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Figure 1: FreeCam Results. Given a source video and a target camera trajectory, our method
generates a video that faithfully follows the specified camera path. With the reference coordinate
system defined by the initial frame of the source video (highlighted in red), FreeCam enables novel-
view video synthesis along arbitrary trajectories. The examples show generated videos following
backward (first) and arc (second) camera trajectories.

ABSTRACT

Novel-view video generation from dynamic scenes has emerged as a compelling
research direction with the advancement of video diffusion models. However,
current approaches face key constraints that restrict flexibility. Specifically, meth-
ods exploiting Image-to-Video models as a baseline are constrained by the bias
of the base model, limiting the target camera pose of the initial frame to remain
close to the source. Limited diversity of camera trajectories in currently avail-
able datasets also confines trained models to generating output with limited cam-
era trajectories. The generation results of projection-based methods that rely on
depth estimation are affected by projection errors present in the depth-warped in-
put video. In this paper, we present FreeCam, a camera trajectory conditioned
Video-to-Video generation framework that enables depth-free novel-view video
generation for a constraint-free camera trajectory. We introduce infinite homogra-
phy warping that encodes 3D camera rotations directly in 2D latent space without
depth, enabling high camera pose fidelity. Also, we augment existing multi-view
datasets with identical initial frames into the dataset with arbitrary-trajectories
and heterogeneous intrinsic parameters, enabling training on diverse camera mo-
tions and focal lengths. Our experimental evaluation demonstrates that FreeCam
delivers enhanced trajectory precision over existing state-of-the-art approaches
while preserving visual fidelity. Notably, despite training exclusively on synthetic
data, FreeCam generalizes effectively to real-world videos. Through comprehen-
sive ablation studies and comparative analyses, we confirm the complementary ad-
vantages of our proposed data processing pipeline and infinite homography warp-
ing technique, together establishing a novel framework for achieving precise and
flexible camera motion control in video synthesis applications.
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1 INTRODUCTION

Changing the camera viewpoint in post-production is a highly sought-after video editing technique,
as it eliminates the need for costly reshoots and enables creative visual effects. The recent emergence
of large-scale video diffusion models has triggered research on controlling camera trajectories for
novel-view video generation Van Hoorick et al. (2024); YU et al. (2025); Bai et al. (2025a).

However, existing methods still suffer from several limitations. First, although models built upon
Image-to-Video backbones have the benefit of preserving visual fidelity from the source video thanks
to their pre-trained knowledge, this often imposes a restrictive constraint that the initial frame of the
generated video must remain close to that of the source video. For example, GCD( Van Hoorick et al.
(2024)) , which leverages a pretrained Image-to-Video diffusion model as its base model, generates a
video with severe artifacts when given a distant camera pose for the first frame. Although the model
is fine-tuned on a multi-view dynamic dataset, we conjecture that the base Image-to-Video model
still tries to anchor the input image as the first frame even after fine-tuning, leading to artifacts.

Second, models are constrained by the narrow range of camera poses encountered during train-
ing. For instance, ReCamMaster Bai et al. (2025a) and SynCamMaster Bai et al. (2025b), both of
which perform camera-controlled video generation built upon Text-to-Video diffusion model, gener-
ate first-frame preserving videos and videos with stationary cameras respectively, adhering to their
respective training dataset configurations. Although the datasets used to train the model are both
synthetically generated by the authors and could theoretically be freely manipulated, they still ex-
hibit inherent constraints in camera pose diversity. We hypothesize that these dataset constraints
arise from the fundamental requirement that camera viewpoints must maintain sufficient frustum
overlap for the purpose of novel-view video generation, prohibiting the task from becoming pure
generation. This geometric constraint explains why MultiCamVideo Dataset employs cameras that
share the starting point of the arbitrary trajectories and why SynCamVideo Dataset utilizes station-
ary cameras randomly sampled on a hemispherical surface centered around the subject. While these
configurations ensure sufficient visual overlap for stable training and inference, they inadvertently
force models to internalize these geometric constraints, thereby limiting their ability to generalize to
novel camera poses outside the training distribution.

Third, methods that explicitly incorporate depth projection face inherent performance degradation
stemming from their dependency on depth estimation module. Although approaches such as YU
et al. (2025) benefit from leveraging geometric information for novel view synthesis, the overall
system performance becomes fundamentally constrained by the accuracy and reliability of the un-
derlying depth predictor.

