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Abstract

Bootstrapped value estimation has become a widely adopted ingredient for modern
reinforcement learning algorithms. These methods compute a target value based
on observed data and predictions for future values. The approximation error of the
target value, which comes from stochastic dynamics and inaccurate predictions, can
significantly affect the data efficiency of RL algorithms. Multi-step methods, such
as n-step Q learning and TD(λ), leverage the chain structure of the data, alleviating
the effect of inaccurate predictions and allowing credit assignment across a longer
time horizon. However, the main limitation of such multi-step methods is that they
fail to exploit the graph structure of certain MDPs by only treating each trajectory
independently, resulting in an inadequate estimate of the target value that misses
the intersections between multiple trajectories. In this paper, we propose to treat the
transition data of an MDP as a graph, and define a novel backup operator exploiting
this graph structure. Comparing to multi-step backup, our graph backup method
allows counterfactual credit assignment, and can reduce the variance that comes
from stochastic environment dynamics. Our empirical evaluation on MiniGrid
and Minatar shows graph backup can greatly improve data efficiency compared to
one-step and multi-step backup.

1 Introduction

Deep Reinforcement Learning (DRL) methods have achieved super-human performance in a varied
range of games [Mnih et al., 2015, Silver et al., 2016, Berner et al., 2019, Vinyals et al., 2019].
However, existing DRL methods require a huge amount of online interactions to solve each task.
Modern DRL methods are developed under the assumption that we have a fast and perfect simulator.
However, this assumption is often taken to extremes, resulting in a huge gap in the number of samples
used by methods on standard DRL benchmarks and the number available for real-world tasks. In
order to compete for state-of-the-art, the number of overall interactions used to train DRL methods is
climbing quickly. However, most of the real-world tasks are hard to simulate, and generating new
interaction data can be quite expensive. This makes it crucial to develop data-efficient RL approaches
that solve sequential decision-making problems with limited environment interactions.

One of the key challenges to improve data efficiency is how to perform credit assignment, that is,
how to assign rewards to previous actions. To implement credit assignment, value-based RL methods
(such as DQN [Mnih et al., 2015]) learn a bootstrapped Q-value function with states and actions as
arguments. Most policy-based methods employ an actor-critic design, which means that they also
learn a value function utilising bootstrapping to increase the data efficiency for credit assignment.
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Figure 1: Benefits of introducing the graph structure into backup. The black curves represent the
experienced trajectories. The blue curves represent the reward propagation paths of graph backup
and orange curves are the paths of multi-step backup. The graph backup can propagate rewards in
counterfactual paths and aggregate information branching from the same starting state. However, the
multi-step methods can only follow existing trajectories.

Bootstrapping methods combine the information from observed data and future value estimates in
order to produce a better prediction of the value. This improved prediction is called the backup target
and the process of computing this target is called backup. The value function is essentially trained
with a supervised loss to mimic the backup target, and therefore the computation of this backup target
is important, as it influences the quality of the learned value function and hence the overall policy. In
this paper we aim to improve bootstrapping methods for target value estimation, improving credit
assignment and hence data efficiency. The key idea is to leverage the Markovian property of the MDP
that generates the data, merging identical states in different trajectories. The state merging process
will produce a data graph, which is then used to guide the target value estimation.

Vanilla DQN uses a one-step backup target, where the target is given by the next step reward and
next state value estimate. This has several disadvantages: first, if the next step value estimation is
inaccurate, this target can be far away from the ground truth; second, from the credit assignment
perspective, the reward can only be propagated one-step forward until the target network gets updated.
To speed up credit assignment over longer temporal spans, multi-step methods propagate information
through a segment of experience trajectory [Moriarty and Miikkulainen, 1995, Hessel et al., 2018a,
Sutton and Barto, 2018, Hernandez-Garcia and Sutton, 2019]. However, the structure of the data in
RL contains more information rather than independent trajectories. Given the standard Markovian
assumption on the transition function in an MDP, the transition probability is independent of previous
states. Therefore, after observing the trajectory (s1, a1, s2, a2, s3, a3) and (s′1, a

′
1, s2, a

′
2, s
′
3, a
′
3) we

can infer (s1, a1, s2, a
′
2, s
′
3, a
′
3) (a cross-over of the two trajectories) is a possible trajectory. To fully

utilise the data sampled from an MDP, we should exploit this structure and treat the data as a bipartite
graph with state and action nodes.

