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ABSTRACT

Humans distill complex experiences into fundamental abstractions, enabling rapid
learning and adaptation. Similarly, autoregressive transformers exhibit adaptive
learning through in-context learning (ICL), which begs the question of how. In
this paper, we propose concept encoding-decoding mechanism to explain ICL
by studying how transformers form internal abstractions in their representations.
On synthetic ICL tasks, we analyze the training dynamics of a small transformer
and report the coupled emergence of concept encoding and decoding. As the
model learns to encode different latent concepts (e.g., “Finding the first noun in a
sentence.”) into distinct, separable representations, it conditionally builds decod-
ing algorithms and improve its ICL performance. We validate the existence of
this mechanism across pretrained models of varying sizes (Gemma-2 2B/9B/27B,
Llama-3.1 8B/70B). Further, through mechanistic interventions and controlled
finetuning, we demonstrate that the quality of concept encoding is causally re-
lated and predictive of ICL performance. Our empirical insights shed light into
better understanding the success and failure modes of large language models via
their representations.

1 INTRODUCTION

Throughout history, humans have made sense of the world by distilling complex experiences into
fundamental abstractions, such as physics and mathematics. These mental models enable us to learn
quickly, predict outcomes, and adapt to new situations. In artificial intelligence, autoregressive trans-
formers are beginning to exhibit similar capabilities. Through in-context learning (ICL), they adapt
to new tasks without parameter updates, suggesting they might also be forming internal abstractions
(Raventos et al.| 2024} Hong et al.| [2024; |Zheng et al.| |2024b}; [Kumar et al.| [2024).

Hendel et al.|(2023); Merullo et al.| (2023)); Todd et al.| (2023) introduce a mechanistic perspective
on how pretrained LLMs represent the latent concepts underlying the ICL task as vectors in their
representations. They empirically demonstrate that these task-specific vectors can trigger the desired
ICL behavior in many cases, with the effectiveness varying across tasks. Although an impactful first
step, there still remains unanswered questions of why these task vectors exist in the first place and
why the effectiveness varies by task. This necessitates a deeper mechanistic understanding of the
internal abstraction behavior of LLMs, which could encompass the findings of task-specific vectors
and various aspects of ICL.

In our work, we propose the concept encoding-decoding mechanism as the origin of internal ab-
straction behavior. To study the emergence of abstractions during pretraining, we train a small
transformer on a mixture of sparse linear regression tasks. We find that concept encoding emerges
as the model learns to map different latent concepts into distinct, separable representation spaces.
This geometric structuring of the representation space is coupled with the development of concept-
specific ICL algorithms — namely, concept decoding. Importantly, we see that the emergence of
the two-stage process coincides with one another, implying mutual dependence between the two.
Through causal analysis, we demonstrate that the model associates different algorithms to different
learned concepts and that ICL happens through the two-step process.

We demonstrate the validity of the concept encoding-decoding mechanism across different pre-
trained model families and scales (Llama-3.1-8B/70B and Gemma-2 2B/9B/27B) on more natural
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ICL tasks, such as part-of-speech tagging and bitwise arithmetic. We show that large language mod-
els (LLMs) trained on diverse data also exhibit concept encoding behavior. With more in-context
examples, LLMs map the inputs to increasingly separable representation spaces, clustered by the
latent concepts. Moreover, leveraging insights from the synthetic experiments, we demonstrate that
the decodability of the concepts from representations is predictive of downstream ICL performance.
We establish a causal relationship between the quality of encoding and ICL performance through
mechanistic intervention and controlled finetuning experiments.

Our main contributions are as follows:

1. We first study the emergence of task vectors by training a small transformer on a syn-
thetic ICL task (§3:3) and propose concept encoding-decoding mechanism to explain the
emergent behavior for learning to solve ICL tasks. We observe that earlier layers of the
model learn to encode the latent concept, whereas the latter layers conditions the algorithm
on the inferred concept. Interestingly, the emergence of the two-stage process is coupled,
implying a mutual dependence.

2. We introduce Concept Decodability (CD), a quantitative metric that predicts downstream
ICL performance in pretrained LLMs (§4.2). We demonstrate our framework’s generality
across tasks, model families, and scales (Llama 3.1 8B/70B, Gemma 2B/9B/27B)

3. We establish the causal relationship between CD and ICL performance in pretrained LLMs
through mechanistic intervention (§4.1) and controlled finetuning (§4.3).

4. We offer a new perspective on mechanistically understanding how the model internalizes
the learning signal of more in-context examples, finetuning, and prompting (@ through
the lens of concept encoding-decoding.

2 RELATED WORK

Mechanisms of ICL. Astounded by LLMs’ ability to perform ICL, many have proposed theories
to understand the mechanisms of ICL. Some (Dai et al., 2023} [von Oswald et al., [2023; |/Ahn et al.,
2024; |Akyiirek et al., |2024) have proposed that LLMs, with linear attention (Katharopoulos et al.,
2020), can implement stochastic gradient descent to perform ICL. Other works (Xie et al., 2021}
Wang et al., 2024} |Ye et al.,[2024) have presented a Bayesian framework to theoretically explain the
workings of ICL. This view implies that the model implements a two-stage algorithm to estimate
the posterior P(z|D) and the likelihood P(y.|z., D). In this work, we adopt this framework and
demonstrate how the model implements it through its intermediate representations. More specifi-
cally, we study the emergence of concept encoding — building separable representations for different
latent concepts.

Task Vectors. [Todd et al|(2023) and Hendel et al.| (2023) identify task/function vectors that can
induce desired ICL task behavior (e.g., object-color mapping) even at zero-shot. Although motivated
by their work, we propose concept encoding in place of the term ‘task vector’ because of the limited
scope under which it is valid. Previous studies (Pan et al., 2023} Wei et al., [2023b; Min et al., 2022)
have found ICL tasks that are word-to-word mapping (e.g., object-color, English-French) are not in
fact task learning but task retrieval that uses semantic priors of the model. Moreover, |[Zheng et al.
(20244a) demonstrated that the functions’ representation vectors are distributed over multiple tokens
for more complex tasks. Therefore, we use ‘concept encoding’ to refer to a broader phenomenon of
building separable representations for distinct latent concepts.