To address these limitations, we present FreeCam, a novel depth-free framework for camera tra-
jectory control in video generation. Unlike existing approaches that suffer from cascading errors
due to their reliance on auxiliary depth estimation modules, our method bypasses depth information
entirely while preserving essential geometric constraints. Specifically, we introduce an infinite ho-
mography warping module that effectively injects 3D rotational information into the 2D latent space,
providing robust geometric conditioning for the generation process. Additionally, we introduce a
data processing strategy that transforms datasets with constrained viewpoints into flexible trajec-
tory formats, enabling our model to learn from diverse camera movements. Extensive experiments
demonstrate that the synergistic combination of our dataset processing and the infinite homogra-
phy warping module enables superior trajectory fidelity compared to state-of-the-art methods. We
further validate the generalizability of our approach through successful application to challenging
real-world videos.

Our contributions are summarized as follows:

• We propose a camera-controlled novel-view video generation framework, which is free
from camera pose constraints.

• We introduce an infinite homography warping module, successfully incorporating camera
trajectory in 2D latent space without using depth information.

• We present a data augmentation scheme that constructs paired videos with arbitrary trajec-
tories and varying camera intrinsics.
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• Experimental results demonstrate that the proposed warping module and data augmentation
scheme not only synergistically improve novel-view video generation performance, but also
generalize effectively to unconstrained, real-world video data.

2 RELATED WORK

Camera-Controlled Text-to-Video Generation Camera-controlled text-to-video generation meth-
ods produce videos based on a camera pose and a text prompt that describes the scene the user
intends to control. Several works introduce a plug-and-play module for camera trajectory condi-
tioning He et al. (2025); Bai et al. (2025b), ControlNet-like encoder with spatiotemporal camera
embeddings based on Plücker coordinates Bahmani et al. (2025b), and improved training sched-
ules Bahmani et al. (2025a). Although the authors argue that their method can be extended to the
camera control of real-world videos, the generated outputs do not incorporate dynamic camera mo-
tion, instead producing novel-view videos with static camera positions, since the model learns from
a training dataset that primarily consists of static cameras.

Camera-Controlled Video-to-Video Generation Camera-controlled video-to-video generation
methods produce videos conditioned on both an input video and a specified camera pose, preserving
the temporal dynamics of the input video while reflecting the spatial movement dictated by the given
camera trajectory. Van Hoorick et al. (2024) pioneered a controllable novel-view dynamic video
synthesis method that generates videos from novel viewpoints by leveraging pretrained image-to-
video (I2V) diffusion model priors. Although the model is trained on a multi-view dynamic dataset,
direct camera displacement often leads to performance degradation. YU et al. (2025) project the
source video onto the target camera with a desired trajectory, utilizing depth maps estimated from a
monocular depth estimator. The projection results serve as input to a video inpainting model, which
is fine-tuned on a dataset generated using a double reprojection scheme. As the approach relies on
an external monocular depth estimation module, its performance is bound by the quality of the depth
estimator. Bai et al. (2025a) perform camera-controlled video generation by conditioning Text-to-
Video (T2V) model on camera trajectories. The model is trained using a synchronized multi-camera
synthetic video dataset, MultiCamVideo. Although their approach does not employ image-to-video
models that enforce initial frame preservation, the proposed method still preserves the first frame,
since all rendered multi-view videos in the MultiCamVideo dataset are synchronized to share the
same initial frame. The generation performance is either constrained by the accuracy of the depth
estimator or remains limited by restrictions on the trajectory types.

3 PRELIMINARY

3.1 INFINITE HOMOGRAPHY

The infinite homography H∞ represents the homography induced by the plane at infinity. Given
source and target camera intrinsic matrices Ksrc and Ktrg, rotation matrix R, translation vector t,
and normal n of a plane, the infinite homography H∞ can be derived from the plane-induced ho-
mography H = Ktrg(R−tnT /d)K−1

src by taking the limit as the distance d to the plane approaches
infinity:

H∞ = lim
d→∞

H = KtrgRK−1
src. (1)

For a pixel p with known depth Z measured from the source camera, the projection p′ to the target
image is expressed as:

p′ = KtrgRK−1
srcp+Ktrgt/Z = H∞p+Ktrgt/Z (2)

Notably, H∞ does not depend on the translation and depth, enabling correspondence of image
points at arbitrary depths when the camera undergoes pure rotation(t = 0). The term Ktrgt/Z
represents the parallax induced by the plane at infinity. We condition our model on 2D latent features
transformed by infinite homography, allowing the network to focus exclusively on learning parallax
information from the training data. Further details about the infinite homography can be found
in Hartley & Zisserman (2003).

