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Abstract

Speech neuroprostheses aim to restore communication for people with severe paral-
ysis by decoding speech directly from neural activity. To accelerate algorithmic
progress, a recent benchmark released intracranial recordings from a paralyzed
participant attempting to speak, along with a baseline decoding algorithm. Prior
work on the benchmark showed impressive accuracy gains. However, these gains
increased computational costs and were not demonstrated in a real-time decoding
setting. Here, we make three contributions that pave the way towards accurate,
efficient, and real-time neural speech decoding. First, we incorporate large amounts
of time-masking during training. On average, over 50% of each trial is masked.
Second, we replace the gated recurrent unit (GRU) architecture used in the baseline
algorithm with a compact Transformer. The Transformer architecture uses 83%
fewer parameters, cuts peak GPU memory usage by 52% relative, and is signifi-
cantly faster to calibrate relative to the GRU. Third, we design a lightweight variant
of an existing test-time adaptation method developed for decoding handwriting
from neural activity. Our variant adapts the model using multiple time-masked
augmentations of a single trial and requires only one gradient step per trial. To-
gether, these contributions reduce word error rate by 20% and effectively mitigate
performance degradations across held-out days in a real-time decoding setting
while substantially lowering computational costs.

1 Introduction

Conditions including amyotrophic lateral sclerosis (ALS) and brainstem stroke can lead to severe
paralysis, leaving individuals unable to speak or interact with the world. A promising path toward
restoring communication for these individuals is speech neuroprostheses, which bypass the vocal
apparatus and decode speech directly from neural activity (34). Speech neuroprostheses have made
significant strides in recent years, demonstrating the ability to decode speech with high accuracy over
large vocabularies (40; 29; 8; 24).

To be viable in real-world clinical settings, decoding algorithms for speech neuroprostheses should
ideally satisfy several key criteria beyond accuracy. First, they be able to operate in a real-time
"streaming" fashion, decoding speech with low-latency over short windows rather than waiting for the
entire utterance to finish (24). Second, they should have low computational requirements to enable
on-device inference and adaptation (7), minimizing reliance on external connections and preserving
user privacy. Finally, decoding algorithms should be easily integrated with test-time adaptation
methods that mitigate performance degradation across time (16).
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To accelerate progress along these lines, the Brain-to-Text Benchmark ’24 was released, an open-
source dataset containing intracortical neural recordings while a participant with ALS attempted
to speak sentences across 24 days. Along the with the dataset, the organizers provided a baseline
decoding algorithm which consisted of a gated recurrent unit (GRU) architecture to decode neural
activity into phonemes, followed by beam search guided by an n-gram language model (LM) (40).

A recent summary report outlined the findings of the top four entries submitted to the benchmark
(41). Several entries replaced the GRU architecture with Transformers, deep state space architectures,
and convolutional neural networks (CNNs), and found that none of these architectures outperformed
the baseline GRU. For example, the first place entry reported that the phoneme error rate (PER) for
Transformers was more than double that of the baseline GRU (23). While researchers found that
using a learning rate scheduler, layer normalization (4), and different optimization algorithms helped
improve accuracy, the modification that led to the largest improvement was "using an ensemble of
neural decoders to generate a diverse set of sentence hypotheses, and then using a fine-tuned large
language model (LLM) to merge these hypotheses into a finalized sentence" (41), an idea that was
first implemented by (5).

Although the accuracy gains from prior work are remarkable, there are several important caveats.
First, the top four entries all used a bidirectional GRU, which requires access to future neural activity
and therefore cannot decode speech in real-time. Furthermore, LLM merging was only applied after
the entire text was decoded, as applying it to intermediate outputs is not straightforward. Second,
some entries used up to 10 bidirectional GRUs and GPT 3.5, which makes inference and test-time
adaptation on local resource-constrained devices challenging. Third, since the sentences used in the
benchmark were from the publicly available Switchboard corpus (1), it is possible LLMs were trained
on this corpus and so their contribution is overstated relative to conversational settings. These points
highlight how optimizing for a single metric on machine learning benchmarks can lead to sacrifices
along other dimensions important for real-world use.

In this work, we aimed to holistically improve speech neuroprostheses by focusing on multiple
criteria: accuracy, capability for real-time streaming, low computational costs, and robustness to
distribution shifts. In order to do so, we focused on improving the neural network that translates
neural activity into phonemes rather than external language modeling components. Our improvements
are based on two key observations. First, the baseline GRU overfits early in training (Figure 1a).
Second, the GRU processes highly redundant inputs at each time step in order to achieve optimal
performance: consecutive inputs are 87.5% overlapping when using the settings proposed by Willett
et al. (40) (Figure 1b), which we hypothesized is a source of inefficiency.

Based on these observations, we proposed two modifications to the baseline algorithm. First, in
order to delay overfitting, we incorporated time-masking which is a regularization strategy that masks
contiguous temporal chunks of the input neural activity during training (Figure 1c) (31). Second,
we replaced the GRU architecture with a compact, unidirectional Transformer (Figure 1c) (37). We
hypothesized that the GRU requires overlapping inputs due to its lossy memory, which may result in
increased computational costs. Since Transformers have perfect memory for a fixed context length,
they are likely able to efficiently processes non-overlapping inputs. To foreshadow the results, the
Transformer trained with time-masking (time-masked Transformers) achieved a WER of 12.17%
with a 3-gram LM, which is 20% lower than the baseline unidirectional GRU. The Transformer
architecture also substantially reduces parameter count, peak GPU memory usage, FLOPs, and
per-epoch training times.

