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ABSTRACT

Reinforcement learning with human feedback (RLHF) is critical for aligning
Large Language Models (LLMs) with human preference. Compared to the widely
studied offline version of RLHF, e.g. direct preference optimization (DPO), recent
works have shown that the online variants achieve even better alignment. However,
online alignment requires on-the-fly generation of new training data, which is
costly, hard to parallelize, and suffers from varying quality and utility. In this
paper, we propose a more efficient data exploration strategy for online preference
tuning (OPTUNE), which does not rely on human-curated or pre-collected
teacher responses but dynamically samples informative responses for on-policy
preference alignment. During data generation, OPTUNE only selects prompts
whose (re)generated responses can potentially provide more informative and
higher-quality training signals than the existing responses. In the training objective,
OPTUNE reweights each generated response (pair) by its utility in improving the
alignment so that learning can be focused on the most helpful samples. Throughout
our evaluations, OPTUNE’d LLMs maintain the instruction-following benefits
provided by standard preference tuning whilst enjoying 1.27-1.56x faster training
speed due to the efficient data exploration strategy.

1 INTRODUCTION

Reinforcement Learning from Human Feedback (RLHF) has emerged as an effective method for
training large language models (LLMs) to generate responses that are more aligned with human
preferences (Ziegler et al., 2019b; Ouyang et al., 2022a), and has underpinned the successes of
systems like ChatGPT and the Gemini models. Offline preference tuning (PT) techniques such as
DPO (Rafailov et al., 2023), IPO (Azar et al., 2024b), and KTO (Ethayarajh et al., 2024) are also
viable solutions for utilizing the human preference dataset to enhance the alignment qualities of
of LLMs but these techniques require large volumes of annotated response data. Its counterpart,
online PT, exhibits promising potential but demands continuous sampling of new responses from the
LLM policy during iterative training which is an expensive operation in its own right. Considering
online DPO training as an example, we can break the overall process down into four steps: (1)
Reward model (RM) training. (2) Sampling responses from the trained policy (LLM). (3) Evaluate
responses by the rewards from RM. (4) Preference Tuning (PT) on the reward-labeled responses.
Given the time-consuming and resource-intensive nature of these steps, our goal in this work is
to study methods for expediting the entire training cycle without compromising the quality of
the trained models, thereby enhancing the practical feasibility and effectiveness of online DPO.

Table 1: Time percentage for each procedure in online
DPO. The batch size of generation and training have
been optimized for GPUs to ensure good parallelism.
We set the max response length of both generation and
training to 512.

Generation Rewarding Training

Time 71.8% 0.1% 28.1%

Based on our analysis, as reported in Table 1, it
is evident that generating responses and training
the policy model are the most time-consuming
steps of online DPO training. Can we naïvely re-
duce the number of responses being generated?
Unfortunately, in preliminary experiments,
we find that randomly selecting half of the
generated responses for reuse during iterative
training results in a significant degradation in
instruction-following performance compared to that of policies trained in a fully online setting. This
leads to another question: Can we maintain the performance of online PT while adhering to a fixed
generation budget?
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Figure 1: The pipeline of our OPTUNE: it only explores the low-reward examples and reuses the high-quality
examples, which improves the generation efficiency of the iterative online PT. We also exploit the weighted DPO
to enhance the training efficiency by focusing on the high-utility samples. πt: the policy in iter t. R: the reward
model. ρ: the prompt selection ratio for re-generations.

First, to reduce the generation cost without compromising instruction-following capabilities or
alignment quality, we propose to only re-generate and update the lowest-rewarded responses produced
under the latest LLM policy. We posit that the policy’s behavior on these specific prompts can likely
be improved further than in scenarios where its responses are already high quality potentially leading
to greater improvements in overall reward at each step. Thus, we generate new responses for those
selected prompts and mix them with the existing high-rewarded responses to constitute the full training
set. By implementing the reward-based selection strategy, we address the dual goals of reducing the
computational cost of response generation in online DPO while retaining the instruction-following
capability, which leads to more data-efficient online RLHF.

Second, we investigate the utility of response pairs in online DPO and propose a weighted
DPO (wDPO) objective that focuses learning on preference pairs that may contribute the most
to the online alignment process. This is motivated by the simple observation that in the original DPO
loss formulation, the positive-negative labels are a binary quantization of their scalar rewards and
thus cannot explicitly reflect their reward gap. The reward gap measures the utility of response pairs
in DPO training because comparing the preferred and rejected responses with a larger reward gap
reveals more clues for improving the alignment. By directly assigning larger weights to these samples,
in each round online wDPO concentrates learning on the high-utility samples yielding improved
learning efficiency.

