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Abstract

Sleep is a vital aspect of our life. Having good quality sleep is necessary for our
well-being and health. Therefore, sleep measurements can aid us in improving
our sleep quality. While many users are reluctant to use intrusive sleep sensing
techniques such as wearables, passive sensing such as network activity of smart-
phone devices can be utilized to measure the sleep duration of a user. However, we
need large amounts of labeled data to develop accurate sleep prediction models.
In addition, due to heterogeneity in user behaviors, hardware, and software of the
devices used, a single model may not generalize to every user in a given population.
Although ground truth data collection from a large population is costly and chal-
lenging, unlabeled network activity data is easy to gather using mobile applications
or network logs. This motivates us to look for semi-supervised learning approaches
to leverage unlabeled data from the users to develop accurate sleep prediction
models. Our results show that we can use semi-supervised learning techniques to
improve the accuracy of sleep duration estimation from smart devices.

1 Introduction

Despite the importance of sleep for human well-being, over a third of the human population sleeps
less than seven hours per day, and sleep disorders are commonplace among adults (CDC et al. 2009).
Sleep monitoring via wearables has emerged as an approach for improving sleep health via daily
tracking of sleep patterns. However, many users tend to be reluctant to wear trackers when sleeping,
which has led to the emergence of contactless sensing methods to monitor sleep (Tauhidur Rahman et
al., 2015). One promising approach is to use smartphone activity as a proxy for the user’s sleep and
awake state, where long periods of phone inactivity, particularly in the night, are used to infer the
user’s nocturnal sleep durations. Recent research has shown the feasibility of using time series data
of phone network WiFi activity (e.g., event rates) to infer bedtime and wake-up times.

When good quality labeled ground truth data is available, such techniques can even approach the
accuracy of wearable sleep trackers such as oura ring (Ghorbani S et al, 2022). However, such
approaches suffer from many challenges due to differences in data. Such differences arise due to user
heterogeneity, device heterogeneity and study heterogeneity (Blunck et al, 2016). User heterogeneity
refers to the differences in user’s device usage practices and differences in sleeping patterns. Device
heterogeneity refers to the differences in the hardware and software version of the device. Study
heterogeneity arises due to the fact that users can change their devices over the time or new users can
be added to the later stages of the study. Consequently, current approaches have several limitations.
First of all, a supervised model trained on the labeled data from user studies will not be able to
generalize to new users, which limits the scalability of the technique. Second, obtaining high-quality
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ground truth data from large number of users imposes high overheads and high cost for many user
studies.

At the same time, unlabeled data is easy to gather since mobile apps or standard network logs can be
used to gather data on a phone’s WiFi activity. This motivates the need for semi-supervised learning
(SSL) approaches that can combine a small amount of labeled ground truth data with large amounts
of unlabeled data to improve the efficacy of ML models to predict sleep using phone activity and
thereby personalize the models using a user’s phone’s unlabeled data.

In this paper, we mitigate the limitation of current supervised methods by providing interesting ideas
on developing semi-supervised methods for sleep duration estimation.

2 Motivation

2.1 Problem Statement

Figure 1: Time series data representing the network events from a smartphone, where the low event
rate represents sleep.

We state the problem of sleep duration estimation as follows: For each user, we are given a time series
of network activity (event rates) from a smartphone (refer Fig. 1). We split a 24 hour period starting
from 6 p.m of day d to 6 p.m of day d+1 into 15 minute windows and classify each window into one
of the two activity labels - "sleep" or "awake". We then find the longest continuous streak of sleep
to calculate the bed time and wake-up time for that user. Although a user may have multiple sleep
periods in a day, we are considering only the sleeping period with the longest duration to calculate
the bed time and wake up time.

We are also considering the problem of generalizing our model for users with only unlabeled data.
For a population of size N , we have labeled data D for n users and unlabeled data D′ for N − n
users where N − n ≫ n. Our goal is to train models in a generalized and personalized way that can
leverage both D and D′.

2.2 Dataset

We collected ground truth data from 20 undergraduate students who are on-campus residents under
an IRB approved study. The data-collection for each participant lasted for a duration of 4 weeks. The
participants were given Fitbit devices and manuals for logging the sleep data. We gathered logs of
network activity from their smartphones. More details about the study is added in the Appendix

Ethical Considerations: We conducted the data collection and analysis for this work under safeguards
and restrictions approved by our Institutional Review Board (IRB) and Data Usage Agreement (DUA)
with our campus network IT group. We anonymized all device MAC addresses and authentication
information using a strong hashing algorithm. The identities of the users were blinded by assigning
numeric identifiers. Ground truth was collected within the IRB-approved protocol. Individual
analyses were performed on users who had consented to this study.

2.3 Supervised Learning

Below we describe the baseline architecture and the features that we used to perform supervised
learning on labeled data.
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Baseline Architecture: For the baseline model, we use a simple Convolutional Neural Network. The
model has three temporal 1D convolutional layers with 32, 64 and 96 filters. Each kernel size in each
layer are 24, 16, and 8 respectively with uniform a stride 1. We then use a Sigmoid activation function
with L2 regularization with a factor of 0.0001 for the weights. In the end, a global 1D maximum
pooling layer is connected to the last convolutional layer.

Features Used: We derive features from the WiFi syslog data of the devices. The features include
Unique Access Points (AP) visited, Access Point Transitions, Dorm or not, and Time. The rationale
for choosing these features is, when a user is active or awake, the value of these features is expected
to be different compared to when a user is inactive or asleep.

Efficacy of the Model: We picked 10 users and did 80:20 splits of the labelled data for training and
testing. The results are shown in Table 1 and we can see that the model is able to predict the bed time
and wake up time with an average error of less than 30 mins.

