
ProRefine: Inference-Time Prompt Refinement with
Textual Feedback

Deepak Pandita1, Tharindu Cyril Weerasooriya2, Ankit Parag Shah2,
Isabelle Diana May-Xin Ng3, Christopher M. Homan1, Wei Wei2

1Rochester Institute of Technology
2Center for Advanced AI, Accenture
3University of California, Berkeley

deepak@mail.rit.edu, t.weerasooriya@accenture.com

Abstract

Agentic workflows, where multiple AI agents collaborate to accomplish complex
tasks like reasoning or planning, play a substantial role in many cutting-edge com-
mercial applications, and continue to fascinate researchers across fields for their
potential to accomplish expensive, complex tasks that, until recently, only humans
have been trusted to do. These workflows depend critically on the prompts used to
provide the roles models play in such workflows. Poorly designed prompts that fail
even slightly to guide individual agents can lead to sub-optimal performance that
may snowball within a system of agents, limiting their reliability and scalability.
To address this important problem of inference-time prompt optimization, we in-
troduce ProRefine, an innovative inference-time optimization method that uses an
agentic loop of LLMs to generate and apply textual feedback. ProRefine dynami-
cally refines prompts for multi-step reasoning tasks without additional training or
ground truth labels. Evaluated on five benchmark mathematical reasoning datasets,
ProRefine significantly surpasses zero-shot Chain-of-Thought baselines by 3 to 37
percentage points. This approach not only boosts accuracy but also allows smaller
models to approach the performance of their larger counterparts. This highlights its
potential for building more cost-effective and powerful hybrid AI systems, thereby
democratizing access to high-performing AI.

1 Introduction

The advancement of Large Language Models (LLMs) is intrinsically linked to their alignment
with human values and preferences [10]. While Reinforcement Learning from Human Feedback
(RLHF) has been the cornerstone of this effort [5], recent research has pivoted towards using LLMs
themselves as scalable proxies for human judgment, serving as evaluators, critics, and sources of
feedback [47, 23, 27]. This has given rise to sophisticated agentic frameworks that can detect errors,
critique outputs, and iteratively refine them, particularly for tasks demanding factual correctness
[1, 17]. Methods like TextGrad have even demonstrated how textual feedback can “differentiate”
through complex systems to optimize performance [43].

Our work focuses on optimizing the prompt, a key element in chain-of-thought (CoT) [40] based
LLM reasoning. Although prior work has explored prompt optimization [7, 8, 29, 41], they all often
focus on either offline fine-tuning, which requires extensive training data, or universal application of
largest, most capable models to every task. This presents a practical dilemma in many real-world
scenarios. Continuously fine-tuning is not always feasible, and relying exclusively on state-of-the-art
models is often computationally prohibitive. A different approach is needed for scenarios that require
dynamic, on-the-fly repair for specific and difficult queries where a standard prompt fails. This is

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Efficient Reasoning.

Updated
Prompt (p*)

Query (q)

Output (o)

Feedback (f)

Initial Prompt
(p)

1st iteration, k
tokens: thirty- Answer is incomplete.

Prompt should clarify: use
digits only, no symbols.

Answer concisely.

2nd iteration,
2*k tokens:

35

Prompt update: Answer
using only digits, no
words or symbols.

taskLLM

Illustrations by Nur Miftah

optimizerLLM

feedback
LLM

(S
TA

R
T
)

What is 5
multiplied by 7?

(END)

Figure 1: Overview of ProRefine system, illustrating the iterative process of prompt optimization
using feedback from LLMs. In each iteration, LLMtask extends its output by an additional k tokens,
enabling step-by-step feedback to progressively refine the prompt with LLMoptimizer.

particularly true in resource-aware deployments, where a smaller model may suffice for most tasks
but requires enhancement for a small subset of critical queries. The goal, therefore, shifts from
finding a single, universally optimal prompt to performing targeted, inference-time intervention.

To address this need, we introduce ProRefine (Inference-time Prompt Refinement with Textual
Feedback), which builds upon CoT by adaptively improving prompts using feedback (LLMfeedback)
and an optimizer (LLMoptimizer) to refine prompts for the task-performing LLM (LLMtask). This
workflow (Figure 1), motivated by the teacher-student framework [35] where a teacher agent guides a
student agent to perform a task by providing feedback at intermediate steps, but implemented via
LLM interactions without pre-training, represents a novel approach to adaptive agentic reasoning. We
explore policy optimization for aligning compound AI systems, drawing inspiration from TextGrad
and policy gradient algorithms, such as PPO.

This hybrid-model paradigm makes a method like ProRefine a practical solution. It is designed
for resource-constrained environments where deploying the largest models for every query isn’t
feasible, but temporary access to a capable feedback LLM (perhaps via a separate API call) is
possible for critical tasks. In such cases, the refinement process is triggered as an on-demand “expert
intervention.” ProRefine is task-agnostic and requires no additional training or ground-truth labels. It
is an inference-time optimization method that relies on the availability of test-time compute and the
ability of LLMs to provide and act upon feedback for optimization.

The ability to break complex tasks into smaller steps and dynamically improve prompts offers a
crucial advantage in multi-step agentic workflows where errors can compound. As illustrated in
Figure 4 in the Appendix, This method is also suitable for black-box LLMs where only API access is
available. ProRefine could prove to be crucial in situations demanding greater interpretability, where
feedback steps (outputs of LLMfeedback) offer insights into the reasoning correction process and
applications requiring dynamic adaptation without retraining/fine-tuning cycles. To demonstrate its
effectiveness, we evaluate ProRefine across five benchmark mathematical reasoning datasets, showing
it offers a robust alternative to solely scaling up the base model for all queries.

Key Contributions:

• We propose a novel method - ProRefine - for prompt optimization at inference-time using
textual feedback.

• We evaluated ProRefine on five datasets: object counting, word sorting, grade-school math
problem solving, math word problems, and algebraic word problems, and compared our
method against CoT and TextGrad.

• We evaluate the importance of using a verifier at inference time.

2

2 ProRefine

ProRefine is an inference-time prompt optimization algorithm that optimizes prompts by using
textual feedback. ProRefine involves interactions between three LLMs:

LLMtask: Executes the task based on the current prompt, generating the initial and subsequent
outputs.

LLMfeedback: A model that critiques the LLMtask’s output, providing detailed feedback on
improvements. This model should be capable of providing insightful and accurate critiques [2, 27].

LLMoptimizer: Interprets the feedback and refines the prompt, aiming for coherent and task-
focused improvements. This LLM is crucial for ensuring the prompt evolves effectively.

ProRefine (Algorithm 1) works as follows1:

Algorithm 1: ProRefine
Input: Query: q, Initial prompt: p, tokens_per_step: k, max_steps: n, LLMs: LLMtask,

LLMfeedback, LLMoptimizer

Output: Optimized prompt: p∗
p∗ = p
for i = 1 to n do

oi = LLMtask(p
∗, q) // Generate i ∗ k tokens

fi = LLMfeedback(q, oi) // Get textual feedback
p∗ = LLMoptimizer(p

∗, fi) // Optimize the prompt
if EOS_token in oi then

break
return p∗ // Return final optimized prompt

Initialization: Start with an initial prompt p for the task, a query q, and parameters defining the
generation and optimization process (k tokens per step, n maximum steps).