We next leveraged the time-masked Transformers to improve upon the test-time adaptation method
created by Fan et al. (16) for handwriting neuroprostheses. Their approach, Continual Online
Recalibration with Pseudo-labels (CORP), refines the text produced by a GRU-based model with an
n-gram LM, and then adapts the GRU to output the LM-refined text. CORP utilizes multiple gradient
steps per trial and maintains previous data to enable adaptation. Here, we present "DietCORP",
a lightweight variant which enables test-time adaptation in a single gradient step without storing
previous data by leveraging multiple time-masked augmentations of the same trial (Figure 1d). When
combined with the low memory requirements and fast training speeds of the Transformer, DietCORP
effectively adapts the model to distribution shifts while requiring only 1.3 GiB of peak GPU memory
usage and 18 ms to adapt per trial.
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Figure 1: A. The GRU exhibits pronounced overfitting when training for long durations. Black
dashed line indicates where training was stopped for the baseline model. B. Adjacent input windows
to the GRU overlap by 87.5% when using the optimal baseline hyperparameters (window length =
640 ms, stride = 80 ms). C. We replaced the GRU with a lightweight Transformer. The Transformer
takes as input non-overlapping temporal patches of neural activity and outputs logits (denoted as pi).
Consecutive patches were replaced with a MASK token during training, as denoted by dark coloring.
We used the connectionist temporal classification (CTC) loss. D. An overview of DietCORP. In the
top panel, the Transformer architecture is run in evaluation mode to generate logits, and these logits
are integrated with a language model guided beam search to generate a pseudo-label. In the bottom
panel, the model is trained to produce the pseudo-label across Z time-masked augmentations with
CTC loss. Only the patch embedding module is adapted during this process.

2 Related Work

Although we found success with using a Transformer, Transformers are typically not the architecture
of choice for speech neuroprostheses or brain computer interfaces (BCIs) more broadly. Willsey
et al. (42) used a convolutional neural network (CNN) to decode finger movements. Costello et al.
(11) followed up on this work, and showed that recurrent neural networks (RNNs) achieve better
finger movement decoding performance than either CNNs or Transformers. The majority of speech
neuroprostheses have employed some combination of CNNs and RNNs (2; 36; 27; 39; 40; 29; 3; 8;
35; 24), although a few studies have used Transformers (38; 10; 9). In the discussion of the Brain-to-
Text benchmark results, the authors speculated that the relatively poor performance of Transformers
may be attributed to the fact that 1) more optimization is required or 2) phonemes are represented
over short context windows in neural activity, which suits GRUs because they naturally implement a
locality bias whereas Transformers are better suited for modeling long-range dependencies (41).

Our Transformer architecture is most similar to that of Chen et al. (9) in the BCI literature. Specifically,
we also used relative positional embeddings and temporal patches as input. However, each temporal
patch in our work consists of data from all electrodes, whereas Chen et al. (9) assign each electrode
to its own temporal patch. Assigning each electrode its own patch can substantially increase the
context size, and Chen et al. (9) use the Swin Transformer (25) to address this challenge. Beyond
model architecture, Chen et al. (9) displayed their results on a closed-source dataset consisting of
electrocorticographic (ECoG) and depth electrodes (sEEG), and they translated neural activity directly
into speech. Our results are displayed using an open-source dataset consisting of microelectrode array
(MEA) recordings, and we translated neural activity into text. Li et al. (23) also used Transformers on
the Brain-to-Text Benchmark ’24; however, to the best of our knowledge the authors did not release
sufficient details for reproducing their Transformer results.

Structured input masking was initially popularized by Park et al. (31) for automatic speech recognition
(ASR). Within speech neuroprostheses, Littlejohn et al. (24) masked entire channels and cropped
each trial by applying a temporal window. Metzger et al. (29, 28) applied a single temporal mask to
each trial. The masking augmentations used by Littlejohn et al. (24); Metzger et al. (29, 28) were
primarily applied on close-sourced, ECoG datasets and mask a much smaller percentage of the input
than in this work. Furthermore, the contribution of masking relative to other augmentations is not
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emphasized in these works. Beyond speech neuroprostheses, Saeed et al. (33); Ding et al. (14) applied
structured input masking for EEG-based BCIs, and Fu et al. (18) applied it for intracranial monkey
BCIs.

DietCORP is most directly inspired by CORP (16). However, the idea to use multiple augmentations,
rather than previous data, for test-time adaptation was inspired by Zhang et al. (45) and Yao et al.
(43). Zhang et al. (45) encouraged models to make consistent and confident (low entropy) predictions
across several augmentations of the same image at test-time. Yao et al. (43) add a KL divergence
loss term across two time-masked versions of the same audio sample to the connectionist temporal
classification (CTC) (20) loss during training.

3 Methods

3.1 Neural Dataset

The Brain-to-Text ’24 benchmark dataset consists of microelectrode array (MEA) recordings from
the ventral premotor cortex (area 6v) of a single participant with ALS. Data was recorded from two
microelectrode arrays with 64 channels each, a ventral 6v array and a dorsal 6v array. Spike band
power and threshold crossings were extracted for each channel, leading to a total of 256 features.
Neural activity was recorded while the patient attempted to speak 10,850 sentences. In each trial, the
subject was shown a sentence, and attempted to speak the sentence at the onset of the “go” cue. All
analyses were done on neural activity during the "go" phase while the participant attempted to speak
the sentence. The neural activity was provided in 20 ms time bins (50 Hz resolution), and z-scored
within each block (20-50 sentences). For additional details, refer to (40).