In this work, we propose an extension to the multi-step target, which leverages the markovian property
and graph-structured nature of many MDPs to improve bootstrap target estimation. The method,
named graph backup, has two advantages over multi-step targets, illustrated in Fig. 1. The first is
the ability to propagate the rewards in a counter-factual manner: Suppose two trajectories have a
crossover and one of the trajectories received a reward in one of its later states. The multi-step backup
can only propagate the reward within the states in the current trajectory, while the graph backup
can bring rewards to the earlier states of both trajectories. In this case, the graph backup propagates
reward through an imaginary trajectory that is the recombination of two existing trajectories. The
second advantage of graph backup is the reduction in the variance of the target value, enabled by
averaging the possible downstream future trajectories, branching from the same upstream trajectory.
The branching itself can either be caused by the stochasticity of the environment dynamics or the
stochastic policy.

In this work, we propose two implementations of graph backup, building on DQN: GB-limited
conducts a depth- and breadth-limited expansion of the data graph, starting from the source state.
This is a strict extension of a multi-step method called tree backup [Precup et al., 2000], where
the tree is not a state tree but a state chain with action leaves. The second implementation, GB-Q,
converts the target computation into the problem of estimating the optimal q values in a tabular MDP.
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By running tabular Q-learning on the replay buffer, GB-Q is able to compute the infinite-step graph
backup targets. Note that GB-Q does not construct an explicit graph so can be easier to implement.

To summarise, the contributions of this paper are three-fold: (1) we propose graph backup, a novel
backup method that leverages the graph structure of the replay data to produce a more accurate target
value, (2) we propose two implementations of graph backup: GB-limited and GB-Q, and (3) we
test the performance of graph backup empirically in MiniGrid and Minatar tasks, showing better
sample-efficiency and final performance than the one-step and multi-step backup baselines.

2 Related Work

The idea of multi-step backup algorithms (e.g. TD(λ), n-step TD) dates back to early work in
tabular reinforcement learning [Sutton, 1988, Sutton and Barto, 2018]. Two approaches to multi-step
targets are n-step methods and eligibility trace methods. The n-step target method is a natural
extension to using a one-step target that brings the rewards and value estimations of n steps into
future into consideration. For example, the n-step SARSA [Rummery and Niranjan, 1994, Sutton
and Barto, 2018] target for step t is simply the sum of n-step rewards and the value in t+ n, namely
Rt+1 + Rt+2 + ... + Rt+n−1 + V (St+n). Our graph backup is an extension of an n-step backup
target, tree backup, which will be described in preliminaries.

Eligibility trace methods instead estimate the λ-return, which is an infinite weighted sum of n-step
returns. The advantage of the eligibility traces method is it can be computed in an online manner
without explicit storage of all the past experiences, while still computing accurate target value
estimates. However, in the context of off-policy RL, the eligibility traces is not widely applied
because of the use of a reply buffer means all past experiences are already stored. In addition,
the eligibility traces are designed for the case with a linear function approximator, and when the
value function is a neural network, it is non-trivial to apply eligibility traces. Recently, van Hasselt
et al. [2021] proposed an extension of eligibility traces methods called expected eligibility traces.
Similar to graph backup, it allows information propagation across different episodes and thus enables
counterfactual credit assignment and variance reduction. However, similar to the original eligibility
traces methods, it is a better fit for the online and linear case, whereas graph backup is designed for
the non-linear and off-policy cases.

