Black-box tuning
for language-model-as-a-service. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba
Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International Conference
on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pp. 20841–
20855. PMLR, 17–23 Jul 2022b. URL https://proceedings.mlr.press/v162/sun22e.html.

Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza Mirzaei,
Anjana Arunkumar, Arjun Ashok, Arut Selvan Dhanasekaran, Atharva Naik, David Stap, et al.
Super-naturalinstructions:generalization via declarative instructions on 1600+ tasks. In EMNLP,
2022.

David Wingate, Mohammad Shoeybi, and Taylor Sorensen. Prompt compression and contrastive
conditioning for controllability and toxicity reduction in language models. arXiv preprint
arXiv:2210.03162, 2022.

Hanwei Xu, Yujun Chen, Yulun Du, Nan Shao, Yanggang Wang, Haiyu Li, and Zhilin Yang. Gps:
Genetic prompt search for efficient few-shot learning. arXiv preprint arXiv:2210.17041, 2022.

Fan Yin, Jesse Vig, Philippe Laban, Shafiq Joty, Caiming Xiong, and Chien-Sheng Wu. Did you
read the instructions? rethinking the effectiveness of task definitions in instruction learning. In
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), ACL 2023, Toronto, Canada, July 9-14, 2023. Association for Computational
Linguistics, 2023a.

Fan Yin, Jesse Vig, Philippe Laban, Shafiq Joty, Caiming Xiong, and Chien-Sheng Jason Wu. Did
you read the instructions? rethinking the effectiveness of task definitions in instruction learning,
2023b.

Tianjun Zhang, Xuezhi Wang, Denny Zhou, Dale Schuurmans, and Joseph E. Gonzalez. Tempera:
Test-time prompting via reinforcement learning. 2022a.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain of thought prompting in
large language models. arXiv preprint arXiv:2210.03493, 2022b.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, and
Jimmy Ba. Large language models are human-level prompt engineers, 2023.

A Appendix

The table below organizes related work across serveral dimensions.

10

https://proceedings.mlr.press/v162/sun22e.html

Table 4: Related Work
space candidate gen-

eration
optimization
method

uses logits tasks notes

APO (Pryzant
et al., 2023)

discrete error explana-
tions, instruc-
tion correction,
paraphrasing

beam search +
bandit

no class.

GRIPS (Prasad
et al., 2022)

discrete ops on instruc-
tion subphrases

beam search no class.

Tempera
(Zhang et al.,
2022a)

discrete ops on instruc-
tion subphrases

RL yes general

APE (Zhou
et al., 2023)

discrete inverse instruc-
tion generation,
paraphrasing

beam search yes general requires
in-place gener-
ation

Xu et al. (2022) discrete backtranslation,
paraphrasing

evolutionary al-
gorithm

yes general

InstructZero
(Chen et al.,
2023)

cont. subspace sam-
pling

Bayesian no general

Sun et al.
(2022b)

cont. subspace sam-
pling

evolutionary al-
gorithm

yes class.

Sun et al.
(2022a)

cont. subspace sam-
pling

layer-wise evo-
lutionary

yes class. layer-wise log-
its needed

11

	Introduction
	Problem Definition & Notation
	Metaprompts

	Sammo: Structure-aware Multi-Objective Metaprompt Optimization
	Sammo Search Procedure
	Mutation Operators
	Operator Selection
	Specializations of Sammo

	Experiments
	Methods & Baselines
	Tasks
	Results: Overall Performance
	Results: Learning curves

	Related Work
	Conclusion
	Appendix

