OPTUNE: EFFICIENT ONLINE PREFERENCE TUNING

Anonymous authors

Paper under double-blind review

ABSTRACT

Reinforcement learning with human feedback (RLHF) is critical for aligning Large Language Models (LLMs) with human preference. Compared to the widely studied offline version of RLHF, e.g. direct preference optimization (DPO), recent works have shown that the online variants achieve even better alignment. However, online alignment requires on-the-fly generation of new training data, which is costly, hard to parallelize, and suffers from varying quality and utility. In this paper, we propose a more efficient data exploration strategy for online preference tuning (OPTUNE), which does not rely on human-curated or pre-collected teacher responses but dynamically samples informative responses for on-policy preference alignment. During data generation, OPTUNE only selects prompts whose (re)generated responses can potentially provide more informative and higher-quality training signals than the existing responses. In the training objective, OPTUNE reweights each generated response (pair) by its utility in improving the alignment so that learning can be focused on the most helpful samples. Throughout our evaluations, OPTUNE'd LLMs maintain the instruction-following benefits provided by standard preference tuning whilst enjoying 1.27-1.56x faster training speed due to the efficient data exploration strategy.

025 026 027

000

001 002 003

004

006 007

008 009

010

011

012

013

014

015

016

017

018

019

021

1 INTRODUCTION

028 Reinforcement Learning from Human Feedback (RLHF) has emerged as an effective method for 029 training large language models (LLMs) to generate responses that are more aligned with human preferences (Ziegler et al., 2019b; Ouyang et al., 2022a), and has underpinned the successes of 031 systems like ChatGPT and the Gemini models. Offline preference tuning (PT) techniques such as DPO (Rafailov et al., 2023), IPO (Azar et al., 2024b), and KTO (Ethayarajh et al., 2024) are also 033 viable solutions for utilizing the human preference dataset to enhance the alignment qualities of 034 of LLMs but these techniques require large volumes of annotated response data. Its counterpart, online PT, exhibits promising potential but demands continuous sampling of new responses from the 035 LLM policy during iterative training which is an expensive operation in its own right. Considering 036 online DPO training as an example, we can break the overall process down into four steps: (1) 037 Reward model (RM) training. (2) Sampling responses from the trained policy (LLM). (3) Evaluate responses by the rewards from RM. (4) Preference Tuning (PT) on the reward-labeled responses. Given the time-consuming and resource-intensive nature of these steps, our goal in this work is 040 to study methods for expediting the entire training cycle without compromising the quality of 041 the trained models, thereby enhancing the practical feasibility and effectiveness of online DPO. 042

042

Based on our analysis, as reported in Table 1, it is evident that generating responses and training the policy model are the most time-consuming steps of online DPO training. Can we naïvely reduce the number of responses being generated?
Unfortunately, in preliminary experiments, we find that randomly selecting half of the generated responses for reuse during iterative training results in a significant degradation in

Table 1: Time percentage for each procedure in online DPO. The batch size of generation and training have been optimized for GPUs to ensure good parallelism. We set the max response length of both generation and training to 512.

	Generation	Rewarding	Training
Time	71.8%	0.1%	28.1%

instruction-following performance compared to that of policies trained in a fully online setting. This
 leads to another question: *Can we maintain the performance of online PT while adhering to a fixed generation budget?*

Figure 1: The pipeline of our OPTUNE: it only explores the low-reward examples and reuses the high-quality examples, which improves the generation efficiency of the iterative online PT. We also exploit the weighted DPO to enhance the training efficiency by focusing on the high-utility samples. π_t : the policy in iter t. R: the reward model. ρ : the prompt selection ratio for re-generations.

069 First, to reduce the generation cost without compromising instruction-following capabilities or 070 alignment quality, we propose to only re-generate and update the lowest-rewarded responses produced 071 under the latest LLM policy. We posit that the policy's behavior on these specific prompts can likely 072 be improved further than in scenarios where its responses are already high quality potentially leading 073 to greater improvements in overall reward at each step. Thus, we generate new responses for those 074 selected prompts and mix them with the existing high-rewarded responses to constitute the full training set. By implementing the reward-based selection strategy, we address the dual goals of reducing the 075 computational cost of response generation in online DPO while retaining the instruction-following 076 capability, which leads to more data-efficient online RLHF. 077

078 Second, we investigate the utility of response pairs in online DPO and propose a weighted DPO (wDPO) objective that focuses learning on preference pairs that may contribute the most 079 to the online alignment process. This is motivated by the simple observation that in the original DPO loss formulation, the positive-negative labels are a binary quantization of their scalar rewards and 081 thus cannot explicitly reflect their reward gap. The reward gap measures the utility of response pairs in DPO training because comparing the preferred and rejected responses with a larger reward gap 083 reveals more clues for improving the alignment. By directly assigning larger weights to these samples, 084 in each round online wDPO concentrates learning on the high-utility samples yielding improved 085 learning efficiency. 086

We conduct comprehensive experiments to evaluate the OPTUNE-trained LLM policies, incorporating 087 instruction-following evaluations, multiple benchmarks, and human studies. Specifically, we select 088 LIMA (Zhou et al., 2023) and AlpacaEval (Li et al., 2023b) test sets as free-form instruction 089 evaluations and conduct pair-wise comparisons by employing GPT-4 as the judge. Given the 090 potential for biases from the judge to confound model-based evaluations, human studies and 091 benchmark evaluations such as MMLU (Hendrycks et al., 2020b), GSM8k (Cobbe et al., 2021a), 092 and TruthfulQA (Lin et al., 2021) are also included. Through our experiments we demonstrate that 093 OPTUNE trains better LLMs than baselines whilst enjoying 1.27-1.56x training speedup due to its 094 efficient data-exploration strategy.

To sum up, OPTUNE is the first efficient data generation algorithm for online RLHF. By selectively regenerating only the lowest-rewarded responses and using a weighted DPO objective that emphasizes pairs with larger reward gaps, OPTUNE significantly enhances both the generation and training efficiency of the RLHF pipeline, thereby paving the way for a promising future in which preferencealigned LLMs can be developed in a resource-efficient manner.

100 101

067 068

2 PRELIMINARIES

102 103

The prevalent RLHF pipeline was proposed by Ziegler et al. (2019a) and adopted by subsequent
works including (Stiennon et al., 2020; Nakano et al., 2021; Ouyang et al., 2022b; Bai et al.,
2022). The standard method comprises three stages: (1) Supervised Fine-Tuning (SFT) on humanannotated/machine-generated responses; (2) reward model training on preference data; and (3)
Reinforcement Learning based on the SFT checkpoint and feedback received from the RM.