We conduct comprehensive experiments to evaluate the OPTUNE-trained LLM policies, incorporating
instruction-following evaluations, multiple benchmarks, and human studies. Specifically, we select
LIMA (Zhou et al., 2023) and AlpacaEval (Li et al., 2023b) test sets as free-form instruction
evaluations and conduct pair-wise comparisons by employing GPT-4 as the judge. Given the
potential for biases from the judge to confound model-based evaluations, human studies and
benchmark evaluations such as MMLU (Hendrycks et al., 2020b), GSM8k (Cobbe et al., 2021a),
and TruthfulQA (Lin et al., 2021) are also included. Through our experiments we demonstrate that
OPTUNE trains better LLMs than baselines whilst enjoying 1.27-1.56x training speedup due to its
efficient data-exploration strategy.

To sum up, OPTUNE is the first efficient data generation algorithm for online RLHF. By selectively
regenerating only the lowest-rewarded responses and using a weighted DPO objective that emphasizes
pairs with larger reward gaps, OPTUNE significantly enhances both the generation and training
efficiency of the RLHF pipeline, thereby paving the way for a promising future in which preference-
aligned LLMs can be developed in a resource-efficient manner.

2 PRELIMINARIES

The prevalent RLHF pipeline was proposed by Ziegler et al. (2019a) and adopted by subsequent
works including (Stiennon et al., 2020; Nakano et al., 2021; Ouyang et al., 2022b; Bai et al.,
2022). The standard method comprises three stages: (1) Supervised Fine-Tuning (SFT) on human-
annotated/machine-generated responses; (2) reward model training on preference data; and (3)
Reinforcement Learning based on the SFT checkpoint and feedback received from the RM.
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Reward Model Training Following (Ouyang et al., 2022a; Touvron et al., 2023), we utilize
the Bradley-Terry model (Bradley & Terry, 1952) in RM training procedure, which provides a
probabilistic framework for predicting preferences based on pairwise comparisons. The goal is to
learn a set of parameters θ that best explains the observed preferences between pairs of possible
responses. Specifically, the loss function is given by:

L(θ) = −E(x,yw,yl)∼D [log σ (rθ(x, yw)− rθ(x, yl))] , (1)

where σ(·) is the sigmoid function; rθ(x, y) is the scalar reward from the RM; yw and yl denotes
chosen and rejected responses, respectively. This loss function represents the negative log-likelihood
of the model preferring the chosen response yw over the rejected response yl under the Bradley-Terry
model.

RL finetuning The reinforcement learning stage (Bai et al., 2022; Gao et al., 2022) does not require
predefined responses. It further fine-tunes the SFT model πSFT(y|x) = p(y|x; θSFT) to maximize the
reward r(x, y) under a KL regularization to prevent the model from deviating too far from the SFT
model:

maximize
θ

Ex∼Dp

[
Ey∼πθ(y|x) [r(x, y)]− αDKL [πθ(y|x)|πSFT(y|x)]

]
, (2)

where πθ(y|x) = p(y|x; θ); α > 0 is a constant to control the regularization strength; Dp denotes
the prompt set used for sampling the response y ∼ πθ(y|x) from the trained policy and construct pair
(x, y) for RL training. Note the KL term here is defined on the conditional distribution p(y|x; θ) as
DKL [πθ(y|x)|πsft(y|x)] = Ey∼p(y|x;θ)

[
log πθ(y|x)

πsft(y|x)

]
.

DPO One representative method for preference optimization is DPO (Rafailov et al., 2023). It
follows Ziebart et al. (2008) and starts with a closed-form solution for Eq. (2):

πr(y | x) =
1

Z(x)
πref(y | x) exp

(
1

β
r(x, y)

)
, (3)

where Z(x) is the partition function: Z(x) =
∑

y πref(y | x) exp
(

1
β r(x, y)

)
. Then they rearrange

the Eq. (3) and express the reward as a function of the policy:

r(x, y) =
1

β1

(
log(Z(x)) + log

(
πt+1(y|x)
πt(y|x)

))
, (4)

where πt and πt+1 are the policies on the iteration t and t+ 1, respectively. It aims to optimize an
implicit reward function as a binary classification loss:

LDPO(πt+1;πt) = −E(x,yu,yl)∼D

[
log σ

(
β1 log

πt+1(yw|x)
πt(yw|x)

− β1 log
πt+1(yl|x)
πt(yl|x)

)]
. (5)

While in the standard offline DPO setting (Rafailov et al., 2023) the preference datasets are collected
before training begins, Chen et al. (2024c); Dong et al. (2024) extend DPO to the online setting, by
sampling two new responses to each prompt at every iteration. These two responses are passed to
the reward model to identify the preferred and dispreferred response, thereby training the policy on
continuously updated preference data with each iteration.

