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Abstract

Depth maps are widely used in feed-forward 3D Gaussian Splatting (3DGS)
pipelines by unprojecting them into 3D point clouds for novel view synthesis.
This approach offers advantages such as efficient training, the use of known camera
poses, and accurate geometry estimation. However, depth discontinuities, which
are particularly problematic at the boundaries of the reconstructed geometry, of-
ten lead to fragmented or sparse point clouds, degrading rendering quality—a
well-known limitation of depth-based representations. To tackle this issue, we
introduce PM-Loss, a novel regularization loss based on a pointmap predicted by a
pre-trained transformer. Although the pointmap itself may be less accurate than
the depth map, it provides a powerful prior for geometric coherence and structural
completeness, especially at the very edges where depth prediction falters. With the
improved depth map, our method significantly improves the feed-forward 3DGS
across various architectures and scenes, delivering consistently better rendering
results.

1 Introduction

Novel view synthesis (NVS) has been significantly advanced by 3D Gaussian Splatting (3DGS) [IL].
Despite its ultra-fast rendering, 3DGS requires time-consuming per-scene optimization, which has
led to the development of feed-forward 3DGS methods [2, 3], the focus of our work.

The core issue with current feed-forward methods lies in their reliance on depth maps. Most
models predict depth maps and then unproject them to form 3D Gaussians. Since depth maps often
contain discontinuities, especially near boundaries [4H6], these artifacts are transferred to the 3D
representation. Neural networks often fail to predict sharp depth steps, producing erroneous values at
these boundaries. When unprojected, these inaccuracies manifest as fragmented floaters in space or
sparse gaps along edges, degrading geometric quality.

Recently, 3D reconstruction has seen success with a representation known as the pointmap [[7H13]].
Unlike depth maps, pointmaps encode a set of 3D points p € R? in world space, allowing for more
structurally coherent and complete modeling of geometry. This motivates us to introduce pointmaps
as a strong prior to reduce artifacts in depth-based feed-forward 3DGS.

We propose a novel method to distill the geometry prior from a pointmap regression model via a
simple yet effective training loss. Our PM-Loss guides the learning of point clouds unprojected from
predicted depth by taking the global pointmap predicted by a large-scale 3D reconstruction model
(e.g., VGGT [L1]) as a pseudo-ground truth. We leverage the one-to-one correspondence between
depth maps and pointmaps to efficiently align the two point clouds using the Umeyama algorithm[[14].
Then, the Chamfer loss is used to directly regularize them in 3D space. By distilling this geometric
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prior, our method mitigates discontinuities from unprojected depth and significantly boosts the quality
of predicted 3D point clouds and rendered novel views.

2 Related Work

Feed-forward 3DGS methods [2, 3} [15423]] have accelerated novel view synthesis, often improving
geometry by incorporating depth priors [24]. However, these priors, typically from monocular
depth estimators, can suffer from multi-view inconsistencies, leading to geometric inaccuracies.
Concurrently, 3D reconstruction has seen a surge in pointmap-based methods [[7H13]], which excel
at producing accurate and coherent 3D point clouds directly from images. While these pointmap
models provide strong geometric priors, they are not optimized for direct novel view synthesis. Our
work bridges this gap by distilling the robust geometric prior from pre-trained pointmap models
into feed-forward 3DGS frameworks via a novel training loss, directly addressing the limitations of
depth-based geometry without the high cost of retraining for rendering.

3 Methodology

Our goal is to train a network that directly predicts a 3DGS model from input images. We introduce
PM-Loss to regularize the predicted 3D structure using a pointmap prior.

3.1 Preliminary

Feed-Forward 3DGS. In typical feed-forward 3DGS pipelines, Gaussian means p; are derived by
unprojecting predicted depth maps. For each pixel (u, v), a depth value d(u, v) is predicted and used
with camera parameters (/, R, text) to compute the 3D position:

u
Py = Rexe - (d(u7 U) K1 <U>) + text (nH
1

This approach is efficient but suffers from geometric inaccuracies due to depth discontinuities, leading
to artifacts like floaters and sparse geometry, as seen in Fig. [T}

Pointmap Regression. A pointmap is a structured 3D representation where each pixel (u, v) of an
image is associated with a 3D point p/,, € R3 in world coordinates. They are typically regressed
from images using pretrained Vision Transformer (ViT) based models.

3.2 PM-Loss

We advocate for directly regularizing geometry in 3D space. Given a batch of input images, our
feed-forward 3DGS model predicts a set of Gaussian centers, X3pgs. For supervision, we use a
reference point cloud, Xpy, from a pretrained pointmap model. Both point clouds share a natural
one-to-one correspondence since each point pair originates from the same source pixel. While Xpy
may be less accurate in well-textured regions, it exhibits better geometric coherence and structural
completeness, especially at boundaries.