Reward Model Training Following (Ouyang et al., 2022a; Touvron et al., 2023), we utilize the Bradley-Terry model (Bradley & Terry, 1952) in RM training procedure, which provides a probabilistic framework for predicting preferences based on pairwise comparisons. The goal is to learn a set of parameters θ that best explains the observed preferences between pairs of possible responses. Specifically, the loss function is given by:

$$\mathcal{L}(\theta) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[\log \sigma \left(r_{\theta}(x, y_w) - r_{\theta}(x, y_l) \right) \right], \tag{1}$$

where $\sigma(\cdot)$ is the sigmoid function; $r_{\theta}(x, y)$ is the scalar reward from the RM; y_w and y_l denotes chosen and rejected responses, respectively. This loss function represents the negative log-likelihood of the model preferring the chosen response y_w over the rejected response y_l under the Bradley-Terry model.

119

124

130

131

137

144 145 146

152 153

154

113 114

RL finetuning The reinforcement learning stage (Bai et al., 2022; Gao et al., 2022) does not require predefined responses. It further fine-tunes the SFT model $\pi_{\text{SFT}}(y|x) = p(y|x; \theta^{\text{SFT}})$ to maximize the reward r(x, y) under a KL regularization to prevent the model from deviating too far from the SFT model:

$$\underset{\theta}{\text{maximize }} \mathbb{E}_{x \sim \mathcal{D}_{p}} \left[\mathbb{E}_{y \sim \pi_{\theta}(y|x)} \left[r(x, y) \right] - \alpha \mathbb{D}_{KL} \left[\pi_{\theta}(y|x) | \pi_{\text{SFT}}(y|x) \right] \right],$$
(2)

DPO One representative method for preference optimization is DPO (Rafailov et al., 2023). It follows Ziebart et al. (2008) and starts with a closed-form solution for Eq. (2):

$$\pi_r(y \mid x) = \frac{1}{Z(x)} \pi_{\text{ref}}(y \mid x) \exp\left(\frac{1}{\beta}r(x, y)\right),\tag{3}$$

where Z(x) is the partition function: $Z(x) = \sum_{y} \pi_{ref}(y \mid x) \exp\left(\frac{1}{\beta}r(x,y)\right)$. Then they rearrange the Eq. (3) and express the reward as a function of the policy:

$$r(x,y) = \frac{1}{\beta_1} \left(\log(Z(x)) + \log\left(\frac{\pi_{t+1}(y|x)}{\pi_t(y|x)}\right) \right),\tag{4}$$

where π_t and π_{t+1} are the policies on the iteration t and t + 1, respectively. It aims to optimize an implicit reward function as a binary classification loss:

$$\mathcal{L}_{DPO}(\pi_{t+1}; \pi_t) = -\mathbb{E}_{(x, y_u, y_l) \sim \mathcal{D}} \left[\log \sigma \left(\beta_1 \log \frac{\pi_{t+1}(y_w | x)}{\pi_t(y_w | x)} - \beta_1 \log \frac{\pi_{t+1}(y_l | x)}{\pi_t(y_l | x)} \right) \right].$$
(5)

While in the standard offline DPO setting (Rafailov et al., 2023) the preference datasets are collected
before training begins, Chen et al. (2024c); Dong et al. (2024) extend DPO to the online setting, by
sampling two new responses to each prompt at every iteration. These two responses are passed to
the reward model to identify the preferred and dispreferred response, thereby training the policy on
continuously updated preference data with each iteration.

3 Method

In this section, we develop OPTUNE to improve both the **data generation efficiency** and **training efficiency** of online preference alignment. First, to reduce the cost of iterative data re-generation in the online setting, we propose a simple but effective reward-based prompt selection strategy that only updates the responses for prompts with the lowest scoring current responses according the reward model. Then, motivated by the observation that the quantization of scalar rewards to binary labels required by the online DPO objective necessarily leads to information loss, we propose a weighted DPO loss variant that prioritizes the learning of response pairs with a larger reward gap, thereby improving online learning efficiency even further.

162 3.1 DATA GENERATION EFFICIENCY: REWARD-BASED PROMPT SELECTION

According to the Eq. (2), the ultimate goal of RL finetuning is to maximize the expected reward for the generated responses. We first investigate whether different prompts contribute differently to the total reward gain at each step. For each iteration of online DPO, we generate the response for $x^i \in \mathcal{P}$ and the reward model returns the reward value r^i of each response. We compute the reward gain from prior iteration, and also provide statistics showing how different prompts contribute to the overall reward gain.

170 As illustrated in Fig. 2, we divide 171 the prompt set into two subsets based 172 on the reward rankings of their preferred responses: the top-50% and the 173 bottom-50%. We then analyze the 174 percentage of reward gains from each 175 subset. For example, in Iter2, when 176 comparing the reward on each prompt 177 to the Iter1, only 31.4% of the reward 178 gain originates from prompts that

Motivated by this observation, we propose a reward-based prompt selection mechanism that prioritizes prompts such that due to their currently low reward, if their responses were to be re-generated and trained on in the next round, the total reward gain of the policy would likely to be larger. Using this selection criteria our algorithm ensures that each training iteration focuses on the most informative examples, thereby improving overall generation efficiency. Algorithm 1 formally defines how OPTUNE's reward-based prompt selection works.

191 192

179

180

181

182

183

184

Algorithm 1 OPTune for Iterative Online DPO

100		
193	1:]	Initialize policy parameters π_0 ; ranked prompt set \mathcal{P}_t and training set \mathcal{D}_t at iteration t; Prompt
105	:	selection ratio ρ ; generation count $g = 0$;
195	2: 1	for $t = 0$ to $T - 1$ do
196	3:	Clear temporary response storage $\mathcal{R}_t = \{\}$
197	4:	Calculate the number of prompts to regenerate $N = \left\lceil \rho \times \mathcal{P}_t \right\rceil$
198	5:	Set $g = 0$
199	6:	while $g < N$ do
200	7:	Pop the lowest ranking prompt x^i from \mathcal{P}_t
201	8:	Sample two responses y_1^i and y_2^i for x^i using π_t
202	9:	Store responses: $\mathcal{R}_t \leftarrow \overline{\mathcal{R}}_t \cup \{ (x^i, y_1^i), (x^i, y_2^i) \}$
203	10:	Increment the generation count $g = g + 1$
204	11:	end while
204	12:	for each $x^i \in \mathcal{P}_t$ do
205	13:	if $(x^i, y_1^i), (x^i, y_2^i) \in \mathcal{R}_t$ then
206	14:	Use the new responses from \mathcal{R}_t for x^i
207	15:	else
208	16:	Use the previous responses from \mathcal{D}_t for x^i
209	17:	end if
210	18:	end for
211	19:	Compute rewards r_1^i and r_2^i for each $(x^i, y_1^i), (x^i, y_2^i) \in \mathcal{R}_t$
212	20:	Construct the training set $\overline{\mathcal{D}}_t = \{(x^i, y^i_w), (x^i, y^i_l) \mid x^i \in \mathcal{P}_t\}$
213	21:	Rank the prompts in \mathcal{P}_t according to rewards to obtain \mathcal{P}_{t+1}
214	22:	Compute the wDPO (or DPO) loss and update the policy parameters π_t to obtain π_{t+1}
245	23: 0	end for
210		

