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ABSTRACT

Generating academic slides from scientific papers is often challenging as it re-
quires reasoning over long context and carefully planning layouts. However, most
prior work just treat it as a text summarization task, overlooking the inherent
complexity of visual design. To tackle this challenge, we propose SlideGen, a
modular, visual-in-the-loop agentic pipeline for paper-to-slide generation, which
utilizes six VLM workers to collaborate together. It plans the outline (Outliner),
matchs figures/tables/equations to outline bullets (Mapper/Formulizer), lays out
pages via template selection (Arranger), writes notes (Speaker), and refines with
merging and emphasis (Refiner). To better evaluate the quality of the generated
slides, we further release the Paper2Slide Benchmark of paper–slide pairs and
provide automated evaluation protocols: (i) Visual Aesthetics – a geometry-aware
density score for layout balance and spacing, (ii) Holistic Assessment – a VLM-as-
judge criteria over content, design, and coherence, enabling reliable, end-to-end
assessment; and (iii) Communication Effectiveness – we use SlideQA, a question
answering task that measures the ability of presentation slides to convey infor-
mation; (iv) Textual Coherence – textual fluency. Across a diverse set of strong
baselines, SlideGen demonstrates strong results across all evaluation metrics and
outperforms various competing methods, offering human-level slide-making ca-
pabilities. Our framework identifies promising directions for building the next
generation of end-to-end slide generators. The code is available for full repro-
ducibility at Anonymous Github.

1 INTRODUCTION

Slide presentations are a widely used and highly important medium for academic communication,
and they are an essential part of lectures, seminars, tutorials, and conference talks (Hu & Wan, 2013).
Creating a good slide deck from a scientific paper is time-consuming, demanding both content con-
densation with coherent narrative and layout design that keeps text–figure alignment across pages(Fu
et al., 2022). Recent advances in multimodal models and LLM-based agents have motivated increas-
ing efforts toward automating this process(Sun et al., 2021; Fu et al., 2022; Bandyopadhyay et al.,
2024; Xi et al., 2025; Xu et al., 2025; Mondal et al., 2024; Shi et al., 2025; Zheng et al., 2025).
Despite recent progress, two main gaps remain in slide generation: (i) prior work treat slide making
as a compression task (Sun et al., 2021; Fu et al., 2022), but overlooks layout design and text–figure
alignment; (ii) reference-clustering approaches to layout (Zheng et al., 2025) lack explicit control
and visual feedback, yielding unstable, often low-quality results.

To move beyond summarization frameworks with little visual planning, we introduce SlideGen, a
template-interpretable and modular framework that converts a scientific paper into a well-designed
slide presentation. Figure 1 gives an overview of the proposed SlideGen framework. The pipeline
begins with globally content parsing and asset extraction using docling (Livathinos et al., 2025).
1) Outliner prepares the slide plan by listing the sections and subsections, deciding how many
slides each subsection contains, assigning textual content to each slide. 2) Mapper follows this
plan to match the right figures and tables to the corresponding bullet points, and Formulizer locates
equations and links the right formulas to the right bullets. 3) Speaker then turns the bullets into
brief presenter notes and adds simple cues or transitions to move smoothly from one slide to the
next. After that, Arranger selects a suitable template for each slide based on its planned content and
mapped assets, then places and aligns all elements accordingly. 4) Refiner polishes the whole deck

1

https://github.com/anaymoysuser/SlideGen


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Mapper

Figure & Table 
Mapping Information

Formulizer

Fomula Mapping 
Information

Speaker 
Inputs:

Outputs:
speech 
manuscript

Outliner

DoclingDocu
ment

PART ONE
1.  
 

PART TWO
1. ...

Outline

Inputs:

Outputs:

Paper.pdf

...
Raw Data

Code Page 
Layout

Reading 
Order

...

Arranger

Inputs:

Outputs:

...
Layout Template

Bullet Points

Slide N:...
A nearly 

finished slide 
deck

Refiner

Inputs:

Outputs:

A nearly 
finished slide 

deck

Final slide 
deck

S1 Slide merging

S2 Template adjustment

S3 Visual emphasis

SlideGen Slide.pptx

Figure 1: Overview of the SlideGen pipeline. The multi-agent frameworks consists of six agents
that process a scientific paper in stages, including content planning, figure selection, layout design,
formula explanation, visual refinement, and narration generation.

by merging slides with too little content, adjusting templates when needed, and adding moderate
visual emphasis, such as bold, to make key points clearer.

To provide a clear basis for evaluating paper-to-slide generation, we introduce the Paper2Slide
Benchmark. It consists of recent papers matched to high-quality slide decks, together with a stan-
dardized evaluation protocol that measures: (i) Visual Aesthetics – we use a geometry-aware density
that rewards “just-right” layouts that are neither sparse nor cluttered, trading off target area against
a moderate number of content regions; (ii) Communication Effectiveness – SlideQA measures how
well the deck alone supports answering questions, using six VLM readers of varying capability,
following (Pang et al., 2025); (iii) Holistic Assessment – VLM-as-Judge, a evaluation criteria over
Content, Design and Coherence to provide a holistic view of deck quality, following prior work
(Zheng et al., 2025); and (iv) Textual Coherence – the quality of expression in the slide presentation.

Using our Paper2Slide benchmark, we comprehensively evaluate state-of-the-art generative base-
lines (GPT-4o and GPT-5), and multi-agent methods, revealing several key findings: (i) the online
GPT-4o/GPT-5 routes produce blurry, low-quality PPT images with few pages per answer, typically
a single composite image covering only 4–9 slides, and it is impractical to output per-slide images
or package them in a zip; GPT-4o is generally blurrier, while GPT-5 is clearer;(ii) GPT-5 is more
prompt-sensitive and often fails to produce the requested outputs, while GPT-4o follows prompts
more consistently; (iii) empirically, SlideQA correlates with human evaluation, and its scores in-
crease with VLM capability on well-designed slides; and (iv) our geometry-aware density score
separates sparse/balanced/cluttered layouts effectively as expected and aligns closely with human
visual judgments. Our framework outlines practical paths toward next-generation end-to-end slide
generation.

2 RELATED WORK

2.1 VISION–LANGUAGE AGENTS FOR SLIDES

Early document-to-slide systems framed the task as summarization (Sun et al., 2021; Fu et al., 2022;
Kothawade et al., 2020) or sequence-to-sequence conversion from papers to slide decks. D2S casts
slide generation as query-based single-document summarization(Sun et al., 2021). DOC2PPT intro-
duces a sequence-to-sequence architecture with a learnable policy for section-to-slide progression

2
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(Fu et al., 2022). Driven by VLM agents and multimodal learning (OpenAI et al., 2024; Naveed
et al., 2025), recent work move from single-shot prompting to agentic, multi-stage pipelines for
document-to-slides (Shi et al., 2025; Pang et al., 2025; Zheng et al., 2025). DocPres separates
bird’s-eye summarization, outline drafting, and slide-to-section grounding (Bandyopadhyay et al.,
2024). As a multi-agent system, RCPS assigns clear, specialized roles: global planning via R-CoT,
layout planning via LPG, and iterative refinement (Xi et al., 2025). Recent work also improves
layout fidelity using a textual-to-visual “Reviewer+Refiner” loop (Xu et al., 2025). A representa-
tive high-performing approach, PPTAgent generates slides via a two-stage, edit-based pipeline using
HTML layouts and self-correction, but it depends on references and may exhibit layout overlap or
overflow, and also provides limited cross-page coherence (Zheng et al., 2025); in contrast, SlideGen
is a visual-in-the-loop, multi-agent pipeline that plans globally, maps content precisely, composes
layouts with an extensible template library, and keeps pages balanced rather than sparse or cluttered.

Among recent high-performing systems, PPTAgent adopts a two-stage, edit-based pipeline over
HTML layouts with self-correction, yet it remains reference-dependent, prone to layout artifacts,
including overlap and overflow, and limited in cross-page coherence (Zheng et al., 2025). In con-
trast, SlideGen performs end-to-end slide generation with explicit outline–layout grounding, precise
figure/equation mapping, an extensible template library, and consistently balanced pages.

2.2 EVALUATION PROTOCOLS AND METRICS

Evaluation has evolved from text-only overlap (Sun et al., 2021; Fu et al., 2022) to multimodal and
narrative-aware protocols (Pang et al., 2025; Zheng et al., 2025; Shi et al., 2025). Traditional au-
tomated metrics, including ROUGE (Lin, 2004) and perplexity (Jelinek et al., 1977), were used to
measure slide text quality in early systems like D2S(Sun et al., 2021). PresentAgent (Shi et al.,
2025) push beyond text by combining objective quizzes and subjective preferences, including two
complementary axes: factual quizzes grounded in the source documents and preference-based vi-
sion–language scoring of presentation quality. VLM-as-judge (Bandyopadhyay et al., 2024; Zheng
et al., 2025; Pang et al., 2025; Xi et al., 2025; Shi et al., 2025) has been adopted to rate overall
slide quality, spanning content fidelity, design, and narrative coherence in recent work. However,
prior metrics paid limited attention to the visual aesthetics of slides, and LLM-based scoring lacks
theoretical grounding and reproducibility. We therefore propose Geometry-Aware Density, which
provides a principled assessment of overall layout organization and aesthetics.