3
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3.2 MULTICAMVIDEO DATASET

The MultiCamVideo Dataset is a synthetic dataset introduced in Bai et al. (2025a), comprising
synchronized multi-camera videos with their corresponding camera trajectories. The dataset con-
tains 13,600 distinct dynamic scenes, each captured from 10 different camera viewpoints, yielding
a total of 136,000 videos. The synthetic rendering employs four different focal lengths: 18mm,
24mm, 35mm, and 50mm, with the focal length remaining constant within each scene. Each ren-
dered video consists of 81 frames with a resolution of 1280×1280 pixels. The dataset encompasses
diverse trajectory types including pan, tilt, translation, arc, random, and static movements. Each
trajectory type is parameterized with randomly sampled values for angle, distance, scene coverage,
and speed. A notable feature of this data is that all 10 cameras within each scene share identical
starting positions, ensuring consistent initialization across viewpoints. Building on these properties,
we introduce a data augmentation approach utilizing the MultiCamVideo Dataset to eliminate po-
tential bias from initial frame conditioning and camera intrinsics preservation. Additional details
about MultiCamVideo Dataset are provided in Bai et al. (2025a)

3.3 WAN2.1 TEXT-TO-VIDEO MODEL

Wan2.1( Wan et al. (2025)) is an open-sourced Text-to-Video (T2V) diffusion model based on
transformer architecture. During training, for a given video V ∈ RB×(1+F )×H×W×3, the Wan-
VAE compresses its spatio-temporal dimensions to [1 + F/4, H/8,W/8]. Subsequent patchifica-
tion further reduces the spatial resolution, yielding z ∈ RB×(f×h×w)×d , where f = 1 + F/4,
h = H/16, w = W/16. Given a video latent z1, a random noise z0 ∼ N (0, I), and a sampled
timestep t ∈ [0, 1], an intermediate latent zt is obtained as the training input. Following Rectified
Flows (RFs) ( Esser et al. (2024)), zt is defined as a linear interpolation between z0 and z1, i.e.,
zt = tz1 + (1 − t)z0. The ground truth velocity vt is vt =

dzt

dt = z1 − z0. The model is trained
to predict the velocity, thus, the loss function can be formulated as the mean squared error (MSE)
between the model output and vt,

L = Ez0,z1,ctxt,t

[
∥u(zt, ctxt, t; θ)− vt∥2

]
, (3)

where ctxt is the text embedding sequence, θ represents the model weights, and u(zt, ctxt, t; θ)
denotes the output velocity predicted by the model. We use pretrained Wan2.1 as our base model,
keeping the weights frozen while introducing additional trainable layers. We employ the same
training objective as Wan2.1.

4 METHOD

Our goal is to perform novel-view video synthesis using a given camera trajectory. Specifically,
given a source video Vs ∈ RF×C×H×W , target camera trajectory T ∈ RF×3×4 expressed relative
to the source video’s initial camera pose, and target camera intrinsic Kt ∈ R3×3, our FreeCam
generates novel view video Vt ∈ RF×C×H×W that faithfully follows the target camera trajectory
and target intrinsic configuration. Target camera trajectory is defined in a special Euclidean space
(R, t) ∈ SE(3), having rotation R ∈ R3×3 and translation t ∈ R3.

In Section 4.1, we present our model design tailored for the novel-view video synthesis task. In
Section 4.2, we describe our data augmentation strategy that enhances existing synthetic data for
novel-view video synthesis across unconstrained camera trajectories and varying intrinsics.

4.1 MODEL ARCHITECTURE

We adopt the Text-to-Video model Wan2.1( Wan et al. (2025)) as our base architecture. To incorpo-
rate camera controllability while preserving Wan2.1’s robust video generation capabilities trained on
extensive datasets, we freeze the pretrained weights of Wan2.1 and train only the newly introduced
camera encoder and the Homography-Guided Attention Layers. The new attention layers are ini-
tialized using weights from the corresponding pretrained transformer blocks. We employ a camera
encoder consisting of a linear layer with 16-dimensional input and d-dimensional output to encode
camera poses. The input comprises a flattened 3×3 rotation matrix (9 parameters), three translation

4
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Figure 2: Model Architecture Overview. Our model builds upon Text-to-Video generation model,
training only newly introduced parameters while freezing pretrained weights. (a) Homography-
Guided Attention Layer: This layer performs per-frame attention ensuring temporal alignment
by allowing target frames to reference corresponding source frames. The warped latents help the
model understand rotation-induced view transformations. (b) Warping Module: This module warps
latents using infinite homography, which approximates rotational transformations of 3D points in 2D
space. This design simplifies 3D projection prediction problem to the simpler parallax prediction
based on target translation.

parameters, and four intrinsic camera parameters (focal lengths fx, fy and principal point coordi-
nates cx, cy). This camera encoder is shared across all transformer blocks and all types of camera
encoding for consistent camera conditioning. The overall architecture of our model is illustrated in
Figure 2.