Generation and Feedback Loop:

• Generation: Use LLMtask to generate an output based on the current prompt p∗ and
query q. This step is limited to i ∗ k tokens to control the granularity of the feedback. In
each iteration, LLMtask produces k more tokens, attempting to refine prior output while
progressively continuing its response to the query.

• Feedback: LLMfeedback evaluates the generated output oi against the query q to provide
textual feedback fi. This feedback encapsulates how the output could be improved, focusing
on aspects such as accuracy, relevance, or coherence.

• Optimization: LLMoptimizer uses the feedback fi to refine the prompt p∗. This step
involves modifying the prompt to better align with the task requirements or to correct
identified deficiencies in previous generations.

Termination: The process iterates until either the maximum number of steps n is reached or an
end-of-sequence (EOS) token is detected in the output, indicating the completion of the task.

The granularity and duration of the optimization process are governed by two parameters: k, the
number of tokens per step, and n, the maximum number of steps. These parameters can be adjusted
according to the task’s complexity and the desired output quality. For example, rather than generating
feedback every k tokens, we might instead choose to provide feedback after each sentence or
paragraph, particularly in tasks such as machine translation or text summarization, where larger
semantic units may be more meaningful.

1The code is available at https://github.com/deepakpandita57/ProRefine_public

3

https://github.com/deepakpandita57/ProRefine_public

Unifying Verifier and Feedback: At inference time, verifiers play a crucial role in judging model
outputs [6, 14, 31]. For simplicity in this study, we do not train a bespoke verifier; rather, we employ
the Llama3.1-70B-instruct model to function as both the feedback mechanism (LLMfeedback) and
the verifier. We manage these roles through separate API calls, each with a role-defining prompt. A
smaller model, specifically fine-tuned for these tasks, could also be used. The verifier’s function is to
evaluate the initial output generated by LLMtask for each query. If the verifier assesses the output to
be incorrect, the refinement process is triggered; otherwise, the output is used as is. This also saves
computation on answers that are already correct.

To quantify the verifier’s impact, we analyze three distinct scenarios: ProRefine (verifier), our standard
approach which employs LLMfeedback to guide refinement; ProRefine (no verifier), wherein the
refinement process operates without verifier input; and ProRefine (optimal verifier), guided by a
perfect verifier (simulated using ground-truth labels). This optimal condition reveals the upper bound
of the refinement loop’s potential. Consequently, the performance difference between ProRefine
(verifier) and ProRefine (optimal verifier) underscores the significance of verifier accuracy. It
is important to note that ProRefine’s methodology does not inherently rely on labels or optimal
verification, despite their use in this specific evaluation.

3 Experiments and Evaluation

Dataset Method Llama-3.2 1B-it Llama-3.2 3B-it Llama-3.1 8B-it

Object Counting

CoT 0.48 [0.382, 0.578] 0.65 [0.556, 0.744] 0.73 [0.643, 0.817]
TextGrad 0.62 [0.524, 0.716] 0.73 [0.643, 0.817] 0.86 [0.792, 0.928]
ProRefine (no verifier) 0.51 [0.412, 0.608] 0.75 [0.665, 0.835] 0.77 [0.687, 0.853]
ProRefine (verifier) 0.6 [0.503, 0.696] 0.72 [0.632, 0.808] 0.89* [0.839, 0.959]
†ProRefine (optimal verifier) 0.67 [0.577, 0.763] 0.85* [0.780, 0.920] 0.94* [0.893, 0.987]

Word Sorting

CoT 0.11 [0.048, 0.172] 0.10 [0.041, 0.159] 0.50 [0.401, 0.598]
TextGrad 0.33* [0.237, 0.423] 0.61* [0.514, 0.706] 0.69* [0.599, 0.781]
ProRefine (no verifier) 0.22 [0.138, 0.302] 0.47* [0.372, 0.568] 0.68 [0.595, 0.779]
ProRefine (verifier) 0.19 [0.113, 0.267] 0.32* [0.228, 0.412] 0.71* [0.621, 0.799]
†ProRefine (optimal verifier) 0.29* [0.192, 0.368] 0.53* [0.432, 0.628] 0.86** [0.792, 0.928]

GSM8K

CoT 0.450 [0.423, 0.476] 0.809 [0.787, 0.829] 0.819 [0.797, 0.839]
TextGrad 0.463 [0.436, 0.489] 0.801 [0.779, 0.822] 0.864* [0.845, 0.882]
ProRefine (no verifier) 0.636** [0.610, 0.662] 0.797 [0.774, 0.818] 0.843 [0.823, 0.863
ProRefine (verifier) 0.654** [0.627, 0.678] 0.866** [0.847, 0.883] 0.885* [0.868, 0.902]
†ProRefine (optimal verifier) 0.725** [0.701, 0.749] 0.904** [0.888, 0.920] 0.936** [0.922, 0.949]

SVAMP

CoT 0.689 [0.66, 0.718] 0.869 [0.848, 0.890] 0.854 [0.832 , 0.876]
TextGrad 0.684 [0.655, 0.713] 0.861 [0.840, 0.882] 0.84 [0.817, 0.863]
ProRefine (no verifier) 0.774** [0.748, 0.800] 0.878 [0.858, 0.898] 0.877 [0.857, 0.897]
ProRefine (verifier) 0.808** [0.784, 0.832] 0.896 [0.877, 0.915] 0.893* [0.874, 0.912]
†ProRefine (optimal verifier) 0.861** [0.840, 0.882] 0.925** [0.909, 0.941] 0.938** [0.923, 0.953]

AQUARAT

CoT 0.259 [0.202, 0.31] 0.563 [0.498, 0.620] 0.586 [0.522, 0.643]
TextGrad 0.311 [0.250, 0.364] 0.524 [0.462 , 0.585] 0.559 [0.494, 0.616]
ProRefine (no verifier) 0.205 [0.151, 0.250] 0.343 [0.284, 0.401] 0.398 [0.337 , 0.458]
ProRefine (verifier) 0.268 [0.209, 0.318] 0.551 [0.486 , 0.608] 0.606 [0.542, 0.663]
†ProRefine (optimal verifier) 0.354 [0.292, 0.409] 0.598 [0.538, 0.659] 0.657 [0.595, 0.712]

Table 1: Test Accuracy with 95% confidence intervals across five benchmark datasets and models. *
and ** denote statistically significant improvements over one or two baseline methods, respectively.
Results in bold indicate the highest accuracy for a dataset-method combination. † demonstrates the
upper bound potential of the optimization loop and the impact of verifier quality. Llama3.1-70B-
instruct is employed for feedback generation, prompt optimization, and evaluation.

3.1 Data

We evaluate ProRefine on five reasoning tasks, each of which involves multi-step reasoning, making
them suitable for evaluating prompt optimization in agentic workflows. We utilize object counting and
word sorting from the BIG-Bench Hard benchmark [33], grade-school math problem-solving from
GSM8K [6], math word problems from SVAMP [22], and algebraic word problems from AQUARAT
[15]. See Appendix B for details about data splits.

3.2 Experimental Setup

We experiment with three models - Llama3.2-1B-instruct, Llama3.2-3B-instruct, and Llama3.1-
8B-instruct [19] for LLMtask. The prompts are optimized using ProRefine, with Llama3.1-70B-
instruct used for feedback generation, prompt optimization, and evaluation. We select the values
of hyperparameters k = 10 and n = 25 to control the granularity of feedback and duration of

4

optimization. Hyperparameters k and n were fixed based on general preliminary exploration and not
tuned per task using benchmark training/validation data.