3 METHOD: A MULTI-AGENT FRAMEWORK FOR SLIDE GENERATION

Overview. SlideGen is a modular LLM-Agentic framework that transforms complete scientific
papers into structured, readable, and well designed editable slides. Our agents begins with high-
level content and structure planning, and proceeds step by step to detailed slide organization. It
consists of six specialized agents, each responsible for a specific stage of the generation process,
as shown in Fig. 1, In line with prior work (Pang et al., 2025), we first preprocess the raw PDF
with DOCLING (Team, 2024) and MARKER (Paruchuri, 2025), converting pages to Markdown
and assembling a two-modal asset library: (i) text assets capture the hierarchy by mapping section
headings to brief, paragraph-level summaries like key–value pairs, and (ii) visual assets where figure
and table captions index the extracted images.

Outliner. Outliner Agent converts a full research paper, provided as Markdown or plain text, into a
two-level presentation outline optimized for slide-first delivery. Instead of copying original order of
the paper, it reorganizes content toward an academic narrative and uses a recommended template:
motivation & background, related work/limitations, key contributions, method overview, technical
details, experiments & datasets, results & analysis, optional ablations/insights, and conclusion &
future work. The agent applies the template case by case. For each paper, it may split long topics
into part (a) and part (b) to keep sections focused, or merge weaker topics with adjacent sections to
improve coherence. As a result, the final sectioning varies across papers rather than being identi-
cal. Outliner reads the entire document, identifies key ideas and dependencies, and produces a strict
JSON object with two top-level keys: “metadata” and “sections” The “metadata” includes a title of
the paper, the author name(s), the publication date, and the organization. The “sections” list follows
the recommended flow above, with each section containing concise subsections that are ready for
slide drafting, while page count and layout are left to downstream components. For example, when

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

T7_2x2_Toplmage

T10_4Img_2x2Gri
d

T13_3lmg

Title Slide

CONTENTS

Contents T1_TextOnly

T2_ImageRight

T14_lmageRight_
1Formula

T3_lmageLeft T4_ImageTop

T5_Twolmages

T8_2x2_BottomI
mage

T9_2x2_AltTextIm
g

T11_3lmg_TopTex
tBott…

T12_3lmg_Botto
mTextT…

T16_1lmg_2form
ula_To…

T17_2lmg_1form
ula_To…

T18_2formula_To
pText…

T6_Twolmages2

T19_2Text

T15_ImageLeft_1
Formula

Figure 2: The slide template library used by the Arranger. Each template addresses a typical presen-
tation structure, such as text-only, image-left, and two-column layouts.

Outliner processes a paper titled ActionPiece, it may propose the first two sections as Introduction
to Generative Recommendation and Proposed Method: ActionPiece. The first section could include
two subsections: 1.What Is Generative Recommendation? and 2.Challenges in Current GR Mod-
els. The second section would then continue with the method, potentially covering Overview of
ActionPiece, Vocabulary Construction, and Segmentation with Set Permutation Regularization, and
so on.

Arranger. While the Outliner determines what content goes into each slide, the Arranger decides
how that content is presented. The Arranger is responsible for assigning an appropriate visual struc-
ture to each slide. This includes selecting a suitable layout template based on the amount and type
of elements, the size and aspect ratio of a visual elements, and the overall balance between content
and whitespace.

As shown in Figure 2, we design a small library of reusable slide templates that cover nearly all com-
mon presentation patterns. These include text-only layouts for background and conclusion slides,
image-left or image-right layouts for highlighting key visuals, and layouts containing narrow strip-

4
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like images of formulas, among others. For example, slides containing a prominent, wide-aspect
image alongside a few sentences of text are very likely to be assigned to the T4 image-top template
by Arranger. If the image is relatively tall or nearly square, the slide is more likely to be assigned to
a half-and-half image–text template such as T2 or T3. By separating layout selection from content
generation, the Arranger ensures slides are informative, visually balanced, and consistent with good
presentation practice. It produces an almost complete deck, which is then handed to the Refiner for
final adjustments.

Refiner. The Refiner improves the overall clarity and organization of the presentation. It performs
several tasks: (i) Slide merging. Consecutive slides with very limited textual content without any vi-
suals, are merged to reduce redundancy and maintain slide conciseness. (ii) Template adjustment.
For the two consecutive text-only slides mentioned above, we switch their templates to T19 2Text.
(iii) Visual emphasis. Important terms within bullet points are highlighted to guide attention. These
improvements make the final presentation more engaging and easier to follow.

Mapper. The Mapper links figure and table assets to the pages it best supports. The Mapper pro-
duces a JSON file that, for each figure or table, lists the slide page it best supports and a brief reason.
A single visual assets may be placed on multiple slides when appropriate, and not all assets must be
used.

Formulizer. The Formulizer processes formula screenshots extracted from the paper. For each
formula, it finds the most relevant section, writes a short explanation, and includes either the im-
age or its LaTeX version. This helps preserve key mathematical content while making it easier to
understand. We provide three methods for adding formulas: (i) Detect the bounding box coordi-
nates of formulas and crop them directly. (ii) Extract the LaTeX code of formulas and render them.
However, the rendered output may not always perfectly match the original formula, especially in
terms of spacing, font, or stylistic nuances, leading to potential rendering crashes and errors. (iii)
The user manually draws bounding boxes around the desired formulas in the prepared paper file.
The framework then detects only the formulas within these user-defined regions. For each detected
formula, the agent provides an interpretation and places it on the corresponding slide. This method
ensures that only the user-selected formulas appear in the final presentation, making it the most
content-precise approach. By default, we adopt method (i) as our primary approach throughout the
pipeline.

Speaker. The Speaker creates a short narration script for each slide and directly reuses the placement
rationales produced by the Mapper (for figures/tables) and the Formulizer (for equations), inserting
them into the speaker notes. These scripts explain the key points in a clear and natural tone, and are
stored in the note field of the slide. The presenter can use them directly or edit them as needed.

4 PAPER2SLIDE BENCHMARK

4.1 DATA CURATION

Data Source. We curated a domain-specific dataset focused on recent advances in machine learn-
ing and natural language processing, with a particular emphasis on research diversity and quality.
Our dataset consists of 200 peer-reviewed papers collected from leading AI venues between 2022
and 2025, including only Oral presentations as designated by each conference. See in 1.

Conference 2022 2023 2024 2025
ICLR 17 31 29 23
ICML – 16 24 30
NeurIPS – 10 20 –

Table 1: Number of papers by Confer-
ence and Year

These conferences were chosen for their rigorous review
process, topical breadth, including multimodal learning,
generative modeling, interpretability, and frequent inclu-
sion of rich visual and mathematical content, making
them ideal for downstream tasks such as slide genera-
tion, summarization, and modality-aware learning.

4.2 EVALUATION METRICS

We evaluate Paper2Slide Benchmark with four complementary metrics that jointly assess narrative
quality, factual coverage, visual readability, and a quiz-style comprehension test.

5
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Challenges in Representation Learning01

• High-quality deep representations are crucial for retrieval tasks.
• Rapid data growth challenges latency-sensitive applications.
• Adaptive representations balance accuracy and inference speed.

Overview of CSR02

• CSR uses sparse coding for adaptive 
representation.

• Sparse vectors and matrix 
factorization enhance efficiency.

• Preserves performance with fewer 
activated neurons.

Retrieval Time Comparison03

• CSR shows superior scalability and efficiency.
• Faster retrieval times with sparse matrix multiplication.

Future Directions04

• Addressing dead neurons under high 
sparsity is a challenge.

• Future work to optimize sparse 
representations.

• Explore applications in complex tasks.

1. Motivation And Background For Adaptive Representations
2. Related Work And Open Gaps
3. Key Contributions And Claims
4. Method Overview And Intuition
5. Technical Details Of CSR
6. Empirical Analysis And Ablations
7. Experiments And Datasets
8. Results, Comparisons, And Efficiency
9. Insights, Limitations, And Future Work

7

Sparse Autoencoding Objective05

• Tied-weights TopK SAE with ReLU selects top k activations
• Decoder reconstructs embedding; Multi-TopK mitigates dead latents
• Defaults: h=4d, k in [8,256] for tunable trade-offs

Backbone Size And Hidden Dimension Effects06

• Larger backbones improve fidelity at same sparsity
• Reverse U-shape over h; best at h=4d
• Very large h can hurt under high sparsity

Multimodal Retrieval: In-Domain And Zero-Shot08

• CSR outperforms MRL on COCO/Flickr30K across active dimensions
• Trains ~1.1M params; strong efficiency and scalability

(a) SlideGen example outputs: the top row of slides is generated by GPT-4o, and the bottom row by GPT-5.
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Motivation & Problem

Adaptive embeddings at scale
Large systems need high-fidelity embeddings for retrieval,
RAG, search
Latency and cost rise with dense, long vectors
Goal: adapt compute without retraining backbones

Targets: accuracy, latency, storage Modalities: image, text, multimodal

Limitation of MRL
Requires full backbone retraining
Quality drops at short lengths (e.g.,
5% at full; >10% at very short)
Longer vectors needed to recover
accuracy → slower inference

MRL is flexible but costly and lossy for short embeddings.Dense (Full) Compressed

Contrastive Sparse Representation (CSR)

Idea
Sparsify pre-trained dense embeddings into high-dim

sparse space

Only TopK dimensions active → compute O(K)

No backbone finetuning; lightweight 2-layer module

Benefits
Accuracy ≈ full reps at small K (e.g., 4–32)

Retrieval speedups with GPU sparse ops

Training minutes vs. hours (post-training)

Adaptive K (8–256) Works: Image, Text, Multimodal

High fidelity at short lengths

Long vectors, dense matmul

Dense (MRL-like)

Few active dims, sparse matmul

CSR (Sparse)

CSR Framework CSR vs. Dense & MRL
Best retrieval accuracy near full reps, with much faster sparse retrieval

(a) Representations Dense CSR (Sparse) MRL (Short)

CSR stores few active dims; MRL truncates length; dense uses
full length.