Homography-Guided Attention Layer Our Homography-Guided Attention Layer performs per-
frame attention by spatially concatenating information for target frame generation. The layer archi-
tecture is illustrated in Figure 2 (a). Specifically, given a source video latent zs and a noisy target
video latent zt, the concatenated information includes: zti, which is indexed from the target latent
at the frame index i. zsi , which is indexed from the source latent at the corresponding frame i, and
zwi , representing the warped version of the source latent at the initial frame (zsinit). The warping
operation is performed using the camera intrinsics and i-th target camera pose.

Camera embeddings are added to their corresponding latents prior to spatial concatenation. The
target camera embedding is obtained by passing the user-specified target intrinsics Kt, rotation Rt,
and translation tt through the camera encoder. For the source camera embedding, we concatenate
the flattened source intrinsics with the identity pose [I|0], replicate this across frames, and encode it
using the camera encoder.

The resulting concatenated latents have shape zc ∈ Rbf×3hw×d, where frames are processed as in-
dividual batch items within the attention mechanism. This structure ensures temporal alignment by
allowing target frames to reference corresponding source frames at matching timestamps. Moreover,
the warped latent features facilitate the model’s understanding of rotation-induced view transforma-
tions. After passing through the Homography-Guided Attention Layer, the concatenated features zc
are split and reshaped to Rb×fhw×d format to serve as input to Wan2.1’s Self-Attention Layer. Dur-
ing processing through the pretrained Wan2.1 layers, the paired source and target latents are treated
as a unified batch, and do not use warped latents. More detailed model architecture can be found in
Appendix A.

Warping Module Motivated by Equation (2), we condition the attention layer on the warped latent
using infinite homography, which approximates the rotational transformation of 3D points in 2D
space. Our warping module is illustrated in Figure 2 (b). Since target camera poses are expressed
relative to the source video’s first frame, the Warping Module warps the source latent of the initial
frame using the target camera poses and intrinsics. The module is designed to reflect the compo-
nents in Equation (2). Specifically, zinit is first warped using infinite homography derived from
camera intrinsics and target poses. The warped result is then added to the original zinit through a
zero convolution layer as a residual connection. Subsequently, camera embeddings encoding tar-
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Figure 3: Augmented Dataset Examples. Rows 1&3: Examples of our trajectory augmentation.
This ensures temporal alignment while introducing variability in initial frame selection (highlighted
in yellow). Rows 2&4: Examples of our focal length augmentation. This helps the model learn
the underlying relationship between focal length variations and their corresponding effects on video
generation.

get translation and intrinsics are added, representing the second term in Equation (2). This design
simplifies projection estimation under target camera poses to parallax estimation induced by target
translation. The effectiveness of this module is validated through ablation studies in Table 3.

4.2 DATA PREPARATION

In this section, we describe our data augmentation strategy that enhances existing synthetic data for
novel-view video synthesis with unconstrained camera trajectories and varying intrinsics. We utilize
the MultiCamVideo Dataset Bai et al. (2025a) for augmentation and will refer to the augmented
version as AugMCV (Augmented MultiCamVideo) Dataset for brevity.

4.2.1 TRAJECTORY AUGMENTATION

As discussed in Section 3.2, the MultiCamVideo dataset provides 10 arbitrary trajectories of a single
scene, each capturing different viewpoints. However, all trajectories originate from an identical
initial viewpoint. Consequently, when randomly sampling two videos from the same scene, their
first frames are always identical. We empirically observe that models trained on this dataset exhibit
a bias toward reproducing the source video’s first frame, even when conditioned to start from a
different viewpoint.

To mitigate the bias, we propose a novel augmentation strategy to enhance the MultiCamVideo
dataset. Our key observation is that while all trajectories share the same starting frame, their terminal
frames diverge significantly across different videos. Leveraging this property, we randomly sample
two distinct videos from the same scene and construct an augmented sequence by reversing the first
video and concatenating it with the second. Since the final frame of the reversed video coincides
with the initial frame of the second video, we remove the redundant first frame of the latter, resulting
in an augmented video of 161 frames (81 + 80). Figure 3 (rows 1 and 3) shows examples of our
trajectory augmentation approach. This approach ensures temporal alignment while introducing
variability in initial frame selection, thereby enabling models to learn more generalizable trajectory
representations without dataset-specific biases.