216 3.2 TRAINING EFFICIENCY: WEIGHTED DPO LOSS 217

218 To improve training efficiency, we more closely examine the iterative online DPO algorithm presented 219 in Algorithm 2.

220

Algorithm 2 Iterative Online DPO 221 222 1: Initialize policy parameters π_0 and prompt set \mathcal{P} 223 2: for $t = 0, 1, \dots, T - 1$ do 224 3: Sample two responses y_1^i and y_2^i from π_t for each prompt x^i in \mathcal{P} 225 4: Compute the rewards r_1^i and r_2^i for $(x^i, y_1^i), (x^i, y_2^i) \in \mathcal{D}_t$ 5: For each prompt x^i , determine the winning response y_w^i and the losing response y_l^i based on 226 227 their rewards r_1 and r_2 and construct the training set $\mathcal{D}_t = \{(x^i, y^i_w), (x^i, y^i_l) \mid x^i \in \mathcal{P}\}$ Compute the DPO loss and update the policy parameters π_t to obtain π_{t+1} 228 6: 7: end for

229 230

In Line 5 of Algorithm 2, the scalar reward values from the reward model (RM) are reduced to 231 binary labels to determine the chosen (positive) and rejected (negative) responses. This quantization 232 fails to leverage the full potential of the reward signals r_1^i and r_2^i and leads to information loss. For 233 example, a larger reward gap indicates that there are more significant differences between the two 234 responses that can be used to improve alignment. In contrast, DPO loss with binary labels treats all 235 pairs equally and may lead to an inefficient training process. We hypothesize that to address these 236 issues, it is crucial to integrate the reward scalars into the learning process more directly, ensuring 237 that the updates to π_t reflect both the direction and magnitude of human preferences, thus enhancing 238 the overall alignment of the policy with desired outcomes. 239

To this end, we introduce a weighted DPO Loss (wDPO) that incorporates explicit reward signals 240 directly into the loss function for online DPO training. This modification aims to enhance the training 241 efficiency by making full use of the available reward information and better aligning the policy 242 updates with the underlying human preferences. The wDPO Loss is derived by modifying the original 243 DPO loss to include a weighting factor that represents the explicit rewards: 244

245 246

247 248

249

$$\mathcal{L}_{wDPO} = -\mathbb{E}_{(x,y_w,y_l)\sim\mathcal{D}} \left[R(x,y_w,y_l) \cdot \log \left(I(x,y_w,y_l) \right) \right],$$

where $I(x,y_w,y_l) = \sigma \left(\beta_1 \log \frac{\pi_{t+1}(y_w|x)}{\pi_t(y_w|x)} - \beta_1 \log \frac{\pi_{t+1}(y_l|x)}{\pi_t(y_l|x)} \right),$ (6)
 $R(x,y_w,y_l) = \sigma \left[\beta_2 \left(r(x,y_w) - r(x,y_l) \right) \right].$

250 where $I(x, y_w, y_l)$ denotes the implicit reward; $R(x, y_w, y_l)$ captures the relative preference between 251 the winning and losing responses based on their explicit reward difference, scaled by β_2 .

By incorporating these explicit rewards, wDPO improves the efficiency of the training process by 253 prioritizing learning from pairs that show a significant difference in rewards. This approach makes 254 the model more sensitive to examples where the distinction between preferred and less preferred 255 responses is clear, helping it learn the essential features that distinguish highly preferred responses 256 from those less preferred. As a result, wDPO guides policy updates more effectively toward the 257 desired behavior, enhancing the overall training efficiency and effectiveness. This structured approach allows wDPO to leverage the full spectrum of reward information, ensuring that each training example 258 contributes optimally to learning based on the strength of its preference signal. 259

260 261

262

264

4 EXPERIMENT

4.1 EXPERIMENT SETUP

265 Our experiments are run on 8 NVIDIA A100 80GB GPUs and the implementations are based on 266 Huggingface TRL (von Werra et al., 2020). Similar to other online RLHF algorithms (Schulman et al., 2017; Ouyang et al., 2022a), our OPTUNE will distill the human preferences into the reward 267 models first. On the policy training, it begins with a supervised-finetuned (SFT) model, with the 268 carefully designed OPTUNE loss and reward-based sampling strategy for selected generations, *i.e.*, 269 re-generating the low-score samples while reusing high-score samples.

Figure 3: OPTUNE (wDPO loss): Y-axis denotes the win score against Zephyr-7B-beta model. Rdm_ ρ : random selection ratio (all striped bars). Under the same selection ratio, OPTUNE'd models could perform better than the models tuned with random-selection strategy. The policies in prompt selection $\rho = 0.5$ and $\rho = 0.7$ could be comparable with the policies in $\rho = 1$ while enjoying 30% to 50% generation efficiency, which proves the effectiveness of OPTUNE.

Dataset. We use Ultrachat (Cui et al., 2023), which contains 200k prompts, as the preference dataset and is widely used (Chen et al., 2024c; Wu et al., 2024). Considering the budget, we only randomly sample 48k prompts on the original set to construct our prompt set which are fixed in our experiments and used as the inputs of the on-the-fly generations for iterative training of the policy.

Models & Training. Zephyr-7b-sft-full (Tunstall et al., 2023), which is SFT-ed on UltraChat200k dataset with decent instruction-following capability, is employed as the RL finetuning start point. For the reward models, we select the one fine-tuned by Xiong et al. (2024), which shares the same backbone, Mistral-7B, with the π_{SFT} and top-ranked on RewardBench (Lambert et al., 2024). Thus, we believe it is a strong reward model that could provide informative reward signals. The prompt and generation length are both set to 512. We defer the other hyperparameters, *e.g.*, learning rate, into Appendix C.