(b) Retrieval accuracy vs. timeFull Rep. CSR MRL / Int8

CSR: near-full accuracy at much lower time via sparse matmul
on GPU.

(c) Training GPU hours CSR MRL

CSR trains in minutes-hours as a small module; MRL retrains
full model.

Retrieval Time: Sparse vs. Dense

CSR and MRL similar theoretical O(K), but sparse skips zeros

CSR benefits from larger h with small K; better scalability with N

Benchmark: 512 queries over ~1.3M database; PyTorch GPU sparse ops

(a) Effect of active K and hidden h MRL (dense) CSR (sparse) (b) Scaling with database size N MRL CSR

Ablations: Backbone & Hidden Size

Larger backbones (ViT-L, RN50) yield higher fidelity at same K
Performance peaks near h = 4d; too large h under high sparsity hurts

Default used: h = 4d, K = 32

Backbone size vs. fidelity Hidden dim h: reverse U-shape

Dead Latents & Loss Design

Aux loss + multi-TopK reduce dead latents

NCL further activates useful features; improves disentanglement

Open challenge: alignment spaces (image↔text) at extreme sparsity

Fraction of dead latents vs. K Loss components

Reconstruction: L(k)+L(4k)/8 + β L_aux

Contrastive (non-negative): L_ncl

Total: L_CSR = L_recon + γ L_ncl

Vision: ImageNet-1K

CSR > MRL across K, large gains at small K (2–64)

CSR rivals full reps with far fewer active dims

Backbone: RN50 (fair setup to MRL); CSR uses frozen embeddings

Top-1 accuracy vs. Active Dim CSR MRL SVD/LP 1-NN accuracy vs. Active Dim CSR MRL Rand FS

Text: MTEB (Classification, Clustering, Retrieval)

Matched performance: CSR is ~61× faster than full reps

Matched efficiency: +15% avg improvement over MRL

baselines

Generalizes across unseen datasets within task

Summary (NV-Embed-V2 backbone)

K = 32 default Plug-and-play SAE+NCL Consistent gains across
tasks

Average score vs. relative time CSR MRL models Full Rep.

Multimodal: MS COCO & Flickr30K (Recall@5)

CSR > MRL on I2T (+4.6–6.8%) and T2I (+6.5–10.3%)

in-distribution

Zero-shot: consistent CSR gains using CC3M training

1.1M trainable params vs. 86M full MRL

Highlights

In-dist I2T: CSR > In-dist T2I: CSR > Zero-shot I2T: CSR
>

Zero-shot T2I:
CSR >

Recall vs. Active Dim (conceptual) CSR MRL ViT-B/16 base

Conclusion & Takeaways
CSR summary

Adaptive sparse coding of frozen embeddings

SAE + non-negative contrastive loss

High fidelity at small K; O(K) retrieval

Minutes-to-train module; no backbone finetune

Default: h=4d, K∈[8,256], β=1/32, γ=1

Results
Vision: CSR > MRL across K; near-full accuracy

Text: +15% at matched cost; 61× faster at matched perf

Multimodal: consistent gains (I2T/T2I)

69× speedup on ImageNet1k 1-NN vs. quant

approaches

Future: mitigate dead latents in alignment spaces

Orthogonal to pruning/quant/distillation; complements embedding generation accelerations.
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Illustrative Overview

(a) Overview of different representations
CSR, Sparse, MRL, Dense (b) Retrieval efficiency across methods (c) Training GPU hours comparison

Abstract Overview

Many large-scale systems rely on high-quality deep representations (embeddings) for tasks like retrieval, search, and generative
modeling. Matryoshka Representation Learning (MRL) emerged as a solution for adaptive embedding lengths, but requires full
model retraining and suffers performance degradations at short lengths. We propose Contrastive Sparse Representation (CSR),
a method that sparsifies pre-trained embeddings into a high-dimensional but selectively activated feature space, achieving
adaptive representation with minimal overhead and higher fidelity. Extensive experiments demonstrate that CSR consistently
outperforms MRL in accuracy and retrieval speed, while also reducing training time significantly.

Introduction

Representation learning is central to deep learning. High-quality representations empower large-scale systems like search
engines and generative AI. The rapid growth in data volume presents challenges for latency-sensitive applications. Methods like
Matryoshka Representation Learning (MRL) are gaining attention but require full retraining and have performance drops. This
paper revisits sparse coding as an efficient approach for adaptive representation, leveraging sparsification for computational
efficiency, stability, and adaptability.

Method: Contrastive Sparse Representation (CSR)
The CSR framework starts from a pre-trained embedding and projects it into a sparse representation space. We regularize this
space using a reconstruction-based sparse compression loss combined with a non-negative contrastive loss. This method
provides high fidelity and efficient retrieval for large-scale systems.

Figure 2: CSR Framework Overview

Empirical Analysis

Experiments show that CSR consistently outperforms MRL in terms of both accuracy and retrieval efficiency, with significantly
reduced training time. CSR’s sparse coding paradigm yields strong adaptive representations with lightweight modules.

Table 1: Performance Metrics

Conclusion & Contributions

CSR demonstrates sparse coding as a powerful paradigm for adaptive representation learning, achieving high fidelity and
computational efficiency. Key contributions include introducing sparse coding as an alternative to MRL, developing a sparse
adaptive learning method, and conducting comprehensive empirical analyses to validate CSR’s effectiveness. Code is available
for wider research applications.
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Motivation & Problem

Adaptive embeddings at scale
Large systems need high-fidelity embeddings for retrieval,
RAG, search
Latency and cost rise with dense, long vectors
Goal: adapt compute without retraining backbones

Targets: accuracy, latency, storage Modalities: image, text, multimodal

Limitation of MRL
Requires full backbone retraining
Quality drops at short lengths (e.g.,
5% at full; >10% at very short)
Longer vectors needed to recover
accuracy → slower inference

MRL is flexible but costly and lossy for short embeddings.Dense (Full) Compressed

Contrastive Sparse Representation (CSR)

Idea
Sparsify pre-trained dense embeddings into high-dim

sparse space

Only TopK dimensions active → compute O(K)

No backbone finetuning; lightweight 2-layer module

Benefits
Accuracy ≈ full reps at small K (e.g., 4–32)

Retrieval speedups with GPU sparse ops

Training minutes vs. hours (post-training)

Adaptive K (8–256) Works: Image, Text, Multimodal

High fidelity at short lengths

Long vectors, dense matmul

Dense (MRL-like)

Few active dims, sparse matmul

CSR (Sparse)

CSR Framework CSR vs. Dense & MRL
Best retrieval accuracy near full reps, with much faster sparse retrieval

(a) Representations Dense CSR (Sparse) MRL (Short)

CSR stores few active dims; MRL truncates length; dense uses
full length.

(b) Retrieval accuracy vs. timeFull Rep. CSR MRL / Int8

CSR: near-full accuracy at much lower time via sparse matmul
on GPU.

(c) Training GPU hours CSR MRL

CSR trains in minutes-hours as a small module; MRL retrains
full model.

Retrieval Time: Sparse vs. Dense

CSR and MRL similar theoretical O(K), but sparse skips zeros

CSR benefits from larger h with small K; better scalability with N

Benchmark: 512 queries over ~1.3M database; PyTorch GPU sparse ops

(a) Effect of active K and hidden h MRL (dense) CSR (sparse) (b) Scaling with database size N MRL CSR

Ablations: Backbone & Hidden Size

Larger backbones (ViT-L, RN50) yield higher fidelity at same K
Performance peaks near h = 4d; too large h under high sparsity hurts

Default used: h = 4d, K = 32

Backbone size vs. fidelity Hidden dim h: reverse U-shape

Dead Latents & Loss Design

Aux loss + multi-TopK reduce dead latents

NCL further activates useful features; improves disentanglement

Open challenge: alignment spaces (image↔text) at extreme sparsity

Fraction of dead latents vs. K Loss components

Reconstruction: L(k)+L(4k)/8 + β L_aux

Contrastive (non-negative): L_ncl

Total: L_CSR = L_recon + γ L_ncl

Vision: ImageNet-1K

CSR > MRL across K, large gains at small K (2–64)

CSR rivals full reps with far fewer active dims

Backbone: RN50 (fair setup to MRL); CSR uses frozen embeddings

Top-1 accuracy vs. Active Dim CSR MRL SVD/LP 1-NN accuracy vs. Active Dim CSR MRL Rand FS

Text: MTEB (Classification, Clustering, Retrieval)

Matched performance: CSR is ~61× faster than full reps

Matched efficiency: +15% avg improvement over MRL

baselines

Generalizes across unseen datasets within task

Summary (NV-Embed-V2 backbone)

K = 32 default Plug-and-play SAE+NCL Consistent gains across
tasks

Average score vs. relative time CSR MRL models Full Rep.