6
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Table 1: Experimental results on the test set of AugMCV dataset. The best and second-best results
are bold and underlined, respectively.

Shared Intrinsics Different Intrinsics Mixed
Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
ReCamMaster 21.130 0.617 0.420 19.665 0.558 0.510 20.442 0.589 0.462
TrajectoryCrafter 21.228 0.660 0.296 19.557 0.586 0.390 20.489 0.627 0.337
Ours 22.677 0.718 0.246 22.261 0.699 0.270 22.494 0.710 0.257

4.2.2 INTRINSIC AUGMENTATION

As discussed in Section 3.2, the MultiCamVideo Dataset incorporates four distinct focal lengths,
with 3,400 scenes allocated to each focal length configuration. While the dataset inherently en-
compasses multiple intrinsic parameters, our empirical analysis reveals that models trained on this
dataset demonstrate a systematic bias toward generating videos that preserve the focal length char-
acteristics of the source video. This limitation arises from the training paradigm wherein both
source and target videos are sampled from identical scenes, consequently maintaining consistent
focal length parameters across video pairs. Such consistency prevents the model from learning the
underlying relationship between focal length variations and their corresponding effects on video
generation. To alleviate this bias, we introduce intrinsic augmentation.

Specifically, given the trajectory-augmented scene with focal length fscene, we random sample the
new focal length fnew ∈ {x ∈ {18mm, 24mm, 35mm, 50mm}|x > fscene}, and apply intrinsic
augmentation process to the input video. Figure 3 (rows 2 and 4) illustrates the results of applying
focal length augmentation to video sequences obtained from Section 4.2.1. Intrinsic augmentation
can be achieved by simple resize and crop. Detailed process is described in the pseudo code in the
Appendix B.2.

4.2.3 VIDEO PAIR SELECTION

To train Video-to-Video model for novel-view video generation, paired video data is required. The
source video represents the user input, while the target video serves as the ground truth for the gener-
ated output following a specified trajectory. Video pairs are constructed by sampling two videos from
identical scenes. To align with the pre-training strategy of Wan2.1( Wan et al. (2025)) base model,
we sample 81 frames from temporally synchronized video pairs with identical starting timestamps.
For each video, we apply focal length augmentation with a probability of 0.5. Although we aug-
ment focal lengths only in the ascending direction, using augmented videos as either source or target
ensures that the selected video pairs encompass both focal length increase and decrease scenarios.
Figure 3 illustrates representative video pairs (rows 1 and 3) alongside their corresponding focal
length augmented versions (rows 2 and 4). Source and target videos are sampled from these four
candidates. This sampling strategy enables coverage of zoom-in, zoom-out, and arbitrary trajectory
patterns.

5 EXPERIMENTS

5.1 EVALUATION SET

We evaluate the accuracy of camera trajectories and the quality of generated videos on two distinct
datasets.

AugMCV Dataset Experiments are conducted on 168 scenes from the AugMCV test split. Each
scene includes 10 target camera trajectories, along with the corresponding ground-truth video for
each trajectory. By using a static-camera clip as input, we generate one video for each target trajec-
tory, resulting in a total of 1,680 generated videos. Among the 168 test scenes, 72 scenes use source
and target videos with different camera intrinsics, while the remaining 96 scenes have identical in-
trinsics between source and target videos. These videos are then compared to their respective ground
truth videos using performance metrics such as PSNR, SSIM, and LPIPS Zhang et al. (2018).

7
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Figure 4: Qualitative comparison on the test set of the AugMCV dataset. ReCamMaster(RCM) fails
in viewpoint transformation, keeping the initial frame of the source video, while TrajectoryCrafter
exhibits inaccurate projection performance. In contrast, our methodology achieves high visual fi-
delity to the target video. Best viewed in zoom

WebVid Dataset A random sample of 100 source videos is selected from the WebVid Bain et al.
(2021) dataset to evaluate performance in real-world scenarios. For each source video, synthetic
videos are generated using 20 different camera trajectories. Of these, ten camera trajectories main-
tain an initial camera pose identical to the source video’s first frame, while the remaining ten camera
trajectories employ an initial camera pose intentionally deviated from the source video’s first frame.
This procedure yields a total of 2,000 generated synthetic videos. Video and frame-level fidelity
are assessed using FID Heusel et al. (2017) and FVD Unterthiner et al. (2019), and rotation and
translation errors He et al. (2024) are reported for the target trajectories and the generated videos.