3 METHOD

In this section, we develop OPTUNE to improve both the data generation efficiency and training
efficiency of online preference alignment. First, to reduce the cost of iterative data re-generation in
the online setting, we propose a simple but effective reward-based prompt selection strategy that only
updates the responses for prompts with the lowest scoring current responses according the reward
model. Then, motivated by the observation that the quantization of scalar rewards to binary labels
required by the online DPO objective necessarily leads to information loss, we propose a weighted
DPO loss variant that prioritizes the learning of response pairs with a larger reward gap, thereby
improving online learning efficiency even further.

3
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3.1 DATA GENERATION EFFICIENCY: REWARD-BASED PROMPT SELECTION

According to the Eq. (2), the ultimate goal of RL finetuning is to maximize the expected reward
for the generated responses. We first investigate whether different prompts contribute differently
to the total reward gain at each step. For each iteration of online DPO, we generate the response
for xi ∈ P and the reward model returns the reward value ri of each response. We compute the
reward gain from prior iteration, and also provide statistics showing how different prompts contribute
to the overall reward gain.

36.8%

63.2%

iter1

31.4%

68.6%

iter2

16.9%

83.1%

iter3

Top-50 reward gains Bottom-50 reward gain

Figure 2: The reward gains brought by two subsets: top-50%
ranked prompts and bottom-50% ranked prompts. More gains are
achieved from the bottom-50% prompts than the top-50% prompts.

As illustrated in Fig. 2, we divide
the prompt set into two subsets based
on the reward rankings of their pre-
ferred responses: the top-50% and the
bottom-50%. We then analyze the
percentage of reward gains from each
subset. For example, in Iter2, when
comparing the reward on each prompt
to the Iter1, only 31.4% of the reward
gain originates from prompts that
generated higher-reward responses in
the previous iteration (top-50 subset),
while 68.6% comes from prompts that produced lower-reward responses (bottom-50 subset). That
indicates if the response’s reward is low in this iteration, the prompt is more likely to produce a
high-reward response in the following iteration. Conversely, if the response’s reward is high in the
current iteration, it is less likely to generate a high-reward response in the next iteration.

Motivated by this observation, we propose a reward-based prompt selection mechanism that prioritizes
prompts such that due to their currently low reward, if their responses were to be re-generated and
trained on in the next round, the total reward gain of the policy would likely to be larger. Using this
selection criteria our algorithm ensures that each training iteration focuses on the most informative
examples, thereby improving overall generation efficiency. Algorithm 1 formally defines how
OPTUNE’s reward-based prompt selection works.

Algorithm 1 OPTune for Iterative Online DPO

1: Initialize policy parameters π0; ranked prompt set Pt and training set Dt at iteration t; Prompt
selection ratio ρ; generation count g = 0;

2: for t = 0 to T − 1 do
3: Clear temporary response storageRt = {}
4: Calculate the number of prompts to regenerate N = ⌈ρ× |Pt|⌉
5: Set g = 0
6: while g < N do
7: Pop the lowest ranking prompt xi from Pt

8: Sample two responses yi1 and yi2 for xi using πt

9: Store responses: Rt ← Rt ∪ {(xi, yi1), (x
i, yi2)}

10: Increment the generation count g = g + 1
11: end while
12: for each xi ∈ Pt do
13: if (xi, yi1), (x

i, yi2) ∈ Rt then
14: Use the new responses fromRt for xi

15: else
16: Use the previous responses from Dt for xi

17: end if
18: end for
19: Compute rewards ri1 and ri2 for each (xi, yi1), (x

i, yi2) ∈ Rt

20: Construct the training set Dt = {(xi, yiw), (x
i, yil) | xi ∈ Pt}

21: Rank the prompts in Pt according to rewards to obtain Pt+1

22: Compute the wDPO (or DPO) loss and update the policy parameters πt to obtain πt+1

23: end for

4
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3.2 TRAINING EFFICIENCY: WEIGHTED DPO LOSS

To improve training efficiency, we more closely examine the iterative online DPO algorithm presented
in Algorithm 2.