Multimodal: MS COCO & Flickr30K (Recall@5)

CSR > MRL on I2T (+4.6–6.8%) and T2I (+6.5–10.3%)

in-distribution

Zero-shot: consistent CSR gains using CC3M training

1.1M trainable params vs. 86M full MRL

Highlights

In-dist I2T: CSR > In-dist T2I: CSR > Zero-shot I2T: CSR
>

Zero-shot T2I:
CSR >

Recall vs. Active Dim (conceptual) CSR MRL ViT-B/16 base

Conclusion & Takeaways
CSR summary

Adaptive sparse coding of frozen embeddings

SAE + non-negative contrastive loss

High fidelity at small K; O(K) retrieval

Minutes-to-train module; no backbone finetune

Default: h=4d, K∈[8,256], β=1/32, γ=1

Results
Vision: CSR > MRL across K; near-full accuracy

Text: +15% at matched cost; 61× faster at matched perf

Multimodal: consistent gains (I2T/T2I)

69× speedup on ImageNet1k 1-NN vs. quant

approaches

Future: mitigate dead latents in alignment spaces

Orthogonal to pruning/quant/distillation; complements embedding generation accelerations.

Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation
Tiansheng Wen * 1 2 Yifei Wang * 3 Zequn Zeng 1 Zhong Peng 1 Yudi Su 1 Xinyang Liu 1 Bo Chen 1 Hongwei Liu 1 Stefanie

Jegelka 3 4 Chenyu You 2

Illustrative Overview

(a) Overview of different representations
CSR, Sparse, MRL, Dense (b) Retrieval efficiency across methods (c) Training GPU hours comparison

Abstract Overview

Many large-scale systems rely on high-quality deep representations (embeddings) for tasks like retrieval, search, and generative
modeling. Matryoshka Representation Learning (MRL) emerged as a solution for adaptive embedding lengths, but requires full
model retraining and suffers performance degradations at short lengths. We propose Contrastive Sparse Representation (CSR),
a method that sparsifies pre-trained embeddings into a high-dimensional but selectively activated feature space, achieving
adaptive representation with minimal overhead and higher fidelity. Extensive experiments demonstrate that CSR consistently
outperforms MRL in accuracy and retrieval speed, while also reducing training time significantly.

Introduction

Representation learning is central to deep learning. High-quality representations empower large-scale systems like search
engines and generative AI. The rapid growth in data volume presents challenges for latency-sensitive applications. Methods like
Matryoshka Representation Learning (MRL) are gaining attention but require full retraining and have performance drops. This
paper revisits sparse coding as an efficient approach for adaptive representation, leveraging sparsification for computational
efficiency, stability, and adaptability.

Method: Contrastive Sparse Representation (CSR)
The CSR framework starts from a pre-trained embedding and projects it into a sparse representation space. We regularize this
space using a reconstruction-based sparse compression loss combined with a non-negative contrastive loss. This method
provides high fidelity and efficient retrieval for large-scale systems.

Figure 2: CSR Framework Overview

Empirical Analysis

Experiments show that CSR consistently outperforms MRL in terms of both accuracy and retrieval efficiency, with significantly
reduced training time. CSR’s sparse coding paradigm yields strong adaptive representations with lightweight modules.

Table 1: Performance Metrics

Conclusion & Contributions

CSR demonstrates sparse coding as a powerful paradigm for adaptive representation learning, achieving high fidelity and
computational efficiency. Key contributions include introducing sparse coding as an alternative to MRL, developing a sparse
adaptive learning method, and conducting comprehensive empirical analyses to validate CSR’s effectiveness. Code is available
for wider research applications.

(b) GPT HTML example outputs: the top row of slides is generated by GPT-5 HTML, and the bottom row by
GPT-4o HTML.

Figure 3: Comparative Analysis of Presentation Generation Methods

Geometry-Aware Density. We aim to quantify layout aesthetics and readability using mathemat-
ical function-based metrics. This metric evaluates layout density while also considering visually
pleasing and comfortable design for human in terms of two components: (i) Area Occupancy: This
measures how much of the slide’s space is used, comparing it to a target occupancy value τ . If the
slide is too empty or too full, it negatively impacts the score. (ii) Effective Region Count: This
measures the number of content regions on the slide. The ideal number of regions is denoted by
M⋆, and the metric penalizes slides with too few or too many regions. The penalty is represented by
a downward-opening quadratic function that rewards layouts with a number of regions close to M⋆.
Overly blocky slides look rigid and lack hierarchy, while excessive partitioning introduces noise and
jumpy reading. Details are provided in Appendix B.
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VLM as Judge. Following PPTEVAL (Zheng et al., 2025), we evaluate decks along three di-
mensions – Content, Design and Coherence, using GPT-4o to judge. Scores are on a 1–5 scale,
accompanied by brief rationales. The detailed criteria are listed in Table 5

SlideQA. Since slide decks are the primary vehicle by which speakers convey knowledge and
audiences learn it, we need to evaluate whether our generated presentations communicate the ma-
terial, and how much they succeed in doing so. Following PaperQuiz (Pang et al., 2025), for each
paper, we first generate a quiz of 100 questions from the paper PDF: 50 verbatim questions answer-
able directly from the text, covering diverse factual aspects, and 50 interpretive questions targeting
higher-level comprehension. Then the questions are answered by six different VLM readers, in-
cluding three closed-source models: GPT-4o-mini, GPT-4o, and GPT-o3, and three open-source
models: LLaVA-OV-7B, Qwen2-VL-7B-Instruct, and Phi-4-multimodal-instruct. The abilities of
closed-source vision-language models typically surpass those of open-source models, akin to how
more capable students demonstrate better overall learning abilities. To discourage verbosity, we ap-
ply a smooth length penalty to SlideQA with a calibrated coefficient so that average-length decks
incur a target factor, details are provided in Appendix B.

Textual Coherence. Following the approach in (Pang et al., 2025), we quantify textual coherence
using the standard “Perplexity” (PPL) metric, calculated for the entire poster text under Llama-2-7b-
hf. A lower PPL score indicates more predictable and coherent language, see details in Appendix B.

5 EXPERIMENT

5.1 BASELINES AND SETTINGS

We evaluate our framework on multi slide PowerPoint generation with a fixed 16:9 canvas, the
number of slides is unconstrained. The compared baselines span three categories: (i) end to end
generators: GPT-5 HTML and GPT-4o HTML, which generate HTML+CSS code for slides, and
GPT-5 Image and GPT-4o Image, which directly synthesize slide images page by page; (ii) multi
agent workflows: PPTAgent-4o and PosterAgent-4o used in slide mode, which decompose planning,
drafting, and layout into iterative editing steps; and (iii) our method instantiated with two backbones,
GPT-4o and GPT-5, enabling a controlled comparison across backbones while keeping the rest of
the pipeline unchanged.

All methods take the same source PDF per paper. We report Length Penalized Accuracy on SlideQA,
distinguishing between Verbatim and Interpretive questions, and we categorize the models into open-
source and closed-source groups, and provide separate evaluations for each group; overall PPL
over concatenated slide text; and Geometry Aware Density with its two components, Occupancy
Match and Fragmentation Reward; together with VLM as Judge scores along Content, Design and
Coherence. Exact metric definitions and default thresholds are given in Sec. 4.2.

5.2 RESULTS

Verbatim Avg

Interpretive Avg PPL

Occu
pancy Match

Fragmentation Reward

Density
-Avg.

Content
Design

Coherence
VLM Avg

Metrics

0

20

40

60

80

100

Sc
or

es

Evaluation Results 
Ours-4o
Ours-5

Figure 4: Performence of GPT-5 VS. GPT-4o in our
benchmark

Our method vs. baselines. As shown in Ta-
ble 2, Ours-4o delivers the strongest over-
all score in the table, improving over the best
GPT-4o baseline, while maintaining very com-
petitive interpretive performance without sac-
rificing verbatim coverage. This suggests our
pipeline lifts detail retention without sacrific-
ing global readability.

Backbone Comparison and Stability.
Comparing our two backbones, Ours-4o
outperforms Ours-5. GPT-5 demonstrates
stronger coding ability but higher execution-
failure and retry rates, and greater sensitivity
to prompt phrasing—prompts that succeed

7
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Model Verbatim ↑ Interpretive ↑ Overall Avg.
open-src closed-src V-Avg open-src closed-src I-Avg

GPT-5
HTML-5 74.89 70.27 72.58 91.22 90.92 91.07 81.83
Image-5 66.93 53.94 60.44 73.13 89.49 81.31 70.87
Ours-5 75.73 70.03 72.88 94.30 89.41 91.86 82.37

GPT-4o
HTML-4o 60.50 75.53 68.02 97.33 91.40 94.37 81.19
Image-4o 48.97 30.89 39.93 50.19 70.67 60.43 50.18
PPTAgent-4o 57.92 52.51 55.22 57.57 56.25 56.91 51.06
PosterAgent-4o 67.79 67.95 67.87 73.05 79.91 76.48 72.18
Ours-4o 75.93 71.32 73.63 94.67 93.82 94.25 83.94

Table 2: SlideQuiz Evaluation on SlideGen based on 6 different Readers.

with GPT-4o are more likely to be misinterpreted by GPT-5. We hypothesize this reflects a higher
propensity for hallucination or overconfident, self-directed reasoning. We therefore tighten the
system prompt and schema constraints. After iterative refinement, we identify a prompt that reliably
yields valid GPT-5 outputs while preserving controllability.