Latent Concepts in Language Model Representations. Several studies (Dalvi et al.| 2022;
Merullo et al., 2023) have examined how language models encode concepts in their representa-
tions. In autoregressive LLMs, notions like truthfulness (Marks & Tegmark, 2023)) and time and
space(Gurnee & Tegmark) 2024) have been shown to be linearly separable representations. Sparse
autoencoders (Bricken et al.l 2023 |(Cunningham et al.l |2023)) have revealed highly interpretable
features that emerge and grow with scale in LLMs. Beyond the identification of these concepts,
our work aims to answer how such concepts emerge in the representation of LLMs and how they
causally relate to ICL performance.
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Mechanistic Interpretability. To study the causal relationship between the accuracy of concept
encoding and downstream ICL performance, we adopt causal mediation analysis techniques from
Geiger et al.| (2020); [Vig et al.| (2020); [Todd et al.| (2023); Heimersheim & Nandal (2024); Merullo
et al.| (2024)). We specifically use the method of activation patching, where we replace the activations
of an immediate layer from a sample with another. This technique allows us to demonstrate that
transformers implement different algorithms conditioned on the inferred concepts.

3 UNDERSTANDING IN-CONTEXT LEARNING

3.1 NOTATION AND BACKGROUND

We focus on ICL problems, where the goal is to predict y, from a query x., given some in-context
examples D = {(x;,y;)}"_,. Each problem shares a latent concept z that links inputs x to outputs
y. For instance, in an ICL task where latent concept is object-color mapping, we provide demon-
strations like (apple, red), (banana, yellow), and (grape, purple), and then ask for what comes after
(lemon, ?). We employ this parameterization to accommodate latent concepts varying in complex-
ity, from simple function regression problems (Garg et al.| 2022} [von Oswald et al., [2023; [Li et al.,
2023)) to POS tagging (Blevins et al., [2022}; |Banko & Moore} 2004) and arithmetic (He et al.,[2024).

3.2 THEORETICAL FRAMEWORK

Of the many different frameworks (Bai et al., 2024; Min et al., 2022; [von Oswald et al.| 2023
Akyiirek et al.,|2024) to understand the workings of ICL, we adopt the Bayesian view (Xie et al.,
2021 [Mittal et al.|[2024; Wang et al.| [2024; Ye et al.,[2024)). It proposes that transformers implicitly
infer the latent variable z underlying the demonstrations and apply it to generate an answer. More
formally,

(. | 2, D) :/ Py(ys s, 2) P (=|D) d=
zZ

This framework suggests ICL is a two stage process. First, latent concept inference. Latent concept
z is approximated from D through the distribution 2 ~ Py(z|D). Second, selective algorithm
application. The model applies an algorithm conditioned on Z to predict y. as given by Py (y.|z, 2).

Although theoretically compelling, it was not until recently that Hendel et al.| (2023); Todd et al.
(2023)); Merullo et al.| (2023)) showed empirical evidence of models encoding the latent concepts in
the intermediate representations. They illustrate that these representative vectors are then decoded
and trigger the desired ICL task behavior. With this simple analogy to an encoder-decoder, we begin
our investigation into the following questions:

1. How does the concept encoding and decoding behavior emerge in the model over training
and how do they interplay?

2. How is the model’s ability to accurately infer the latent concepts related to downstream
ICL performance?

3.3 MOTIVATION: SYNTHETIC EXPERIMENTS

We train a small transformer on a synthetic ICL task and demonstrate that concept encoding and de-
coding emerges simultaneously during training. Through causal analysis, we show that, as the mod-
els “discovers” a latent concept by building a distinct representation from the others, it associates
the concept with different decoding algorithms. Finally, we propose the concept encoding-decoding
mechanism that encompasses these findings and serve as the core theory throughout the remainder
of our study.

Task. We compose our task as a mixture of sparse linear regression tasks. We follow the conven-
tional linear regression setup from |Garg et al.| (2022); von Oswald et al.| (2023)) and construct the
input-output pair (x;,y;) by sampling z; ~ N (0, Ip) and y; = W' z; + ¢;, where W is randomly
generated from a standard normal distribution, N'(0, Ip), and ¢; ~ N(0,02). We, however, add
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Figure 1: Coupled emergence of concept encoding and conditional decoding algorithms in mixture
of sparse linear regression. The loss curve on the left-hand side shows different convergence dy-
namics per basis and show three phases of descent, which we mark with (a), (b), and (c). On the
right-hand side, we plot the geometric changes in the representations and how they separate by basis
at these marked points. These points coincide with the algorithmic switching behavior.

sparsity constraints to W with the sparsity pattern represented by the basis By. Each By, has a rank
of r. In other words, the basis chooses the dimensions of W to turn on and off. The basis is sampled
uniformly from B = {Bj, By, B3, B4} and each basis is non-overlapping and orthogonal to each
other. By default, we set D = 16 and » = 4. By adding this layer of latent concept of B, we can
explicitly control and interpret the latent concepts, and analyze their representations.