Efficient Point Cloud Alignment. Although both point clouds are in world coordinates, they are
often misaligned. The one-to-one correspondence enables the use of the highly efficient Umeyama
algorithm [[14] to find the optimal similarity transformation (s*, R*,t*) that minimizes their mean
squared error. We apply this transformation to the source pointmap Xpy to obtain the aligned
pointmap Xf.

Single-Directional Chamfer Loss. Given the aligned point clouds, we define the PM-Loss Lpy as a
single-directional Chamfer distance from X3pgs to Xpy:

1 .
Lem(Xapgs, Xpm) = > min [ju—p/[3 @
N P €Xy

HEX3pGs
This regularizes the predicted Gaussian centers towards the geometry prior. A key insight is to
re-compute the nearest neighbor in 3D space for supervision, rather than relying on the one-to-one
pixel correspondence, which would degenerate to a 2D depth loss. This design is more robust to pose

misalignments and prediction noise.



I\g iu

|

/T

Input Views DepthSplat DepthSplat+PM-Loss Ground Truth

Figure 1: Qualitative comparisons on DL3DV (top two rows) and RealEstate10K (bottom two
rows). Adding PM-Loss leads to significant improvements in rendering quality at boundaries. Note
the mitigation of blurry artifacts (row 1,3) and black regions (row 2,4) in the rendered views.

4 Experiments

4.1 Experimental Settings

Datasets and Baselines. We evaluated on DL3DV [23]], RealEstate 10K [26]], and DTU [27]. We
apply PM-Loss to two representative feed-forward 3DGS models: MVSplat [3] and DepthSplat [24].

Metrics. For Novel View Synthesis (NVS), we use a boundary-aware setting where target views are
selected to lie adjacent to the spatial region of context views, making geometric boundaries visible.
We report PSNR, SSIM, and LPIPS. For geometric quality, we treat Gaussian centers as a point cloud
and compare against DTU ground truth using Accuracy (Acc), Completeness (Comp), and Overall
Chamfer Distance.

Implementation Details. We used PyTorch and PyTorch3D [28]]. Models were fine-tuned for 100k
iterations with a learning rate of 2 x 10~4. We used the VGGT-1B [11] model to generate pointmaps.
The loss weight Apj; was set to 0.005.

Table 1: Quantitative results in the boundary-aware setting. Both MV Splat and DepthSplat show
better rendering quality with the addition of PM-Loss.

DL3DV RealEstate10K
Method
PSNRT SSIM?T LPIPS] PSNR?T SSIMfT LPIPS|
DepthSplat 18.46 0.689 0.261 20.43 0.788 0.218
DepthSplat+PM  20.77  0.705  0.245 2248 0.814 0.194
MVSplat 16.79 0592 0.322 19.52  0.757 0.231

MVSplat+PM  19.25 0.615 0.291 22.18 0.787 0.199

4.2 Comparisons and Analysis

Visual and Point Cloud Quality. By regularizing the predicted point clouds, our PM-Loss improves
3D Gaussian quality and novel view rendering. Tab. [T|shows our method boosts baseline performance



DepthSplat DepthSplat + PM-Loss

Figure 2: Qualitative comparison of 3D Gaussians on DL3DV. Our method effectively regularizes
the 3D Gaussians, reducing floating artifacts and noise.

Table 2: Quantitative comparison on DTU with varying input numbers. Adding PM-Loss
consistently improves geometry across different numbers of input views.

Accl Comp, Overall|
Mean Med. Mean Med. Mean Med.

DepthSplat 0.264 0.200 0.101 0.051 0.182 0.125
DepthSplat+PM  0.232 0.166 0.099 0.045 0.165 0.106

DepthSplat 0.169 0.117 0.066 0.022 0.123 0.051
DepthSplat+PM  0.156 0.076 0.069 0.022 0.113 0.049

DepthSplat 0.162 0.070 0.048 0.017 0.105 0.044
DepthSplat+PM  0.150 0.068 0.053 0.016 0.102 0.042
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by over 2 dB in PSNR. This improvement stems from enhanced geometric coherence, which is
particularly effective in addressing errors from depth discontinuities. As supported by Fig.[I} the
baseline’s failure to handle these discontinuities leads to blurry artifacts and black regions, which our
method mitigates.

We qualitatively compare point cloud quality in Fig.[2] where our method produces cleaner results
with fewer noisy artifacts. For quantitative analysis, we evaluate on the DTU benchmark. As shown
in Tab. [2} our method improves accuracy, completeness, and overall scores, confirming our qualitative
findings. These improvements are consistent across varying numbers of input views.

5 Conclusion

We presented PM-Loss, a simple yet effective training loss that leverages geometry priors from
pointmaps to improve feed-forward 3DGS. By regularizing in 3D space, PM-Loss alleviates depth-
induced discontinuities, leading to significantly improved geometry and rendering quality. Our
method can be seamlessly integrated into existing training pipelines with minimal overhead and
introduces no inference cost. Extensive experiments demonstrate its broad applicability and efficiency.
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