Algorithm 2 Iterative Online DPO

1: Initialize policy parameters π0 and prompt set P
2: for t = 0, 1, . . . , T − 1 do
3: Sample two responses yi1 and yi2 from πt for each prompt xi in P
4: Compute the rewards ri1 and ri2 for (xi, yi1), (x

i, yi2) ∈ Dt

5: For each prompt xi, determine the winning response yiw and the losing response yil based on
their rewards r1 and r2 and construct the training set Dt = {(xi, yiw), (x

i, yil) | xi ∈ P}
6: Compute the DPO loss and update the policy parameters πt to obtain πt+1

7: end for

In Line 5 of Algorithm 2, the scalar reward values from the reward model (RM) are reduced to
binary labels to determine the chosen (positive) and rejected (negative) responses. This quantization
fails to leverage the full potential of the reward signals ri1 and ri2 and leads to information loss. For
example, a larger reward gap indicates that there are more significant differences between the two
responses that can be used to improve alignment. In contrast, DPO loss with binary labels treats all
pairs equally and may lead to an inefficient training process. We hypothesize that to address these
issues, it is crucial to integrate the reward scalars into the learning process more directly, ensuring
that the updates to πt reflect both the direction and magnitude of human preferences, thus enhancing
the overall alignment of the policy with desired outcomes.

To this end, we introduce a weighted DPO Loss (wDPO) that incorporates explicit reward signals
directly into the loss function for online DPO training. This modification aims to enhance the training
efficiency by making full use of the available reward information and better aligning the policy
updates with the underlying human preferences. The wDPO Loss is derived by modifying the original
DPO loss to include a weighting factor that represents the explicit rewards:

LwDPO = −E(x,yw,yl)∼D [R(x, yw, yl) · log (I(x, yw, yl))] ,

where I(x, yw, yl) = σ

(
β1 log

πt+1(yw|x)
πt(yw|x)

− β1 log
πt+1(yl|x)
πt(yl|x)

)
,

R(x, yw, yl) = σ [β2 (r(x, yw)− r(x, yl))] .

(6)

where I(x, yw, yl) denotes the implicit reward; R(x, yw, yl) captures the relative preference between
the winning and losing responses based on their explicit reward difference, scaled by β2.

By incorporating these explicit rewards, wDPO improves the efficiency of the training process by
prioritizing learning from pairs that show a significant difference in rewards. This approach makes
the model more sensitive to examples where the distinction between preferred and less preferred
responses is clear, helping it learn the essential features that distinguish highly preferred responses
from those less preferred. As a result, wDPO guides policy updates more effectively toward the
desired behavior, enhancing the overall training efficiency and effectiveness. This structured approach
allows wDPO to leverage the full spectrum of reward information, ensuring that each training example
contributes optimally to learning based on the strength of its preference signal.

4 EXPERIMENT

4.1 EXPERIMENT SETUP

Our experiments are run on 8 NVIDIA A100 80GB GPUs and the implementations are based on
Huggingface TRL (von Werra et al., 2020). Similar to other online RLHF algorithms (Schulman
et al., 2017; Ouyang et al., 2022a), our OPTUNE will distill the human preferences into the reward
models first. On the policy training, it begins with a supervised-finetuned (SFT) model, with the
carefully designed OPTUNE loss and reward-based sampling strategy for selected generations, i.e.,
re-generating the low-score samples while reusing high-score samples.

5
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Figure 3: OPTUNE (wDPO loss): Y-axis denotes the win score against Zephyr-7B-beta model. Rdm_ρ:
random selection ratio (all striped bars). Under the same selection ratio, OPTUNE’d models could perform better
than the models tuned with random-selection strategy. The policies in prompt selection ρ = 0.5 and ρ = 0.7
could be comparable with the policies in ρ = 1 while enjoying 30% to 50% generation efficiency, which proves
the effectiveness of OPTUNE.

Dataset. We use Ultrachat (Cui et al., 2023), which contains 200k prompts, as the preference
dataset and is widely used (Chen et al., 2024c; Wu et al., 2024). Considering the budget, we only
randomly sample 48k prompts on the original set to construct our prompt set which are fixed in our
experiments and used as the inputs of the on-the-fly generations for iterative training of the policy.

Models & Training. Zephyr-7b-sft-full (Tunstall et al., 2023), which is SFT-ed on Ul-
traChat200k dataset with decent instruction-following capability, is employed as the RL finetuning
start point. For the reward models, we select the one fine-tuned by Xiong et al. (2024), which shares
the same backbone, Mistral-7B, with the πSFT and top-ranked on RewardBench (Lambert et al.,
2024). Thus, we believe it is a strong reward model that could provide informative reward signals.
The prompt and generation length are both set to 512. We defer the other hyperparameters, e.g.,
learning rate, into Appendix C.