Since a learned model can be treated as a distilled replay buffer, we can view model-based reinforce-
ment learning as related to our work [Schrittwieser et al., 2020, Hessel et al., 2021, Farquhar et al.,
2018, Hafner et al., 2021, Kaiser et al., 2020, Ha and Schmidhuber, 2018]. The model can be used for
planning or generating imaginary training data, which both enable counterfactual credit assignment.
Methods doing explicit planning [Schrittwieser et al., 2020, Farquhar et al., 2018] usually use the
model for a tree expansion and compute a backup target for their value functions, which is similar to
graph-backup where we instead use real data for the expansion. Deep model-based methods can deal
with high-dimensional data leveraging the generalization of the learned model. However, training
an accurate model itself can be difficult and the model error can keep accumulating during the tree
expansion. In addition, dealing with the stochasticity for model-based methods is non-trivial while
stochasticity is well-handled by graph backup methods by nature.

Zhu et al. [2020] proposed the method of associative memory to leveraging graph-structured data
in an MDP in the literature of episodic reinforcement learning. Episodic reinforcement learning is
a psychobiological-inspired field that tries to store experience that gains high returns and use them
for better decision making [Min and Kim, 2017, Pritzel et al., 2017]. Associative memory treats the
experience data as a graph rather than unrelated items [Zhu et al., 2020]. This allows counterfactual
reward propagation and can improve data efficiency. Since based on different fields, graph backup
has many differences from the associative memory method. Here we only list a few: 1) Associative
memory specifies a one-to-one mapping from state-action pairs to next states and is valid only for
the deterministic case. While graph backup not only works in stochastic cases but is also able to
reduce the variance of the target value. 2) The historical highest return in associative memory is not
generated in a bootstrapping way and only comes from rewards actually being seen. 3) The highest
return is used in an auxiliary loss term rather than a backup target.
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3 Preliminaries: One-step and Multi-step Backup

To clarify notation, given an MDPM we denote A as the action space, S to be state space,R ⊂ R
to be reward space. Capital At ∈ A or St ∈ S are used to denote the specific actions/states observed.
We can then denote a trajectory of states, actions and rewards as τ = (S1, A1, R1, S2, A2, R2, ...).

For a transition (St, At, Rt, St+1) the loss function of DQN methods is defined as the mean square
loss between the predicted q-value and the backup target GAT for (St, At):

L(θ|St, At)
def
=
∣∣qθ(St, At)−GAt

∣∣2 , (1)

where qθ represents the online network parametrized by θ. The backup target is an estimation of the
optimal q value q∗(St, At). Vanilla DQN uses one-step bootstrapped backup, which makes gradient
descent an analog to the update of the tabular Q learning:

GAt
t:t+1

def
= Rt+1 + γmax

a′
qθ′(St+1, a

′). (2)

The one-step target makes the propagation of the reward to previous states slow and the use of a
separate frozen network amplifies the problem of slow credit assignment. Using a separate target
network with parameters θ′ to compute the target G is a key ingredient to stabilise the training of
the DQN, and the weights of the target network are synchronized with the (learning) online network
periodically rather than being updated each training step. For example in Rainbow [Hessel et al.,
2018b], this target network update frequency is set to be every ttarget = 8000 steps. However, using
a slowly updated target network makes propagation of reward further delayed: even ideally, to
propagate a reward n steps forward, n× ttarget number of training steps are needed. This motivates
the use of multi-step target in DQN, which achieved better data efficiency [Hessel et al., 2018b,
Hernandez-Garcia and Sutton, 2019], possibly at the cost of biases value targets (in the case of n-step
Q-learning).