Baselines. We have three baselines: (1). Zephyr-7B-beta, which conducts offline DPO training on the total 200k (prompt, preferred response, rejected response) triplet in UltraFeedback dataset, in which the responses come from many competitive models, e.g., GPT-3.5-turbo and GPT4. We use it as the offline baseline and expect our models under online settings could be significantly better than this baseline though we employ much less prompts for training. (2). Models tuned with selection ratio $\rho = 1.0$ and wDPO/DPO'ed for three iterations on the whole prompt set, which is under a fully online setting and has the largest generation cost. We expect the OPTUNE with smaller ratios could be on par with it. (3). Models tuned with random selection ratio. Models with OPTUNE should surpass them. We also keep the iteration 0 the same for all the OPTUNE models for fair comparison, *i.e.*, we will do one online iteration first under $\rho = 1$ and save the checkpoint & responses for further OPTUNE.

Free-form Instruction Evaluation. We mainly focus on free-form generation. Drawing on recent advancements (Li et al., 2023b; Zheng et al., 2023; Chiang et al., 2023) we rely on strong LLMs, *i.e.*, GPT-4 (OpenAI et al., 2023) as our judge. The LIMA test set (Zhou et al., 2023), consisting of 300 prompts, is chosen as our test set. The same rating prompt as Chen et al. (2024a) is em-ployed to compare the responses generated by the policy with those produced by the baseline, *i.e.*, Zephyr-7B-beta. To counteract the positional bias identified in GPT-4's ratings (Wang et al., 2023), we collect two sets of ratings by swapping the order of test and baseline model responses. A response is deemed winning if it achieves at least one win and no more than one tie. We assess performance using the "win score", which is defined as:

Win Score =
$$50 + 100 \times \frac{n_{\text{win}} - n_{\text{lose}}}{n}$$
, (7)

Figure 4: OPTUNE (DPO loss): Even in the special case, *i.e.*, DPO loss is a special case of our proposed wDPO, we could still have the conclusion that OPTUNE with $\rho = 0.7$ could maintain the performance but save 30% generation cost. Rdm_ ρ : random selection ratio.

where n_{win} and n_{lose} are the number of examples rated as better and worse than the baseline, respectively; n is the total number of evaluation examples. A Win Score ≥ 50 indicates that the test model performs at least as well as the baseline.

Benchmarks. Following LM-Evaluation-Harness (Gao et al., 2023), we test the trained policy π on TruthfulQA (Lin et al., 2021), MMLU (Hendrycks et al., 2020a), GSM8K (Cobbe et al., 2021b), and Hellaswag (Zellers et al., 2019) to evaluate the model's ability on truthfulness, challenging multi-task solving, grade-school-level math, and common-sense reasoning. For the few-shot demo setting, we adopt the default settings in the lm-evaluation-harness and we summarize it together with the metrics in Table 5. We expect the model could also improve its performance on benchmarks since RLHF can also help the reasoning (AI@Meta, 2024; Chen et al., 2024c).

4.2 **RESULTS ON GENERATION EFFICIENCY**

OPTune on wDPO loss. We first study OPTUNE on wDPO loss. We sweep $\rho = \{0.3, 0.5, 0.7, 1.0\}$ for both OPTUNE and random selection ratio and train three epochs using the same hyperparameters, *e.g.*, β_2 , learning rate, etc. We defer the details of the hyperparameters into Appendix C.

In Fig. 3 we show that OPTUNE significantly outperforms the random-selection baselines and is comparable with models trained under fully online settings $\rho = 1$ while achieving 30-50% generation efficiency. We also observe an expected trend that when the number of online samples is increased, *i.e.*, larger ρ , the win score goes up, corroborating observations in Tang et al. (2024).

To elucidate the training efficiency of our OPTUNE further, we visualize the win score of different OPTUNE ratios with training time in Fig. 5. The training time includes generation, rewarding, and wDPO training time and we consider their sum total to provide a clear picture as to the level of efficiency OPTUNE achieves. We note that, when calculated in terms of GPU hours, the savings are 8x larger since we run the experiments on 8xA100 GPUs at a time.

- 367 **OPTune on DPO loss.** We also verify the effectiveness of OPTUNE's selection criteria when 368 training with the regular DPO objective (Pi et al., 2024; Yuan et al., 2024). We observe similar 369 results on the standard DPO loss and showcase them in Fig. 4. OPTUNE matches or surpasses the 370 performance of vanilla online DPO ($\rho = 1$) in iteration 1 and 3, though in iteration 2, it lags slightly 371 behind the vanilla setting. However, it still enjoys 1.27-1.56x training speedup, saving 30% to 50% 372 on generation time. Moreover, we note that OPTUNE consistently outperforms the random selection 373 criteria across different ratios.
- 374

376

324

325

326

327 328

330

331

332 333

334

335

336

340

341

342

343 344

345

346

347

348

349

350

351 352

- 375 4.3 RESULTS ON TRAINING EFFICIENCY
- We compare two different losses, *i.e.*, DPO and wDPO losses under different prompt selection ratios and show the results in Fig. 6. We find that wDPO with OPTUNE significantly surpasses DPO with

Figure 5: The win score vs. training time on different prompt selection ratios. By re-generating the responses on only half of the prompts, OPTUNE could achieve the win score on par with the vanilla online version ($\rho = 1$).

Figure 6: The online DPO vs. online wDPO under different prompt selection ratios. The dashed line denotes the OPTUNE ratio $\rho = 0.5$.

OPTUNE. We keep the training configs, *e.g.*, the learning rates in each iteration, optimizer, and the max length of the prompt & generation, exactly the same for the online wDPO and online DPO under the same ratio ρ . Thus, we believe the training time is almost the same for wDPO and DPO under the same ratio ρ . Our wDPO loss could achieve faster convergence than DPO loss, *i.e.*, it reaches the same "win score" faster than DPO does., which reflects the superiority of our proposed wDPO loss.

4.4 EVALUATION RESULTS ON ALPACAEVAL, BENCHMARKS, HUMAN STUDY

We provide more evaluation results including AlpacaEval (Li et al., 2023b), Benchmarks, and human studies to further test the performance of the policies trained by OPTUNE and verify the effectiveness of our method in this subsection.

Table 2: Alpaca-eval scores on the iteration-3 models trained under different settings. LC_win_rate: lengthcontrolled win rate, which is the standard metric in AlpacaEval-2.0. (r): policies trained with a random selection strategy. $\rho = 0.7$ performs the best and even better than the $\rho = 1.0$.