5.2 EXPERIMENTS ON AUGMCV DATASET

Qualitative Results Fig. 4 presents a qualitative comparison of our methodology against baseline
models for AugMCV test set. It shows the generated videos (rows 2-4) when the source video (row
1) is transformed according to the camera trajectory, compared with the ground-truth target video
(row 5) corresponding to the input camera trajectory. ReCamMaster preserves the initial frame of
the source video unchanged due to its limitations of training data that starts from the same initial
frame. TrajectoryCrafter, which employs projection-based methods, successfully performs view-
point transformation of the initial frame but fails to reflect the appearance of the source video across
all frames due to inaccurate projections from the depth estimator. In contrast, our methodology,
benefiting from the warping module and trajectory-intrinsic augmentation, successfully transforms
the initial frame to align with the target camera trajectory and maintains consistency with the target
video’s viewpoint throughout the remaining trajectory.

Quantitative Results Table 1 presents quantitative evaluation results for three scenarios: (1) source
and target videos with identical camera intrinsics, (2) source and target videos with different camera
intrinsics, and (3) a mixed setting with both types. Across all scenarios, our method consistently
outperforms the baseline approaches in terms of PSNR, SSIM, and LPIPS metrics.

5.3 EXPERIMENTS ON WEBVID DATASET

Qualitative Results Figure 5 shows qualitative results on First-Frame Asynchronized (FF-Async)
scenarios using videos from the WebVid dataset as source video. As shown in row 2 of the Figure 5,
ReCamMaster (RCM) preserves the first frame of the source video unchanged, similar to the exper-
imental results conducted in Section 5.2. This is because RCM is trained with bias inherent in the

8
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Figure 5: Qualitative Comparison. ReCamMaster (RCM) fails to reflect changes in the initial
frame pose, regardless of whether trajectory interpolation is applied. Trajectory Crafter exhibits
noticeable distortions in facial regions due to projection errors. In contrast, our method achieves
natural pose transitions while maintaining high visual quality throughout the sequence. Best viewed
in zoom

Table 2: Quantitative comparison on WebVid dataset. We compare methods on First-Frame Syn-
chronized (FF-Sync) and First-Frame Asynchronized (FF-Async) settings. Best scores per metric
are in bold.

Method FF-Sync FF-Async
Rot.↓ Trans.↓ FID↓ FVD↓ Rot.↓ Trans.↓ FID↓ FVD↓

ReCamMaster 9.673 1.466 40.612 308.697 4.843 1.599 30.828 297.328
ReCamMaster w/ interp. - - - - 7.076 0.589 39.248 295.353
TrajectoryCrafter 5.595 0.502 32.220 287.805 3.437 1.467 29.534 291.954
Ours 3.605 0.510 32.906 282.703 2.718 0.365 26.497 291.202

MultiCamVideo Dataset, which favors generating videos that start with the same initial frame as the
source video. To mitigate this limitation, we additionally employed frame interpolation techniques.
Specifically, we interpolated the first 8 trajectories from the reference pose to the initial target tra-
jectory, repeating the source video’s first frame 8 times. Then we cropped the first 8 frames from
the generated video. This approach allows ReCamMaster to generate different viewpoints from the
initial frame at the cost of frame count. However, as shown in row 3 of Figure 5, while the viewpoint
of the first frame shows slight changes, errors persist in reaching to the target trajectory during the
interpolation process. TrajectoryCrafter projects the first frame’s viewpoint to align with the target
trajectory, but inaccurate depth estimation decreases the fidelity of the source video, such as artifacts
appearing in the woman’s clothing in the center. In contrast, our depth-free method is independent
of such external network errors and demonstrates viewpoints aligned with the target trajectory in
First-Frame Asynchronized (FF-Async) scenarios without loss of frame count.

Quantitative Results Table 2 presents quantitative evaluation results for both First-Frame Synchro-
nized (FF-Sync) and First-Frame Asynchronized (FF-Async) trajectories. Our method demonstrates
clear superiority over competing approaches in the asynchronous setting and achieves competitive
or superior performance in the synchronous setting. Particularly, our method shows superior perfor-
mance in the more challenging FF-Async scenario, achieving lower rotation and translation errors.
These results validate that our proposed warping and augmentation techniques effectively generate
videos well-aligned with camera trajectories, regardless of the given camera trajectory.
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Table 3: Ablation study conducted on the WebVid dataset. The best and second best results are
highlighted for each metric.