One example of an off-policy multi-steps target is the Tree Backup target [Precup et al., 2000]. Tree
backup is designed for general purpose off-policy evaluation, meaning it aims to estimate the value
of any target policy π by observing the behaviour policy µ. When the target policy is the optimal
policy given by qθ′ , tree backup recursively applies one-step backup to the trajectory, bootstrapping
with the target value network when the input action a isn’t that taken in the trajectory (At):

Ga
t:t+n

def
=

{
Rt+1 + γmaxa′ Ga′

t+1:t+n, if t < n and a = At

qθ′(St, a), otherwise
. (3)

It is worth noting that, despite what its name might suggest, the tree backup does not expand a tree of
transitions, and it still, like other multi-step methods, only leverages the chain structure of trajectories.
The method is called tree backup because it has leaves corresponding to the actions that were not
selected in the current trajectory. In Fig. 3, we showed the backup diagram of the 3-step tree backup,
where yellow squares are these leaf actions.

4 Graph Backup

In this section, we will introduce a new backup operator, graph backup, extending tree backup. This
graph backup allows counterfactual credit assignment and variance reduction while also having the
benefits of multi-step backup. We will also propose two implementations of graph backup, GB-limited
and GB-Q, with different computational complexity and robustness against value estimation error of
other states.

4.1 Limitations of multi-step backups

The multi-step backup target leverages the chain structure of trajectory data. However, treating the
data from several trajectories as independent chains does not fully exploit the Markovian property of
the data. For one-step and multi-step backup, the backup target for the same state can vary according
to the following states in its trajectory. However, for an MDP, if two observations are the same, then
their corresponding state transition probability and values should also be the same, independent of
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Figure 2: An example of graph-structured data where each node is a unique state and numbers inside
indicate the rewards received. There are two actions a and b, labelled on the edges. The path of
reward propagation for multistep backup is marked as orange and the optimal path is blue. The
optimal backup path can propagate rewards generated in two different trajectories to the state in step
1.

previous states. Therefore, in principle, these two states should be able to share the information of
their trajectories to build a more accurate target estimation.

For example, consider a 5 step MDP with two actions a and b, as illustrated in Fig. 2. The agent
observes two trajectories with action (a, a, a, a) and (b, b, b, b), where states overlaps in step 1, 3 and
5. The two trajectories can be merged into a graph since they share some state nodes. After merging
these two trajectories, we can get two extra possible trajectories: (a, a, b, b) and (b, b, a, a). Setting
γ = 1 and ∀(s, a), qθ′(s, a) = X , X is a random variable depended on how θ′ is initialised. Here
we assume X ∼ U(−1, 1) to simplify the example.

Now we try to compute the backup target at step 1. For action a, the single step target Ga
1:2 = 1 +X

and multi-step target Ga
1:5 = 1 + X gives the same result. For action b, since multi-steps target

managed to propagate reward seen in step 4, the target would be Gb
1:5 = 1 +X , which is different

from one-step backup target Gb
1:2 = X . Although a multi-step target seems to be more efficient than

the one-step target, by looking at the graph-structured data, it is not difficult to see a better target
would be 2 +X , which corresponds to the action sequence (a, a, b, b).

In fact, when we merge the two trajectories into a graph, we automatically get the information about
two more trajectories (a, a, b, b) and (b, b, a, a). Such information is derived from the Markovian
property and is not leveraged by the multi-step target. The only way for multi-step DQN to exploit
the trajectory crossover information is to wait until the target network gets updated so that the value
of (S3, b) is corrected: qθ′(S3, b) = 1. This is similar to the situation where the one-step target is
dealing with multi-step reward propagation. The update of the target network is slow and there is no
guarantee that DQN can perform this cross trajectory information exchange robustly.

4.2 Introducing Graph Backup

Inspired by the previous example, we propose the graph backup operator, to propagate temporal
differences across the whole data graph rather than a single trajectory. The differences between
one-step backup, multi-step backup and graph backup are illustrated in Fig. 3.

We want a backup method that can work with stochastic transitions, which means a single state-action
pair can lead to different states. This means it’s not obvious how to perform recursive backups to the
next state, as there could be multiple next states. We propose to estimate the transition probability to
each state using visitation counts, and to use the estimated transition probabilities to compute the
empirical mean over all possible state value estimates weighted by the likelihood of transitioning to
that state.