A persistent gap separates interpretive and verbatim accuracy in SlideQA. Across all methods,
interpretive accuracy is consistently and substantially higher than verbatim accuracy, as reflected in
the SlideQA results reported in Table 2. This gap is large for most methods. The pattern indicates
that fine-grained, quote-level details are harder to preserve and retrieve in multi-slide PPT generation
than high-level understanding and reasoning. In practice this is expected: slides compress text,
distribute content over multiple pages, and often replace long sentences with bullets or figures,
thereby preserving the gist while reducing exact quote-level matches.

HTML routes outperform image-only routes. Using GPT to produce HTML/CSS significantly
outperforms using it to produce pixel-based images. Image-only generation renders text as pixels,
so it cannot be directly extracted and must rely on OCR. Because many “characters” are merely
drawn, stroke-like approximations rather than standard glyphs, they often exhibit missing strokes,
unintended joins, and distortions, which raise OCR error rates and further hinder content recogni-
tion; by contrast, HTML-based generation preserves actual text and layout structure, and the gap in
readability and parseability between the two is substantial.

Prompting Considerations for GPT-5. In our pipeline, instruction fidelity differs noticeably be-
tween backbones. Empirically, GPT-4o follows schema-bound instructions with high Adherence:
when asked to produce a plan as strict JSON, it reliably returns a well-formed object with the re-
quested keys and structure. By contrast, a direct reuse of the same prompts on GPT-5 can yield
schema violations. The most common failure mode is mode collapse into a prose summary instead
of emitting the required JSON file, despite identical task intent. Long system prompts tend to trigger
a summarization mode. This behavior suggests that prompt packaging, rather than task difficulty, is
the dominant factor for GPT-5 under our setting.

A practical remedy is to design backbone-specific prompt packaging. When organizing prompts as
YAML file with fields such as System Prompt, template, and jinja args , we observe the following
consistent pattern: keeping the System Prompt minimal and goal-focused, state only the task ob-
jective and moving the concrete requirements, including output schema, key lists, and formatting
constraints, into template improves GPT-5’s Adherence substantially. Conversely, a wordy Sys-
tem Prompt that mixes goals, checklists, and formatting often leads GPT-5 to summarize rather than
to conform to the requested output contract. In practice, we therefore (i) keep the System Prompt
to a single, unambiguous goal statement, and (ii) place the exact JSON schema, field-by-field con-
straints, and example scaffolds in the template block. Under this packaging, GPT-5’s tendency
to drift into summaries largely disappears, while GPT-4o continues to perform as before.

Geometry-Aware Density We decompose the Geometry-Aware Density into two components:
Occupancy Match (OM) and Fragmentation Reward (FR). Across the benchmark, our approach
achieves higher scores than all baselines on both OM and FR, indicating closer alignment to the

8
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Model Perplexity Density VLM-as-Judge
OM FR D-Avg. Content Design Coherence Avg.

GPT-5
HTML-5 189.38 54.29 60.75 57.52 3.54 4.02 4.09 3.88
Image-5 605.02 67.98 79.39 73.69 2.84 3.16 3.21 3.07
Ours-5 98.40 69.15 84.62 76.89 4.12 4.30 4.35 4.26

GPT-4o
HTML-4o 200.79 41.19 46.46 43.83 3.02 2.76 3.97 3.25
Image-4o 793.71 70.29 76.20 73.25 2.39 3.09 3.50 2.99
PPTAgent-4o 721.54 53.22 56.26 54.74 3.25 3.24 3.29 3.26
PosterAgent-4o 139.67 68.73 76.20 72.47 3.19 3.48 4.53 3.73
Ours-4o 100.59 79.71 82.24 80.98 4.01 4.28 4.66 4.32

Table 3: Evaluation across Textual Coherence, Density (OM: Occupancy Match, FR: Fragmentation
Reward, and weighted average D-Avg where D-Avg = λ1 · OM + λ2 · FR; default λ1 = 0.5, λ2 =
0.5), and VLM-as-Judge.

Paper
5o-HTML

5o-Image
4o-HTML

4o-Image

PPTAgent-4o

PosterAgent-4o
Ours-5

Ours-4
o

Method
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Figure 5: SlideQA’s Avg scores across different types of slides (x-axis) for readers (colored lines)
on human evaluation subset

target occupancy and a more effective region count near the preferred range M star. This indicates
that, compared with those produced by the baselines, our generated PPT decks are neither sparse
nor cluttered. Moreover, we observe that GPT-Image performs much better than GPT-HTML. This
suggests that, even if the images are a bit blurry, GPT still aims for comfortable overall layout. In
contrast, HTML is clear and precise, but the layouts often feel less comfortable and less appealing.

Human evaluation. To assess our method with human judgment, we recruited a PhD student to
complete the SlideQA on 5 randomly selected papers from our Paper2Slide dataset, as shown in
Table 5 For each paper, we evaluated 8 poster variants, including 6 baselines and 2 versions of our
method, following the setup in Section 5.1. Details of the human evaluation protocol are provided
in Appendix (). Figure 6 reports the average SlideQA scores per poster type (x-axis) for each reader
(colored lines). Scores across poster types show good consistency between the human and the VLM
readers. This alignment supports the use of reader models as effective proxies for human judgment.

6 CONCLUSIONS

We propose SlideGen, a step-by-step framework that covers outline planning, asset grounding, tem-
plate selection, speaker-note drafting, and global refinement. We also introduce the Paper2Slide
Benchmark with evaluation protocols for Geometry-Aware Density, VLM-as-Judge, SlideQA, and
Textual Coherence. SlideGen advances automated slide generation toward human quality and im-
proves efficiency, enabling practical, scalable scientific communication

9
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Ethics statement. This work follows the ICLR Code of Ethics. We rely exclusively on publicly
available datasets and pretrained models under their respective licenses. We do not anticipate direct
negative societal impacts or ethical risks from the proposed method.

Reproducibility statement. We aim for complete reproducibility. All code, configuration files, and
scripts required to replicate our experiments will be released publicly upon publication.
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Appendix
A ABBREVIATIONS

We provide a reference for the abbreviations of models used in this paper.

Abbreviation Full Name
4o-mini GPT-4o-mini
4o GPT-4o
o3 GPT-o3
llava-ov-7b LLaVA-OneVision-Qwen2-7b-ov-hf (Li et al., 2024)
Qwen2-VL-7B Qwen2-VL-7B-Instruct (Wang et al., 2024; Bai et al., 2023)
Phi-4-MM Phi-4-multimodal-instruct (Abouelenin et al., 2025)

Table 4: Reference for model abbreviations used in this paper.

B METRIC DEFINITIONS AND PROTOCOLS

Notation. A deck consists of N slides {si}Ni=1. Each slide has a role ri ∈
{title,agenda,content,thanks}. For content slides we record an optional section la-
bel σi ∈ Σ and subsection label σ′

i ∈ Σ′. We denote the pattern identifier by πi ∈ P (e.g.,
T1 TextOnly, T4 ImageTop).

We consider a fixed slide layout: slide s1 is the title page, slide s2 is the agenda page, slides
s3, . . . , sN−1 are content pages, and the last slide sN is thanks page. Formally, a deck has
N slides {si}Ni=1 with roles r1 = title, r2 = agenda, ri = content for 3 ≤ i ≤ N − 1,
and rN = thanks. The content page lists section dividers (“PART 1, PART 2, . . . ”); these are the
agenda items. Let A = [a1, . . . , am] be the ordered list of top-level bullets on s2.

Each slide carries a hierarchical string bullet list Bi = {(ui,k,Si,k)}Ki

k=1, where each content box b
is defined as a pair (ui,k,Si,k), and ui,k is the k-th top-level bullet and Si,k = [vi,k,1, . . . , vi,k,Li,k

]
is the list of sub-bullet strings.

We define the flattened textual content flat(Bi) =
[
ui,1,Si,1, . . . , ui,Ki ,Si,Ki

]
and let wi =

words(flat(Bi)) be the word count. Image, table, and formula assets on slide i are denoted by
the finite sets Ii for image filenames, Ti for table filenames, and Fi for LaTeX strings, respectively.
Optional speaker notes are written ni.

Let slide area be 1. For each region b ∈ Bi with normalized width and height wb, hb, its area is
A(b) = wbhb. The occupied area is the union area ρi ∈ [0, 1] of all non-background regions.

B.1 GEOMETRY-AWARE DENSITY

This metric evaluates layout density with two components: (i) area occupancy relative to a target τ ;
(ii) a concave quadratic preference over the effective number of content boxes, peaking at M⋆.

Why a downward-opening scoring function? Overly monolithic slides look blocky and lack
hierarchy, while excessive partitioning introduces noise and jumpy reading. A downward-opening
scoring function over the effective region count captures the optimal range: it peaks near the pre-
ferred count M⋆, then smoothly decreases as the count drifts left, where pages become too plain,
or right, where they become too busy, avoiding brittle thresholds. The width κ controls tolerance
around M⋆, and the area gate amin prevents gaming with tiny micro-regions. Combined with the
occupancy term 1 − |ρi − τ |, this yields an interpretable and reproducible measure that rewards
layouts which are neither sparse nor cluttered.

We count only non-trivial regions via a minimum area gate amin > 0:

M eff
i =

∑
b∈Bi

1[A(b) ≥ amin] . (1)
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Define a downward-opening quadratic fragmentation reward with maximum at M⋆:

Rfrag
i = max

{
0, 1− (M eff

i −M⋆)2

κ2

}
∈ [0, 1]. (2)

OM and FR decomposition.