We compare ProRefine against the zero-shot Chain-of-Thought (CoT) baseline and TextGrad [43],
and report test accuracy with 95% confidence interval. It is essential to remember that TextGrad is a
supervised fine-tuning method that utilizes both the training and validation sets.

3.3 Results

Our results (Table 1) demonstrate that ProRefine significantly improves LLMtask performance over
the zero-shot CoT baseline in all but one experiment, and it outperforms TextGrad in 11 out of 15
cases overall. For Llama3.2-1B-instruct model, ProRefine can significantly outperform CoT and
TextGrad on 2 out of 5 datasets. For Llama3.2-3B-instruct model, ProRefine can outperform CoT
and TextGrad on 3 out of 5 datasets with one significant result. For Llama3.1-8B-instruct model,
ProRefine can outperform CoT and TextGrad on all 5 datasets with 4 significant results.

Object Counting: ProRefine improves performance by 3− 16 percentage points over CoT, with
significant gains observed for Llama3.1-8B-instruct. It outperforms TextGrad on 2 out of 3 models,
yielding a 2− 3 percentage point advantage. However, a performance drop of 2 points is observed
for Llama3.2-1B-instruct.

Word Sorting: Performance gains over CoT range from 8− 37 percentage points, with significant
improvements for Llama3.2-3B-instruct and Llama3.1-8B-instruct. ProRefine surpasses TextGrad
on 1 of 3 models with a 2-point gain, but performance drops of 11 − 14 points are observed for
Llama3.2-1B-instruct and Llama3.2-3B-instruct.

GSM8K: ProRefine achieves 2.4− 20.4 percentage points improvement over CoT, with significant
improvement observed for all the models; however, a slight performance drop (1.2) is observed for
Llama3.2-3B-instruct. It outperforms TextGrad on all models, achieving a 2.1−19.1 percentage point
gain with significant results observed for Llama3.2-1B-instruct and Llama3.2-3B-instruct models.
Minor performance drop of 0.4− 2.1 is observed for Llama3.2-3B-instruct and Llama3.1-8B-instruct.

SVAMP: Performance improves by 0.9− 11.9 percentage points over CoT, with significant gains
for Llama3.2-1B-instruct and Llama3.1-8B-instruct. ProRefine outperforms TextGrad across all
models, with 1.7− 12.4 percentage point gains and significant results for Llama3.2-1B-instruct.

AQUARAT: Gains over CoT range from 0.9− 2 percentage points, but declines of 5.4− 22 points
are also observed. ProRefine exceeds TextGrad on 2 of 3 models, with 2.7− 4.7 percentage point
gains, although performance drops of 10.6− 18.1 points are also recorded.

Our results demonstrate that using ProRefine with an optimal verifier significantly improves perfor-
mance for all tasks, achieving the best results in 13 out of 15 cases, highlighting the critical role of
verifier quality. Notably, the number of significant improvements increases with larger model sizes.
We also observe that ProRefine enables smaller models, such as Llama3.2-3B-instruct and Llama3.1-
8B-instruct, to approach the zero-shot performance of larger models like Llama3.1-8B-instruct and
Llama3.1-70B-instruct, respectively.

4 Conclusion

We introduced ProRefine, a novel, practical, and inference-time prompt optimization method for
agentic workflows. ProRefine leverages LLM-generated textual feedback to dynamically refine
prompts, leading to significant performance improvements on multi-step reasoning tasks without
requiring additional training or ground-truth labels. Our results demonstrate its ability to bridge
the performance gap between smaller and larger LLMs, making it a key enabler for more efficient
and cost-effective hybrid-model deployments. The inference-time nature of ProRefine makes it
readily deployable for on-demand reasoning correction, contributing to more adaptable and accessible
AI systems. Future work will explore applying this framework to new domains, developing more
sophisticated feedback and optimizer agents, and exploring adaptive policies for hyperparameter
tuning to further optimize the cost-performance trade-off.

5

References
[1] Afra Feyza Akyurek, Ekin Akyurek, Ashwin Kalyan, Peter Clark, Derry Tanti Wijaya, and

Niket Tandon. RL4F: Generating natural language feedback with reinforcement learning
for repairing model outputs. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki,
editors, Proceedings of the 61st Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 7716–7733, Toronto, Canada, July 2023. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.427. URL https:
//aclanthology.org/2023.acl-long.427/.

[2] Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai:
Harmlessness from ai feedback. arXiv preprint arXiv:2212.08073, 2022.

[3] Anna Bavaresco, Raffaella Bernardi, Leonardo Bertolazzi, Desmond Elliott, Raquel Fernández,
Albert Gatt, Esam Ghaleb, Mario Giulianelli, Michael Hanna, Alexander Koller, André F. T.
Martins, Philipp Mondorf, Vera Neplenbroek, Sandro Pezzelle, Barbara Plank, David Schlangen,
Alessandro Suglia, Aditya K Surikuchi, Ece Takmaz, and Alberto Testoni. Llms instead of
human judges? a large scale empirical study across 20 nlp evaluation tasks, 2024. URL
https://arxiv.org/abs/2406.18403.

[4] Cheng-Han Chiang and Hung-yi Lee. Can large language models be an alternative to human
evaluations? In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki, editors, Proceedings
of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 15607–15631, Toronto, Canada, July 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.acl-long.870. URL https://aclanthology.org/2023.
acl-long.870/.

[5] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario
Amodei. Deep reinforcement learning from human preferences. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, edi-
tors, Advances in Neural Information Processing Systems, volume 30. Curran Associates,
Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/
d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf.

[6] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

[7] Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan Wang, Han Guo, Tianmin Shu,
Meng Song, Eric Xing, and Zhiting Hu. RLPrompt: Optimizing discrete text prompts
with reinforcement learning. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang, ed-
itors, Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing, pages 3369–3391, Abu Dhabi, United Arab Emirates, December 2022. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-main.222. URL
https://aclanthology.org/2022.emnlp-main.222/.

[8] Yihong Dong, Kangcheng Luo, Xue Jiang, Zhi Jin, and Ge Li. PACE: Improving prompt
with actor-critic editing for large language model. In Lun-Wei Ku, Andre Martins, and Vivek
Srikumar, editors, Findings of the Association for Computational Linguistics: ACL 2024,
pages 7304–7323, Bangkok, Thailand, August 2024. Association for Computational Linguis-
tics. doi: 10.18653/v1/2024.findings-acl.436. URL https://aclanthology.org/2024.
findings-acl.436/.

[9] Yilun Du, Shuang Li, Antonio Torralba, Joshua B. Tenenbaum, and Igor Mordatch. Improving
factuality and reasoning in language models through multiagent debate. In Forty-first Inter-
national Conference on Machine Learning, 2024. URL https://openreview.net/forum?
id=zj7YuTE4t8.