3.2 Word error rate and phoneme error rate

We computed the word error rate (WER) as the Levenshtein (edit) distance between the predicted
and target word sequences, normalized by the total number of words in the target. Formally, WER is
defined as

WER =
S +D + I

N
where S, D, and I denote the number of substitutions, deletions, and insertions, respectively, and N
is the total number of words in the target transcription. Similarly, the phoneme error rate (PER) was
computed in the same manner but at the level of phonemes rather than words. We applied an n-gram
guided beam search process when computing WER (Section E), and computed PER using greedy
decoding.

3.3 Train, validation, and test splits

The benchmark provided train, validation, and test splits. There were 8800 sentences in train, 880
sentences in validation, and 1200 sentences in test. Train and validation sentences were recorded
on 24 days (collected over almost 4 months), and test sentences were recorded on 15 out of the 24
days. We refer to the days with testing data as "competition" days. All hyperparameter tuning was
performed on the validation set, and the validation set was not used for training after hyperparameter
tuning for the main results (Section 4.1, 4.2). For DietCORP (Section 4.3), we were interested
in evaluating its effectiveness on days with no training data. Since the original splits contained
training data for all days, we modified the splits by holding out 5 or 8 competition days. To evaluate
performance, we used the original training and validation data from these held-out days as our new
test set, and used all data from the preceding days for training. This custom evaluation was necessary
as the competition platform cannot return a WER for modified splits.

3.4 Baseline gated recurrent unit-based model

The dataset was accompanied by a baseline gated recurrent unit (GRU)-based model. This model
first passed the input features (spike band power and threshold crossings) through a day-specific
linear layer followed by a softsign non-linearity, which served to account for day-specific differences
in neural activity. At each step, the GRU received a vector of these day-transformed inputs with
dimension F · Tin, where F is the number of features (256) and Tin (the window length) is the
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number of neural time bins. The model consisted of 5 GRU layers. The hidden state of the final
layer was passed through a linear layer to produce logits over phonemes, the CTC blank token, and
a silence token. Logits were output every Tout (stride length) steps. For optimal performance, the
baseline algorithm set Tin = 32 and Tout = 4, resulting in an 87.5% overlap between consecutive
inputs.

We followed the same training procedures as listed in the Pytorch codebase provided by Willett et al.
(40) for the baseline GRU model. Specifically, we used the Adam optimizer (21) and connectionist
temporal classification (CTC) loss (20). During training, white noise and baseline shift augmentations
were added to the neural activity, followed by causal Gaussian smoothing. Training was performed
for 10,000 batches (∼ 73 epochs). The full set of hyperparameters is listed in Table 5. We used a
unidirectional GRU for all results unless otherwise stated.

3.5 Transformer-based model

Inspired by Dosovitskiy et al. (15) and Chen et al. (9), we replaced the GRU architecture with a
Transformer. We segmented the input neural data into non-overlapping temporal patches, each
consisting of Tin time bins and all (256) features. Tin was set to 5, such that each patch captured 100
ms of neural activity. Each patch was then flattened into a F ·Tin (F is the number of neural features)
dimensional vector and passed through a patch embedding module, consisting of the following layers
in sequence: LayerNorm, Linear, and LayerNorm. The linear layer projected the patches from
F · Tin to the transformer hidden dimension size. Input dropout was applied to the output of the
patch embedding module, followed by L Transformer blocks (L = 5). Each Transformer block
comprised a self-attention layer followed by a feed-forward network. We applied LayerNorm before
the self-attention layer, and the feed-forward network included the following layers in sequence:
LayerNorm, Linear, GeLU activation, Dropout, Linear, and Dropout. Residual connections were
added around both the self-attention layer and the feed-forward network.

We used relative positional embeddings similar to the T5 architecture (32). Specifically, we added
a learned bias to the attention scores based on the relative distance between two patches. A causal
attention mask was also used to ensure that each patch could only attend to itself and previous patches.
The attention operation was then defined as:

Attention(Q,K,V) = softmax
(
QK⊤
√
d

+B+M

)
V

where Bi,j = b(i− j), and b ∈ R2L−1 was a learnable vector containing scalar bias values for each
possible relative position. The index (i− j) represents the relative distance between query position
i and key position j, allowing attention scores to incorporate relative position information up to a
maximum absolute distance of L− 1. The matrix M was the causal attention mask, defined as:

Mi,j =

{
0 if j ≤ i

−∞ otherwise

The outputs of the causal Transformer were passed through a linear layer to obtain logits over
phonemes, the CTC blank token, and silence token. Logits were output every Tout time bins, and we
set Tout = 5.

When training the Transformer, we applied a log-transformation to the neural data before z-score
normalization and trained for 250 epochs. We also used a learning rate scheduler, where we decreased
the learning rate by a factor of 10 after 150 epoch. Training was performed with the AdamW optimizer
(26)and CTC loss, and we also applied white noise and baseline shift augmentations followed by
causal gaussian smoothing. The full set of Transformer hyperparameters is listed in Table 6.