Model and Training. We train a 12-layer GPT-2 architecture transformer (Radford et al., [2019)
with an embedding dimension of 128 and 8 attention heads. We train the model to minimize mean
squared error (MSE) loss over the sequence of context length 20. We run 5 different random seeds
for training and report observations that generalize across the runs. We detail the experimental setup
further in Appendix|[C.2]

Theoretical Error Bounds. The error bounds of our task depend on whether the model learns to
infer the underlying bases. If the model learns to infer the bases, then the model can achieve -
dimensional regression, where the MSE approaches 0 with 7 in-context examples. If not, the model,
in the worst case, can perform D-dimensional regression with r-sparsity, which has a longer tailed
error curve that approaches O between r and D in-context examples. With these insights, we can
better analyze which latent basis the model has learned and the associated algorithm. Note that we
define “algorithm” as a class of statistical methods for linear regression, as detailed in Appendix[C.1}

Observation 1: Different Loss Dynamics Per Basis. We interestingly observe that each basis,
despite having identical task complexities, exhibits different loss descents during training. Figure ]
shows the test MSE averaged over the sequence over training. B; displays a distinct loss descent
dynamic, undergoing an abrupt drop at epoch 10. In contrast, the other three bases, By, B3, and
By, exhibit correlated loss descent dynamics, with two smaller descents at 10 and 40 epochs. This
suggests that the model learns to infer B; differently and applies selective algorithms.

Observation 2: Emergence of Separable Representations and Coupled Algorithmic Phase
Transitions. We also analyze the geometry of the intermediate representations at layer 5 to question
how the model may be encoding the latent bases. Surprisingly, at the three points of descent (a, b,
c) marked in Figure |1} the model gradually builds separate representations for the different bases
as shown in the UMAP visualizations. At point (a), the three bases are clustered together and the
model’s algorithm resembles a 16-dimensional weighted LASSO regression. As B; separates out at
point (b), the model starts to leverage the inferred basis to switch to a 4-dimensional regression. At
point (c), when all four classes are separable, the model converges to the optimal 4-dimensional re-
gression. This observation suggests that model encode latent concepts into separated representations
to conditionally apply decoding algorithms.
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Figure 2: Causal analysis by perturbation. On the left are perturbation results at epoch 20, when
the latent concepts’ representations are semi-separate (B and By 3 4). Intracluster refers to Ba 3 4.
At this stage of training when there are only two clusters of representations, there only exists two
decoding algorithms as well. On the right are results at convergence, when the latent concepts’
representations are fully separable. In this case, each B; follows a different algorithm and patching
the activations of any other basis than itself increases the loss noticeably. On the other hand, self-
perturbation improves ICL performance.

Causal Relation between Concept Encoding and Performance. We conduct perturbation anal-
ysis to validate that the model conditionally applies decoding algorithms based on the separated
representations. Given an input of a source basis, we patch the activation of layer 5—represent-
ing the residual stream of the transformer layer—with the mean activation of a target basis and
analyze whether it will improve or degrade performance. When the source is equal to the target
(self-perturbation), the patching should help the model identify the basis and improve performance.
Otherwise, it should hinder correct basis inference and therefore performance. We perform this
analysis at points (b) and (c) from Figure [T] when the latent concept representations are semi and
fully separable.

In Figure@, we present the perturbation analysis at point (b) on the left. In this case, By 3 4 forms one
cluster and B; another. We observe that all the self-perturbations along the diagonal and intracluster
(B2,3,4) slightly decrease the loss or show no effect. However, when we apply perturbations across
different clusters, the loss spikes, indicating that we trigger different decoding algorithms unsuitable
for the input sequence. This analysis shows that, because the model was only able to encode two
different latent concepts in the intermediate representations, it only learns two classes of algorithms,
one for By and another for By 3 4.

On the right of Figure [2] we conduct the same perturbation study at convergence, when the model
learns to encode all of the latent concepts as distinct representations. Surprisingly, we observe
that the model undergoes an algorithmic phase transition of implementing concept-conditioned al-
gorithms. Not only does all the self-perturbation along the diagonal improve performance more
noticeably, but also any perturbation to a different basis results in significantly higher losses.

These results altogether draw the picture that a transformer, when trained to perform ICL, gradually
learns to encode the latent concepts to separable representation spaces and learns to conditionally
apply decoding algorithms simultaneously. These observations suggest that concept encoding and
decoding are mutually dependent, but whether they reinforce each other needs to be further studied.

3.4 CONCEPT ENCODING AND DECODING

We introduce the terms concept encoding and decoding in this work to capture the emergent phe-
nomenon of a transformer learning to implement a two-stage process to perform ICL, as observed
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in Section[3.3] The model learns to encode different concepts into distinct, separable internal repre-
sentations. Simultaneously, this separation allows the model to develop concept-specific decoding
algorithms. We show that there is a mutual dependency between the two mechanisms and that
both are required for effectively solving ICL. What this mutual dependency implies, as we explore
through the causal perturbation studies, is that the accuracy to which the model encodes and dis-
tinguishes the latent concepts — namely, concept decodability — is predictive of downstream ICL
performance. We now validate our theory in real-world, pretrained LLMs.

4 TOWARDS NATURAL EXPERIMENTS

In this section, we empirically validate the proposed concept encoding-decoding mechanism in pre-
trained LLMs. Specifically, we test several hypotheses derived from the proposed mechanism, such
as whether pretrained LLMs exhibit concept encoding behavior and whether the accuracy of concept
encoding can predict ICL performance on more natural tasks.

Tasks. We construct two classes of algorithmic tasks — natural language processing and arithmetic
— comprising a total of 12 tasks. Within each class, the tasks are designed to be semantically similar,
ensuring that the input distributions are alike across tasks. While the underlying latent concepts
differ (e.g., different arithmetic operations or linguistic patterns), the surface features of the inputs
remain consistent. By keeping the input distributions similar, we can effectively assess the model’s
ability to infer and encode latent concepts based solely on subtle differences in the data, rather than
the input variations. Refer to Appendix [E]for more details.

Part-of-Speech (POS) tagging. We construct a POS tagging (Blevins et al., [2022; Banko & Moore,
2004)) dataset from |[Marcus et al.| (1994)), consisting of POS tags, such as Noun, Adjective, Verb,
Adverb, Preposition, Pronoun. Given an input text and hidden POS tag z; (e.g., Noun), one needs to
output the first word that is of the specified POS tag.