OMi ≜ 1−
∣∣ρi − τ

∣∣, FRi ≜ Rfrag
i . (3)

sgeomi = λ1 OMi + λ2 FRi, λ1 + λ2 = 1, (4)

DENSITYgeom =
1

N

N∑
i=1

(
λ1 OMi + λ2 FRi

)
. (5)

We set amin = 0.04, M⋆ = 3, κ = 2.1, τ = 0.55, λ1 = 0.6, λ2 = 0.4.

B.2 PPTEVAL CRITERIA

Dimension Criteria

Content Text is concise and grammatically sound; key points are supported by relevant images.
Design Harmonious colors and proper layout ensure readability; visual elements enhance appeal without

clutter.
Coherence Structure progresses logically and includes essential background information across the deck.

Table 5: PPTEVAL dimensions and criteria (1–5 scale), adapted from (Zheng et al., 2025).

B.2.1 SLIDEQA PROTOCOL

The protocol of SlideQA is as follows: (i) Question curation: For each source paper, we follow
a poster–reader communication setup (Pang et al., 2025) and employ ChatGPT-5o as a question-
generation model to produce |Qeval| = 100 multiple-choice questions per paper. We construct
two disjoint subsets: Qverb with |Qverb| = 50 verbatim questions directly answerable from the
paper text, spanning 13 content aspects; and Qint with |Qint| = 50 interpretive questions targeting
high-level comprehension across 10 conceptual dimensions. We set Qeval = Qverb ∪ Qint and
Qverb ∩ Qint = ∅. (ii) Respondents: Each image is presented to M = 3 vision–language models,
a mix of open- and closed-source systems, to simulate reader standards from casual to expert (Pang
et al., 2025). Each model answers all |Qeval| questions using only the poster content.

Definition. Let rq,m ∈ {0, 1} denote the correctness of model m ∈ {1, . . . ,M} on question
q ∈ Qeval. Define the per-question averaged correctness

r̄q =
1

M

M∑
m=1

rq,m. (6)

The SlideQA accuracy is then

sR =
1

|Qeval|
∑

q∈Qeval

r̄q, (7)

which averages correctness across both questions and models. Subset scores restrict the sum in
equation 7 to Qverb and Qint:

sverbR =
1

|Qverb|
∑

q∈Qverb

r̄q, sintR =
1

|Qint|
∑

q∈Qint

r̄q. (8)

Rationale. This protocol simulates how readers glean information from posters: questions come
from the paper, but answers must be inferred solely from the poster. To avoid rewarding text-heavy
decks, we additionally provide a length-penalized variant sLPAR via the adjustment in Appendix B.3.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B.3 LENGTH-PENALIZED ACCURACY (LPA)

What it measures. It combines raw QA accuracy with a length penalty so that equally accurate
yet shorter decks receive higher scores.

Why LPA? LPA discourages decks that chase QA accuracy by copying long passages and instead
rewards concise slides that communicate the core ideas clearly.

Definition. Let the total deck length be

l =

N∑
i=1

tok
(
flat(Bi)

)
, (9)

where tok(·) returns the token count under a fixed tokenizer. We define the length-penalized score

LPA(α) =
sR

1 + α · log(1 + l)
, α > 0, (10)

which is bounded by LPA(α) ≤ sR ≤ 1 and decreases smoothly as l grows.

Calibration. To set the penalty strength, we choose α so that the denominator in equation 10 at
the average length l̄ equals a target factor 1 + γ ( γ ∈ [0.2, 0.5]):

α =
γ

log(1 + l̄)
. (11)

B.4 PERPLEXITY (PPL)

What it measures. It quantifies the average next-token uncertainty of a language model over the
deck text. Lower values indicate more fluent and predictable text. We compute this metric using
Llama-2-7b-hf language model.

Definition. Let T (·) be a fixed tokenizer and let

x1:L = T
(
flat(B1) ∥ · · · ∥ flat(BN )

)
be the token sequence obtained by concatenating all slide texts. The full-sequence perplexity is

PPL = exp

(
− 1

L

L∑
t=1

log pθ
(
xt

∣∣∣∣∣x<t

))
, (12)

where log denotes the natural logarithm. Lower PPL means higher predicted likelihood per token;
PPL = 1 corresponds to perfectly predictable text.

C SLIDEGEN BENCHMARK DATASET

Here we present the Paper2Slide Benchmark, our generated dataset. Representative samples are
shown in 6, 7, 8, 9, 10

D PROMPTS

We provide the prompts used in our framework and benchmark for reference, see Figs.
11,12,13,14,15,16 and 17.
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From Thousands to Billions: 
3D Visual Language Grounding 

via Render-Supervised 
Distillation from 2D VLMs

Ang Cao, Sergio Arnaud, Oleksandr Maksymets, 
Jianing Yang, Ayush Jain, Ada Martin, Vincent-

Pierre Berges, Paul McVay, Ruslan Partsey...

1. Motivation and Background
2. Key Contributions
3. Method Overview
4. Experiments and Datasets
5. Results and Analysis
6. Conclusion and Future Work

The Data Scarcity Challenge in 3D VLG01

• 3D VLG faces significant data scarcity.
– Only thousands of annotated scenes available.
– High cost and time required for 3D annotations.

• Limits scalability and performance of 3D VLG systems.

Bridging 2D and 3D: From Lifting to Learning01

• Recent methods lift 2D models to 3D.
– Suffer from slow optimization and accumulated errors.
– Limited scalability.

• Differentiable rendering offers a promising alternative.
– Enables direct training of 3D models with 2D supervision.

Render-Supervised Training Pipeline02

• LIFT-GS introduces a render-supervised training pipeline.
– Requires only 2D supervision.
– Eliminates need for scarce 3D annotations.

• Uses differentiable rendering to train 3D models with 2D losses.

Pseudo-Labeling Strategy02

• Demonstrates a pseudo-labeling strategy for distilling 2D models into 3D.
– Uses SAM, CLIP, and LLMs.
– Generates 2D supervision for 3D understanding.

• Effectively transfers internet-scale 2D knowledge into 3D.

Task Formulation03

• LIFT-GS predicts 3D Gaussian 
representations from point clouds.
– Renders them into 2D views for 

supervision.
• Allows training without 3D 

annotations.
– Leverages 2D foundation models for 

pseudo-label generation.

8

Losses and Architecture03

• Employs grounding losses and per-pixel losses.
– Network-agnostic architecture.
– Uses transformer-based grounding decoder.

• Gaussian decoder head predicts 3D masks and features.

Training Details04

• Trained on ScanNet and other datasets.
– Uses 2D pseudo-labels and 3D annotations.

• End-to-end optimization with differentiable rendering.
– Various loss functions improve performance.

Evaluation on 3D Vision-Language Grounding04

• Evaluated on 3D open-vocabulary instance segmentation.
• Shows significant improvements over state-of-the-art methods.

– Demonstrates effectiveness of pretraining approach.

Figure 6: Representative sample 1 from the Paper2Slide Benchmark.
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Grounding Simple Nouns in 3D05

• LIFT-GS achieves substantial performance gains.
– Outperforms state-of-the-art baselines.

• Excels in open-vocabulary 3D instance segmentation tasks.

Grounding Complex Phrases in 3D05

• Shows significant improvements in grounding complex phrases.
– Achieves state-of-the-art performance in 3D referential grounding.

Conclusion and Future Work06

Conclusion

LIFT-GS addresses data scarcity in 3D VLG.
– Introduces render-supervised 

distillation from 2D VLM models.
Achieves state-of-the-art performance.

– Reveals substantial data limitations in 
3D grounding.

Future Work

Focus on improving pseudo-labeling 
strategies.
Leverage advancements in 2D foundation 
models.

– Enhance 3D model training and 
performance.

THANKS!

Figure 7: Representative sample 1 from the Paper2Slide Benchmark.
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CLIP-DISSECT: Automatic 
Description of Neuron 

Representations in Deep 
Vision Networks

Tuomas Oikarinen, Tsui-Wei Weng

1. Motivation And Background
2. Key Contributions of CLIP-Dissect
3. Method Overview
4. Experiments and Results
5. Use Case and Insights
6. Limitations and Conclusions

Challenges in Understanding DNNs01

• Deep neural networks excel in 
various domains.

• Understanding internal workings 
remains challenging.
– Crucial for safety-critical tasks.
– Helps identify potential biases.

Introduction to CLIP-Dissect02

• CLIP-Dissect labels neurons with 
open-ended concepts.
– Uses multimodal models like CLIP.
– Does not require labeled data.

• Model-agnostic and 
computationally efficient.

Advantages Over Existing Methods02

• CLIP-Dissect provides accurate neuron descriptions.
• Significantly faster than existing methods.
• Handles new concepts flexibly.

CLIP-Dissect Algorithm Steps03

• Compute concept-activation matrix.
• Record neuron activations.
• Determine neuron labels using 

similarity function.
• Leverages CLIP's image and text 

encoders.

Similarity Function Choices03

• Various similarity functions 
explored.

• SoftWPMI performs best.
– Considers probability of images 

belonging to a concept.

Qualitative and Quantitative Results04

• CLIP-Dissect outperforms baselines.
• Accurate neuron descriptions in ResNet layers.

Detecting Concepts Beyond Probing Images04

• Correctly labels neurons without direct image probes.
• Showcases robustness of CLIP-Dissect.

Discovering Neuron Similarities05

• Neurons connected by high weights represent similar concepts.
• Provides insights into network structure.