3.6 Time-masking

We performed time-masking by masking several contiguous temporal chunks of each trial. The
rationale for applying contiguous masking in addition to input dropout is that input dropout does not
mask contiguous chunks, and is therefore likely a weaker form of regularization. A description of
the time-masking algorithm is provided in Algorithm 1 for the Transformer. For the time-masked
GRU, all details are identical except masking was applied at the time bin level, and masked bins
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Algorithm 1: TIMEMASK(x, N,M)

Input: Trial x ∈ RL×C (L patches, C features);
N — number of masks;
M — max-mask length as a fraction of trial length (0 < M ≤ 1)
Output: Masked trial x̃
F ← ⌊M · L⌋ ; // maximum mask length
for k in 1:N do

S ∼ U(0, L− F ) ; // start index
D ∼ U(0, F ) ; // mask length
x[S : S +D]← LEARNABLE-MASK TOKEN

return x̃

were replaced with 0 rather than a special MASK token. We do not enforce time-masks to be
non-overlapping.

For all analyses, we set N = 20 (number of masks) and M = 0.075 (max mask length as a fraction
of trial length). Under these settings 53% of a trial is masked out on average (Section J). We report
performance with other hyperparameters in Section I.

3.7 DietCORP

For each trial, we generated a "pseudo-label" by applying language model guided beam search
(Section E) to the model predictions, as done in CORP (16). "Pseudo-label" generation is already
performed for real-world use, and so it does not incur additional computational costs. In CORP, the
pseudo-label is combined with labeled training data as well as previously generated pseudo-labeled
data to update model weights with CTC loss until the loss decreases below a threshold or 200 gradient
steps are completed. DietCORP reduces the computational costs and complexity associated with
CORP by eliminating the need to store previous data and performing adaptation with one gradient
step per trial. This is done by adapting the model across Z augmentations of the same trial. Model
weights are not reset across trials (i.e., calibration is continuous), as done in CORP.

When applying DietCORP, we only updated the patch embedding module because 1) neural dis-
tribution shifts across days are likely a form of input distribution shift (as opposed to feature or
output distribution shifts) and selectively fine-tuning input layers is effective when dealing with input
distribution shifts (22), and 2) test-time adaptation can rapidly degrade when adapting the entire
model (22). Augmented trials were generated by creating Z copies of a given trial, and applying
white noise, baseline shift, and time-masking to each copy. Time-masking served as the main form of
augmentation. We set Z = 64 since this was the batch size used for training, although DietCORP
was robust to lower values of Z as discussed in the results. All hyperparameters were set to the values
used during training. The learning rate was set to the mean of the learning rate before and after the
learning rate step decay was applied, which was 5e− 4. We additionally clipped the gradient norm,
as done in CORP, to 0.5.

4 Results

4.1 Comparison with baseline unidirectional GRU

We first compared the causal Transformer trained with time-masking (Section 3.5, 3.6), or time-
masked Transformer, with the baseline unidirectional GRU model, or baseline GRU (Section 3.4).
When using the 3-gram language model (LM) (Section E), the time-masked Transformer achieved
a word error rate (WER) that was 3.08% absolute percentage points better than the baseline GRU,
which was a significant decrease (p < 0.05; one-sided independent t-test across 10 seeds) (Table
1). When using the stronger 5-gram LM setup, with an additional second-pass rescoring using an
unpruned LM and large language model (LLM) (Section E), the time-masked Transformer performed
2.94 absolute percentage points better than the baseline GRU (p < 0.05; one-sided independent t-test
across N = 10 seeds) (Table 1). This is to our knowledge the largest improvement in accuracy over
the baseline GRU on this neural dataset when using a streaming compatible architecture.
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Table 1: Performance comparison using different language modeling setups. The values represent
word error rates (WER) as a percentage (mean ± SEM across seeds). An em dash (—) denotes
settings that were not evaluated. Values for the Linderman Lab and diphone decoding models are
provided by the original authors. Results are reported across 10 seeds except for the "Fine-tuned
LLMs" setting (N = 1), diphone decoding with the 5-gram LM setup (N = 5), and Linderman Lab
GRU (N = 1).

Model 3-gram LM Setup 5-gram LM Setup Fine-tuned LLM
Baseline Unidirectional GRU 15.25± 0.16 11.12± 0.13 —

Time-Masked Causal Transformer 12.17± 0.22 8.18± 0.22 5.68 w/ Llama 3.1 8B

Linderman Lab Bidirectional GRU — 8.0 —

Diphone Decoding with Bidirectional GRU — 8.39± 0.22 5.77 w/ GPT 3.5
6.85 w/ Llama 3.1 70B

Beyond gains in accuracy, the time-masked Transformer also substantially reduced computational
costs relative to the baseline GRU. The Transformer used 83% fewer parameters, cut peak GPU
memory usage by 52%, reduced mega floating pointing operations (mFLOPs) by 43% (Section
C), while shortening per-epoch training times by 58% (Table 4.1). These efficiency gains make
the Transformer architecture well-suited for on-device test-time adaptation (7) and motivate the
experiments in Section 4.3. We also observed that beam search decoding times, measured after
producing logits, were approximately 3 times faster when using the time-masked Transformer relative
to the baseline model (Section H).

4.2 Comparison against top-performing benchmark entries

We next compared the time-masked Transformer with two of the top-performing, entries in the
Brain-to-Text Benchmark ’24: the Linderman Lab bidirectional GRU (Section F) (41) and diphone
decoding with a bidirectional GRU (23). Both these entries are not streaming compatible, and we
used the WER values provided by the original authors. When using the 5-gram LM, there was
no significant difference in performance between either the time-masked Transformer (N = 10
seeds) and the Linderman Lab GRU (N = 1 seed) (p > 0.05; one-sample t-test) or the time-masked
Transformer and the diphone decoding approach (N = 5 seeds) (p > 0.05; independent t-test).