Model	Zephyr-7B-Beta	$\mid \rho = 1.0 \mid$	$\rho=0.5({\rm r})$	ρ=0.5	$\rho = 0.7$	$\rho=0.7({\rm r})$
LC_win_rate	13.2	15.43	15.28	15.63	16.45	15.39

AlpacaEval. To alleviate the concerns of evaluating the open-ended generation only on LIMA test set, we also test our trained policies on the AlpacaEval (Li et al., 2023b), which contains 805 prompts and is more diverse. Due to the limited GPT-4 API budget, we only test the models trained with wDPO loss in the final iteration (iter3). We show the results in Table 2. It aligns with the results in Fig. 4 and Fig. 3: OPTUNE is better than the random selection strategy and no selection ($\rho = 1.0$).

Table 3: Benchmark results for different prompt selection ratios. We use bold font to mark the highest score.

Models	Hellaswag	MMLU	TruthfulQA	GSM8k	Average
Zephyr-7B-SFT	78.54	55.67	40.37	32.75	51.83
Zephyr-7B-Beta	82.05	58.13	50.1	36.24	56.63
Iter3 (ρ =1.0)	81.44	58.49	45.04	42.3	56.82
Iter3 (rdm=0.5)	83.06	58.39	45.77	42.00	57.31
Iter3 (rdm=0.7)	82.17	58.55	46.22	42.15	57.27
Iter3 ($\rho = 0.5$)	82.48	58.62	46.64	39.88	56.91
Iter3 (ρ =0.7)	82.78	58.46	46.81	42.53	57.65

Benchmark Results. The benchmark results of the trained policies are shown in Table 3 and higher 429 values indicate better performance. The policies trained with the prompt selection ratio $\rho = 0.7$ show 430 superiority against the offline policies (Zephyr-7B-Beta) and vanilla online ($\rho = 1.0$) policies 431 regarding on the "Average" score. It also achieves the highest scores on TruthfulQA and GSM8k, showing gains in math problem-solving and factuality. Human Study. To further evaluate how OPTune performs against full generation as well as random selection, we randomly select 50 responses generated by OPTune and compare them first to random selection and then to full generation ($\rho = 1.0$). On the 100 response pairs, we collect 400 ratings from 8 participants and find that participants prefer OPTune responses 24.07% of the time against 14.81% for random selection, and perform similarly to full generation with users ranking its output better 23.44% of the time, full generation 25.0% of the time and considering outputs similar 51.56 % of the time. The details of how we conduct human studies could be referred to Appendix D.

439 440 441

5 RELATED WORK

442 **RLHF algorithms** Proximal Policy Optimization(PPO) (Ouyang et al., 2022b; Schulman et al., 443 2017) is the most widely-used online preference tuning framework in the industry, which leads to the 444 success of the ChatGPT (OpenAI et al., 2023), Gemini (Team et al., 2023), and LLaMA (Touvron 445 et al., 2023). It requires training a reward model as a proxy of the human preference and on-the-fly 446 generations in the online training procedure. Online DPO/wDPO stays relevant with it but the 447 difference is that the online generation and policy updates are less frequent than PPO, in which 448 the policy will be updated per batch. On the other hand, several offline RLHF methods such as 449 DPO (Rafailov et al., 2023), IPO (Azar et al., 2024a), KTO (Ethayarajh et al., 2024), and SLIC-HF (Zhao et al., 2023) also show promises for learning of human preference. These methods 450 are considered offline because their preference datasets are kept unchanged during RLHF but the 451 performance of the offline RLHF could not be on par with the online version (Tang et al., 2024; Dong 452 et al., 2024). Thus, in this work, we focus on investigating online iterative RLHF, which demands 453 substantial computational resources for on-the-fly sampling from the policies. OPTUNE is proposed 454 to reduce the cost in the regeneration process by selecting a subset of prompts to regenerate while 455 keeping the outstanding performance of the trained models.

456

457 **Prompt Selection.** A powerful LLM usually requires high-quality training data, and the community 458 has focused on creating high-quality instruction finetuning (IF) datasets, either via distilling of the 459 SOTA API LLMs (Taori et al., 2023; Peng et al., 2023; Chiang et al., 2023) or requiring experienced 460 human annotators (Conover et al., 2023; Ouyang et al., 2022a). But there are still low-quality 461 examples in these IF datasets and a series of data selection strategies (Chen et al., 2023b; Li et al., 462 2023a; Cao et al., 2024) are proposed to further enhance the quality of datasets by filtering out these 463 data, which shares the same objective with the OPTUNE: optimizing towards the training data quality. However, these data selection approaches are not ideal for prompt selection in the iterative RLHF 464 paradigm as they primarily focus on the quality of the responses, not targeting selecting the prompt 465 for efficient data exploration. 466

467

Inference Speedup of LLMs. One orthogonal direction to our method is the inference speedup of 468 LLMs. Traditionally, batch inference and Key-Value (KV) cache (Ge et al., 2023) are employed to 469 accelerate the decoding process, but they consume substantial GPU memory and hinder the utilization 470 of large batch sizes. Thus, some works (Shazeer, 2019; Ainslie et al., 2023; Xiao et al., 2023; 471 Dettmers et al., 2022) are proposed to reduce the memory used by KV cache through changing model 472 architecture or using quantization techniques. On the other hand, some other approaches (Leviathan 473 et al., 2023; Chen et al., 2023a; Cai et al., 2024) are proposed to minimize the number of decoding 474 steps to speed up the inference of LLMs. Compared to it, OPTUNE achieves efficiency by reusing 475 the generations in the previous step. But all these inference speedup techniques can be used for the 476 selected prompts of OPTUNE, providing further faster generation speed.

477

478 **Evaluation of LLMs.** To evaluate the instruction-following ability of the policies in iterative RLHF 479 procedure, we employ GPT-4 (OpenAI et al., 2023) as our judge and employ LIMA (Zhou et al., 2024) 480 test set which contains 300 prompts and larger than the MT-bench (Zheng et al., 2023) (80 prompts), 481 Koala (Geng et al., 2023) (180 prompts), and WizardLM test set (Xu et al., 2023) (218 prompts). 482 AlpacaEval (Li et al., 2023b) is also employed to evaluate the trained policy on instruction-following 483 ability more comprehensively. Moreover, following the previous works (Chen et al., 2023b; 2024b), we also include human study for a side-by-side comparison of the model responses and test the 484 models on four most commonly used benchmarks, TruthfulQA (Lin et al., 2021), MMLU (Hendrycks 485 et al., 2020b), GSM8K (Cobbe et al., 2021b), and Hellaswag (Zellers et al., 2019).