Figure 8: Representative sample 2 from the Paper2Slide Benchmark.
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Denoising MCMC for 
Accelerating Diffusion-Based 

Generative Models

Beomsu Kim; Jong Chul Ye

1. Motivation And Problem Formulation
2. Background On Scores, MCMC, And Diffusion
3. Key Contributions And High-Level Idea
4. Method Overview And Algorithmic Steps
5. Technical Details And Practical Choices
6. Experiments, Datasets, And Integrators
7. Results, Ablations, And Analysis
8. Related Work, Limitations, And Impact
9. Conclusion And TakeawaysWhy Accelerate Diffusion Sampling?01

• Reverse S/ODE sampling needs 
hundreds–thousands of score 
evaluations.

• High compute hinders 
high‑ resolution, diverse 
generation.

• Traditional MCMC mixes poorly in 
high‑ dimensional, multimodal 
manifolds.

• Goal: faster sampling without 
sacrificing fidelity or diversity.

4

Diffusion Models, Reverse SDEs And ODEs02

• Forward diffusion admits reverse SDE and probability-flow ODE.
• Integrating reverse dynamics with scores yields samples.
• VE and VP are equivalent via change-of-variables; solver choice matters.

Denoising MCMC: Product-Space Initialization03

• Propose DMCMC: MCMC over (data, 
noise) then short reverse 
integration.

• Chains dwell near manifold at low 
noise, shortening integration 
interval.

• Enables faster, high-fidelity 
sampling under tight NFE budgets.

Key Contributions And High-Level Idea03

Denoising Langevin Gibbs (DLG) 
Instance
DLG alternates Langevin x-updates and σ-
updates via classifier.
Requires pretrained score and lightweight 
noise-level classifier.
Compatible with any reverse S/ODE; works 
for VE or VP scores.

Orthogonality To Solver 
Improvements
DMCMC provides better initialization, 
complementing solver advances.
Combining DMCMC with improved 
integrators further boosts performance.
Enhances predictor–corrector by 
strengthening initialization quality.

7

Step 1: MCMC On Data–Noise Product Space04

• Define joint target over data and noise with smoothing and prior.
• MCMC samples (x, σ), moving up for mixing and down near manifold.
• Prior can bias toward small σ while preserving mixing.

DLG: Alternating Langevin And Noise Prediction04

• Langevin step uses conditional 
score at current σ.

• Predict next σ via classifier 
approximating p(σ|x).

• Select lowest‑ σ state per block for 
denoising.

Technical Details And Practical Choices05

Warm Starts, Skipping, And 
Selection
Warm start: generate clean, add noise, run 
few Gibbs updates.
Reduce autocorrelation by processing every 
n_skip-th block.
Within blocks, pick minimum‑ σ state for 
denoising.
Allocate NFEs between chain and denoising 
for balance.

Choice Of Prior And 
Hyperparameters
Use 1/σ prior to nudge toward low noise 
while mixing.
Overly sharp priors slow convergence; 
trade-offs exist.
Tune step size η and denoising NFE ratio 
jointly.

Mixing And Mode Coverage06

• DLG traverses modes in 1k‑ mode MoG and matches class statistics.
• CelebA‑ HQ chains show smooth attribute transitions with quality intact.
• Autocorrelation analyses confirm improved mixing.

Figure 9: Representative sample 3 from the Paper2Slide Benchmark.
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Image Generation Benchmarks06

• DLG accelerates multiple samplers 
across CIFAR‑ 10, CelebA‑ HQ, 
FFHQ.

• Reduces NFEs needed for 
competitive or better FID.

• Works for deterministic and 
stochastic integrators.

Conditional Generation And Scores06

• DLG improves class‑ conditional generation with VE and VP scores.
• Per-class FID improves when adding DLG to same integrator.

State-Of-The-Art In Low-NFE Regime07

• DLG+KAR1 achieves SOTA FID at ~10–16 NFE on CIFAR‑ 10.
• CelebA‑ HQ‑ 256: DLG+KAR2 outperforms prior 4000‑ NFE results.
• FFHQ‑ 1024 shows large low‑ NFE FID gains.

Ablations: η, NFE Split, And Necessity Of Denoising07

• Optimal η and denoising‑ to‑ total NFE ratio balance diversity and quality.
• As NFE grows, near‑ optimal ratios widen.
• Removing denoising collapses quality—denoising is essential.

σ-Trajectory And Manifold Proximity07

• σ trajectories move up/down, 
enabling mode transitions.

• Predicted σ correlates with 
distance‑ to‑ manifold scaling.

• Classifier keeps chains where score 
gradients are informative.

Relation To Predictor-Corrector And Distillation08

• DMCMC complements PC by 
improving initialization; accelerates 
PC pipelines.

• Compared to distillation, requires 
far less extra training compute.

• Achieves competitive FID at similar 
NFE with minimal overhead.

Related Work, Limitations, And Impact08

Limitations And Future 
Extensions
Extensions to guided diffusion (classifier/CLIP) 
are natural next steps.
Further theory on Langevin Gibbs 
convergence and adaptive priors needed.
Trade-offs between stability and speed 
warrant deeper analysis.

Societal Impacts And 
Reproducibility
Acceleration reduces compute and energy 
for generative models.
Faster sampling can amplify misuse risks; 
responsible deployment is needed.
Code and checkpoints provided with clear 
hyperparameters and pseudocode.

Main Takeaways09

• DMCMC samples in data–time space first, then denoises, shortening integration.
• DLG is simple, plug‑ and‑ play, and scales to high resolution.
• Delivers state‑ of‑ the‑ art results in low‑ NFE regimes.

THANKS!

Figure 10: Representative sample 3 from the Paper2Slide Benchmark.
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system_prompt:
  You are SlidePlanBuilder.
  Your ONLY task: return a single valid JSON object matching EXACTLY the schema below.
  Do NOT include explanations, summaries, markdown code fences, or natural language.

template:
  Instructions:
  The PowerPoint canvas is fixed at 13.3 in*  7.5 in (16:9).You receive five JSON blobs:
  1. raw_result.json - hierarchical summary of the paper.  Structure:
  2. figures.json - list of sections → subsections → visual assets.  Example (keys may vary by 
paper):
    Each `imageN` or `tableN` value is an index that maps to an image/table file name 
(`image_2.png`, `table_1.png`, etc.).
  3. formula_index.json - flat list of formula images:
  4. image_dims.json  - pixel dimensions for every `image_.png` 
  5. table_dims.json  - pixel dimensions for every `table_.png` 

   What you must do for every subsection

  1. Pick the best slide template from this library and output its 
`template_id`:

    | ID | When to use |
    |----|-------------|
    | T1_TextOnly   | No images/tables |
    | T2_ImageRight | 1 image + ≤4 bullets |
    | T3_ImageLeft  | Mirror of T2 (alternate left/right across consecutive slides) |
    | T4_ImageTop   | 1 wide image (aspect > 1.6) or table | 
    | T5_TwoImages            | Exactly 2 side-by-side images, no text                                      |
    | T5_TwoImages2           | Two side-by-side images on top, with a text block below                     |
    | T7_2x2_TopImage         | 2*2 layout: top two blocks are images, bottom two are text                  
|
    | T8_2x2_BottomImage      | 2*2 layout: top two blocks are text, bottom two are images                  
|
    | T9_2x2_AltTextImg       | 2*2 layout: images on top-left & bottom-right, text on top-right & 
bottom-left |
    | T10_4Img_2x2Grid        | Four images arranged in a 2*2 grid, no text                                 |
 | T11_3Img_TopTextBottom  | Vertically divided: 3 images on top, text block below                       |
    | T12_3Img_BottomTextTop  | Text block on top, 3 square images in one row below                         
|
    | T13_3Img                | Title on top, followed by 3 evenly spaced images                            |
    | T14_ImageRight_1Formula | Right column has two slots: top-right = one image or one table, 
bottom-right = one formula; left column = text bullets. Use when the slide has one key equation 
plus one main visual. |
    | T15_ImageLeft_1Formula | Left column has two slots: top-left = one image or one table, 
bottom-left = one formula; right column = text bullets. Use when the slide has one key equation 
plus one main visual.  |
    | T16_1Img_2formula_TopTextBottom | Bottom = text block; top are three rows: row1 = one 

layout_agent_xin
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 image or one table, row2 = one formula, row3 = one formula. Use for one main visual plus two   
formulas. |
    | T17_2Img_1formula_TopTextBottom | Top row: two visuals side by side (each is one image or 
one table); middle row: one formula; bottom: text block. |
    | T18_2formula_TopTextBottom | Top 2 rows: two formulas; bottom: text block. |
 
  2. Generate hierarchical bullets summarising the subsection:  
     • Up to 6 top-level bullets.  
     • Each top bullet may have 0-6 sub-bullets (2-level outline).  
     • Top bullets ≤ 20 words; sub-bullets ≤ 25 words.

  3. Select visuals that best support the bullets:  
     • Formulas belonging to the same subsection should stay on the same slide whenever possible; 
if more than 2, prefer `T11_3Img_TopTextBottom`.  
     • Do not crop or distort images - preserve original aspect ratio (minor scaling to fit is fine).

  4. Return a single valid JSON object with the exact schema below - do NOT wrap it in markdown.
     ```json
    

 {
       "slides": [
         {
           "section": "<string>",
           "subsection": "<string>",
           "template_id": "T?_",
           "bullets": [
             {
               "text": "<string>",
               "sub": ["<string>", ...]
             }, ...
          ],
           "images": ["<filename>", ...],
           "tables": ["<filename>", ...],
           "formulas": ["<filename>", ...]
         }, ...
       ]
     }
     ```

  Use the template-selection rules strictly so that downstream code can rely on them.  
  Answer only with the JSON.