Baselines. We have three baselines: (1). Zephyr-7B-beta, which conducts offline DPO training
on the total 200k (prompt, preferred response, rejected response) triplet in UltraFeedback dataset, in
which the responses come from many competitive models, e.g., GPT-3.5-turbo and GPT4. We use it
as the offline baseline and expect our models under online settings could be significantly better than
this baseline though we employ much less prompts for training. (2). Models tuned with selection
ratio ρ = 1.0 and wDPO/DPO’ed for three iterations on the whole prompt set, which is under a fully
online setting and has the largest generation cost. We expect the OPTUNE with smaller ratios could
be on par with it. (3). Models tuned with random selection ratio. Models with OPTUNE should
surpass them. We also keep the iteration 0 the same for all the OPTUNE models for fair comparison,
i.e., we will do one online iteration first under ρ = 1 and save the checkpoint & responses for further
OPTUNE.

Free-form Instruction Evaluation. We mainly focus on free-form generation. Drawing on recent
advancements (Li et al., 2023b; Zheng et al., 2023; Chiang et al., 2023) we rely on strong LLMs,
i.e., GPT-4 (OpenAI et al., 2023) as our judge. The LIMA test set (Zhou et al., 2023), consisting
of 300 prompts, is chosen as our test set. The same rating prompt as Chen et al. (2024a) is em-
ployed to compare the responses generated by the policy with those produced by the baseline, i.e.,
Zephyr-7B-beta. To counteract the positional bias identified in GPT-4’s ratings (Wang et al.,
2023), we collect two sets of ratings by swapping the order of test and baseline model responses.
A response is deemed winning if it achieves at least one win and no more than one tie. We assess
performance using the “win score”, which is defined as:

Win Score = 50 + 100× nwin − nlose

n
, (7)

6
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Figure 4: OPTUNE (DPO loss): Even in the special case, i.e., DPO loss is a special case of our proposed wDPO,
we could still have the conclusion that OPTUNE with ρ = 0.7 could maintain the performance but save 30%
generation cost. Rdm_ρ: random selection ratio.

where nwin and nlose are the number of examples rated as better and worse than the baseline, respec-
tively; n is the total number of evaluation examples. A Win Score ≥ 50 indicates that the test model
performs at least as well as the baseline.

Benchmarks. Following LM-Evaluation-Harness (Gao et al., 2023), we test the trained policy π on
TruthfulQA (Lin et al., 2021), MMLU (Hendrycks et al., 2020a), GSM8K (Cobbe et al., 2021b), and
Hellaswag (Zellers et al., 2019) to evaluate the model’s ability on truthfulness, challenging multi-task
solving, grade-school-level math, and common-sense reasoning. For the few-shot demo setting, we
adopt the default settings in the lm-evaluation-harness and we summarize it together with the metrics
in Table 5. We expect the model could also improve its performance on benchmarks since RLHF can
also help the reasoning (AI@Meta, 2024; Chen et al., 2024c).

4.2 RESULTS ON GENERATION EFFICIENCY

OPTune on wDPO loss. We first study OPTUNE on wDPO loss. We sweep ρ = {0.3, 0.5, 0.7, 1.0}
for both OPTUNE and random selection ratio and train three epochs using the same hyperparameters,
e.g., β2, learning rate, etc. We defer the details of the hyperparameters into Appendix C.

In Fig. 3 we show that OPTUNE significantly outperforms the random-selection baselines and is
comparable with models trained under fully online settings ρ = 1 while achieving 30-50% generation
efficiency. We also observe an expected trend that when the number of online samples is increased,
i.e., larger ρ, the win score goes up, corroborating observations in Tang et al. (2024).

To elucidate the training efficiency of our OPTUNE further, we visualize the win score of different
OPTUNE ratios with training time in Fig. 5. The training time includes generation, rewarding, and
wDPO training time and we consider their sum total to provide a clear picture as to the level of
efficiency OPTUNE achieves. We note that, when calculated in terms of GPU hours, the savings are
8x larger since we run the experiments on 8xA100 GPUs at a time.

OPTune on DPO loss. We also verify the effectiveness of OPTUNE’s selection criteria when
training with the regular DPO objective (Pi et al., 2024; Yuan et al., 2024). We observe similar
results on the standard DPO loss and showcase them in Fig. 4. OPTUNE matches or surpasses the
performance of vanilla online DPO (ρ = 1) in iteration 1 and 3, though in iteration 2, it lags slightly
behind the vanilla setting. However, it still enjoys 1.27-1.56x training speedup, saving 30% to 50%
on generation time. Moreover, we note that OPTUNE consistently outperforms the random selection
criteria across different ratios.