486 **DISCUSSIONS & CONCLUSION** 6

487 488

To sum up, we introduced OPTUNE in this work, a novel approach to enhance the training and 489 generation efficiency of online RLHF by selectively regenerating only the lowest-reward responses 490 and representing the reward gap explicitly in our wDPO objective. This method focuses computa-491 tional resources on the most informative samples, significantly reducing the need for full-scale data 492 regeneration and achieving up to 2x in generation efficiency and a 1.56x speedup in training efficiency. Our comprehensive experiments show that OPTUNE maintains or improves the alignment of LLMs 493 with human preferences. Finally, we believe OPTUNE could also be applied to other online RLHF 494 algorithms such as Best-of-N (Stiennon et al., 2020) and PPO (Schulman et al., 2017), since PPO has 495 a replay buffer which contains "off-policy" examples and we could select the prompts using the same 496 strategy to encourage the generations on the low-reward prompts, which we leave for the future work. 497

498 499

500

501

502

527

References

- AI@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/llama3/ blob/main/MODEL_CARD.md.
- Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit Sanghai. Gqa: Training generalized multi-query transformer models from multi-head checkpoints. 504 arXiv preprint arXiv:2305.13245, 2023. 505
- 506 Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bilal Piot, Remi Munos, Mark Rowland, Michal 507 Valko, and Daniele Calandriello. A general theoretical paradigm to understand learning from human preferences. In International Conference on Artificial Intelligence and Statistics, pp. 509 4447-4455. PMLR, 2024a.
- 510 Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bilal Piot, Remi Munos, Mark Rowland, Michal 511 Valko, and Daniele Calandriello. A general theoretical paradigm to understand learning from 512 human preferences. In International Conference on Artificial Intelligence and Statistics, pp. 513 4447-4455. PMLR, 2024b. 514
- 515 Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with 516 reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862, 2022. 517
- 518 Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method 519 of paired comparisons. *Biometrika*, 39(3/4):324–345, 1952. 520
- Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D Lee, Deming Chen, and Tri Dao. 521 Medusa: Simple Ilm inference acceleration framework with multiple decoding heads. arXiv 522 preprint arXiv:2401.10774, 2024. 523
- 524 Yihan Cao, Yanbin Kang, Chi Wang, and Lichao Sun. Instruction mining: Instruction data selection 525 for tuning large language models, 2024. URL https://openreview.net/forum?id= 526 kce6LTZ5vY.
- Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John 528 Jumper. Accelerating large language model decoding with speculative sampling, 2023a. 529
- 530 Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa Gunaratna, Vikas Yadav, Zheng Tang, Vijay 531 Srinivasan, Tianyi Zhou, Heng Huang, et al. Alpagasus: Training a better alpaca with fewer data. arXiv preprint arXiv:2307.08701, 2023b. 532
- Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa Gunaratna, Vikas Yadav, Zheng Tang, Vijay 534 Srinivasan, Tianyi Zhou, Heng Huang, and Hongxia Jin. Alpagasus: Training a better alpaca with fewer data. In The Twelfth International Conference on Learning Representations, 2024a. URL 536 https://openreview.net/forum?id=FdVXgSJhvz.
- Lichang Chen, Chen Zhu, Davit Soselia, Jiuhai Chen, Tianyi Zhou, Tom Goldstein, Heng Huang, 538 Mohammad Shoeybi, and Bryan Catanzaro. Odin: Disentangled reward mitigates hacking in rlhf, 2024b.

540 541	Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu. Self-play fine-tuning converts weak language models to strong language models, 2024c.
542 543 544 545 546	Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https://lmsys.org/blog/2023-03-30-vicuna/.
547 548 549 550	Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. Training verifiers to solve math word problems, 2021a.
551 552 553	Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. Training verifiers to solve math word problems, 2021b.
554 555 556 557	Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie, Jun Wan, Sam Shah, Ali Ghodsi, Patrick Wendell, Matei Zaharia, and Reynold Xin. Free dolly: Introducing the world's first truly open instruction-tuned llm, 2023. URL https://www.databricks.com/blog/2023/04/ 12/dolly-first-open-commercially-viable-instruction-tuned-llm.
559 560	Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu, and Maosong Sun. Ultrafeedback: Boosting language models with high-quality feedback, 2023.
561 562 563	Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm.int8(): 8-bit matrix multiplication for transformers at scale, 2022.
564 565 566	Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang, Han Zhao, Yingbo Zhou, Nan Jiang, Doyen Sahoo, Caiming Xiong, and Tong Zhang. Rlhf workflow: From reward modeling to online rlhf. <i>arXiv e-prints</i> , pp. arXiv–2405, 2024.
567 568 569	Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto: Model alignment as prospect theoretic optimization. <i>arXiv preprint arXiv:2402.01306</i> , 2024.
570	Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization, 2022.
571 572 573 574 575 576	Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence Golding, Jeffrey Hsu, Alain Le Noac'h, Haonan Li, Kyle McDonell, Niklas Muennighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot language model evaluation, 12 2023. URL https://zenodo.org/records/10256836.
577 578	Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells you what to discard: Adaptive kv cache compression for llms, 2023.
579 580 581 582	Xinyang Geng, Arnav Gudibande, Hao Liu, Eric Wallace, Pieter Abbeel, Sergey Levine, and Dawn Song. Koala: A dialogue model for academic research. Blog post, April 2023. URL https://bair.berkeley.edu/blog/2023/04/03/koala/.
583 584	Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt. Measuring massive multitask language understanding, 2020a.
586 587	Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt. Measuring massive multitask language understanding, 2020b.
588 589 590	Geoffrey Hinton. Neural networks for machine learning. Coursera, lecture 6e "Overview of mini-batch gradient descent", 2012.
591 592 593	Nathan Lambert, Valentina Pyatkin, Jacob Morrison, LJ Miranda, Bill Yuchen Lin, Khyathi Chandu, Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, Noah A. Smith, and Hannaneh Hajishirzi. Rewardbench: Evaluating reward models for language modeling. https://huggingface. co/spaces/allenai/reward-bench, 2024.