[10] Yicheng Feng, Yuxuan Wang, Jiazheng Liu, Sipeng Zheng, and Zongqing Lu. LLaMA-rider:
Spurring large language models to explore the open world. In Kevin Duh, Helena Gomez, and
Steven Bethard, editors, Findings of the Association for Computational Linguistics: NAACL

6

https://aclanthology.org/2023.acl-long.427/
https://aclanthology.org/2023.acl-long.427/
https://arxiv.org/abs/2406.18403
https://aclanthology.org/2023.acl-long.870/
https://aclanthology.org/2023.acl-long.870/
https://proceedings.neurips.cc/paper_files/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf
https://aclanthology.org/2022.emnlp-main.222/
https://aclanthology.org/2024.findings-acl.436/
https://aclanthology.org/2024.findings-acl.436/
https://openreview.net/forum?id=zj7YuTE4t8
https://openreview.net/forum?id=zj7YuTE4t8

2024, pages 4705–4724, Mexico City, Mexico, June 2024. Association for Computational
Linguistics. doi: 10.18653/v1/2024.findings-naacl.292. URL https://aclanthology.org/
2024.findings-naacl.292/.

[11] Qianyue Hao, Sibo Li, Jian Yuan, and Yong Li. Rl of thoughts: Navigating llm reasoning with
inference-time reinforcement learning, 2025. URL https://arxiv.org/abs/2505.14140.

[12] Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam,
Sri Vardhamanan A, Saiful Haq, Ashutosh Sharma, Thomas T. Joshi, Hanna Moazam, Heather
Miller, Matei Zaharia, and Christopher Potts. DSPy: Compiling declarative language model
calls into state-of-the-art pipelines. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=sY5N0zY5Od.

[13] Zhen Li, Xiaohan Xu, Tao Shen, Can Xu, Jia-Chen Gu, Yuxuan Lai, Chongyang Tao, and Shuai
Ma. Leveraging large language models for NLG evaluation: Advances and challenges. In Yaser
Al-Onaizan, Mohit Bansal, and Yun-Nung Chen, editors, Proceedings of the 2024 Conference
on Empirical Methods in Natural Language Processing, pages 16028–16045, Miami, Florida,
USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
emnlp-main.896. URL https://aclanthology.org/2024.emnlp-main.896/.

[14] Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee,
Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s Verify Step by Step. In
The Twelfth International Conference on Learning Representations, October 2024. URL
https://openreview.net/forum?id=v8L0pN6EOi.

[15] Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale
generation: Learning to solve and explain algebraic word problems. In Regina Barzilay
and Min-Yen Kan, editors, Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 158–167, Vancouver, Canada,
July 2017. Association for Computational Linguistics. doi: 10.18653/v1/P17-1015. URL
https://aclanthology.org/P17-1015/.

[16] Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, Ruochen Xu, and Chenguang Zhu. G-
eval: NLG evaluation using gpt-4 with better human alignment. In Houda Bouamor, Juan
Pino, and Kalika Bali, editors, Proceedings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pages 2511–2522, Singapore, December 2023. Association
for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.153. URL https://
aclanthology.org/2023.emnlp-main.153/.

[17] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegr-
effe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bod-
hisattwa Prasad Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and
Peter Clark. Self-refine: Iterative refinement with self-feedback. In A. Oh, T. Nau-
mann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors, Advances in Neu-
ral Information Processing Systems, volume 36, pages 46534–46594. Curran Associates,
Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/
91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf.

[18] Maitrey Mehta, Valentina Pyatkin, and Vivek Srikumar. Promptly predicting structures: The
return of inference. In Proceedings of the 2024 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies (Volume 1:
Long Papers), pages 112–130, 2024.

[19] Meta. llama-models/models/llama3_2/MODEL_card.md at main · meta-llama/llama-models,
2024. URL https://github.com/meta-llama/llama-models/blob/main/models/
llama3_2/MODEL_CARD.md.

[20] Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi,
Luke Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple
test-time scaling. arXiv preprint arXiv:2501.19393, 2025.

7

https://aclanthology.org/2024.findings-naacl.292/
https://aclanthology.org/2024.findings-naacl.292/
https://arxiv.org/abs/2505.14140
https://openreview.net/forum?id=sY5N0zY5Od
https://aclanthology.org/2024.emnlp-main.896/
https://openreview.net/forum?id=v8L0pN6EOi
https://aclanthology.org/P17-1015/
https://aclanthology.org/2023.emnlp-main.153/
https://aclanthology.org/2023.emnlp-main.153/
https://proceedings.neurips.cc/paper_files/paper/2023/file/91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf
https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/MODEL_CARD.md
https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/MODEL_CARD.md

[21] Rithesh Murthy, Ming Zhu, Liangwei Yang, Jielin Qiu, Juntao Tan, Shelby Heinecke, Caiming
Xiong, Silvio Savarese, and Huan Wang. Promptomatix: An automatic prompt optimization
framework for large language models, 2025. URL https://arxiv.org/abs/2507.14241.

[22] Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are NLP models really able to solve
simple math word problems? In Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer,
Dilek Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and
Yichao Zhou, editors, Proceedings of the 2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, pages 2080–
2094, Online, June 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.
naacl-main.168. URL https://aclanthology.org/2021.naacl-main.168/.

[23] Reid Pryzant, Dan Iter, Jerry Li, Yin Lee, Chenguang Zhu, and Michael Zeng. Automatic
prompt optimization with “gradient descent” and beam search. In Houda Bouamor, Juan
Pino, and Kalika Bali, editors, Proceedings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pages 7957–7968, Singapore, December 2023. Association
for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.494. URL https://
aclanthology.org/2023.emnlp-main.494/.

[24] Yuxiao Qu, Tianjun Zhang, Naman Garg, and Aviral Kumar. Recursive introspection: Teaching
language model agents how to self-improve. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024. URL https://openreview.net/forum?id=
DRC9pZwBwR.

[25] Gollam Rabby, Farhana Keya, and Sören Auer. Mc-nest: Enhancing mathematical reasoning in
large language models leveraging a monte carlo self-refine tree, 2025. URL https://arxiv.
org/abs/2411.15645.

[26] Leonardo Ranaldi and Andrè Freitas. Self-refine instruction-tuning for aligning reasoning in
language models. arXiv preprint arXiv:2405.00402, 2024.

[27] William Saunders, Catherine Yeh, Jeff Wu, Steven Bills, Long Ouyang, Jonathan Ward, and
Jan Leike. Self-critiquing models for assisting human evaluators, June 2022. URL http:
//arxiv.org/abs/2206.05802. arXiv:2206.05802 [cs].

[28] Timo Schick, Jane A. Yu, Zhengbao Jiang, Fabio Petroni, Patrick Lewis, Gautier Izacard, Qingfei
You, Christoforos Nalmpantis, Edouard Grave, and Sebastian Riedel. PEER: A collaborative
language model. In The Eleventh International Conference on Learning Representations, 2023.
URL https://openreview.net/forum?id=KbYevcLjnc.

[29] Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric Wallace, and Sameer Singh. Auto-
Prompt: Eliciting Knowledge from Language Models with Automatically Generated Prompts.
In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu, editors, Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language Processing (EMNLP), pages 4222–4235,
Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.
emnlp-main.346. URL https://aclanthology.org/2020.emnlp-main.346/.

[30] Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute
optimally can be more effective than scaling model parameters, 2024. URL https://arxiv.
org/abs/2408.03314.

[31] Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM Test-Time Compute
Optimally can be More Effective than Scaling Model Parameters, August 2024. URL http:
//arxiv.org/abs/2408.03314. arXiv:2408.03314 [cs].

[32] Kefan Song, Amir Moeini, Peng Wang, Lei Gong, Rohan Chandra, Yanjun Qi, and Shangtong
Zhang. Reward is enough: Llms are in-context reinforcement learners, 2025. URL https:
//arxiv.org/abs/2506.06303.