Denoting the set of all seen transitions to be T ⊆ S ×A×R× S , a counter function f : T → N+

maps each transition T = (s, a, r, s′) to its frequency f(T ). The graph backup target for a state-action
pair (s, a) is then the average of recursive one-step backup of all outgoing transitions, and similar
to tree backup, if the (s, a) has not been seen, the target would be estimated directly by the target
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Figure 3: Three backup diagrams for different targets. The blue squares represent the state-action
pairs that have been tried. The orange squares are actions where the target net evaluation happened.
The circles are states in the trajectory/data graph. The links between arrows represent the max
operator. For the graph backup, the same state action pair can have different following states because
of the transition stochasticity.

network. Define Ts,a
def
= {(ŝ, â, r̂, ŝ′) ∈ T |ŝ = s, â = a}. We can then define the graph backup

value estimate as

Ga
s

def
=

{∑
T∈Ts,a

f(T )
c(s,a)

(
r + γmaxa′ Ga′

s′

)
if c(s, a) > 0

qθ′(s, a) otherwise
(4)

where c(s, a) =
∑

T∈Ts,a f(T ) is the normalizer.

In Eq. (4), the graph structure does not seem to appear explicitly. To better gain intuition of the graph
backup, in Appendix B we explicitly describe the data graph generated from an MDP and link that to
Eq. (4). In practice, maintaining this explicit graph structure can speed up the computation because
otherwise, we will have to do frequent transition lookups in the replay buffer. However, in this work,
we will stick to the definition based on transition counts because using describing the graph structure
explicitly will complexify the notations.

4.3 Practical Implementations of Graph Backup

Having defined the theoretical graph backup value estimate we now describe two concrete ways of
implementing this value estimate in deep RL algorithms.

GB-limited: Limited Expansion of Graph Backup A naive way to implement the graph backup
is to follow the definition exactly and do an exhaustive recursive expansion of the graph. However,
the computational cost of doing so can quickly blow up with the size of the replay data1. One solution
to this problem is to take inspiration from the n-step tree back up, and limit the depth and breadth
of recursion, using the target network estimate when reaching depth limits. This is the motivation
behind our first implementation of graph backup GB-limited, which expands the data graph with both
a breadth limit b and depth limit d.

During the expansion of the graph, the number of boundary nodes can grow exponentially. To make
this growth to be linear, we will sample b transitions from Ts,a according to their frequency f , as
opposed to expanding all transitions. To constrain depth, when a depth limit is hit, the intermediate
target values will be estimated by target network qθ′ directly. If we set b = 1, GB-limited will do a
tree backup with trajectories sampled from the data graph rather than real trajectories.

The pseudocode for GB-limited target computation is shown in Algorithm 1. Besides computational
benefits, GB-limited has the implicit benefit of restricting the error of target network prediction.
An expanded expression of graph backup target can have a lot of nested max operators, which can
propagate the most optimistic target network error to the whole graph. The problem can be alleviated
by discounting factors or other tricks such as double DQN [van Hasselt et al., 2016] or using a soft-Q
target policy [Haarnoja et al., 2018]. In this work, we will only investigate the role of expansion limit
and leave potential solutions to future work.

GB-Q: In-Buffer Q-learning GB-limited can give an approximation of the graph backup target,
but what if we want to compute the exact value of the target without expansion limits? In fact, we can

1In fact, if there are loops in the graph, the situation can be even worse as the algorithm will never converge.
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deal with this with dynamic programming, by storing previous computations of intermediate target
values for later usage. A simple approach is to initialise all target estimations with the target network,
and then run tabular Q learning with transitions uniformly sampled from replay buffer, effectively
treating the replay buffer as a tabular MDP. The converged optimal q-value estimates on this MDP
are then the graph backup targets, which is proven in Appendix A. It is worth noting that a single run
of tabular Q learning can give us target values for all the seen states, so the computational overhead
can actually be quite low when the replay size is small. In the online learning setting, we also need to
consider the online initialization of the new states, and the target estimation should also be fine-tuned
accordingly. The pseudo-code for full online DQN with graph backup is shown in Algorithm 2. The
blue text shows operations GB-Q to the standard DQN algorithm.