Bitwise arithmetic. We construct a bitwise arithmetic dataset consisting of 6 different operators,
AND, NAND, OR, NOR, XOR, and XNOR. Given a pair of 5-digit binary numbers and the hidden
operator z; (e.g., AND), one needs to output the resulting binary number after the operation.

For both of these tasks, we create an additional Null class, for which there is no latent concept. In
bitwise arithmetic, the Null operator outputs random binary digits, and in POS tagging, the Null
class pairs the input sentences with a randomly selected word. This task helps us identify the cases
in which the model is confused about the concept.

Model. We verify the existence of our proposed concept encoding-decoding mechanism in models
of different families and scales (Gemma-2 2B/9B/27B and Llama-3.1-8B/70B) in Section [4.1] and
Appendix [E] We continue further analysis with the pretrained Llama-3.1-8B model (Meta, 2024).
We do not train this model, except when we study the causal effect of concept decodability by
finetuning in Section.3] We further detail the experimental setup in Appendix [E]

Evaluation. We evaluate the performance of the model on different tasks by computing the exact-
match accuracy between the generated output under greedy decoding and the ground truth. All of
the evaluations assume 4-shots of examples, unless specified otherwise.

Concept Decodability (CD). To quantify how well latent concepts can be inferred from repre-
sentations, we employ a simple k-Nearest Neighbor (k-NN) classification metric. Inspired by prior
studies using linear probes (Rimanic et al., [2020; |Alain & Bengiol 2018)), we assess whether the
latent concepts can be extracted in a simple manner from their representations. Specifically, we
use the representations of the token immediately before y, at a chosen layer and predict the latent
concept by majority voting among its k£ nearest neighbors (k = 10, N = 100).

4.1 CONCEPT ENCODING-DECODING IN PRETRAINED LLMS

Hypothesis: Concept encoding-decoding behavior exists in pretrained LLMs.
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Figure 3: Concept encoding in Llama-3.1-8B. UMAP of the intermediate representations at layers
15 and 13 respectively for POS tagging and bitwise arithmetic with varying number of in-context
examples (1, 4, 10-shot). With more in-context examples, the model builds increasingly separable
representations clustered by their latent concepts.

We investigate the above hypothesis in two steps: (1) We first examine whether concept encoding
occurs in pretrained LLMs; (2) We conduct mechanistic intervention studies to verify that different
concept encoding triggers separate decoding algorithms, completing the full study of the concept
encoding-decoding mechanism.

Step 1: Concept Encoding. We first study whether the concept encoding occurs in pretrained
LLMs. We vary the number of in-context examples for the different tasks and visualize the inter-
mediate representations at the middle layers with UMAP in Figure 3] Given only 1-shot, where the
model is expected to be confused about the latent concept, all of the representations are clustered
and overlap with the Null class, which has no task latent. As examples increase, clustering by la-
tent concepts emerges, becoming clearer by 10-shots. Interestingly, the separation of concepts, such
as AND, OR, Noun, and Pronoun, is more pronounced. We conjecture the model likely sees and
learns these concepts better during pretraining. However, there remains a few classes like XNOR
and XOR in bitwise arithmetic and Adjective and Preposition in POS tagging that overlap with Null.
These observations highlight that the model achieves better concept encoding through more demon-
strations, and offers an alternative perspective on how more in-context examples mechanistically
improve performance. We will further explore this connection between the separability of concepts
in the representation space and ICL performance in Section .2}

To quantify how the separability of representations translates into the decodability of the latent
concepts, we compute the CD scores across the layers. In Figure[fa] we see that the the decodability
of the latent concepts peaks in the intermediate layers, suggesting that the models are encoding the
latent concepts through separable representations.

Step 2: Mechanistic intervention study. Having shown concept encoding in pretrained LLMs,
we now conduct mechanistic intervention studies, adapted from [Hendel et al| (2023)); [Todd et al.|
(2023). We question whether different concept encoding triggers different decoding algorithms and
if the two are causally related. If so, helping or hindering the model’s ability to infer the latent con-
cept in the given input should improve or degrade its performance in downstream tasks, respectively.
We conduct this casual analysis, by patching a layer’s output activations with the mean activations
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Figure 4: CD Scores by layers and number of demonstrations. (a) Mean CD scores across layers for
POS tagging and Bitwise arithmetic with 4-shot in-context examples, showing peak decodability in
intermediate layers. (b) For POS tagging and (c) for Bitwise arithmetic, CD scores all increase with
the number of demonstrations, but the improvement in CD noticeably varies by task.

of 100 samples with the true latent concept (positive intervention) and with the Null latent variable
(negative intervention). We present the results in Figure [I7) of Appendix [E.I] For POS tagging
(Figure [T74), intervening positively improves performance by ~ 14% and intervening negatively
degrades performance by ~ 15% on average across the 6 tasks. In bitwise arithmetic, the influence
of the interventions is less stark. Positive intervention improves performance by ~ 2% and negative
intervention degrades performance by ~ 6% on average across all the 6 tasks. Both positive and
negative interventions are more effective for tasks whose representation sub-spaces are clearly sep-
arated. For tasks whose representation overlap with those of Null, we hypothesize that the model is
failing to infer the latent concept, rendering the intervention less effective.

Overall, through these two studies of the geometry of representations and mechanistic intervention,
we demonstrate that concept encoding is causally linked to different decoding algorithms and that
concept encoding-decoding behavior indeed exists in pretrained LLMs.