We next evaluated the time-masked Transformer with the "Fine-tuned LLM" setup (Section G), which
involved fine-tuning an LLM to correct the outputs of an ensemble of models. We fine-tuned Llama
3.1 8B (19) on the outputs of 10 seeds of the causal time-masked Transformer. The Transformer +
Llama 3.1 8B combination performed on-par with the best performing entry in Willett et al. (41),
specifically the diphone decoding GRU + GPT 3.5 (6) or Llama 3.1 70B (Table 1).

Beyond accuracy, the Transformer architecture provides large gains in computational efficiency over
the bidirectional GRU (Table 4.1), and we used a smaller, open-source LLM (Llama 3.1 8B) relative
to previous entries that used either GPT 3.5, which is not open-source, or Llama 3.1 70B (5; 23).

4.3 Test-time adaptation across held-out days

We next used the lightweight Transformer architecture to perform test-time adaptation (TTA) with
DietCORP. In brief, DietCORP adapts the decoder to predict LM-refined pseudolabels using multiple
augmented versions of the current trial. DietCORP only requires one gradient step per trial and
minimal hyperparameter tuning (Section 3.7). We applied DietCORP under two settings in which

Table 2: Values are reported using a Nvidia GeForce RTX 3090 GPU. Epoch time is reported as mean
± standard deviation (N = 1200). MFLOPS stands for mega floating point operations per second.

Model Parameters (M) Peak memory (GiB) MFLOPS Epoch time (s)
Bidirectional GRU 135.4 11.21 1563.29 55.63± 0.69
Unidirectional GRU 56.7 5.55 634.81 25.88± 0.55
Causal Transformer 9.4 2.66 364.2 10.81± 0.17
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Figure 2: Results are for the time-masked Transformer. Points show the mean over four seeds;
shading indicates ±SEM. A. WER across five held-out days without adaptation and with DietCORP.
B. Same as panel A with evaluation on eight held-out days. C. Average WER across held-out days
as a function of the number of augmentations used by DietCORP. Green points are when using
DietCORP; the purple dashed line is when no adaptation is performed. Lower curves correspond to
five held-out days, upper curves to eight held-out days.

entire days were held-out from the training set: training on 15 days and testing on the next 5
competition days, and a more challenging setting where we trained on 12 days and tested on the next
8 competition days. In both cases, we compared performance on the held-out competition days when
applying DietCORP versus when no TTA method was applied.

When training on 15 days, there was a substantial rise in WER across the 5 held-out competition
days when no TTA method was applied, starting from a WER of 22.74 ± 0.30% (mean ± SEM
across N = 4 seeds) on the first day and rising to a WER of 32.58 ± 0.60% by the fifth day. By
contrast, when applying DietCORP the increase in WER was substantially smaller, beginning at
21.24 ± 0.29 and increasing to 22.97 ± 0.72% across the five days (Figure 2a). Under the more
challenging evaluation setting, WER rose from 28.87 ± 0.54% to 66.47 ± 0.67% across the eight
held-out days when no TTA was applied. DietCORP again substantially ameliorated the deterioration
in performance, with WER ranging from 26.32 ± 0.32% to 31.74 ± 1.41% across held-out days
(Figure 2b).

We next evaluated how DietCORP’s benefit scales with the number of augmentations. Reducing
the augmentation count progressively diminished its impact, supporting the idea that adaptation
across multiple augmentations helps buffer against test-time distribution shifts (45) (Figure 2c).
Nevertheless, DietCORP still outperformed the no adaptation setting even when using only a single
augmentation, indicating that there are still benefits when using a low number of augmentations. We
finally quantified the memory requirements and adaptation times for DietCORP. When using the
Transformer, DietCORP required 18 ms per trial and its peak memory usage was 1.3 GiB (Table
4.3). Applying DietCORP to the baseline GRU increased adaptation times by 56% and peak memory
usage by 118%, underscoring the benefit of the Transformer for on-device test-time adaptation.

Table 3: Metrics were collected on an NVIDIA GeForce RTX 3090 over 2040 trials. Peak memory is
the highest GPU memory recorded during DietCORP calibration across all trials. Adaptation time
(reported as mean ± SD) is the time needed to update the model on a single trial with DietCORP.
Only the patch-embedding layer was trainable for the Transformer; for a fair comparison, only the
day-specific linear layer was trainable for the baseline GRU.

Model Peak memory (GiB) Adaptation time (ms)
Time-masked Transformer 1.33 18.21± 5.34
Baseline GRU 2.91 28.44± 8.33
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4.4 Ablations to the time-masked Transformer

We conducted an ablation study to isolate the contributions of each component in our time-masked
Transformer model (Table 4). First, we removed two components from our training pipeline for
the time-masked Transformer: the neural data log-transformation and the learning rate scheduler
(Section 3.5). Removing either component independently increased the WER by 4% relative to
the original model. Next, we replaced the T5-style relative positional embeddings (Section 3.5)
with absolute sinusoidal embeddings used in prior BCI studies (11). This change resulted in a 10%
WER increase, suggesting that relative positional information is important for focusing on local
features relevant to phoneme decoding. We next removed time-masking, and restored regularization
hyperparameters (dropout, input dropout, white noise, baseline shift) to the baseline levels used
for the GRU (Table 5). Removing time-masking increased WER by 18%. Since the Transformer
model without time-masking was trained for 250 epochs, this indicates that the performance benefits
of the time-masked Transformer over the baseline GRU (which was trained for 73 epochs) cannot
be attributed to extended training time alone. Finally, we replaced the Transformer architecture
with the GRU architecture. When training the time-masked GRU, we used the same regularization
hyperparameters as the time-masked Transformer (Table 6) and trained for 250 epochs. The time-
masked GRU only performed 4% worse, whereas the baseline GRU performed 20% worse, suggesting
that time-masking is a generally useful augmentation for neural speech decoding across network
architectures.