4.3 RESULTS ON TRAINING EFFICIENCY

We compare two different losses, i.e., DPO and wDPO losses under different prompt selection ratios
and show the results in Fig. 6. We find that wDPO with OPTUNE significantly surpasses DPO with

7
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Figure 5: The win score vs. training time on dif-
ferent prompt selection ratios. By re-generating the
responses on only half of the prompts, OPTUNE could
achieve the win score on par with the vanilla online
version (ρ = 1).
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Figure 6: The online DPO vs. online wDPO under
different prompt selection ratios. The dashed line
denotes the OPTUNE ratio ρ = 0.5.

OPTUNE. We keep the training configs, e.g., the learning rates in each iteration, optimizer, and the
max length of the prompt & generation, exactly the same for the online wDPO and online DPO under
the same ratio ρ. Thus, we believe the training time is almost the same for wDPO and DPO under the
same ratio ρ. Our wDPO loss could achieve faster convergence than DPO loss, i.e., it reaches the
same “win score” faster than DPO does., which reflects the superiority of our proposed wDPO loss.

4.4 EVALUATION RESULTS ON ALPACAEVAL, BENCHMARKS, HUMAN STUDY

We provide more evaluation results including AlpacaEval (Li et al., 2023b), Benchmarks, and human
studies to further test the performance of the policies trained by OPTUNE and verify the effectiveness
of our method in this subsection.

Table 2: Alpaca-eval scores on the iteration-3 models trained under different settings. LC_win_rate: length-
controlled win rate, which is the standard metric in AlpacaEval-2.0. (r): policies trained with a random
selection strategy. ρ = 0.7 performs the best and even better than the ρ = 1.0.

Model Zephyr-7B-Beta ρ=1.0 ρ = 0.5(r) ρ=0.5 ρ = 0.7 ρ = 0.7(r)

LC_win_rate 13.2 15.43 15.28 15.63 16.45 15.39

AlpacaEval. To alleviate the concerns of evaluating the open-ended generation only on LIMA test
set, we also test our trained policies on the AlpacaEval (Li et al., 2023b), which contains 805 prompts
and is more diverse. Due to the limited GPT-4 API budget, we only test the models trained with
wDPO loss in the final iteration (iter3). We show the results in Table 2. It aligns with the results in
Fig. 4 and Fig. 3: OPTUNE is better than the random selection strategy and no selection (ρ = 1.0).

Table 3: Benchmark results for different prompt selection ratios. We use bold font to mark the highest score.

Models Hellaswag MMLU TruthfulQA GSM8k Average

Zephyr-7B-SFT 78.54 55.67 40.37 32.75 51.83
Zephyr-7B-Beta 82.05 58.13 50.1 36.24 56.63
Iter3 (ρ=1.0) 81.44 58.49 45.04 42.3 56.82
Iter3 (rdm=0.5) 83.06 58.39 45.77 42.00 57.31
Iter3 (rdm=0.7) 82.17 58.55 46.22 42.15 57.27
Iter3 (ρ=0.5) 82.48 58.62 46.64 39.88 56.91
Iter3 (ρ=0.7) 82.78 58.46 46.81 42.53 57.65

Benchmark Results. The benchmark results of the trained policies are shown in Table 3 and higher
values indicate better performance. The policies trained with the prompt selection ratio ρ = 0.7 show
superiority against the offline policies (Zephyr-7B-Beta) and vanilla online (ρ = 1.0) policies
regarding on the “Average” score. It also achieves the highest scores on TruthfulQA and GSM8k,
showing gains in math problem-solving and factuality.
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Human Study. To further evaluate how OPTune performs against full generation as well as random
selection, we randomly select 50 responses generated by OPTune and compare them first to random
selection and then to full generation (ρ = 1.0). On the 100 response pairs, we collect 400 ratings
from 8 participants and find that participants prefer OPTune responses 24.07% of the time against
14.81% for random selection, and perform similarly to full generation with users ranking its output
better 23.44% of the time, full generation 25.0% of the time and considering outputs similar 51.56 %
of the time. The details of how we conduct human studies could be referred to Appendix D.