Technique Tsleep mins Twake mins
Supervised Learning 30 ±7 19 ±3

Table 1: Bed time and wake up time estimation errors

Inability to generalize: Next, we study the ability of the SL models to generalize. Data collection
from various sources is an important step in mobile sensing. However, data collection and analysis
is often challenged by the the differences in training data. In our experiment, we try to gradually
increase the size of the test data by adding more users. We can see from Table. 2 that the models
accuracy decreases as we bring in more variability in the data by adding new users. This shows that
the model is not scalable.

no of users Tsleep mins Twake mins
1 55 ±10 52 ±5
3 60±12 62 ±11
5 62 ±10 61 ±11
7 67±5 61 ±9
9 69±5 65 ±7

Table 2: Bed time and wake up time estimation errors for test data. We can see that the accuracy of
the model reduces as we increase the number of test users.

This motivates us to look for scalable and generalizable techniques that does not involve additional
labelled data collection, leading us to the semi-supervised techniques.

3 Approach

In this section, we experiment with a state-of-the-art SSL technique to compare against the supervised
learning model (baseline model) on sleep prediction.

3.1 Multi-head Single-view Co-training

In single-view co-training, we train multiple classifiers without splitting the features, unlike multi-
view co-training. In this paper, we try to overcome the overhead of training multiple classifiers. We
do this by using multiple heads in a shared module instead of training multiple classifiers separately.
Thus in multi-head co-training, there will be a shared parametric module and multiple classification
heads with identical structures. We use a similar architecture mentioned in (Chen et al., 2022);
however, the training pipeline is different. Instead of augmenting the dataset using data perturbations,
we use the unlabeled data from the new users or unseen users in a population. At first, we train
the model with only one classification head with labeled data. We then use this model to generate
the pseudo labels for the unlabeled data using a majority voting from all the classification heads.
Each 15 min window is classified as "sleep" or "awake" if the majority is above a certain threshold.
However, since we are interested in getting the bedtime and wake-up time of an entire day, knowing
the individual window’s classification is not sufficient. We evaluate if the classification of the bins
over 24 hours is good enough to mix with labeled data. We take the average majority scores of all the
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Figure 2: Schematic diagram of the proposed co-training pipeline. Here we first train the model using
the labelled data with one classification head. Then we label the unlabelled data taking a majority
vote from all the classification heads creating pseudo labels. As a third step, we again train the model
with again using the mixed dataset

bins for 24 hour period and check if this average is above a certain threshold; we consider that days
data good enough to be mixed with labeled data. After combining the datasets, we again train the
model using only one classification head using the new augmented dataset.

3.2 Performance Evaluation

Experiments were run on Google colaboratory notebooks. We split the labeled dataset into 50 : 50
splits, with training data set and test data set consisting of data from 10 users each. We also took one
week of unlabeled data from users in the test dataset. The performance metrics we use here are sleep
time and wake-up time estimation errors which are defined as the difference between the estimated
value and the true value. From Table 3, we can see that the Multihead single-view co-training is able
to perform much better in comparison to the supervised learning without labeled data from test set
users.

Technique Labelled data from test set Tsleep mins Twake mins
Supervised Learning No 75 ±7 70 ±9
Multi-head Single-view Co-training No 37±11 25 ±10
Supervised Learning Yes 30 ±7 19 ±3

Table 3: Bed time and wake up time estimation errors for test data set

4 Conclusions and Future Directions

Sleep sensing can potentially help us improve our sleep quality. As most of the users are reluctant to
use intrusive sleep-sensing techniques, the network activity of smartphones can be utilized to predict
our sleep. However, due to limited labeled data and ground truth data collection overheads in a larger
population, we have to rely on semi-supervised learning techniques. Our experiments show that
SSL techniques are viable options to improve the accuracy of sleep prediction models when there is
limited labeled data. The results we presented are preliminary and as a future direction, we plan to
extend the work by experimenting with different model configurations and other SSL techniques to
achieve closer accuracy with supervised learning with labeled data.
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A Appendix

A.1 User Study Procedure

We advertised about the study through flyers and using undergraduate mailing groups. We recruited 20
undergraduate students who are on-campus residents. The data-collection for each participant lasted
for a duration of 4 weeks, while the overall recruiting process ran from October to mid-December.
The participants were given Fitbit devices and manuals for logging the sleep data. We precisely
identified the participants’ hashed MAC addresses by monitoring their WiFi events from a dedicated
AP on campus. We made sure the following guidelines were followed through out the study by
sending periodic reminders to the participants :

• The students were asked to wear a fitness tracker (like a Fitbit or similar) for the duration
of the study. They were advised to wear the device as much as possible, but it is critical
that they wore it at night. We used the sleep-tracking function of the fitness tracker to help
us understand the relationship between sleep and network activity. It is critical to keep the
device charged and paired to the phone at night. Putting the device on and taking it off and
charging as needed should take less than 10 minutes per day.

• They were asked to keep a sleep journal. This is used to verify the sleep data we get from
the wearable, and vice versa. This should take 30 seconds or less per day.

In addition to the above data collection activities, the students made two visits to the lab:

• Participants attended a 30-minute orientation session at the beginning of the study. During
the orientation session they are given a wearable fitness tracker along with instructions on
how to use and charge it. The study’s smartphone app was installed on your Android phone
during the session, and they were instructed on how to use it.

• They came for a 30-minute debriefing session at the end of the study during which they
turn over any study equipment they still own and deleted the study app from their phone.
During this session they also received compensation for their participation in the study. The
students received compensation in the form of Fitbits or Amazon coupons worth 100 USDs
if they wore Fitbit every day for at least 4 weeks while on campus.
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