4.5 Optimizing the time-masked GRU with non-overlapping inputs

Results from the ablation study suggest that the time-masked GRU performs competitively with the
time-masked Transformer. However, a key benefit of the Transformer is in regard to computational
efficiency. We hypothesized that the computational efficiency benefits of the Transformer are related
to its ability to effectively process non-overlapping inputs, reducing processing redundancy. While
prior work showed the baseline GRU performs optimally with overlapping inputs (40), we tested if
this was also the case for the time-masked GRU. To investigate this, we trained the time-masked GRU
with non-overlapping inputs by setting both the window length and stride length to 80ms (Section
3.4). We observed that performance was significantly worse with non-overlapping inputs, with WER
increasing from 17.85± 0.13% to 19.66± 0.14% (p < 0.05; two-sided independent t-test, N = 4
seeds). To account for the possibility that a smaller hidden state would be more optimal with the
smaller, non-overlapping inputs, we lowered the hidden state size from 1024 to 768 or 512, but this
further worsened performance. Thus, consistent with Willett et al. (40), our results suggest that the
GRU performs optimally with overlapping inputs even with time-masking. We leave it to future
work to further investigate whether a smaller GRU architecture can perform competitively with the
Transformer.

5 Discussion

There are three noteworthy limitations to our results. First, all results are on a single participant. At
the time of writing this manuscript, there were no other open-source microelectrode array datasets for
speech neuroprostheses, and evaluation on one participant is standard of the field. However, it is still
important to evaluate the effectiveness of time-masked Transformers and DietCORP across multiple

Table 4: Ablation study results for the Time-Masked Causal Transformer. Values represent word
error rates (WER) on the validation data as a percentage (mean ± SEM across seeds). 10 seeds were
run for the original model, and 4 seeds were run for the ablations.

Ablation Validation WER (%)
Time-masked Transformer 17.15± 0.15
No Log Transform 17.85± 0.15
No Learning Rate Scheduler 17.85± 0.21
No T5 Positional Encoding 18.89± 0.06
No Time-Masking 20.17± 0.2
Transformer→ GRU 17.85± 0.12
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participants. Second, our use of beam search allows previously decoded text to be revised, which
complicates integration with text-to-speech systems and may also provide a suboptimal experience
for users if textual revisions are significant. Third, even the smallest language modeling setup used in
this study, the 3-gram LM, requires about ∼ 60 GB of CPU memory to operate. Such a large memory
requirement makes it infeasible to run the current decoding algorithm on local, resource-constrained
devices.

In summary, this work delivers three practical advances for the Brain-to-Text Benchmark ’24 and,
more broadly, for the development of speech neuroprostheses. First, we showed that large amounts
of time-masking is a highly effective data augmentation method for improving the performance of
neural networks to decode speech from neural activity. Second, replacing the baseline GRU with
a Transformer provides substantial reductions in computational costs, making the Transformer an
ideal architecture for on-device test-time adaptation. Third, we introduced DietCORP, a simple,
lightweight, and fast method that utilizes multiple time-masked augmentations of the same trial to
effectively adapt the Transformer at test-time. Together, these innovations lower word error rate while
cutting resource demands, moving us closer to building robust, on-device speech neuroprostheses
that restore fluent communication for patients with severe paralysis.

There are several exciting avenues for further improving speech neuroprostheses. First, future research
can investigate avenues to reduce memory costs associated with the n-gram LM or explore alternative
strategies to integrate text-based knowledge. For instance, Feng et al. (17) project the GRU outputs
to the token space of an LLM for text decoding, forgoing the n-gram LM. Second, a recent trend
in automatic speech recognition is to build a single model that can operate in both streaming and
non-streaming modes (44). Such an approach could be useful for speech neuroprostheses, since the
user may have different preferences for accuracy versus latency depending on the context. Third,
as more MEA datasets are released, an emerging research question is whether integrating MEA
recordings across multiple participants can be used to boost performance. This question has been
explored with other neural recording modalities (9). Finally, future work should explore achieving
similar accuracy levels without using beam search so that previous outputs cannot be revised (24).

We hope that our study encourages future speech neuroprostheses benchmarks, such as the soon-to-be
released Brain-to-Text Benchmark ’25, to offer a more holistic evaluation criteria for decoding
algorithms beyond only accuracy. By evaluating decoding algorithms along multiple criteria such as
ability to decode in real-time, computational costs, and integration with existing test-time adaptation
methods, these benchmarks can more effectively spur innovation and assist paralyzed patients with
communication impairments.
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Table 5: Baseline GRU hyperparameters. Window length indicates the number of stacked neural time
bins fed as input per GRU step, and stride size indicates the rate at which the GRU outputs phonemes.