[33] Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid,
Adam Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al.
Beyond the imitation game: Quantifying and extrapolating the capabilities of language models.
Transactions on Machine Learning Research, 2023.

8

https://arxiv.org/abs/2507.14241
https://aclanthology.org/2021.naacl-main.168/
https://aclanthology.org/2023.emnlp-main.494/
https://aclanthology.org/2023.emnlp-main.494/
https://openreview.net/forum?id=DRC9pZwBwR
https://openreview.net/forum?id=DRC9pZwBwR
https://arxiv.org/abs/2411.15645
https://arxiv.org/abs/2411.15645
http://arxiv.org/abs/2206.05802
http://arxiv.org/abs/2206.05802
https://openreview.net/forum?id=KbYevcLjnc
https://aclanthology.org/2020.emnlp-main.346/
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
http://arxiv.org/abs/2408.03314
http://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2506.06303
https://arxiv.org/abs/2506.06303

[34] Jinwei Su, Yinghui Xia, Ronghua Shi, Jianhui Wang, Jianuo Huang, Yijin Wang, Tianyu Shi,
Yang Jingsong, and Lewei He. Debflow: Automating agent creation via agent debate, 2025.
URL https://arxiv.org/abs/2503.23781.

[35] Lisa Torrey and Matthew Taylor. Teaching on a budget: Agents advising agents in reinforcement
learning. In Proceedings of the 2013 international conference on Autonomous agents and multi-
agent systems, pages 1053–1060, 2013.

[36] Pat Verga, Sebastian Hofstatter, Sophia Althammer, Yixuan Su, Aleksandra Piktus, Arkady
Arkhangorodsky, Minjie Xu, Naomi White, and Patrick Lewis. Replacing judges with juries:
Evaluating llm generations with a panel of diverse models. arXiv preprint arXiv:2404.18796,
2024.

[37] Manya Wadhwa, Xinyu Zhao, Junyi Jessy Li, and Greg Durrett. Learning to refine with
fine-grained natural language feedback. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung
Chen, editors, Findings of the Association for Computational Linguistics: EMNLP 2024,
pages 12281–12308, Miami, Florida, USA, November 2024. Association for Computational
Linguistics. doi: 10.18653/v1/2024.findings-emnlp.716. URL https://aclanthology.org/
2024.findings-emnlp.716/.

[38] Jiaan Wang, Yunlong Liang, Fandong Meng, Zengkui Sun, Haoxiang Shi, Zhixu Li, Jinan
Xu, Jianfeng Qu, and Jie Zhou. Is ChatGPT a good NLG evaluator? a preliminary study.
In Yue Dong, Wen Xiao, Lu Wang, Fei Liu, and Giuseppe Carenini, editors, Proceedings
of the 4th New Frontiers in Summarization Workshop, pages 1–11, Singapore, December
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.newsum-1.1. URL
https://aclanthology.org/2023.newsum-1.1/.

[39] Yingxu Wang, Siwei Liu, Jinyuan Fang, and Zaiqiao Meng. Evoagentx: An automated frame-
work for evolving agentic workflows, 2025. URL https://arxiv.org/abs/2507.03616.

[40] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed Chi,
Quoc V Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors,
Advances in Neural Information Processing Systems, volume 35, pages 24824–24837. Curran
Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/
2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf.

[41] Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V. Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers, 2024. URL https://arxiv.org/abs/2309.
03409.

[42] Kevin Yang, Yuandong Tian, Nanyun Peng, and Dan Klein. Re3: Generating longer stories
with recursive reprompting and revision. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang,
editors, Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing, pages 4393–4479, Abu Dhabi, United Arab Emirates, December 2022. Association
for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-main.296. URL https://
aclanthology.org/2022.emnlp-main.296/.

[43] Mert Yuksekgonul, Federico Bianchi, Joseph Boen, Sheng Liu, Zhi Huang, Carlos Guestrin, and
James Zou. Textgrad: Automatic" differentiation" via text. arXiv preprint arXiv:2406.07496,
2024.

[44] Yongcheng Zeng, Xinyu Cui, Xuanfa Jin, Guoqing Liu, Zexu Sun, Dong Li, Ning Yang, Jianye
Hao, Haifeng Zhang, and Jun Wang. Evolving llms’ self-refinement capability via iterative
preference optimization, 2025. URL https://arxiv.org/abs/2502.05605.

[45] Haoke Zhang, Xiaobo Liang, Cunxiang Wang, Juntao Li, and Min Zhang. Unlocking recursive
thinking of llms: Alignment via refinement, 2025. URL https://arxiv.org/abs/2506.
06009.

[46] Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, Xionghui Chen, Jiaqi Chen, Mingchen
Zhuge, Xin Cheng, Sirui Hong, Jinlin Wang, Bingnan Zheng, Bang Liu, Yuyu Luo, and Chenglin
Wu. Aflow: Automating agentic workflow generation, 2025. URL https://arxiv.org/abs/
2410.10762.

9

https://arxiv.org/abs/2503.23781
https://aclanthology.org/2024.findings-emnlp.716/
https://aclanthology.org/2024.findings-emnlp.716/
https://aclanthology.org/2023.newsum-1.1/
https://arxiv.org/abs/2507.03616
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://arxiv.org/abs/2309.03409
https://arxiv.org/abs/2309.03409
https://aclanthology.org/2022.emnlp-main.296/
https://aclanthology.org/2022.emnlp-main.296/
https://arxiv.org/abs/2502.05605
https://arxiv.org/abs/2506.06009
https://arxiv.org/abs/2506.06009
https://arxiv.org/abs/2410.10762
https://arxiv.org/abs/2410.10762

[47] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao
Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E Gonzalez, and
Ion Stoica. Judging llm-as-a-judge with mt-bench and chatbot arena. In A. Oh, T. Nau-
mann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors, Advances in Neu-
ral Information Processing Systems, volume 36, pages 46595–46623. Curran Associates,
Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/
91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf.

[48] Han Zhou, Xingchen Wan, Ruoxi Sun, Hamid Palangi, Shariq Iqbal, Ivan Vulic, Anna Korhonen,
and Sercan O. Arık. Multi-agent design: Optimizing agents with better prompts and topologies,
2025. URL https://arxiv.org/abs/2502.02533.

[49] Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan,
and Jimmy Ba. Large language models are human-level prompt engineers. arXiv preprint
arXiv:2211.01910, 2022.

[50] Mingchen Zhuge, Changsheng Zhao, Dylan Ashley, Wenyi Wang, Dmitrii Khizbullin, Yunyang
Xiong, Zechun Liu, Ernie Chang, Raghuraman Krishnamoorthi, Yuandong Tian, Yangyang Shi,
Vikas Chandra, and Jürgen Schmidhuber. Agent-as-a-judge: Evaluate agents with agents, 2024.
URL https://arxiv.org/abs/2410.10934.

A Related Work

ProRefine draws inspiration from and contributes to several interconnected research areas. The
performance of LLMs is heavily dependent on the quality of the prompts they receive. Early efforts
in this domain centered on crafting prompts manually [40], a meticulous process of designing
effective prompts to elicit desired responses. Recognizing the limitations and scalability challenges of
manual methods, research has increasingly focused on automatic prompt optimization with a growing
emphasis on agentic workflows that enable dynamic and adaptive reasoning.