Components Shared Intrinsic Different Intrinsic Mixed
Aug.Traj. Aug.Intr. Warp PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

□ □ □ 19.228 0.562 0.427 18.480 0.507 0.525 18.907 0.539 0.469
✓ □ □ 20.820 0.615 0.353 18.865 0.523 0.499 19.982 0.575 0.416
✓ ✓ □ 22.807 0.680 0.250 21.866 0.649 0.293 22.404 0.667 0.268
✓ ✓ ✓ 24.311 0.720 0.203 24.412 0.733 0.198 24.369 0.727 0.200

Table 4: Ablation study of our augmentation strategies on WebVid dataset. Best scores per metric
are in bold.

Method FF-Async
Rot.↓ Trans.↓ FID↓ FVD↓

w/ SynCamVideo 4.989 1.251 50.389 234.985
w/ Augmentation 3.628 0.758 42.758 234.280

5.4 ABLATION STUDY

Analysis of Proposed Components. We perform an ablation study by progressively adding each
of the proposed components in AugMVC dataset. As shown in Fig. 8 and Table 3, the baseline
without warping and augmentation fails from the first frame to capture both the target trajectory and
intrinsics, yielding the lowest scores under both intrinsic settings. Adding trajectory augmentation
improves performance in the homogeneous intrinsic case and produces a slight rightward rotation in
the first frame consistent with the target trajectory; however, it still fails to reflect the target intrinsics
and offers comparable performance to the baseline under heterogeneous intrinsics. Enabling both
trajectory and intrinsic augmentation yields partial adaptation to the improved intrinsics but remains
inaccurate. Finally, the warping module, by explicitly warping the source latent with respect to the
target pose and intrinsics, proves crucial for accurately encoding intrinsic information, leading to
substantial qualitative and quantitative gains.

Effectiveness of our augmentation strategy. We evaluate the proposed trajectory-intrinsic aug-
mentation scheme in two regimes: (i) a model with a warping module trained on MultiCamVideo and
SynCamVideo, and (ii) a model trained on FreeCam using our method. SynCamVideo comprises
multiple recordings of the same dynamic scene, captured simultaneously from distinct viewpoints
using stationary cameras. Even under joint training, it does not cover First-Frame Asynchronized
(FF-Async) case. In contrast, our augmentation yields lower camera-estimation error and improved
video-quality metrics as shown in Table 4.

6 CONCLUSION

In this paper, we present a novel camera-controlled video-to-video generation model, FreeCam. Our
approach achieves accurate pose fidelity without requiring a depth prior, breaking the first-frame
constraint imposed by previous methods. Our key contribution is the infinite homography warping
module, which encodes 3D camera rotations directly in the 2D latent space, thereby eliminating
the need for external depth estimation while improving camera-pose fidelity. Training with the
proposed data augmentation scheme both contributes to performance improvements and removes
prior constraints. Notably, our framework enables camera control as a post-processing step for
videos, representing a significant advancement in video editing. In future work, this approach can
be extended beyond the current base model’s frame length limitation, enabling even longer camera-
controlled video generation results.
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Supplementary Material

A MODEL ARCHITECTURE DETAILS
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Figure 6: This figure illustrates our model overview along with the dimensions of latent feature
handling. Here, d represents the feature dimension, w and h denote latent width and height, and f
indicates the latent frame count. The R notation is omitted for simplicity.

Figure 6 presents an overview of the proposed FreeCam, along with its dimensional specifications.
Further architectural details can be found in Section 4.1.

B DATASET AUGMENTATION DETAILS

B.1 TRAJECTORY AUGMENTATION

Figure 7 displays the scene example of MultiCamVideo dataset Bai et al. (2025a). Each scene
contains 10 videos, including 9 with random camera trajectories and 1 with a static camera. Note
that the initial frames are all identical. Two trajectories illustrated in Figure 3 are crafted using the
trajectory pair (1, 9) and (2, 9)

B.2 INTRINSIC AUGMENTATION

Algorithm 1 illustrates our approach for augmenting the focal length of a given video. This process
involves resizing according to the ratio between current and new focal lengths, followed by cropping
to maintain the original image resolution.