5 RELATED WORK

RLHF algorithms Proximal Policy Optimization(PPO) (Ouyang et al., 2022b; Schulman et al.,
2017) is the most widely-used online preference tuning framework in the industry, which leads to the
success of the ChatGPT (OpenAI et al., 2023), Gemini (Team et al., 2023), and LLaMA (Touvron
et al., 2023). It requires training a reward model as a proxy of the human preference and on-the-fly
generations in the online training procedure. Online DPO/wDPO stays relevant with it but the
difference is that the online generation and policy updates are less frequent than PPO, in which
the policy will be updated per batch. On the other hand, several offline RLHF methods such as
DPO (Rafailov et al., 2023), IPO (Azar et al., 2024a), KTO (Ethayarajh et al., 2024), and SLIC-
HF (Zhao et al., 2023) also show promises for learning of human preference. These methods
are considered offline because their preference datasets are kept unchanged during RLHF but the
performance of the offline RLHF could not be on par with the online version (Tang et al., 2024; Dong
et al., 2024). Thus, in this work, we focus on investigating online iterative RLHF, which demands
substantial computational resources for on-the-fly sampling from the policies. OPTUNE is proposed
to reduce the cost in the regeneration process by selecting a subset of prompts to regenerate while
keeping the outstanding performance of the trained models.

Prompt Selection. A powerful LLM usually requires high-quality training data, and the community
has focused on creating high-quality instruction finetuning (IF) datasets, either via distilling of the
SOTA API LLMs (Taori et al., 2023; Peng et al., 2023; Chiang et al., 2023) or requiring experienced
human annotators (Conover et al., 2023; Ouyang et al., 2022a). But there are still low-quality
examples in these IF datasets and a series of data selection strategies (Chen et al., 2023b; Li et al.,
2023a; Cao et al., 2024) are proposed to further enhance the quality of datasets by filtering out these
data, which shares the same objective with the OPTUNE: optimizing towards the training data quality.
However, these data selection approaches are not ideal for prompt selection in the iterative RLHF
paradigm as they primarily focus on the quality of the responses, not targeting selecting the prompt
for efficient data exploration.

Inference Speedup of LLMs. One orthogonal direction to our method is the inference speedup of
LLMs. Traditionally, batch inference and Key-Value (KV) cache (Ge et al., 2023) are employed to
accelerate the decoding process, but they consume substantial GPU memory and hinder the utilization
of large batch sizes. Thus, some works (Shazeer, 2019; Ainslie et al., 2023; Xiao et al., 2023;
Dettmers et al., 2022) are proposed to reduce the memory used by KV cache through changing model
architecture or using quantization techniques. On the other hand, some other approaches (Leviathan
et al., 2023; Chen et al., 2023a; Cai et al., 2024) are proposed to minimize the number of decoding
steps to speed up the inference of LLMs. Compared to it, OPTUNE achieves efficiency by reusing
the generations in the previous step. But all these inference speedup techniques can be used for the
selected prompts of OPTUNE, providing further faster generation speed.

Evaluation of LLMs. To evaluate the instruction-following ability of the policies in iterative RLHF
procedure, we employ GPT-4 (OpenAI et al., 2023) as our judge and employ LIMA (Zhou et al., 2024)
test set which contains 300 prompts and larger than the MT-bench (Zheng et al., 2023) (80 prompts),
Koala (Geng et al., 2023) (180 prompts), and WizardLM test set (Xu et al., 2023) (218 prompts).
AlpacaEval (Li et al., 2023b) is also employed to evaluate the trained policy on instruction-following
ability more comprehensively. Moreover, following the previous works (Chen et al., 2023b; 2024b),
we also include human study for a side-by-side comparison of the model responses and test the
models on four most commonly used benchmarks, TruthfulQA (Lin et al., 2021), MMLU (Hendrycks
et al., 2020b), GSM8K (Cobbe et al., 2021b), and Hellaswag (Zellers et al., 2019).
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6 DISCUSSIONS & CONCLUSION

To sum up, we introduced OPTUNE in this work, a novel approach to enhance the training and
generation efficiency of online RLHF by selectively regenerating only the lowest-reward responses
and representing the reward gap explicitly in our wDPO objective. This method focuses computa-
tional resources on the most informative samples, significantly reducing the need for full-scale data
regeneration and achieving up to 2x in generation efficiency and a 1.56x speedup in training efficiency.
Our comprehensive experiments show that OPTUNE maintains or improves the alignment of LLMs
with human preferences. Finally, we believe OPTUNE could also be applied to other online RLHF
algorithms such as Best-of-N (Stiennon et al., 2020) and PPO (Schulman et al., 2017), since PPO has
a replay buffer which contains “off-policy” examples and we could select the prompts using the same
strategy to encourage the generations on the low-reward prompts, which we leave for the future work.
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A LIMITATIONS

Despite the advancements presented by OPTUNE in online RLHF, OPTUNE’s performance heavily
relies on the accuracy and consistency of the reward model (RM). If the RM does not effectively
capture the nuances of human preferences or suffers from biases, the efficiency gains from our
approach could lead to suboptimal policy training.