Prompt Generation: Some pioneering automatic methods, such as AutoPrompt [29] and RLPrompt
[7], employ gradient-based search and reinforcement learning techniques, respectively. AutoPrompt
[29] uses gradient-based search to generate prompts for masked language models. It reformulates
tasks as fill-in-the-blank problems, achieving performance comparable to supervised models in
tasks like sentiment analysis. However, it requires training data and gradient access, limiting its
applicability to black-box models. Other approaches leverage LLMs themselves for prompt generation
[18, 23, 41, 42, 49]. Recent works like Promptomatix [21] and EvoAgentX [39] extend this direction
by enabling automatic prompt refinement across multiple tasks, workflows, and tools. ProRefine
distinguishes itself by operating simply at inference-time, requiring no training data, gradient access,
or model retraining, while enabling prompt refinement in dynamically evolving settings.

Self-Refinement: There is a substantial and growing body of work exploring the capacity of LLMs
to act as judges or evaluators [3, 4, 13, 16, 36, 38, 47, 50]. This capability has been leveraged to assess
response quality or provide self-feedback. ProRefine adopts this principle, using LLM-generated
textual feedback to improve its own prompting process. Unlike prior uses of LLM evaluation
solely for ranking or filtering, ProRefine uses that feedback in a closed-loop for optimization during
inference.

The idea of LLM iterative refinement is highly relevant. Self-Refine [17] is a prominent example,
where an LLM generates both output and feedback, using the latter for refinement. ARIES [44]
further enhances refinement via Elo-style agent debate. Other works explore self-critiquing [27]
and reinforcement learning for critique generation (RL4F) [1], along with various feedback and
refinement mechanisms [8, 12, 24, 26, 28, 37], and Monte Carlo-based refinement in math reasoning
(MC-NEST) [25]. While ProRefine shares the self-refinement spirit, it focuses on prompt refinement,
suitable for agentic workflows and black-box LLMs, while avoiding reinforcement learning and
direct output modification.

Inference-Time Scaling: ProRefine belongs to the broader category of inference-time methods
[20, 30], that improve LLMs without without weight modification [9]. Inference-time methods aim to

10

https://proceedings.neurips.cc/paper_files/paper/2023/file/91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf
https://arxiv.org/abs/2502.02533
https://arxiv.org/abs/2410.10934

improve the performance of models by utilizing test-time compute resources. TextGrad [43] performs
gradient-free inference-time optimization using textual feedback. ProRefine applies a similar idea
to intermediate prompt refinement for dynamic reasoning chains. TextGrad relies on supervised
fine-tuning, whereas ProRefine operates without training data, offering ease of integration. Other
inference-time strategies include RL-of-Thoughts [11] and Reward-Is-Enough [32], which apply
RL-based signal propagation during inference. AvR (Alignment via Refinement) [45] proposes
recursive CoT refinement using long-form reasoning. ProRefine, by contrast, performs step-level
feedback on prompts rather than final outputs, and requires no external tools or supervision.

Agentic Workflows: ProRefine also fits into a broader trend toward agentic workflows. AFlow [46]
automates agentic workflows through prompt-based search over prior structures, while EvoAgentX
[39] evolves agent behaviors and topologies. Meanwhile, Mass [48] and DebFlow [34] optimize
multi-agent configurations via interleaved search and debate. ProRefine focuses instead on optimizing
individual agent prompts within fixed workflows, complementing these methods. Unlike tool-
integrated or debate-based systems, ProRefine remains model-agnostic and easy to integrate into any
prompt-based agent loop.

B Experiments and Evaluation

B.1 Data

We evaluate ProRefine on five reasoning tasks, each of which involves multi-step reasoning, making
them suitable for evaluating prompt optimization in agentic workflows. We include the original
dataset split sizes in (train/validation/test) format: object counting and word sorting from the BIG-
Bench Hard benchmark [33] (50/100/100), grade-school math problem-solving from GSM8K [6]
(200/300/1319), math word problems from SVAMP [22] (2516/622/1000), and algebraic word prob-
lems from AQUARAT [15] (97467/254/254). We use the same splits and evaluation as Yuksekgonul
et al. [43] for object counting, word sorting, and GSM8K.

B.2 Experimental Setup

CoT

Tex
tGrad

Pro
Re

fin
e

(no
 ve

rifi
er)

Pro
Re

fin
e

(ve
rifi

er)

Pro
Re

fin
e

(op
tim

al
ve

rifi
er)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy 0.48

0.62

0.51

0.60

0.670.65

0.73 0.75
0.72

0.85

0.73

0.86

0.77

0.89
0.94

Object Counting

CoT

Tex
tGrad

Pro
Re

fin
e

(no
 ve

rifi
er)

Pro
Re

fin
e

(ve
rifi

er)

Pro
Re

fin
e

(op
tim

al
ve

rifi
er)

0.11

0.33

0.22
0.19

0.29

0.10

0.61

0.47

0.32

0.53
0.50

0.69 0.68 0.71

0.86

Word Sorting

CoT

Tex
tGrad

Pro
Re

fin
e

(no
 ve

rifi
er)

Pro
Re

fin
e

(ve
rifi

er)

Pro
Re

fin
e

(op
tim

al
ve

rifi
er)

0.45 0.46

0.64 0.65

0.72

0.81 0.80 0.80

0.87
0.90

0.82
0.86 0.84

0.89
0.94

GSM8K

CoT

Tex
tGrad

Pro
Re

fin
e

(no
 ve

rifi
er)

Pro
Re

fin
e

(ve
rifi

er)

Pro
Re

fin
e

(op
tim

al
ve

rifi
er)

0.69 0.68

0.77
0.81

0.860.87 0.86 0.88 0.90
0.93

0.85 0.84
0.88 0.89

0.94

SVAMP

CoT

Tex
tGrad

Pro
Re

fin
e

(no
 ve

rifi
er)

Pro
Re

fin
e

(ve
rifi

er)

Pro
Re

fin
e

(op
tim

al
ve

rifi
er)

0.26
0.31

0.20

0.27

0.35

0.56
0.52

0.34

0.55
0.600.59

0.56

0.40

0.61
0.66

AQUARAT

Accuracy with 95% Confidence Intervals Across Datasets and Models Model
Llama-3.2-1B-it Llama-3.2-3B-it Llama-3.1-8B-it

Figure 2: Test Accuracy [with 95% confidence interval] across different models and datasets.
Llama3.1-70B-instruct is employed for feedback generation, prompt optimization, and evaluation.

We experiment with three models - Llama3.2-1B-instruct, Llama3.2-3B-instruct, and Llama3.1-8B-
instruct [19] for LLMtask. The prompts are optimized using Algorithm 1, with Llama3.1-70B-
instruct used for feedback generation, prompt optimization, and evaluation. We select the values
of hyperparameters k = 10 and n = 25 to control the granularity of feedback and duration of
optimization. Hyperparameters k and n were fixed based on general preliminary exploration and not
tuned per task using benchmark training/validation data.