604

605

607

608

- Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative decoding, 2023.
- Ming Li, Yong Zhang, Zhitao Li, Jiuhai Chen, Lichang Chen, Ning Cheng, Jianzong Wang, Tianyi
 Zhou, and Jing Xiao. From quantity to quality: Boosting llm performance with self-guided data
 selection for instruction tuning, 2023a.
- Kuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy Liang, and Tatsunori B. Hashimoto. Alpacaeval: An automatic evaluator of instruction-following models. https://github.com/tatsu-lab/alpaca_eval, 2023b.
 - Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human falsehoods, 2021.
 - Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted question-answering with human feedback. *arXiv preprint arXiv:2112.09332*, 2021.
- 610 OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni 611 Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mohammad Bavarian, 612 Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny 613 Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks, 614 Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea 615 Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully Chen, 616 Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey Chu, Hyung Won Chung, 617 Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah Deutsch, 618 Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien Ecoffet, Atty 619 Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Simón Posada Fishman, Juston Forte, 620 Isabella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel 621 Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua 622 Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon 623 Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne 624 Jang, Angela Jiang, Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo 625 Jun, Tomer Kaftan, Łukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar, 626 Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik Kim, Jan Hendrik 627 Kirchner, Jamie Kiros, Matt Knight, Daniel Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich, 628 Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy 629 Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie 630 Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, 631 Sam Manning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, 632 Bob McGrew, Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil, David 633 Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, 634 Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo 635 Noh, Long Ouyang, Cullen O'Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, 636 Giambattista Parascandolo, Joel Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, 637 Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, 638 Michael, Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, 639 Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis 640 Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted 641 Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel 642 Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon 643 Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky, Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang, Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Preston 645 Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya, 646 Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan Ward, Jason 647 Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng, Matt Wiethoff,

- Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Workman, Sherwin Wu,
 Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming Yuan, Wojciech Zaremba,
 Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao Zheng, Juntang Zhuang,
 William Zhuk, and Barret Zoph. Gpt-4 technical report, 2023.
- Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with human feedback. *Advances in Neural Information Processing Systems*, 35: 27730–27744, 2022a.
- Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with human feedback. *Advances in Neural Information Processing Systems*, 35: 27730–27744, 2022b.
- Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction tuning with
 gpt-4, 2023.
- Renjie Pi, Tianyang Han, Wei Xiong, Jipeng Zhang, Runtao Liu, Rui Pan, and Tong Zhang. Strength ening multimodal large language model with bootstrapped preference optimization, 2024.
- Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D Manning, and Chelsea
 Finn. Direct preference optimization: Your language model is secretly a reward model. *arXiv preprint arXiv:2305.18290*, 2023.
- John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.
- Noam Shazeer. Fast transformer decoding: One write-head is all you need. *arXiv preprint arXiv:1911.02150*, 2019.
- Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
 Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. *Advances in Neural Information Processing Systems*, 33:3008–3021, 2020.
- Yunhao Tang, Daniel Zhaohan Guo, Zeyu Zheng, Daniele Calandriello, Yuan Cao, Eugene Tarassov,
 Rémi Munos, Bernardo Ávila Pires, Michal Valko, Yong Cheng, and Will Dabney. Understanding
 the performance gap between online and offline alignment algorithms, 2024.
- Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
 Liang, and Tatsunori B Hashimoto. Stanford alpaca: An instruction-following llama model, 2023.
- Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
 Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable
 multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.
- 686 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay 687 Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-688 tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, 689 Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, 690 Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel 691 Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, 692 Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, 693 Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh 694 Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, 696 Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models, 697 2023. 698
- Lewis Tunstall, Edward Beeching, Nathan Lambert, Nazneen Rajani, Kashif Rasul, Younes Belkada,
 Shengyi Huang, Leandro von Werra, Clémentine Fourrier, Nathan Habib, Nathan Sarrazin, Omar
 Sanseviero, Alexander M. Rush, and Thomas Wolf. Zephyr: Direct distillation of Im alignment,
 2023.

702 703 704 705	Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush, Nathan Lambert, and Shengyi Huang. Trl: Transformer reinforcement learning. https://github.com/huggingface/trl, 2020.
706 707	Peiyi Wang, Lei Li, Liang Chen, Zefan Cai, Dawei Zhu, Binghuai Lin, Yunbo Cao, Qi Liu, Tianyu Liu, and Zhifang Sui. Large language models are not fair evaluators, 2023.
708 709 710	Yue Wu, Zhiqing Sun, Huizhuo Yuan, Kaixuan Ji, Yiming Yang, and Quanquan Gu. Self-play preference optimization for language model alignment, 2024.
711 712 713	Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant: Accurate and efficient post-training quantization for large language models. In <i>International</i> <i>Conference on Machine Learning</i> , pp. 38087–38099. PMLR, 2023.
714 715 716	Wei Xiong, Hanze Dong, Chenlu Ye, Ziqi Wang, Han Zhong, Heng Ji, Nan Jiang, and Tong Zhang. Iterative preference learning from human feedback: Bridging theory and practice for rlhf under kl-constraint, 2024.
717 718 719	Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin Jiang. Wizardlm: Empowering large language models to follow complex instructions, 2023.
720 721	Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Xian Li, Sainbayar Sukhbaatar, Jing Xu, and Jason Weston. Self-rewarding language models, 2024.
722 723 724 725 726	Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine really finish your sentence? In <i>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</i> . Association for Computational Linguistics, 2019. doi: 10.18653/v1/p19-1472. URL http://dx.doi.org/10.18653/v1/P19-1472.
727 728	Yao Zhao, Rishabh Joshi, Tianqi Liu, Misha Khalman, Mohammad Saleh, and Peter J Liu. Slic-hf: Sequence likelihood calibration with human feedback. <i>arXiv preprint arXiv:2305.10425</i> , 2023.
729 730 731 732	Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica. Judging llm-as-a-judge with mt-bench and chatbot arena, 2023.
733 734 735	Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu, Lili Yu, Susan Zhang, Gargi Ghosh, Mike Lewis, Luke Zettlemoyer, and Omer Levy. Lima: Less is more for alignment, 2023.
736 737 738	Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu, Lili Yu, et al. Lima: Less is more for alignment. <i>Advances in Neural Information Processing Systems</i> , 36, 2024.
739 740 741	Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse reinforcement learning. In <i>Aaai</i> , volume 8, pp. 1433–1438. Chicago, IL, USA, 2008.
742 743 744	Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. <i>arXiv</i> preprint arXiv:1909.08593, 2019a.
745 746 747	Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B. Brown, Alec Radford, Dario Amodei, Paul Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences, 2019b.
748 749 750	
751 752 753	
754	

LIMITATIONS А

Despite the advancements presented by OPTUNE in online RLHF, OPTUNE's performance heavily relies on the accuracy and consistency of the reward model (RM). If the RM does not effectively capture the nuances of human preferences or suffers from biases, the efficiency gains from our approach could lead to suboptimal policy training.