® Noun ® 1-shot PS ® AND ® 1-shot *
48 ® Pronoun 4 4-shot 70 ® NAND 4 4-shot
® \Verb & 10-shot ® OR ¢ 10-shot

< 42 e Adverb * ~ 60 e NOR
3\/ ® Adjective 4 c\>\/ ® XOR
- 36 Preposition >, 50 XNOR +
(&) / y. [&]
g 30 % g 40 + *
o % Q \/ *
o 24 / O 30 -
< o~ <+ < L4 +*
— — 7
n 18 W @ 20 *
() Y, (0]
F o L = g

* 10 @

& o° °
6 e T R2=0.781 0 R2=0.528
0.32 040 048 0.56 0.64 0.72 0.80 0.88 0.96 0.1 02 03 04 05 06 07 08 09
CD Score CD Score
(a) POS Tagging (b) Bitwise Arithmetic

Figure 5: CD score vs ICL performance. We observe a positively correlated trend across most tasks.
The grey dashed lines are linear lines of best fit. These results suggest that the accuracy of concept
encoding is closely coupled with downstream ICL performance.

4.2 PREDICTABILITY OF IN-CONTEXT LEARNING TASK PERFORMANCE

Hypothesis: Quality of concept encoding-decoding, measured by CD, is predictive of ICL
performance.
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We now investigate the second hypothesis of whether the quality of concept encoding-decoding
is predictive of downstream ICL performance. If the model is conditionally applying a decoding
algorithm to perform the task by first inferring the latent concept, CD and ICL task performance
should be closely correlated. To this end, we analyze the relationship between CD and test accuracy
by varying the number of in-context examples in Figure[5] In both datasets, we see that, generally,
higher CD scores correspond to better performance on the respective tasks. More interestingly,
referring back to Figure [3] we remark again that the representations of some classes (Adjective
and Preposition in POS tagging and XOR and XNOR in bitwise arithmetic) are mapped to those
of the Null class. We notice that this set of classes whose representations overlap with those of
Null generally have low task performance and do not improve as much as the others given more
demonstrations. We conjecture that the model does not accurately encode latent concepts of those
that are overlapped with the Null class representations.

We also test the generality of the predictability of ICL performance from CD across a different model
family (Teaml |2024) and scales. We conduct the same analysis on Gemma-2 2B, 9B, and 27B and
Llama-3.1 70B and present the results in Figure[T8]in Appendix[E.2] These results demonstrate that
the correlation between CD and ICL performance robustly hold across models and tasks. Interest-
ingly, in all of the Gemma-2 family and Llama-3.1 70B models, Noun, Pronoun, and Verb show the
clearest signs of concept encoding-decoding behavior, as we saw in the Llama-3.1 8B model. In the
bitwise arithmetic task, AND, NAND, OR, and NOR (classes that showed the strongest encoding-
decoding behavior in Llama-3.1 8B), also show the strongest signs of concept encoding-decoding
behavior across all of these models. Given that many LLMs are trained on similar sources of pre-
training data (Soldaini et al., 2024} |Gao et al.} |2020) (CommonCrawl, Wikipedia, etc), we conjecture
that the models may have learned similar encoding-decoding mechanisms for these concepts.

Another natural curiosity that arises is whether this correlation can also be observed during pretrain-
ing. Although computationally infeasible to explore this with large-scale pretraining experiments,
we demonstrate the correlation between CD and performance by evaluating those across the training
iterations of OLMo-7B (Groeneveld et al.| 2024) in Figure[§| of Appendix [A] Overall, these results
demonstrate that the model’s ability to infer the correct latents is generally correlated to its ICL task

performance.
Part-of-Speech Tagging Bitwise Arithmetic 4-shot
1.0 . N
tg@ [ joun
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3 ™ e Verb
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Figure 6: (a) CD scores across layers for POS and arithmetic after finetuning the first 10 and last
10 layers, at 4 shots. While finetuning (FT) the last 10 layers has minimal effect on the CD scores,
finetuning the first 10 layers significantly increases the concept decodability. This phenomenon is
accompanied by noticeable improvement in ICL performance. PT denotes the pretrained LLM. (b)
UMAP visualization of FT first 10 layers. We illustrate that the increased CD scores correspond to
a clear cluster of the representations by latent concepts.

4.3 INVESTIGATING THE CAUSAL EFFECT OF CONCEPT ENCODING BY FINETUNING

Hypothesis: In transformers, earlier layers learn to encode concept, whereas the latter layers
condition the algorithm on it. Thus, finetuning only the earlier layers can improve concept
encoding and thus will be more effective for improving ICL performance than finetuning
only the latter layers.

To further investigate the causal importance of concept encoding for downstream ICL performance,
we perform two types of finetuning: only the first 10 layers versus only the last 10 layers. We
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previously found that concept encoding occurs in the middle layers (layer 15 for POS tagging and
layer 13 for bitwise arithmetic). Finetuning only the last 10 layers restricts the model from learning
to encode latent concepts in intermediate representations. As illustrated in Figure[6] finetuning the
last 10 layers barely changes their CD scores from the pretrained model. In contrast, finetuning the
first 10 layers significantly improves the CD scores and aligns the representation subspaces with the
inferred latent concepts. This improvement in CD scores directly translates to significantly better
ICL task performance. With 4-shot examples, finetuning the first 10 layers outperforms finetuning
the last 10 layers by ~ 37% in the POS task and 24% in bitwise arithmetic. In the bitwise arithmetic
task, finetuning the first 10 layers achieves near-perfect accuracy for all tasks except XNOR, whose
representations overlap with those of Null.

100 Noun Pronoun Verb 100 AND NAND

> >

z . mll ull [ | g, M m [

5 - " 3

§ 100 Adverb Adjective Preposition § 100 NOR XOR XNOR

0 -.I --I mil o mm .
s PT Hl FT (last 10 layers) Bl FT (first 10 layers) || Hl FT (last 10 layers) Il FT (first 10 layers)
(a) POS Tagging (b) Bitwise Arithmetic

Figure 7: ICL test accuracy at 4 shots across 12 tasks in POS and arithmetic after finetuning (FT) the
first 10 and last 10 layers. When restricting the model’s ability to encode latent concepts in its in-
termediate representation (finetuning last 10 layers), the model fails to fully align its representations
for learning the latent concepts and falls behind the performance of finetuning the first 10 layers.