We compare the performance of our method against the zero-shot Chain-of-Thought (CoT) baseline
and TextGrad [43], and report test accuracy with 95% confidence interval. We choose TextGrad
as a baseline because Yuksekgonul et al. [43] reported performance at par or better than DSPy
[12] for prompt optimization on object counting, word sorting, and GSM8k datasets. It is essential
to remember that TextGrad is a supervised fine-tuning method that utilizes both the training and
validation sets. For TextGrad, we use a comparative setup consisting of a task model to be fine-tuned
and Llama3.1-70B-instruct model for feedback generation and backpropagation. The results are
shown in Table 1 and Figure 2.

11

Obje
ct

Cou
nti

ng

Word
 So

rtin
g

GSM
8K

SV
AMP

AQ
UARA

T
0

5

10

15

20

25

Av
ge

ra
ge

 #
ite

ra
tio

ns

Average length of refinement loop
Model

Llama-3.2-1B-it
Llama-3.2-3B-it
Llama-3.1-8B-it

Figure 3: Average number of prompt refinement iterations.

C Discussion

This work investigates the following research questions.

RQ1 How effectively can textual feedback enhance the performance of LLMs during inference?

RQ2 To what extent does model size impact the ability of LLMs to utilize textual feedback?

RQ3 What is the impact of incorporating a verifier on accuracy at inference time?

Regarding RQ1, the results demonstrate that ProRefine is a broadly applicable method that utilizes
textual feedback to improve LLM performance at inference time. The “performance gap bridging”
effect is particularly noteworthy, suggesting that ProRefine may serve as an effective alternative
to simply scaling up model size, potentially avoiding costly fine-tuning an advantage in resource-
constrained settings.

The largest performance gains are observed on the word sorting task, indicating that tasks requiring
more complex reasoning or manipulation of intermediate outputs benefit the most from ProRefine’s
iterative refinement. The mixed results when using a smaller model for LLMfeedback illustrate the
importance of “knowledge asymmetry,” i.e., that the feedback model should be “sufficiently capable”
of providing useful critiques.

Regarding RQ2, the results indicate that ProRefine outperforms the baselines on 2 and 3 datasets when
using the Llama3.2-1B-instruct and Llama3.2-3B-instruct models, respectively, and on all 5 datasets
when using the Llama3.1-8B-instruct model. This suggests that performance improvements scale
with model size. These findings imply that larger models are preferable to smaller ones, particularly
in agentic workflows that may require test-time scaling and the effective use of textual feedback to
solve complex tasks.

Regarding RQ3, the results highlight that employing a high-quality verifier is crucial for significantly
improving task performance at inference time. We observe some cases where “no verifier” outper-
forms the “verifier” setting, which indicates the verifier incorrectly accepted a flawed initial answer,
thereby preventing the refinement process from correcting the error. This reveals a trade-off: the
verifier reduces computational cost on correct answers but risks prematurely halting on incorrect ones.
The superior results of the “optimal verifier” highlight the critical role of verifier accuracy. Beyond
enhancing performance, the verifier also reduces computational cost during inference by guiding the
refinement process. Moreover, it opens up promising avenues for future work, where an optimizer
could be designed to maximize rewards guided by the verifier’s assessments. ProRefine can offer
a degree of interpretability by exposing the outputs from LLMfeedback, allowing insights into the
model’s reasoning process. Figures 4 and 5 demonstrate cases where model feedback successfully

12

LLMtask: To determine the number of vegetables

LLMfeedback: The output is incomplete, it should directly answer the
question. Add the total count of the vegetables: "There are 12

vegetables."

LLMOptimizer: You will answer a reasoning question. Think step by step. Ensure the
answer directly answers the question and provides a final numerical value. If necessary,

include the total count of the vegetables in the answer. The last line of your response
should be of the following format: \'Answer: $VALUE\' where VALUE is a numerical value.

Include the total count of the vegetables in the format "There are X vegetables."

LLMtask: To find the total number of vegetables, we need to count
each type of vegetable

LLMfeedback: Incorrect assumption. The task is to find the total number
of individual vegetables, not just count the types. Instead, focus on

counting the quantities of each vegetable and summing them up.

LLMOptimizer: You will answer a reasoning question. Think step by step. To find the total
count of individual vegetables, count the quantities of each vegetable separately and
sum them up. Then, provide the final numerical value. The answer should include the

total count of individual vegetables, not just the types. Include the total count in the
format "There are X individual vegetables." The last line of your response should be of

the following format: \'Answer: $VALUE\' where VALUE is a numerical value.

LLMtask: To find the total count of individual vegetables, we need to
count the quantities of each vegetable separately and sum them
up.\n\n- Let

LLMfeedback: Incorrect calculation, the output should directly provide
the total count of vegetables instead of explaining the process. It

should correctly sum up the quantities of each vegetable, which is
1+1+2+1+1+2+2+3=13.

LLMOptimizer: You will answer a reasoning question. To find the total count of individual
vegetables, you are given the quantities of each vegetable. Directly provide the total

count of individual vegetables by summing up the quantities. Do not explain the
process. Ensure the answer includes the total count in the format "There are X
individual vegetables." The last line of your response should be of the following

format: \'Answer: $VALUE\' where VALUE is a numerical value representing the total
count of individual vegetables.

LLMtask: There are 1 + 1 + 2 + 1 + 1 + 2 + 2 + 3 = 13 individual
vegetables.\n\nAnswer: 13

LLMfeedback: the output is correct

LLMtask: To determine the number of vegetables, we need to identify the vegetables in the
given list. \n\n- Lettuce is a vegetable.\n- Celery is a vegetable.\n- Cauliflower is a
vegetable.\n- Carrot is a vegetable.\n- Onion is a vegetable.\n- Potato is a vegetable.\n-
Cabbage is a vegetable.\n\nNow, let's count the number of vegetables: \n1. Lettuce\n2.
Celery\n3. Cauliflower\n4. Carrot\n5. Onion\n6. Potato\n7. Cabbage\n\nThere are 7
vegetables in total.\n\nAnswer: 7

Initial Prompt: You will answer a reasoning question. Think step by
step. The last line of your response should be of the following format:
'Answer: $VALUE' where VALUE is a numerical value.

Query: I have a lettuce head, a stalk of celery, two yams, a
cauliflower, a carrot, two onions, two potatoes, and three cabbages.
How many vegetables do I have?

(Answer: 13)

 P
ro

R
ef

in
e

In
pu

t
(e

xc
ep

t f
or

 A
ns

w
er

)
B

as
el

in
e

re
sp

on
se

(n
o

P
ro

R
ef

in
e)

✅
Figure 4: ProRefine example. Given an input query (which in this case has a correct answer:
13) and an initial prompt, the task model (LLMtask) gives an incorrect answer. ProRefine uses
two additional models, LLMfeedback and LLMoptimizer, to iteratively improve the prompt as the
LLMtask generates its response. Refining the prompt during generation allows the feedback model
to target local regions of the response, providing finer-grained feedback than waiting for the response
to complete. We also provide an additional example illustrating our approach in Figure 5.

improves the output and where it fails, respectively. Although evaluated on reasoning and math tasks,
ProRefine is general and applicable to other tasks.