  You must consider each visual's size and aspect ratio

   For every image / table, compute aspect = width ÷ height.  
   Choose the slide template and left/right/top placement based on aspect and absolute size:  
    - Wide (aspect ≥ 1.6) → best placed across the top (template T4_ImageTop), including wide tables.  
    - Tall / square (aspect ≤ 1.0) → best placed on the left or right (templates T2_ImageRight or T3_ImageLeft).  
    - If a visual's width is nearly the full slide width, prefer T4_ImageTop to avoid excessive down-scaling.  
   Never stretch or crop; only scale proportionally to fit placeholders.

Figure 11: Prompt for Arranger.
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    When designing slide layouts, you must carefully consider visual density and legibility 
constraints—especially for images that are wide or contain fine-grained details. 
    Such images often become unreadable when downscaled to fit dual-visual layouts like 
T2_ImageRight, T3_ImageLeft, or T5_TwoImages2. 
    If multiple visuals(such as two images both with an aspect ratio greater than 1.6) are assigned to 
the same subsection but combining them would result in overcrowding or poor legibility, first check 
whether one of them fits better semantically in a neighboring subsection (e.g., covering a related 
topic or dataset). If so, move it to that subsection and assign a layout that presents it alone.

  raw_result:
  {{ raw_result_json }}
  figures:
  {{ figures_json }}
     formulas:
  {{ formulas_json }}
  image_informations:
  {{ image_informations_json }}
  table_informations:
  {{ table_informations_json }}

  
jinja_args:
  - raw_result_json
  - figures_json
  - formulas_json
  - image_informations_json
  - table_informations_json

Figure 12: Prompt for Arranger.
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formula_match
system_prompt: |
  You are an expert assistant tasked with assigning formulas to the most relevant paper sections.
  You will be given:
    1. JSON content of the paper structure, including sections and subsections (with title and 
description).
    2. A list of formulas with LaTeX, page_no, and the surrounding text context.
  GOAL:
    • Each formula should be assigned to its corresponding subsection, and a subsection may contain 
multiple formulas.
    • Produce a new JSON object that mirrors the structure of the provided paper_outline_json 
(sections → subsections).
    • For each subsection, assign zero, one, or multiple formulas.
    
    • For each assigned formula, include:
        - "formulaN": <formula_id>
        - "reasonN": <reason string> explaining why it's assigned
    • For each formula assigned to a subsection, generate a reason string ("reasonN") that not only 
explains why the formula is assigned to this specific subsection, 
      but also briefly interprets the formula's mathematical meaning or role within the paper.
    • A formula may be assigned to multiple subsections (if conceptually appropriate), but not multiple 
times in the same subsection.
    • Keys must use correct suffixing: formula, formula1, formula2,... and reason, reason1, reason2,...
    • Keep section/subsection titles exactly as-is. Do not include their full content in the output.
    • The final result should be a single valid JSON structure.
  THINKING STRATEGY:
    • Use the surrounding context and page_no from the formula list to guide assignment.
    • Match concepts using keywords, notation, or nearby words (e.g., if the section talks about 
"posterior", and the formula mentions p(x|y), that's a match).
    • Try to ensure each early-indexed formula (e.g. formula 1-5) is assigned at least once.
    • Do not assign arbitrarily. 
 
  OUTPUT FORMAT:
  {
    "sections": [
      {
        "title": "<Section Title>",
        "subsections": [
          {
            "title": "<Subsection Title>",
            "formula1": <id>,
            "reason1": "<explanation>",
            "formula2": <id>,
            "reason2": "<explanation>"
          },
          ...
        ]
      },
      ...
    ]

Figure 13: Prompt for Formulizer.
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   }
  CAUTION:
    - Output must be valid JSON only (no comments or explanations).
    - Only include sections/subsections where at least one formula is assigned.
    - Match titles exactly from the original input.
template: |
  Instructions:
    1. Analyze the paper outline: {{ json_content }}
    2. Analyze the list of formulas with their latex and context: {{ formula_information }}
    3. For each subsection, decide which formulas (if any) are conceptually relevant based on content 
and wording.
    4. Match carefully using terms, equations, symbols, and latent meaning.
    5. Output a single JSON object following the system_prompt rules.
jinja_args:
  - json_content
  - formula_information

Figure 14: Prompt for Formulizer.
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figure_match
system_prompt: |
  You are an expert assistant tasked with assigning images and tables to the most relevant paper 
sections. 
  You will be given:
    1. JSON content of the paper outline, including each section's title and a brief description.
    2. A list of images (image_information) with captions and size constraints.
    3. A list of tables (table_information) with captions and size constraints.
  
  GOAL
    • Produce a JSON object that mirrors the hierarchy of paper_outline_json  
      (sections → subsections).  
    • For each subsection, assign zero, one, or multiple items from image_information
      and/or table_information.  
    • Keys inside a subsection must follow:
        - image1, image2, …  with matching reason / reason1, …  
        - table1, table2, …  with matching reasonT1, reasonT2, …  
    • The same image or table may appear in multiple subsections.  
    • Ensure that image IDs 1 to 5 are each assigned to at least one subsection if a
      reasonable conceptual match exists.  
    • If multiple images or tables match a section well, include all of them. Assign each item only once 
per section, using different keys: e.g., "image", "image1", "table", "table1", etc.
    • If assigning an image, specify “image”: <id>, where <id> is the identifier of the chosen image 
from “image_information”.
    • If assigning a table, specify “table”: <id>, where <id> is the identifier of the chosen table from 
“table_information”.
    • Include an additional “reason”, "reason1", etc. field briefly explaining why this assignment was 
made (e.g., how the image/table relates to the section content).
    • If no image or table is assigned to a given section, omit that section from the final JSON (i.e., 
only list sections where you actually assign something).
    • Keep all section / subsection titles exactly as in the input; omit their “content”.  
  
  IMPORTANT: 
    • The assignment should not be arbitrary. It must be logically consistent with the section’s 
description and the provided caption for the image or table. 
    • Do not produce any layout properties or subsections here. 
    • The final output must be a single JSON object, mapping from section names to the chosen 
image/table ID plus the “reason” field.
    • Extra note: If multiple images or tables are suitable, select the single best one and assign only 
that. 
    • If “image_information” or “table_information” is empty, you may end up assigning nothing to 
any section.

template: |
  Instructions:
    1. Read and analyze the paper's sections from {{ json_content }} . 
    2. Look at {{ image_information }} and {{ table_information }}. Determine content-fit: 
       - If a section's description or subject matter matches well with a given image/table caption, 
consider assigning it. 
       - If multiple images or tables seem relevant, choose the single best fit. 
     

Figure 15: Prompt for Mapper.
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   - If none of the images or tables are relevant, or if none are provided, do not assign anything for that 
section.
    3. Produce a single JSON object. Each key is the exact name of a top-level section (e.g., 
"Introduction", "Methods", "Results"), and the value is an object with:
       • "image": image_id or "table": table_id
       • "reason": short explanation describing why the image/table is assigned
    4. If no assignment is made for a section, exclude that section from the JSON.  
    6. Ensure your final response strictly follows JSON syntax with no extra commentary.
    7. Keep the original hierarchy (sections → subsections).  
    8. Use imageN / reason(N-1) and tableN / reasonTN naming as described.  
    9. No image/table reuse limits across subsections, but do not repeat an item twice
       inside the same subsection.   
 
  
  Example output format if two sections are assigned:
  {
    "sections": [
      {
        "title": "Motivation And Background",
        "subsections": [
          {
            "title": "Challenges in Scientific Video Reconstruction",
            "image1": 1,
            "reason": "Image 1 illustrates sparse sampling and spatiotemporal gaps discussed in this 
subsection.",
            "image2": 2,
            "reason1": "Image 2 compares reconstruction quality across sampling densities, matching the 
narrative."
          },
          {
            "title": "Limitations of Current Diffusion Models",
            "image1": 3,
            "reason": "Image 3 visualizes frame-wise temporal incoherence produced by existing 
diffusion models."
          }
        ]
      },
      {
        "title": "Related Work And Limitations",
        "subsections": [
          {
            "title": "Existing Video Inverse Problem Approaches",
            "table1": 1,
            "reasonT1": "Table 1 lists prior methods and evaluation metrics referenced in this 
subsection.",
            "image1": 4,
            "reason": "Image 4 shows qualitative outputs of baseline approaches highlighted here."
          },
          {
            "title": "Plug-and-Play Diffusion Priors",
            "image1": 5,
          

Figure 16: Prompt for Mapper.
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   "reason": "Image 5 presents an overview diagram of the PnPDP framework emphasized in this 
subsection."
          }
        ]
      }
    ]
  }

jinja_args:
  - json_content
  - image_information
  - table_information

 Figure 17: Prompt for Mapper.
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E USE OF LARGE LANGUAGE MODELS

In accordance with ICLR guidelines, we disclose that Large Language Models (LLMs) were used
during the preparation of this manuscript. Their involvement was strictly limited to language and
presentation support, including proofreading, grammar correction, and enhancing sentence clarity
and readability. The LLMs played no role in the scientific aspects of this work: they did not con-
tribute to the research conception, methodological design, experimental analysis, or the generation
of results and conclusions. All substantive ideas, findings, and intellectual contributions are entirely
those of the authors.
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