5 DISCUSSION

5.1 PIECING IT ALL TOGETHER: IN-CONTEXT EXAMPLES, PROMPTING, AND FINETUNING

Our study reveals that enhancing concept encoding is a unifying principle that improves in-context
learning (ICL) across different strategies. We observe in Sections {.2] and [4.3] that increasing in-
context examples and finetuning facilitate building separable representations by their latent con-
cepts. Many have also noted that prompting [2023a)) is a simple and effective method
of improving in-context performance. Thus, we experiment with prompting as part of our curiosity.
We question whether providing the underlying concept (i.e., including true labels of bitwise arith-
metic) indeed enhances concept encoding and, as expected, performance. As shown in Figures [20]
and[2T]of Appendix[F} prompting in fact improves the concept encoding and performance simultane-
ously. However, we interpret these results with caution, since the model may be capturing spurious
correlations from the input prompt differences.

5.2 WHY DO MODELS SUCCEED AT SOME ICL TASKS, BUT NOT OTHERS?

It is yet puzzling how to categorize the types of ICL tasks LLMs can and cannot perform (Q1u et al.,
2023} [Dziri et al [2023). An intuitive explanation is that the model can effectively encode the con-
cepts frequently seen during pretraining (Razeghi et all,[2022; [Li et all,[2024). In our experiments,
we also observe similar patterns where AND and OR were encoded more accurately. However,
we aim to provide an alternative perspective to understand the model’s success and failure modes.
Through the study of the two-stage process, we show that the bottleneck in the model can exist in
both levels of concept inference and subsequent decoding algorithm. Therefore, even if the model
already learned the algorithm for a NOR operator, if the model cannot clearly distinguish the latent
concept from the inputs, it will fail, and vice versa. Perhaps as our experiments suggest, when the
model is failing at concept encoding, a different prescription of finetuning only the earlier layers
for better representation learning is more beneficial. Ultimately, by detecting the different causes of
the failure modes of models, we hope to build more effective, robust strategies to improve them and
unravel the mysteries of large models via mechanistic understanding.

10
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A INVESTIGATING PREDICTABILITY OF ICL TASK PERFORMANCE IN
LARGE-SCALE PRETRAINING

Since it is computationally infeasible to conduct large-scale pretraining studies, we leverage the dif-
ferent training checkpoints for OLMo-7B (Groeneveld et al., [2024) to investigate the relationship
between concept decodability and ICL task performance on POS tagging. Interestingly, as shown
in Figure [§] we observe a correlated emergence of the two variables. This analysis shows that the
coupled emergence of concept encoding and decoding algorithms may also hold in large-scale pre-
training. However, this warrants further investigation, since we do not fully understand the training
dynamics of a LLM.

POS Tagging with OLMo
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Figure 8: Test accuracy and CD scores of POS Tagging across OLMo-7B (Groeneveld et al., [2024)
checkpoints, from 1000 to 500000. .

B CONCEPT ENCODING

In this section, we formally define the Concept Encoding and Concept Decoding.

Definition 1 (Concept Encoding) Let M be a transformer model, Z = z1, 22, ..., 2, be a set of
latent concepts, and D be in-context examples with arbitrary length K. A concept encoding is an
internal mapping E : D — Rmv where R is the intermediate representation over the model’s
d-dimensional embedding space.

Definition 2 (Concept Decoding) Given a transformer model M with concept encoding E, a con-

cept decoding is a transformer’s behavior that there exists a simple function G that can recover the
original latent concept and condition the algorithm:

G:Rém — Z
ICL performance of given z is related to how well the decoder G can infer the original latent variable
z. To quantify this, we introduce the notion of decodability. For any given decoder, we define

decodability as follows:

Definition 3 (Decodability) For a given decoder G : R%m* — Z and a specific latent variable z,
we define the decodability measures as follows:

1. Accuracy:
ccuracy A(G,z) = P(G(E(2,D)) = 2)
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2. Distribution Similarity:
S(G,2) = Dp(P(2)[|P(2))

Our study suggests that in transformers, the encoder £ maps distinct latent variables z to separable
representations. The model then applies different algorithms based on the inferred 2. This separa-
bility suggests that the transformer is inherently biased toward having a simple decoder G. In our
study, use the kNN classifier for a decoder, accuracy and for score.

C SyYNTHETIC ICL EXPERIMENT

C.1 THEORETICAL ERROR BOUNDS IN SPARSE LINEAR REGRESSIONS

It is known that transformers can achieve Bayes-optimal solutions for linear regression problems by
implementing least-squares solutions on the prior of weight sampling (Garg et al., 2022; [Raventds
et al.,[2024). The least-squares estimation of linear regression with a Gaussian prior for task weights
can be performed using ridge regression. In the presence of sparsity, the least-squares solution can
be obtained through lasso regression with optimal weight searching. The error bounds of our task
depend on whether the underlying basis is discovered by the model. We consider two extreme cases:

1. If the model is incapable of inferring any basis in B, it would perform a D-dimensional
regression with r-sparsity, where D is the total dimension and r is the number of non-zero
elements.

2. If the model is capable of inferring the basis in 3, it can perform an r-dimensional regres-
sion adjusted for the corresponding non-zero elements of the inferred basis. In this case,
the model could benefit from the tighter r-dimensional regression bound.

The possibility of diverse algorithms and corresponding error changes enables us to track the
Bayesian inference behavior of the model in a more detailed way. In the following results, we indeed
observe a transition from D-dimensional regression to r-dimensional regression, accompanied by
changes in the representations of tasks for each basis.