A crucial consideration for ProRefine is the trade-off between its accuracy gains and the increased com-
putational cost at inference time. Each refinement step requires additional calls to the LLMfeedback

and LLMoptimizer, making any single query more expensive to process than a standard single-pass
generation. However, this per-query cost should be evaluated within ProRefine’s intended hybrid-

13

LLMtask: To sort the given words alphabet

LLMfeedback: Incomplete output. The output should provide the sorted list of words
instead of just stating the instruction. \n\nCorrect output should list the words in

alphabetical order, such as: allis, anthology, jacobi, marmot, membrane, oakland,
seaborg, trapezoidal, toggle

LLMOptimizer: You will answer a reasoning question that requires sorting a list of words. The input will be a list
of words, and you need to think step by step to provide the correct output. Your response should include the

sorted list of words in alphabetical order. Do not forget to list all the words in the correct order. Think
step-by-step and provide the correct output.\n\nThe last line of your response should be of the following

format: 'Answer: $VALUE' where VALUE is the sorted list of words, with each word separated by a comma.
For example: 'Answer: allis, anthology, jacobi, marmot, membrane, oakland, seaborg, trapezoidal, toggle'

LLMtask: To sort the list of words alphabetically, I will go through each word and

LLMfeedback: This is not the correct output. The task was to sort the list of words
alphabetically, but the given output starts with an explanation. A correct output should

be a direct response with the sorted list of words. \n\nHowever, the output did not
provide the sorted list. The correct sorted list should be: allis, anthology, jacobi,

marmot, membrane, oakland, seaborg, toggle, trapezoidal.

LLMOptimizer: You will answer a reasoning question that requires sorting a list of words. The input will
be a list of words, and you need to sort the list in alphabetical order and provide the correct output

directly. Do not include any explanations. \n\nYour response should be a direct list of the sorted
words in alphabetical order, separated by commas. Ensure that all words are included in the correct
order. \n\nThe last line of your response should be of the following format: 'Answer: $VALUE' where

VALUE is the sorted list of words, with each word separated by a comma.

LLMtask: Answer: allis, anthology, jacobi, list, marmot, membrane, oakland, seaborg,
trape

LLMfeedback: Missing word "toggle" in the sorted list. Also, the word "list" was not
supposed to be included as it was part of the original instruction, not the actual list to

be sorted. \n\nCorrected sorted list should be: allis, anthology, jacobi, marmot,
membrane, oakland, seaborg, toggle, trapezoidal.

LLMOptimizer: You will answer a reasoning question that requires sorting a list of words. The input will be
a list of words, and you need to sort the list in alphabetical order and provide the correct output directly.

Do not include any explanations. Ensure all words from the input list are included in the sorted
output.\n\nYour response should be a direct list of the sorted words in alphabetical order, separated by

commas. The last line of your response should be of the following format: 'Answer: $VALUE' where
VALUE is the sorted list of words, with each word separated by a comma.

LLMtask: Answer: allis, anthology, jacobi, list, marmot, membrane, oakland, seaborg,
trapezoidal, toggle

LLMfeedback: "Correct alphabetization, but \'list\' is not part of the original list, remove it to
maintain consistency."

LLMOptimizer: You will answer a reasoning question that requires sorting a list of words. The input will be a
list of words, and you need to sort the list in alphabetical order and provide the correct output directly. Do
not include any explanations. Ensure all words from the input list are included in the sorted output, and do

not add any extra words. \n\nYour response should be a direct list of the sorted words in alphabetical order,
separated by commas. The last line of your response should be of the following format: 'Answer: $VALUE'

where VALUE is the sorted list of words, with each word separated by a comma.

Initial Prompt: You will answer a reasoning question. Think step by step. The last line
of your response should be of the following format: 'Answer: $VALUE' where VALUE is
a numerical value.

Query: Sort the following words alphabetically: List: oakland seaborg jacobi membrane
trapezoidal allis marmot toggle anthology
(Answer: allis anthology jacobi marmot membrane oakland seaborg toggle trapezoidal)

LLMtask: To sort the given words alphabetically, we need to compare each word and arrange them in
order from A to Z.\n\nHere's the step-by-step process:\n\n1. Compare 'allis' and 'anthology'. 'allis' comes
before 'anthology'.\n2. Compare 'anthology' and 'jacobi'. 'anthology' comes before 'jacobi'.\n3. Compare
'jacobi' and 'list'. 'jacobi' comes before 'list'.\n4. Compare 'list' and'marmot'. 'list' comes before'marmot'.\n5.
Compare'marmot' and'membrane'.'marmot' comes before'membrane'.\n6. Compare'membrane' and
'oakland'.'membrane' comes before 'oakland'.\n7. Compare 'oakland' and'seaborg'. 'oakland' comes
before'seaborg'.\n8. Compare'seaborg' and 'trapezoidal'.'seaborg' comes before 'trapezoidal'.\n\nNow, let's
arrange the words in alphabetical order:\n\n1. allis\n2. anthology\n3. jacobi\n4. list\n5. marmot\n6.
membrane\n7. oakland\n8. seaborg\n9. trapezoidal\n\nAnswer: 9

In
pu

t
(e

xc
ep

t f
or

 A
ns

w
er

)
B

as
el

in
e

re
sp

on
se

(n
o

P
ro

R
ef

in
e)

 P
ro

R
ef

in
e

❌

Figure 5: This figure is an instance when LLMoptimizer is not aligned with the feedback from
LLMfeedback and misses important guiding steps. The framework is similar to Figure 4 when
LLMoptimizer conveys feedback effectively. We’ve observed a few failed instances following this
pattern.

14

model deployment. The strategy is not to run refinement on every query, but to use it as an on-demand
intervention precisely when a more efficient base model fails. Therefore, the overall system cost is
not a simple sum of expensive refinement processes. Instead, it is a blend of low-cost successes from
the base model and high-value, targeted corrections. Moreover, the cost is still considerably lower
than full model retraining or fine-tuning. Our results support this approach’s practicality: Figure 3
shows that the average number of refinement iterations is typically low, ensuring the per-incident
cost of intervention is contained. This cost-accuracy balance can be further optimized by tuning
hyperparameters like feedback granularity (k) and maximum iterations (n).

D Limitations and Future Work

This work has the following limitations that we acknowledge have potential for future explorations:

• Computational Cost and Practicality: While ProRefine is designed for cost-effective
hybrid deployments, its iterative process inherently increases inference-time latency and
computational cost compared to a single-pass query. The cost-benefit of this trade-off must
be carefully evaluated for each specific application, as its viability depends on the base
model’s failure rate and the relative costs of the LLMs involved.

• Generalizability: Our evaluation is currently focused on mathematical and multi-step
reasoning tasks. Further research is needed to assess performance across a broader range
of reasoning tasks and domains. Our method is also sensitive to hyperparameters and
requires manual tuning. Developing more robust, automated, or adaptive methods for setting
parameters would enhance the method’s usability.

• Dependence on High-Quality Feedback: The system’s performance is dependent on the
quality of the LLMfeedback. Future work could explore using a specialized “critic” model
or fine-tuning feedback models to improve diagnostic accuracy. Furthermore, using LLMs
for evaluation introduces potential biases and more comprehensive human evaluations and
robust methods are need for mitigating evaluator bias.

• Stability of the Refinement Loop: The iterative nature of ProRefine lacks a formal conver-
gence guarantee. In some cases, the refinement process can suffer from prompt degradation
after many iterations or plateau before reaching an optimal solution. Investigating methods
to ensure stable and monotonic improvement is a key area for future research.

15

	Introduction
	ProRefine
	Experiments and Evaluation
	Data
	Experimental Setup
	Results

	Conclusion
	Related Work
	Experiments and Evaluation
	Data
	Experimental Setup

	Discussion
	Limitations and Future Work