Hyperparameter Value
Window Length 32 (640 ms)
Stride Size 4 (80 ms)
Layers 5
Hidden Size 1024
LR 0.02
Epochs 73
White Noise 0.8
Baseline Shift 0.2
L2 Decay 1e− 5
Dropout 0.4
Input Dropout 0.0
Gaussian Smooth Kernel Size 20
Gaussian Smooth σ 2.0

A Computational resources

The majority of our results were generated using an Ubuntu server with three Nvidia GeForce RTX
3090 GPUs and an AMD Ryzen Threadripper 3960X 24-Core CPU with 125 GiB of memory. For
the 5-gram LM and LLM fine-tuning results, we used the "g6e.16xlarge" Amazon EC2 instance with
one Nvidia L40S GPU and an AMD EPYC 64-core CPU with 512 GiB of memory.

B Code availability

Code is available at the following link: https://github.com/ebrahimfeghhi/transformers_
with_dietcorp.

C FLOPS

We computed the number of floating point operations per second (FLOPS) for the baseline GRU and
Transformer. When computing FLOPS for the baseline GRU, we included the day-specific linear
layer, the 5 GRU layers, and the output linear layer. When computing FLOPS for the Transformer,
we included the patch embedding linear layer, the 5 Transformer layers, and the output linear layer.
We removed all regularization for this calculation, and computed FLOPS using 10 seconds of input,
and then divided by 10.

D Hyperparameters

We list the hyperparameters for the baseline GRU in Table 5 and for the time-masked Transformer in
Table 6.

E Language model and beam search

We used the 3-gram and 5-gram language models (LMs) provided by Willett et al. (40), and use the
same language model decoding setup as the Willett et al. (40). We provide a brief description of the
language model and beam search process here, with additional details provided in the original study.

The n-gram LM was converted to a weighted finite state transducer (WFST) (30). This language model
WFST, referred to as the grammar WFST, was composed with two additional WFSTs representing
the mapping from phonemes to words (lexicon WFST) and the mapping between phonemes and
the CTC blank token to model logits (token WFST). To compute the word error rate (WER), we
applied beam search on the composed WFST graph to obtain the most likely text sequence from
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Table 6: Transformer architecture and training hyperparameters. Feed-forward network (FFN)
multiplier indicates the increase in dimensionality in the FFN module. The values N and M represent
the number of time-masks and max mask length as a percentage of trial duration, respectively.

Hyperparameter Value
Patch Length 5 (100 ms)
Patch Width 256
Transformer Dim 384
Layers 5
Heads 6
Dim Head 64
FFN Multiplier 4
LR 0.001
White Noise 0.2
Baseline Shift 0.05
N 20
M 7.5
Epochs 250
Dropout 0.35
Input Dropout 0.2
L2 Decay 1e− 5
Gaussian Smooth Kernel Size 20
Gaussian Smooth σ 2.0

the GRU/Transformer. We denote the GRU/Transformer as the "encoder" for this section. The
probability of a given beam (i.e., one possible decoded transcription), b, was computed as a weighted
sum between the probability assigned by the encoder and the probability assigned by the n-gram
language model:

score(b) = α · log(Penc(b)) + log(Pngram(b))

The beam with the lowest log probability was then selected as the final decoded transcription. Blank
labels emitted by the encoder were additionally penalized by dividing their probability by a constant.
When using the 3-gram LM, we used a beam size of 18, α = 0.8, and set the blank penalty to log(2).
For the 5-gram LM, we modified the blank penalty to log(7). All decoding hyperparameters were the
same as in the original Willett et al. (40) study.

When using the 5-gram LM, two additional decoding steps were performed. First, a second pass was
applied with an unpruned 5-gram LM. The second pass replaces the original LM beam scores with
updated, more accurate scores from the unpruned LM. Second, the top K beams were returned, and
an LLM (OPT 6.7B (46)) was used to score these top K beams. The updated score for each beam
was then:

score(b) = α · log(Penc(b)) + β · log(Pngram(b)) + (1− β) log(Popt(b))

Following Willett et al. (40) we set K = 100, β = 0.5, and ran OPT 6.7B in 8-bit precision mode.

F Linderman Lab GRU

The Linderman Lab bidirectional GRU modified the original baseline GRU architecture to include
the following stack of layers after the final (5th) GRU.

s e l f . f c _ d e c o d e r _ o u t = nn . S e q u e n t i a l (
nn . LayerNorm ( h * 2 ) ,
nn . Dropout ( p= d r o p o u t ) ,
nn . L i n e a r ( h * 2 , h * 2 ) ,
nn . SiLU ( ) ,
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nn . LayerNorm ( h * 2 ) ,
nn . Dropout ( p= d r o p o u t ) ,
nn . L i n e a r ( h * 2 , h * 2 ) ,
nn . SiLU ( ) ,
nn . Dropout ( p= d r o p o u t ) ,
nn . L i n e a r ( h * 2 , n c l a s s e s + 1 ) ,

)

Where h refers to the number of hidden units in the GRU (1024), dropout refers to the dropout
probability (0.4) and nclasses refers to the number of phonemes (40). Beyond changes to the model
architecture, the GRU was trained using a linear learning rate scheduler, starting from 0.025 and
ending at 0.0005 for 20,000 batches (∼ 146 epochs). An input dropout layer, with the dropout value
set to 0.3 was also included before the day-specific linear layer. All other hyperparameters were the
same as the baseline GRU model.