Algorithm 1 GB-limited

Input: source state Ssource, source action Asource, depth limit d, breath limit b, frequency mapping
f : T → N+

1: Initialize the set containing states on the boundary of expansion Snew ← {Ssource}
2: Initialize the list of expanded state-action pairs l, denoting the largest element to be lmax
3: for i = 0 to d do
4: Find all transitions on boundary Tnew ← {t|∀t = (s, a, r, s′) ∈ T , s ∈ Snew}
5: Sample b transitions from Tnew with p(t) ∝ f(t), getting Tpruned = {t1, t2, ..., tb}
6: Append state-action pairs to list l, {lmax+1, lmax+2, ...} = {(s, a)|∀(s, a, r, s′) ∈ Tpruned}
7: Update boundary states Snew = {s′|∀(s, a, r, s′) ∈ Tpruned}
8: end for
9: Set Sexpanded be the set containing all the states in list l

10: Initialize the target values Ḡa
s = qθ′(s, a),∀s ∈ Sexpanded, a ∈ A

11: for (s, a) in lmax, lmax-1, ..., l1 do
12: Ḡa

s ←
∑

(s,a,r,s′)∈T
f(s,a,r,s′)

c(s,a)

(
r + γmaxa′ Ḡa′

s′

)
13: end for
14: return ḠAsource

Ssource

Algorithm 2 DQN with GB-Q (Online Case). Blue text denotes additions of GB-Q to standard DQN.

Input: batch size M , exploration constant ε, learning rate for tabular Q Learning α, number steps
for running Tabular Q learning Ttable target network update frequency ttarget

1: Initialise online network weights θ at random
2: Observe the first state s
3: Initialise the set stores seen states Sseen ← ∅
4: for t = 0 to T do
5: With probability ε select random action a, otherwise select a = argmaxa′ qθ(s, a′)
6: Execute action a, observe reward r and state s′
7: if s′ 6∈ Sseen then
8: Initialise the target Ĝs′,a′ = qθ′(s′, a′) for all actions a′
9: Update seen states Sseen ← Sseen ∪ {s′}

10: end if
11: Store (s, a, r, s′) in replay buffer
12: if t mod ttarget = 0 then
13: Update target network weights θ′ ← θ

14: Reinitialise targets Ĝsj ,a′ = qθ′(sj , a
′) for all a′ and observed sj ∈ Sseen

15: end if
16: for i = 0 to Ttable do
17: Sample a transition (s̄, ā, r̄, s̄′) from replay buffer
18: Update target Ĝā

s̄ ← Ĝā
s̄ + α(r̄ + γmaxa′ Ĝa′

s̄′ − Ĝā
s̄)

19: end for
20: Sample random minibatch of transitions (sk, ak, rk, s

′
k) from replay buffer

21: Perform a gradient descent step on |qθ(sk, ak)− Ĝsk
ak
|2 with respect to θ

22: Update current state variable s← s′

23: end for
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Figure 4: MiniGrid Results. The training curves of the different backup settings on 5 singleton
MiniGrid tasks. The faded curves are those of individual runs and the solid lines the average over five
runs. The summary plot presents the mean scores of all tasks. Curves are plotted with an exponential
moving average for better readability.

5 Experiments

Experiment Setting We test the effects of different backup targets based on the setting of vanilla
DQN. Our aim is to understand whether graph backup produces more data-efficient learning than
previous backup methods, and which implementation of graph backup works better in different
settings. We compare GB-Q and GB-limited to tree backup and one-step backup. The GB-limited
and tree backup both use a depth limit of 5. The breath limit for GB-limited is 50 for MiniGrid and
10 for Minatar.