C.2 EXPERIMENTAL DETAILS

Mixture of Sparse Linear Regression. We adapt the conventional linear regression setup from
Garg et al.| (2022); [von Oswald et al.| (2023) to create latent bases B that we can interpret far more
easily than W. We study this setting with D = 16 dimensional with up to K = 20 in-context
examples. Each B; has a rank of 4 and is orthogonal with each other. We independently sample
W and z; for each new input sequence from N (0, Ip) the noise ¢ ~ N(0,0.01). We add the
sparsity constraints to the linear regression task to introduce the latent concept of sparsity basis B
that is easily interpretable and analyzable in their representations. With the sparsity constraints, we
construct the graphical model B — W — Y < X. This construction allows us to visualize the
representations of each of the bases (latent concepts in this graph) by aggregating the representations
across a set of W and (X, Y") pairs.

Model. We use a 12-layer GPT-2 (Radford et al., [2019) architecture transformer, as implemented
by HuggingFace (Wolf et al., 2020). This model is parameterized with an embedding dimension of
256 and 8 attention heads and hasa total of 9.5M parameters.

Training. We train the model with a batch size of 128 for 80K training steps. We use the Adam
optimizer (Kingma & Ba,|[2017) with a learning rate of le-4 and betas of 0.9 and 0.9999. We use a
MSE loss over the sequence and only compute the losses on the prediction ;.

Evaluation. We construct a test dataset of 1K samples and evaluate the model on MSE loss for
the predictions ¥; along the sequence.

Compute. We use an A100 GPU with 80GB of VRAM. To train these models, it takes about ~ 8
hours.
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C.3 ADDITIONAL RESULTS

Replicate experiments Here, we run the different seeds of synthetic experiments in Figure[T] and
we report the results in figure[9] We observe that a single basis produces distinct loss trajectories for
Seeds 1 and 2 as in Figure[T} while Seed 3 demonstrates a consistent loss descent across basis.

Loss curve (seed 1) Loss curve (seed 2) Loss curve (seed 3)
1.0 1.0 1.0
08 0.8 0.8 =
& @ &
= 0.6 = 0.6 = 0.6
k7] k7] k7]
R o4 Lo4 R o4
0.2 0.2 0.2
0.0 s 5 0.0 | , 0.0 s 5
10 10 10 10 10 10
Epoch Epoch Epoch
(a) Replicate 1 (b) Replicate 2 (c) Replicate 3

Figure 9: Results from three replicates of experiments corresponding to Figure I} Each subfigure
shows the loss trajectory by basis by different random seeds.

C.4 ADDITIONAL ANALYSIS ON SECTION[3.3]

CD Over Training. We quantified the CD score for the synthetic experiments shown in Figure
[T], with the results presented in Figure [T0] and Figure [TT] The CD scores for Basis 1 effectively
capture the separation of representations observed at (a). An increase in CD scores correlates with
a corresponding drop in MSE, as seen in Figure [T} supporting our hypothesis that the CD score can
serve as a predictor for the predictability of CD.

CD score over Training

o
=3

CD Score
o
o

N
~

0.2

0.0

Figure 10: CD score of synthetic experiments in Figureover training. (a), (b), (c) denote the same
training points in Figure m

UMAP Over Training. To analyze how the representations evolve over training across the dif-
ferent layers in the sparse linear regression task, we visualize the UMAP of the representations in
Figure [T2] We see that concept encoding, the separation of representations by concept, starts to
appear at epoch 20 and is only clearly observed from layer 5. Note that the layer index in the figure
starts at 0, so layer 4 in the plot equals to what we call layer 5. At convergence, each of the concepts’
representations becomes separated from layer 5 and later.
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Figure 11: CD score across layers at epoch 10, 20, 100 from the synthetic experiment in Figure

UMAP Projoctions of Representations / Epoch<100,

v / / cl 1
Figure 12: UMAP visualization of representations across the layers over training in the synthetic
sparse linear regression task. We visualize the UMAP at epochs 5, 20, and 100 across all the layers.

Note that the plot uses zero-based indexing, but we use one-based indexing to refer to the layers in
all of the text.

D INCREASING COMPLEXITY IN SYNTHETIC EXPERIMENTS
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Figure 13: Loss curve over training 300 epochs

D.1 EXPERIMENT - MORE ORTHOGONAL BASES

We conduct an experiment with 6 orthogonal bases, each spanning 4 dimensions out of 24 total
bases. Similar to Figure 1, we observe distinct loss curves over the bases, coupled with clear separa-
tion in the representations (see Figure X). Importantly, we observe that basis 6 is learned first (after
around 100 epochs), and basis 2 is learned second (after around 200 epochs), while the other four
bases are not distinguished by the model until around 300 epochs. Notably, it requires significantly
more epochs for the model to learn each concept compared to the scenario in Figure 1 (which uses 4
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Figure 14: Experiment - More orthogonal bases analysis

bases on 16 input dimensions). Following our intuition, it suggests that learning concepts becomes
more challenging as the number of concepts increases. Overall, these results support the idea that
our proposed concept encoding-decoding mechanism also holds under more complex settings.

D.2 EXPERIMENT - OVERLAPPING BASES
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Figure 15: Loss curve over training 50 epochs

We conduct an experiment with 8 overlapping bases, where the first 4 bases (Bases 1, 2, 3, and 4)
span 8 dimensions, and the remaining 4 bases span the other 8 dimensions (with a total input dimen-
sion of 16). Thus, the first four bases have overlap with another and the second bases have overlap
with another. In this setup, we investigate the emergence of separation both within overlapping bases
(e.g., within Bases 1, 2, 3, and 4) and between the groups (e.g., between Bases 1, 2, 3, 4 and Bases
5, 6,7, 8), and examine their relation to subsequent ICL performance.