G Large language model fine-tuning

To perform LLM fine-tuning, we first generated decoded transcripts using 10 seeds of the time-
masked Transformer and the 5-gram LM setup for the entire training and validation set. We then
fine-tuned Llama 3.1 8B to predict the ground-truth transcript given the 10 decoded sentences for
each trial. Fine-tuning was performed by "masking" the ground-truth transcript and training the LLM
to predict the masked tokens with cross-entropy loss. The LLM was fine-tuned with QLoRA (13) via
the Unsloth package (12). We used the default hyperparameters provided by Unsloth for Llama 3.1
8B, which are listed in the table below. A prompt, also provided below, was used to guide the LLM
for each trial. As no hyperparameter tuning was performed, our procedure consisted of fine-tuning
the LLM first on the validation set, then on the training set, and finally once more on the validation
set. We report results from a single LLM fine-tuning seed.

Table 7: Hyperparameters for model training. Lora-specific parameters are listed at the bottom.

Hyperparameters Values

Warmup Steps 5
Epochs 1
Learning Rate 2× 10−4

Weight Decay 0.01
Learning Rate Scheduler Linear
Batch Size 16
Lora Alpha 16
Lora Dropout 0
Lora Rank 16

LLM Prompt: Your task is to perform automatic speech recognition error correction. Below are
multiple candidate transcriptions of the same utterance. These candidates were decoded from neural
activity and may contain errors. Based on the candidates, produce the single most accurate, coherent,
and grammatical transcription of the original utterance. Focus on key differences between candidates
that change meaning or correctness, and avoid repetitive or nonsensical phrases. Respond with only
the final corrected transcription—no explanations or extra text.

H Beam search decoding time

We measured the average time required for beam search decoding using the 3-gram language model,
excluding the time to generate logits. With the baseline GRU, the average decoding time across 1200
test trials was 0.056± 0.042 seconds per trial. In contrast, the time-masked Transformer was over 3
times faster, achieving an average decoding time of 0.017±0.011 seconds. One potential explanation
is that the Transformer outputs logits at 10 Hz, compared to 12.5 Hz for the GRU, resulting in fewer
decoding steps. However, the time-masked GRU, which shares the same output resolution as the
baseline GRU, achieved a decoding speed of 0.041 ± 0.034 seconds, meaning the reduced output
temporal resolution does not fully account for the faster decoding times.
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Table 8: Performance under different masking strategies across 4 seeds. N is the number of masks,
and M is the max mask length as a percentage of trial duration.

N and M Validation WER (%)
20 and 15 26.16± 2.11
20 and 12.5 20.27± 0.33
20 and 10.0 17.74± 0.28
20 and 8.5 17.15± 0.27
20 and 7.5 17.08± 0.26
20 and 5.0 17.96± 0.31
20 and 2.5 20.81± 0.29
20 and 1.5 23.14± 0.11
10 and 15.0 17.08± 0.18
10 and 10.0 17.31± 0.31
30 and 7.5 18.14± 0.33
30 and 5.0 17.5± 0.23

I Performance with other masking strategies

We report validation WER across different masking ratios for the Transformer (Table 8). We set
N = 20 and M = 7.5 throughout the study.

We additionally experimented with masking entire channels (channel-masking) instead of time-
masking. In order to do so, we applied N channel-masks for each microelectrode array. For each
mask, we selected a starting channel i. Then, we masked (replaced with 0) the closest p channels
from channel i, where "closest" was quantified by the euclidean distance from channel i. p was
uniformly sampled between 0 and M × 64 (there were 64 channels per microelectrode array), and M
could range from 0 to 1. Our preliminary results suggested that channel masking was not as effective
as time-masking on this dataset, either when applied alone or in combination with time-masking.

J Calculating average masking percentage

Refer to Algorithm 1 for the full variable definitions. Here we derive the expected fraction of patches
that are masked. Given that each mask length is uniformly sampled between 0 and F , the expected
mask length is F/2. Ignoring boundary effects, the probability that a given patch I is not masked by
a given mask Nj is:

P
(
unmaskedI,Nj

)
≈ 1−

F
2

L
= 1− F

2L
= 1− ⌊ML⌋

2L
≈ 1− M

2

Then, the probability that a patch I is unmasked after all masks are applied is:

P
(
i unmasked

)
=

N∏
k=1

P
(
unmaskedi,Nk

)
=

N∏
k=1

(
1− M

2

)
=

(
1− M

2

)N

.

To find the proportion of masked patches, we take the complement. Using the linearity of expectation,
we find that the expected proportion of masked patches is:

E
[
fraction of masked patches

]
=

1

L

L∑
i=1

[
1−

(
1− M

2

)N]
= 1−

(
1− M

2

)N
.

For our given parameters, we approximate that 53.44% of patches are masked on average for each
trial.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims from the abstract and introduction match the claims from the results
and figures. We make three core contributions, and provide evidence for the effectiveness of
each throughout our results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are described in the first paragraph of the Discussion.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: There are no theoretical results in this paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All methods and architectures are fully detailed in the Methods section. All
relevant models that are used in the paper are detailed. Hyperparameters and other details for
reproducibility are listed in the appendix section. A link to the code base used to generate
all results is provided.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The dataset used is open-source and freely available online. A link to the code
base is also provided.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specifies all the above information in either the Methods or Ap-
pendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report standard error of the mean or standard deviation values across
random seeds throughout the paper. We report the sample sizes for all statistical tests.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Yes, the paper reports the resources used to run the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper follows all the criteria listed in the Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses societal impacts in the introduction and discussion sec-
tions.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The methods outlined by the paper pose no risk of misuse beyond speech
neuroprostheses as a whole.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The paper properly cites all data and models provided by other authors.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Code availability is stated in the appendix.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not collect data from any study participants beyond what was
available in an already available open-source dataset.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were only used to edit writing.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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