For the architecture, the q network has 2 convolutions layers and 2 dense layers, and we follow the
hyper-parameters of Rainbow [Hessel et al., 2018b] with target network update frequency of 8000,
ε-greedy exploration with ε = 0.02. The learning rate is 0.001 for MiniGrid and 0.0000625 for
Minatar. The discounting factor is 0.95 for MiniGrid and 0.99 for Minatar. The replay frequency is 1
for MiniGrid and 4 for Minatar Since we tested the algorithm in a data-efficient setting, the size of
the replay buffer is set to be equal to the overall training steps.

MiniGrid We first compare the methods in singleton MiniGrid tasks. Every single run (out of
5) has a different but fixed random seed within the whole training process. This means the overall
number of possible states is small and the data graph is thus quite dense. The reward of MiniGrid is
only given at the end of the episode, which makes credit assignment a critical problem. The training
curves of the different backup settings are shown in Fig. 4, with the faded curves being those of
individual runs and the solid lines the average over five runs.

Among the 5 tasks, one-step backup and tree backup only managed to converge within 1e5 steps
for the easiest empty room task. For other tasks with more complex navigation (SimpleCrossing
and LavaCrossing) and interaction with objects (DoorKey and KeyCorridor), only the graph backup
converged this low data regime. Among the graph backup family, the GB-Q performs slightly better
than GB-limited. This is potentially because the GB-Q implements an infinite step backup where the
reward propagation is not strongly dependent on the target network, while for GB-limited and tree
backup, the rewards can only be propagated 5 steps forward within each target network update cycle.
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Figure 5: Minatar Results. The training curves of the different backup settings on 5 different Minatar
tasks. The faded curves are those of individual runs and the solid lines the average over five runs.
The summary plot presents the mean scores of all tasks, normalized by the average performance of
all agents. Curves are plotted with an exponential moving average for better readability.

Minatar We perform experiments on Minatar. Minatar is a collection of miniature Atari games
with a symbolic representation of the objects. The game state is fully specified by the observation
of a 10 by 10 image, where each pixel corresponds to an object. The game dynamics are by nature
stochastic, which differs from vanilla Atari games whose random seeds are generated from the
players’ action sequences [Hausknecht and Stone, 2015], and hence produce deterministic transitions
if the agent can see all the history. We set the overall number of interactions to be 100’000, which is
inspired by the Atari100K benchmark [Kaiser et al., 2020]. As suggested by its name, Atari100K
limits the number of interactions to 100K, which is equivalent to 2 hours of game-play in Atari. Since
the human performance score reported by Mnih et al. [2015] is also given by human experts after 2
hours of game-play, Atari100K is considered as a test-bed for human-level data-efficient learning.

The experimental results for Minatar are shown in Fig. 5. We can see in the plot that GB-limited
consistently outperform the tree backup and vanilla one-step backup. The wilcoxon signed rank test
gives p-values of 0.0002 and 0.003 for the hypotheses "GB-limited is better than one-step backup"
and "GB-limited is better than tree backup". GB-Q in Minatar tasks is inferior to GB-limited, which
can be explained by the nosier target estimation. Unlike MiniGrid, the rewards of Minatar tasks are
denser, and the variance of the returns are also higher. A graph backup operator without expansion
limitation might cause the target value to be overly optimistic.

6 Conclusion

In this work, we motivate the introduction of a novel bootstrapped value estimation operator, graph
backup. This backup method utilises the graph-structured nature of MDP transition data to enable
counterfactual credit assignment and variance reduction. We propose two implementations of the
graph backup and demonstrate graph backup surpasses multi-step and one-step backup in MiniGrid
and Minatar tasks. For future work, we hope to expand graph backup to higher-dimensional and
continuous state-space environments. For higher-dimensional environments, the data graph might be
much sparser, so we potentially need either a preprocessed or a learned discrete representation of the
state.
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