We observe that the loss curve for each base is identical and undergoes a steep descent around epoch
5 (see Figure D-2 in the link). This loss descent coincides with the separation of the two groups of
bases by their representations around epoch 5, while bases within the same group remain entangled
and unsorted.
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Figure 16: Experiment - Overlapping bases analysis

These observations suggest several key points. First, the models may not learn to fully separate over-
lapping concepts, as they can develop shared algorithms to predict the overlapping portions. Second,
non-overlapping concepts can be fully separated, which accounts for the significant ICL improve-
ment, as it allows the development of algorithms for orthogonal (non-overlapping) concepts. Third,
transformers seemingly learn to classify tasks based on their similarity and associate algorithms at
different levels of resolution over the course of training.

E NATURAL ICL EXPERIMENTS

Part-of-speech Tagging. We construct a Part-of-speech (POS) tagging dataset from the English
Penn Treebank corpus (Marcus et al.l [1994) from the articles of Wall Street Journal. Our POS tags
are, Noun, Adjective, Verb, Adverb, Preposition, Pronoun, and Pronoun. We abide by the data-use
regulations and, from a total of 4K samples, we filter out sentences that have all 6 POS tags. Then,
we split the dataset into a 80-20 train-test split. We evaluate all the models on the test split, and the
train split is only reserved for the finetuning experiments.

Bitwise Arithmetic. We construct a bitwise arithmetic dataset consisting of 6 different operators:
AND, NAND, OR, NOR, XOR, and XNOR. We randomly sample pairs of input binary digits and
generate the resulting binary. For training, we construct 10K samples, and, for evaluation, we con-
struct 500 samples.

Model. We use a pretrained Llama-3.1-8B model for all of the main natural ICL experiments, if
not specified otherwise.

Training. For most of the experiments, we do not train the model and only evaluate its ICL per-
formance on the different tasks. However, we only finetune the model in the causal experiments to
study the causal relation between the accuracy of concept encoding and ICL task performance. We
finetune a model per task family (i.e. POS and bitwise arithmetic). For computationally efficient
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finetuning given compute constraints, we use LoRA 2021), a type of parameter efficient
finetuning. We set the rank and alpha to be 16 and the dropout to be 0.1. We train the model on a
total of 10K samples with the next-token prediction loss. We only backpropagate the losses on the
y; predictions.

Evaluation. To evaluate the model’s ICL performance, we use greedy decoding to generate an-
swers given different number of in-context examples and compute an exact-match accuracy score —
whether the generated sequence is exactly equal to the ground truth.

Compute. We use an A100 GPU with 80GB of VRAM for training and inference. Training takes
~ 4 hours and evaluation takes ~ 30 minutes for each run.

E.1 MECHANISTIC INTERVENTION STUDY FROM SECTION 4.1

We present the results for the mechanistic intervention study probing whether different concept
encoding triggers different decoding algorithms and whether they are causally related in Figure
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X 1 | X
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- 60 - 60
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(a) POS Tagging (b) Bitwise Arithmetic

Figure 17: Causal analysis of concept encoding by intervention. We patch the activations of the input
with the correct and incorrect latent concept to demonstrate that the inferred concept embedded in
the representation can causally improve or degrade performance. We intervene at layers 15 and 13
respectively for the POS and arithmetic tasks. The results show that the performance is causally
dependent on the latent concept representations. Error bars represent the standard deviation across
five different replicates of experiments.

E.2 GENERALIZATION WITH DIFFERENT MODEL FAMILIES AND SCALES

In both the POS and bitwise arithmetic tasks, we observe a positive correlation between CD and ICL
test accuracy across different model families and scales. Interestingly, in all of the Gemma-2 family
and Llama-3.1 70B models, Noun, Pronoun, and Verb show the clearest signs of concept encoding-
decoding behavior, as we saw in the Llama-3.1 8B model in Figure [5] In the bitwise arithmetic
task, AND, NAND, OR, and NOR (classes that showed the strongest encoding-decoding behavior
in Llama-3.1 8B), also show the strongest signs of concept encoding-decoding behavior across all
of these models. Given that many LLMs are trained on similar sources of pretraining data
let all 2024} [Gao et all, [2020) (CommonCrawl, Wikipedia, etc), we conjecture that the models may
have learned similar encoding-decoding mechanisms for these concepts.
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Figure 18: CD score vs ICL performance across Gemma-2 models (2B/9B/27B) and Llama-3.1-
70B. The positive correlation between CD and ICL performance seen in Llama-3.1-8B generalizes
across different models and scales. The grey dashed lines are linear lines of best fit. These results
suggest that the accuracy of concept encoding is closely coupled with downstream ICL performance.

E.3 PAIRWISE CONCEPT DECODABILITY COMPARISON
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Figure 19: Pairwise CD scores for POS Tagging and arithmetic tasks at 4 shot. Pairwise CD scores
identifies the clustered tasks

F PROMPTING EXPERIMENTS

Experimental Setup. To study whether concept encoding is a unifying principle that underlies
different mechanisms to improve ICL, we also experiment with prompting. Instead of hiding the
concepts and letting the model infer, we include information about the true concept for the examples
(e.g., including the true label of AND operator or the instruction of “Find the first noun in the
sentence’).
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Results. As discussed in Section [5] we question how prompting may be affecting the concept
encoding in increasing task performance. As expected, prompting improves the performance of
the model, especially in the bitwise arithmetic experiments. Simultaneously, we observe that the
decodability score of the latent concepts also increases drastically. However, we interpret these
results with caution because the model may be capturing spurious correlations from the differences
in the input distribution. Specifically, the bitwise arithmetic experiments show high decodability
even in the beginning layers of the model.
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Figure 20: ICL test accuracy across 12 tasks in POS tagging and bitwise arithmetic with prompts
containing the true concept (e.g., AND, “Find the first noun in the sentence”) of the task.
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Figure 21: CD score across layers for POS tagging and bitwise arithemetic in Llama-3.1-8B for the
prompting experiments. We include the true labels of the latent concept (i.e. “Find the first noun in
the sentence.”). We detail the experimental setup in Appendixﬁ
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