B BROADER IMPACT

In this paper, we introduce OPTUNE, enhancing the training efficiency and generation efficiency of
the online RLHF. The broader impacts of this study are two-fold:

1. Advancing AI Alignment with Human Values: The proposed OPTUNE significantly
improves the alignment of AI behaviors with human preferences. This enhancement is vital
for deploying AI in sensitive applications, ensuring that AI responses adhere closely to
human ethical standards.

2. Enhancing Efficiency in AI Training: OPTUNE accelerates the LLM training process
without compromising output quality. This advance reduces computational bottlenecks,
enabling faster development cycles and making high-performing AI models more accessible,
especially to organizations with limited computational resources.

C HYPERPARAMETERS

We use learning rate = 5e-7 for DPO/wDPO training with RMSProp (Hinton, 2012) as our optimizer;
the warmup ratio is set to 0.1 and the batch size is 128. To encourage the model’s exploration, we
choose top_p=0.9 and temperature T=1.0 as the generation config in data generation part.

D HUMAN STUDY

Figure 7: UI for the human study. At each step, the participants are presented with the prompt and generations
from two models and asked to indicate their preferences.

For human study, we randomly choose 50 prompts from the original LIMA test set and present them
to the participants. We recruit 8 volunteer students as the participants in the human study. For each
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prompt, we create two comparison pairs, one pair contains responses from the two policies trained
by OPTUNE ρ = 0.7 and OPTUNE ρ = 1.0, respectively; another pair contains responses from the
policy trained by OPTUNE ρ = 0.7 and the policy trained by random selection ρ = 0.7. Through this
way, we create a total of 100 unique pairs. Each participant is presented with 50 randomly selected
pairs from these 100 unique pairs and is asked to choose which one they prefer with the guiding
criteria based on (Chen et al., 2024b). In the UI interface, they can indicate a preference or a tie as
shown in Fig. 7.

Overall we obtain 400 ratings, 200 for each comparison. The distribution is shown in Table 4.

We also provide the user guidelines which is used in our human study:

Below are responses to the following questions from two different models. Please
evaluate which of the answers would be more helpful. If you think both answers
are equally helpful, please select the last option.

During your evaluation, consider the following criteria to judge the more helpful
response:

• Alignment with User’s Intent: Ensure the response directly addresses the
user’s question or task, interpreting underlying intentions when not explicitly
stated.

• Clarity and Precision: Responses should be easy to understand, avoiding
unnecessary jargon and maintaining focus on the user’s query.

• Directness and Relevance: Keep the response strictly related to the task,
avoiding unrelated information or tangents.

• Efficiency and Brevity: Provide comprehensive yet concise information,
steering clear of repetitive or overly detailed content that does not enhance
understanding.

Comparison OPTune Win (%) Loss (%) Tie (%)

OPTUNE ρ = 0.7 vs OPTUNE ρ = 1.0 23.44 25.00 51.56

OPTUNE ρ = 0.7 vs Rdm ρ = 0.7 24.07 14.81 61.11

Table 4: Results of the human study, the pairs of responses to each prompt are rated by 4 people on average.

E THE BENCHMARK SETTINGS

Table 5: The metrics and few-shot demos for each benchmark. It is the standard setting in LM-Harness-
Evaluation repo (Gao et al., 2023)

Datasets TruthfulQA GSM8k HellaSwag MMLU

# few-shot 0 5 0 0
Metric mc2 acc acc_norm acc

F RATING PROMPT

Following Chen et al. (2024a), we also use the GPT-4 rating prompt in the original Vicuna blog post 1

and we provide the detailed form in Table 6.

1https://lmsys.org/blog/2023-03-30-vicuna/
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Table 6: The GPT4 evaluation prompt.

[System Prompt]
You are a helpful and precise assistant for checking the quality of the answers.
[User Prompt]
[Question]
[The Start of Assistant1’s Answer]
Answer 1
[The End of Assistant1’s Answer]
[The Start of Assistant2’s Answer]
Answer 2
[The End of Assistant2’s Answer]

We would like to request your feedback on the performance of two AI assistants in response to
the user question displayed above. Please rate the helpfulness, relevance, accuracy, and level of
details of their responses. Each assistant receives an overall score on a scale of 1 to 10, where a
higher score indicates better overall performance. Please first output a single line containing
only two values indicating the scores for Assistant 1 and 2, respectively. The two scores are
separated by a space. In the subsequent line, please provide a comprehensive explanation of
your evaluation, avoiding any potential bias and ensuring that the order in which the responses
were presented does not affect your judgment.
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