В **BROADER IMPACT**

In this paper, we introduce OPTUNE, enhancing the training efficiency and generation efficiency of the online RLHF. The broader impacts of this study are two-fold:

- 1. Advancing AI Alignment with Human Values: The proposed OPTUNE significantly improves the alignment of AI behaviors with human preferences. This enhancement is vital for deploying AI in sensitive applications, ensuring that AI responses adhere closely to human ethical standards.
- 2. Enhancing Efficiency in AI Training: OPTUNE accelerates the LLM training process without compromising output quality. This advance reduces computational bottlenecks, enabling faster development cycles and making high-performing AI models more accessible, especially to organizations with limited computational resources.

HYPERPARAMETERS С

We use learning rate = 5e-7 for DPO/wDPO training with RMSProp (Hinton, 2012) as our optimizer; the warmup ratio is set to 0.1 and the batch size is 128. To encourage the model's exploration, we choose $top_p=0.9$ and temperature T=1.0 as the generation config in data generation part.

HUMAN STUDY D

7	84
7	85
7	86

User Task Evali	iation Guidelines: Relevance and Helpfulness
Below are responses for the toption.	ollowing question from two different models. Please evaluate which of the answers would be more helpful. If you think both answers are equally helpful, please select the
During your evaluation consi	der the following criteria to judge the more helpful response with.
Alignment with User's In	tent: Ensure the response directly addresses the user's question or task, interpreting underlying intentions when not explicitly stated.
Clarity and Precision: Re	ponses should be easy to understand, avoiding unnecessary jargon and maintaining focus on the user's query.
Directness and Relevano	: Keep the response strictly related to the task, avoiding unrelated information or tangents.
Efficiency and Brevity: Pr	ovide comprehensive yet concise information, steering clear of repetitive or overly detailed content that does not enhance understanding,
Question	
How do I find out which	process is using my webcam on macOS?
Model A	
To find out which proces	s is using your webcam on macOS, you can follow these steps:
1. Open the Activity Mon	tor app. You can do this by searching for it in Spotlight (Command + Spacebar) or by navigating to Applications > Utilities.
2. In the Activity Monitor	click on the "CPU" tab.
Model B	
To find out which proces	s is using your webcam on macOS, you can follow these steps:
1. Open the Activity Mon	tor: Go to the Finder and click on the Go menu at the top, then select Utilities. Alternatively, you can use Spotlight (Command + Space) and search for "Activity Monitor".
2. In the Activity Monitor	click on the "CPU" tab. This tab displays a list of running processes sorted by their CPU usage.
Evaluation	
Answer 1 is better	Answer 2 is better They are about the same
	Next
	i en

Figure 7: UI for the human study. At each step, the participants are presented with the prompt and generations from two models and asked to indicate their preferences.

For human study, we randomly choose 50 prompts from the original LIMA test set and present them to the participants. We recruit 8 volunteer students as the participants in the human study. For each

810 811 812 813 814 815 816	prompt, we create two comparison pairs, one pairs by OPTUNE $\rho = 0.7$ and OPTUNE $\rho = 1.0$, responsible trained by OPTUNE $\rho = 0.7$ and the police way, we create a total of 100 unique pairs. Each pairs from these 100 unique pairs and is asked criteria based on (Chen et al., 2024b). In the UP shown in Fig. 7.	air contains response spectively; another p cy trained by random n participant is prese to choose which ou f interface, they can	es from the pair contains selection ρ ented with 50 ne they pref indicate a p	two policies trained s responses from the = 0.7. Through this 0 randomly selected fer with the guiding preference or a tie as
817	Overall we obtain 400 ratings, 200 for each con	parison. The distrib	oution is sho	wn in Table 4.
818 819	We also provide the user guidelines which is use	ed in our human stud	dy:	
820 821 822	Below are responses to the following q evaluate which of the answers would b are equally helpful, please select the la	uestions from two d be more helpful. If y st option.	ifferent mod ou think bo	lels. Please oth answers
823 824 825	During your evaluation, consider the for response:	ollowing criteria to	judge the m	ore helpful
826 827 828 829 830	 Alignment with User's Intent: 1 user's question or task, interpretin stated. Clarity and Precision: Respons unnecessary jargon and maintaini 	Ensure the response g underlying intention es should be easy to ng focus on the user	directly adons when no ounderstand	dresses the ot explicitly d, avoiding
831 832 833	Directness and Relevance: Kee avoiding unrelated information or	p the response stric tangents.	tly related	to the task,
834 835 836 837	• Efficiency and Brevity: Provide steering clear of repetitive or ove understanding.	e comprehensive ye rly detailed content	et concise ir that does n	nformation, ot enhance
838	Comparison	OPTune Win (%)	Loss (%)	Tie (%)
840	OPTUNE $\rho = 0.7$ vs OPTUNE $\rho = 1.0$	23.44	25.00	51.56
841	OPTUNE $\rho = 0.7$ vs Rdm $\rho = 0.7$	24.07	14.81	61.11
843 844	Table 4: Results of the human study, the pairs of res	sponses to each promp	t are rated by	4 people on average.

E THE BENCHMARK SETTINGS

Table 5: The metrics and few-shot demos for each benchmark. It is the standard setting in LM-Harness-Evaluation repo (Gao et al., 2023)

Datasets	TruthfulQA	GSM8k	HellaSwag	MMLU
# few-shot	0	5	0	0
Metric	mc2	acc	acc_norm	acc

F RATING PROMPT

Following Chen et al. (2024a), we also use the GPT-4 rating prompt in the original Vicuna blog post ¹ and we provide the detailed form in Table 6.

¹https://lmsys.org/blog/2023-03-30-vicuna/

1 5	Table 6: The GPT4 evaluation prompt.
6	[System Drompt]
7	System Homptj You are a helpful and precise assistant for checking the quality of the answers
3	[User Prompt]
9	[Ouestion]
)	[The Start of Assistant1's Answer]
1	Answer 1
	[The End of Assistant1's Answer]
3	[The Start of Assistant2's Answer]
1	Answer 2
T	[The End of Assistant2's Answer]
\$	
	We would like to request your feedback on the performance of two AI assistants in response to
	the user question displayed above. Please rate the helpfulness, relevance, accuracy, and level of
	details of their responses. Each assistant receives an overall score on a scale of 1 to 10, where a
	higher score indicates better overall performance. Please first output a single line containing
	only two values indicating the scores for Assistant 1 and 2, respectively. The two scores are
	separated by a space. In the subsequent line, please provide a comprehensive explanation of your evaluation, avoiding any potential bias and ansuring that the order in which the responses
	your evaluation, avoiding any potential bias and ensuring that the order in which the responses were presented does not affect your judgment
	were presented does not arreet your judgment.