C IMPLEMENTATION DETAILS

We use Wan2.1( Wan et al. (2025)) as our backbone model and employ LLaVA( Liu et al. (2024))
for text extraction from the source video. During inference, we estimate the intrinsic parameters of
the source video using UniDepth( Piccinelli et al. (2024)). We conduct ablation studies using low-
resolution training (F=41, H=320, W=544) for 20k iterations on 4 H100 GPUs with 81GB VRAM
each, using a batch size of 32. For quantitative evaluation, we train our model at high resolution
(F=81, H=480, W=832) for 15k iterations. For RotErr(degree) and TransErr(meter) computation,
ViPE( Huang et al. (2025)) is used for camera trajectory extraction of the generated video and the
extracted trajectory is compared with the ground truth trajectory. To ensure that camera trajectory
extraction with ViPE( Huang et al. (2025)) references the initial camera pose of the source video,
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Figure 7: Example scene from the MultiCamVideo Dataset. Each scene contains 10 videos, includ-
ing 9 with random camera trajectories and 1 with a static camera. Each row displays frames from
one camera trajectory. All videos share the same initial frame.

Algorithm 1 Video Focal Length Augmentation
1: Input: Scene path Pscene, focal length f
2: Output: Augmented video dataset with modified focal lengths
3: procedure PROCESSVIDEOS(P in

scene, P out
scene, fnow, fnew)

4: for i = 1 to 10 do ▷ Process 10 cameras
5: video← Load(P in

scene/cam i.mp4)
6: (Worig, Horig)← GetDimensions(video)
7: (Wnew, Hnew)← ( fnew

fnow
·Worig,

fnew

fnow
·Horig)

8: while frame exists in video do
9: frame← ReadFrame(video)

10: frame← Resize(frame, (Wnew, Hnew))
11: frame← CenterCrop(frame, (Worig, Horig))
12: WriteFrame(P out

scene/cam i.mp4, frame)
13: end while
14: end for
15: end procedure

the first frame of each source video is concatenated at the beginning of every generated video. ViPE
then estimates relative poses with respect to this concatenated frame. Pose estimation results from
the concatenated first frame are excluded before evaluation.
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Source

video

Target

video

Traj. Aug. ✗

Intr. Aug. ✗


Warp ✗

Traj. Aug. ✓

Intr. Aug. ✗


Warp ✗

Traj. Aug. ✓

Intr. Aug. ✓


Warp ✗

Traj. Aug. ✓

Intr. Aug. ✓


Warp ✓

Figure 8: Qualitative ablation study of proposed components. From top to bottom, each row in-
crementally adds proposed components, showing cumulative improvements toward the target video.
Best viewed in zoom

D BASELINES

D.1 RECAMMASTER

We use the official code and checkpoints to generate videos with resolution 480 × 832 and length
81 frames. In the ReCamMaster MultiCamVideo dataset, all videos of a given scene share the same
initial frame. To realize the dynamic first-frame setting in Section 5.2, we construct eight short
camera trajectories that move from the reference pose to the target sequence’s first pose. We then
repeat the first frame of the source video eight times and render it along these trajectories, assigning
the results to the first eight frames of each generated video. This procedure yields a dynamic initial
segment while preserving content consistency.

D.2 TRAJECTORYCRAFTER

YU et al. (2025) utilize CogVideoX as a baseline, with the input resolution fixed at 384×672 and
sequence length constrained to 49 frames. For fair comparison under the 81-frame setting, we
extended inference by generating outputs in 49-frame segments, reusing the last frame of each seg-
ment as the first frame of the subsequent segment, thereby producing continuous sequences. This
inference-level extension alleviates the architectural limitation, enabling 81-frame sequence gener-
ation with preserved temporal continuity. All other experimental settings are kept identical to those
in the original paper, ensuring a fair comparison with our proposed approach.

E ADDITIONAL QUALITATIVE RESULTS

E.1 ABLATION STUDY

Figure 8 visualizes the results of our ablation study. Training on the AugMCV Dataset, augmented
with the proposed data augmentation scheme, produces generation results that more closely resem-
ble the target video. When the warping module proposed in this paper is further incorporated, the
generated output achieves the highest alignment with the target video.
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Figure 9: Additional qualitative results of AugMVC dataset. Best viewed in zoom.

E.2 ADDITIONAL QUALITATIVE RESULTS

Figure 9, Figure 10, and Figure 11 present additional qualitative results for AugMVC dataset
cases as well as WebVid under both synchronous and asynchronous settings. Figure 12 further
demonstrates our method’s performance across diverse camera trajectories. All corresponding video
results are included in the supplementary material as video files.
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Figure 10: Additional qualitative results of WebVid dataset with First-Frame Sync (FF-Sync). Best
viewed in zoom.
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Figure 11: Additional qualitative results of WebVid dataset with First-Frame Async (FF-Async).
Best viewed in zoom.
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Figure 12: Additional qualitative results of our method under various eight difference camera tra-
jectories. Best viewed in zoom.
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